JP5270274B2 - High strength cold-rolled steel sheet with excellent elongation and stretch flangeability - Google Patents

High strength cold-rolled steel sheet with excellent elongation and stretch flangeability Download PDF

Info

Publication number
JP5270274B2
JP5270274B2 JP2008235101A JP2008235101A JP5270274B2 JP 5270274 B2 JP5270274 B2 JP 5270274B2 JP 2008235101 A JP2008235101 A JP 2008235101A JP 2008235101 A JP2008235101 A JP 2008235101A JP 5270274 B2 JP5270274 B2 JP 5270274B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
stretch flangeability
steel
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008235101A
Other languages
Japanese (ja)
Other versions
JP2010065307A (en
Inventor
英雄 畠
俊夫 村上
朗 伊庭野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008235101A priority Critical patent/JP5270274B2/en
Publication of JP2010065307A publication Critical patent/JP2010065307A/en
Application granted granted Critical
Publication of JP5270274B2 publication Critical patent/JP5270274B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength cold-rolled steel sheet having &ge;980 MPa tension strength and &ge;13% elongation by reducing the variation of a stretch-flangeability and excellent formability by surely satisfying &ge;90% average value of the stretch-flangeability. <P>SOLUTION: The cold-rolled steel sheet has the component composition composed by mass% of 0.03-0.30% C, &le;3.0% (containing 0%) Si, 0.5-5.0% Mn, &le;0.1% P, &le;0.005% S, &le;0.01% N, 0.01-0.3% Al, and the balance Fe with inevitable impurities, and the structure by area ratio of 40-70% tempered martensite having 330-450Hv hardness and the balance of the ferrite and the average diameter of the ferrite has &le;8 &mu;m circle-equivalent diameter and the ratio C1/C2 of the upper limit value C1 (unit: mass%) and the lower limit value C2 (unit: mass%) of an Mn concentration in the cross-sectional surface in the thickness direction of the steel sheet is &le;2.0. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、加工性に優れた高強度鋼板に関し、詳細には、伸び(全伸び)および伸びフランジ性の高められた高強度鋼板に関する。   The present invention relates to a high-strength steel sheet excellent in workability, and in particular, to a high-strength steel sheet with improved elongation (total elongation) and stretch flangeability.

例えば自動車の骨格部品などに使用される鋼板には、衝突安全性や車体軽量化による燃費軽減などを目的として高強度が求められるとともに、形状の複雑な骨格部品に加工するために優れた成形加工性も要求される。   For example, steel sheets used for automobile frame parts and the like are required to have high strength for the purpose of collision safety and fuel efficiency reduction by reducing the weight of the car body, and excellent forming process for processing into complex frame parts Sex is also required.

このため、引張強度980MPa級以上で伸び(本明細書では全伸び;Elのことを指す。)と穴拡げ率(λ)で評価される伸びフランジ性がともに高められた高強度鋼板の提供が切望されている。   Therefore, it is possible to provide a high-strength steel sheet having both a tensile strength of 980 MPa class or higher (total elongation; referred to as El in this specification) and stretch flangeability evaluated by a hole expansion ratio (λ). Longed for.

上記のようなニーズを受けて、種々の組織制御の考え方に基づき、伸びと伸びフランジ性のバランスを改善した高強度鋼板が多数提案されているものの、近年、上記バランス改善に対する要望がさらに強くなってきており、引張強度980MPa以上で伸び13%以上、穴拡げ率90%以上を満たす高強度鋼板に対するニーズが顕在化している。しかしならが、この要望レベルを満足するものはいまだ完成に至っていないのが現状である。   In response to the above needs, many high-strength steel sheets with improved balance between elongation and stretch flangeability have been proposed based on various structural control concepts, but in recent years, there has been a growing demand for the above balance improvement. The need for a high-strength steel sheet that has a tensile strength of 980 MPa or more, an elongation of 13% or more, and a hole expansion ratio of 90% or more is becoming apparent. However, the present situation is that the products satisfying this demand level have not yet been completed.

例えば、特許文献1には、Mn、CrおよびMoの少なくとも1種を合計で1.6〜2.5質量%含有し、実質的にマルテンサイトの単相組織からなる高張力冷延鋼板が開示されており、その穴広げ率(伸びフランジ性)は100%以上が得られているものの、フェライト相がほとんど存在しないため、伸びは10%に達していない(同文献の表6の本発明例参照)。   For example, Patent Document 1 discloses a high-tensile cold-rolled steel sheet that contains at least one of Mn, Cr, and Mo in a total amount of 1.6 to 2.5% by mass and is substantially composed of a single-phase structure of martensite. Although the hole expansion ratio (stretch flangeability) is 100% or more, the ferrite phase is hardly present, so the elongation does not reach 10% (Example of the invention in Table 6 of the same document). reference).

また、特許文献2には、フェライトが面積率で65〜85%で残部が焼戻しマルテンサイトの二相組織からなる高張力鋼板が開示されており、その伸びは13%以上が得られているものの、フェライト面積率が高すぎるため穴拡げ率は90%に達していない(同文献の表2の発明例参照)。   Patent Document 2 discloses a high-tensile steel plate having a dual phase structure of ferrite with an area ratio of 65 to 85% and the balance being tempered martensite, and the elongation is 13% or more. In addition, since the ferrite area ratio is too high, the hole expansion ratio does not reach 90% (see the invention example in Table 2 of the same document).

また、特許文献3には、フェライトおよびマルテンサイトの平均結晶粒径がともに2μm以下であり、マルテンサイトの体積率が20%以上60%未満の二相組織からなる高張力鋼板が開示されている。しかしながら、マルテンサイト面積率が50%未満のものは、伸びは13%以上が確保されているものの、穴拡げ率は90%に満たず、マルテンサイト面積率が50%以上のものは、穴拡げ率は90%に満たないことに加えて、伸びも13%に満たない(同文献の表1、2の実施例参照)。このようにマルテンサイト面積率が高いもので伸びが低くなる理由は、オーステナイト単相域から冷却中にフェライトを形成させる製造方法から類推するにフェライト粒の長手方向が一定の方向に集積しているためと考えられる。   Patent Document 3 discloses a high-tensile steel plate having a two-phase structure in which the average crystal grain sizes of ferrite and martensite are both 2 μm or less and the volume ratio of martensite is 20% or more and less than 60%. . However, when the martensite area ratio is less than 50%, the elongation is 13% or more, but the hole expansion ratio is less than 90%. When the martensite area ratio is 50% or more, the hole expansion is In addition to the rate being less than 90%, the elongation is also less than 13% (see Examples in Tables 1 and 2 of the same document). The reason why the elongation is low with such a high martensite area ratio is that the longitudinal direction of the ferrite grains is accumulated in a certain direction as inferred from the manufacturing method in which ferrite is formed during cooling from the austenite single phase region. This is probably because of this.

そこで本出願人は、引張強度が980MPa以上で、伸び 13%以上と伸びフランジ性90%以上をともに満たす、成形性に優れた高強度冷延鋼板を提供することを目的として、鋭意研究開発を進めた結果、以下の高強度冷延鋼板を完成するに至り、既に特許出願を行った(特願2008−97411参照)。   Therefore, the present applicant has conducted intensive research and development for the purpose of providing a high-strength cold-rolled steel sheet excellent in formability that has a tensile strength of 980 MPa or more and satisfies both elongation of 13% or more and stretch flangeability of 90% or more. As a result, the following high-strength cold-rolled steel sheet was completed, and a patent application was already filed (see Japanese Patent Application No. 2008-97411).

本出願人が特願2008−97411にて提案した高強度冷延鋼板は、
質量%で(以下、化学成分について同じ。)、
C:0.03〜0.30%、
Si:3.0%以下(0%含む)
Mn:0.5〜5.0%、
P:0.1%以下、
S:0.005%以下、
N:0.01%以下、
Al:0.01〜1.00%
を含み、残部が鉄および不可避的不純物からなる成分組成を有し、硬さ330Hv以上450Hv以下の焼戻しマルテンサイトが面積率で50%以上70%以下、残部がフェライトからなる組織を有し、
前記フェライトはその最大粒径が円相当直径12μm以下で、C方向(圧延方向と直角な方向)とフェライト粒長手方向とのなす角度の10度刻みでの度数分布の最大値が18%以下、最小値が6%以上である
伸びおよび伸びフランジ性に優れた高強度冷延鋼板である。
The high-strength cold-rolled steel sheet proposed by the present applicant in Japanese Patent Application No. 2008-97411 is
% By mass (hereinafter the same for chemical components)
C: 0.03 to 0.30%,
Si: 3.0% or less (including 0%)
Mn: 0.5 to 5.0%,
P: 0.1% or less,
S: 0.005% or less,
N: 0.01% or less,
Al: 0.01 to 1.00%
The balance is composed of iron and inevitable impurities, the tempered martensite having a hardness of 330 Hv or more and 450 Hv or less has an area ratio of 50% or more and 70% or less, and the balance has a structure of ferrite.
The maximum diameter of the ferrite is equivalent to a circle equivalent diameter of 12 μm or less, and the maximum value of the frequency distribution in increments of 10 degrees of the angle between the C direction (direction perpendicular to the rolling direction) and the ferrite grain longitudinal direction is 18% or less, It is a high-strength cold-rolled steel sheet having a minimum value of 6% or more and excellent elongation and stretch flangeability.

ここで、鋼板はその機械的特性にバラツキを有するため、実用上は機械的特性の平均値だけでなく、バラツキの下限値が問題になる場合が多い。伸びフランジ性に関しては、上記高強度冷延鋼板により、平均値は上昇するものの、依然としてバラツキは残る。例えば鋼板をプレス成形した際には、バラツキの範囲で下限値付近の特性を有する部分で割れが発生するというトラブルが生じる。したがって、プレス成形等における実用的な伸びフランジ性の向上のためには、平均値の上昇に加えてバラツキの低減、すなわちバラツキの下限値の上昇が必要である。
特開2002−161336号公報 特開2004−256872号公報 特開2004−232022号公報
Here, since the steel sheet has variations in its mechanical properties, not only the average value of the mechanical properties but also the lower limit value of the variation often becomes a problem in practice. Regarding the stretch flangeability, although the average value increases due to the high-strength cold-rolled steel sheet, variation still remains. For example, when a steel sheet is press-formed, there is a problem that cracks occur in a portion having characteristics near the lower limit within the range of variation. Therefore, in order to improve practical stretch flangeability in press molding or the like, it is necessary to reduce variation, that is, increase the lower limit value of variation, in addition to an increase in average value.
JP 2002-161336 A JP 2004-256872 A JP 2004-232022 A

そこで本発明の目的は、伸びフランジ性のバラツキを低減することにより、引張強度が980MPa以上、伸びが13%以上で、かつ、伸びフランジ性が平均値で90%以上を確実に満たす、より成形性に優れた高強度冷延鋼板を提供することにある。   Accordingly, an object of the present invention is to reduce the variation in stretch flangeability, thereby making it possible to reliably satisfy the tensile strength of 980 MPa or more, the elongation of 13% or more, and the stretch flangeability of 90% or more on average. An object of the present invention is to provide a high-strength cold-rolled steel sheet having excellent properties.

請求項1に記載の発明は、
質量%で(以下、化学成分について同じ。)、
C:0.03〜0.30%、
Si:3.0%以下(0%含む)
Mn:0.5〜5.0%、
P:0.1%以下、
S:0.005%以下、
N:0.01%以下、
Al:0.01〜0.3%
Cr:0.01〜1.0%
を含み、残部が鉄および不可避的不純物からなる成分組成を有し、硬さ330Hv以上450Hv以下の焼戻しマルテンサイトが面積率で40%以上70%以下、残部がフェライトからなる組織を有し、
前記フェライトはその平均粒径が円相当直径8μm以下であり、
鋼板の厚さ方向断面における、Mn濃度の上限値C1(単位:質量%)と下限値C2(単位:質量%)の比C1/C2が2.0以下である
ことを特徴とする伸びおよび伸びフランジ性に優れた高強度冷延鋼板である。
The invention described in claim 1
% By mass (hereinafter the same for chemical components)
C: 0.03 to 0.30%,
Si: 3.0% or less (including 0%)
Mn: 0.5 to 5.0%,
P: 0.1% or less,
S: 0.005% or less,
N: 0.01% or less,
Al: 0.01~0.3%,
Cr: 0.01 to 1.0%
The balance is composed of iron and inevitable impurities, the tempered martensite having a hardness of 330 Hv or more and 450 Hv or less has an area ratio of 40% to 70%, and the balance has a structure made of ferrite.
The ferrite has an average particle diameter of 8 μm or less in equivalent circle diameter,
Elongation and elongation, wherein the ratio C1 / C2 of the upper limit C1 (unit: mass%) and the lower limit C2 (unit: mass%) of the Mn concentration in the cross section in the thickness direction of the steel sheet is 2.0 or less. It is a high-strength cold-rolled steel sheet with excellent flangeability.

請求項2に記載の発明は、
成分組成が、更に
o:0.01〜1.0%、
Cu:0.05〜1.0%、
Ni:0.05〜1.0%、
の1種または2種以上を含むものである
請求項1に記載の伸びおよび伸びフランジ性に優れた高強度冷延鋼板である。
The invention described in claim 2
Component composition further comprises
M o: 0.01~1.0%,
Cu: 0.05 to 1.0%,
Ni: 0.05 to 1.0%,
The high-strength cold-rolled steel sheet having excellent elongation and stretch flangeability according to claim 1, comprising one or more of the following.

請求項3に記載の発明は、
成分組成が、更に、
B:0.0001〜0.0050%、
Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%、
の1種または2種以上を含むものである
請求項1または2に記載の伸びおよび伸びフランジ性に優れた高強度冷延鋼板である。
The invention according to claim 3
Ingredient composition further
B: 0.0001 to 0.0050%,
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
The high-strength cold-rolled steel sheet having excellent elongation and stretch flangeability according to claim 1 or 2, comprising one or more of the above.

本発明によれば、フェライトと焼戻しマルテンサイトからなる二相組織において、焼戻しマルテンサイトの硬さとその面積率、フェライト粒径および鋼板中のMn濃度分布とを適正に制御することで、引張強度と伸びを確保したうえで、さらに伸びフランジ性のバラツキを低減することにより、伸びフランジ性の平均値を確実に向上することが可能となり、より成形性に優れた高強度鋼板を提供できるようになった。   According to the present invention, in a two-phase structure composed of ferrite and tempered martensite, by properly controlling the hardness of the tempered martensite and its area ratio, the ferrite grain size and the Mn concentration distribution in the steel sheet, the tensile strength and By ensuring the elongation and further reducing the variation in stretch flangeability, the average value of stretch flangeability can be reliably improved, and it becomes possible to provide a high-strength steel sheet with better formability. It was.

本発明者らは、上記鋼板の伸びフランジ性のバラツキの原因について種々調査を行った結果、スラブ鋳造時に生じたMnの偏析が、製品である鋼板の段階まで残存するためであることを突き止めた。   As a result of various investigations on the cause of the variation in stretch flangeability of the steel sheet, the present inventors have found that the segregation of Mn generated during slab casting remains until the stage of the steel sheet as a product. .

すなわち、スラブ鋳造時における凝固の際にMnが偏析し、スラブ中にMn濃度分布が生じる。このMn濃度分布は、製品である鋼板まで残りやすい。そうすると、鋼板中において、Mn濃度が高い部分と低い部分とでマルテンサイトの面積率およびその硬さが異なっつてくる。伸びフランジ成形の際には、マルテンサイト粒の境界部から優先的にクラックが発生するため、マルテンサイトの面積率およびその硬さが異なると伸びフランジ性も変化する。したがって、鋼板中のMn濃度分布(Mn偏析)が伸びフランジ性のバラツキの原因であると考えた。   That is, Mn is segregated during solidification during slab casting, and a Mn concentration distribution is generated in the slab. This Mn concentration distribution tends to remain up to the product steel plate. Then, in the steel sheet, the area ratio of martensite and the hardness thereof are different between a portion where the Mn concentration is high and a portion where the Mn concentration is low. In the stretch flange molding, cracks are preferentially generated from the boundary of the martensite grains, so that the stretch flangeability changes when the martensite area ratio and its hardness are different. Therefore, it was considered that the Mn concentration distribution (Mn segregation) in the steel sheet was the cause of the variation in stretch flangeability.

そこで、上記仮説に基づいて調査を行った結果、Mn濃度の高い部分(Mnが偏析した部分)で伸びフランジ性が悪化し、このようなMn濃度の高い部分(Mnが偏析した部分)で、伸びフランジ性のバラツキの範囲における下限値を示すことがわかった。そして、Mn偏析の度合いが種々異なる鋼板の伸びフランジ性を測定したところ、鋼板中におけるMn濃度の最高値C1と最低値C2の差C1/C2を2.0以下にすることで、伸びフランジ性のバラツキが大幅に低減し、伸びフランジ性の平均値を確実に上昇しうることを見出し、該知見に基づいて本発明を完成するに至った。   Therefore, as a result of the investigation based on the above hypothesis, stretch flangeability deteriorates in a portion where Mn concentration is high (portion where Mn is segregated), and in such a portion where Mn concentration is high (portion where Mn is segregated), It was found that the lower limit in the range of variation in stretch flangeability was exhibited. Then, when the stretch flangeability of steel sheets having different degrees of Mn segregation was measured, the difference C1 / C2 between the maximum value C1 and the minimum value C2 of the Mn concentration in the steel sheet was made 2.0 or less, so that stretch flangeability was achieved. As a result, it was found that the variation in the thickness can be significantly reduced and the average value of stretch flangeability can be reliably increased, and the present invention has been completed based on the findings.

以下、まず本発明鋼板を特徴づける組織について説明する。   Hereinafter, the structure characterizing the steel sheet of the present invention will be described first.

〔本発明鋼板の組織〕
本発明鋼板は、上記特願2008−97411にて提案した高強度冷延鋼板(以下、「先行発明鋼板」という。)と同様に、二相組織(フェライト+焼戻しマルテンサイト)をベースとし、焼戻しマルテンサイトの硬さの範囲も上記先行発明と同じ範囲とするものであるが、特に、焼戻しマルテンサイトの面積率の範囲がその下限側で広くなった点、フェライト粒の微細化を最大粒径でなく平均粒径で規定した点、フェライト粒の配向性を等方化することに代えて、鋼板中におけるMn濃度分布を均一化する点で、上記先行発明鋼板とは相違している。
[Structure of the steel sheet of the present invention]
Similar to the high-strength cold-rolled steel sheet (hereinafter referred to as “prior invention steel sheet”) proposed in the above-mentioned Japanese Patent Application No. 2008-97411, the steel sheet of the present invention is based on a two-phase structure (ferrite + tempered martensite) and tempered. The martensite hardness range is also the same as the above-mentioned prior invention, but in particular, the range of the area ratio of tempered martensite is widened on the lower limit side, the fineness of ferrite grains is maximized Instead of the point specified by the average grain size, and instead of making the orientation of the ferrite grains isotropic, the Mn concentration distribution in the steel sheet is made uniform, which is different from the prior invention steel sheet.

<硬さ330Hv以上450Hv以下の焼戻しマルテンサイト>
焼戻しマルテンサイトを一定以上の硬さにすることで引張強度を確保しつつ、一定以下の硬さに制限して該焼戻しマルテンサイトの変形能を高めることで、フェライトと該焼戻しマルテンサイトの界面への応力集中を抑制し、該界面での亀裂の発生を防止して伸びフランジ性を確保する。
<Tempered martensite with a hardness of 330Hv to 450Hv>
While ensuring the tensile strength by making the tempered martensite more than a certain degree of hardness, limiting the hardness to a certain degree or less and enhancing the deformability of the tempered martensite, to the interface between ferrite and the tempered martensite The stress concentration is suppressed, the occurrence of cracks at the interface is prevented, and stretch flangeability is ensured.

上記作用を有効に発揮させるには、焼戻しマルテンサイトの硬さは330Hv以上450Hv以下(より好ましくは430Hv以下)とする。   In order to effectively exhibit the above action, the hardness of tempered martensite is set to 330 Hv or more and 450 Hv or less (more preferably 430 Hv or less).

<焼戻しマルテンサイトが面積率で40%以上70%以下>
焼戻しマルテンサイト主体の組織にすることで、焼戻しマルテンサイトの硬さを低下させても高い引張強度を確保できる。同時にフェライト面積率をある程度確保し、フェライトとマルテンサイトの間でひずみを配分させることで、伸びを確保する。
<Tempered martensite is 40% to 70% in area ratio>
By using a tempered martensite-based structure, a high tensile strength can be secured even if the hardness of the tempered martensite is reduced. At the same time, the ferrite area ratio is secured to some extent, and the strain is distributed between the ferrite and martensite to ensure elongation.

上記作用を有効に発揮させるには、焼戻しマルテンサイトは、面積率で40%以上70%以下(より好ましくは60%以下)とする。なお、残部はフェライトである。   In order to effectively exhibit the above action, the tempered martensite is 40% or more and 70% or less (more preferably 60% or less) in terms of area ratio. The balance is ferrite.

ここで、焼戻しマルテンサイトの面積率の下限値を、先行発明鋼板では50%としていたのに対し、本発明鋼板では40%としたのは、下記フェライト粒の微細化のみによる伸びフランジ性向上作用により、焼戻しマルテンサイトの面積率が緩和されたためである。   Here, the lower limit value of the area ratio of tempered martensite was 50% in the steel sheet of the prior invention, whereas it was 40% in the steel sheet of the present invention. This is because the area ratio of tempered martensite was relaxed.

<前記フェライトはその平均粒径が円相当直径8μm以下>
フェライト粒径を小さくすることにより、マトリックス組織中に面積率で30〜60%ものフェライトを導入しても、フェライトとマルテンサイトの界面への応力集中を抑制し、該界面での亀裂の発生を防止して伸びフランジ性を確保する。
<The ferrite has an average particle diameter of 8 [mu] m or less equivalent circle diameter>
By reducing the ferrite grain size, even if 30-60% ferrite is introduced into the matrix structure, the stress concentration at the interface between ferrite and martensite is suppressed, and cracks are generated at the interface. Prevent and ensure stretch flangeability.

上記作用を有効に発揮させるには、フェライト粒の最大径を円相当直径で8μm以下(より好ましくは7μm以下、特に好ましくは6μm以下)とする。   In order to effectively exhibit the above action, the maximum diameter of the ferrite grains is set to 8 μm or less (more preferably 7 μm or less, particularly preferably 6 μm or less) in terms of the equivalent circle diameter.

ここで、フェライト粒の微細化の規定としては、先行発明鋼板では「最大粒径を12μm以下」と規定していたのに対し、本発明鋼板では「平均粒径で8μm以下」と規定することとしたのは、先行発明鋼板ではフェライト粒の配向性の等方化との相乗作用により、伸びフランジ性(平均値としてのλ)を確保していたものを、本発明鋼板ではフェライト粒の配向性に拠らずフェライト粒の微細化のみで伸びフランジ性(平均値としてのλ)を確保するためである。   Here, the definition of the refinement of ferrite grains is defined as “maximum grain size of 12 μm or less” in the prior invention steel sheet, whereas “average grain size is 8 μm or less” in the steel sheet of the present invention. In the steel sheet of the present invention, the stretch flangeability (λ as an average value) was ensured by the synergistic effect with the isotropic orientation of the ferrite grain in the prior invention steel sheet. This is to ensure stretch flangeability (λ as an average value) only by refining the ferrite grains regardless of the properties.

<鋼板の厚さ方向断面における、Mn濃度の上限値C1(単位:質量%)と下限値C2(単位:質量%)の比C1/C2が2.0以下>
鋼板中におけるMnの偏析を抑制することで、伸びフランジ性のバラツキが低減できる。
<The ratio C1 / C2 of the upper limit C1 (unit: mass%) and the lower limit C2 (unit: mass%) of the Mn concentration in the cross section in the thickness direction of the steel sheet is 2.0 or less>
By suppressing the segregation of Mn in the steel sheet, the variation in stretch flangeability can be reduced.

上記作用を有効に発揮させるには、C1/C2が2.0以下(より好ましくは1.8以下)とする。   In order to effectively exhibit the above action, C1 / C2 is set to 2.0 or less (more preferably 1.8 or less).

C1/C2が2.0を超えると、鋼板中におけるMn偏析が大きくなって伸びフランジ性のバラツキが過大になり、平均値としての伸びフランジ性が低下する。   When C1 / C2 exceeds 2.0, Mn segregation in the steel sheet becomes large, the variation in stretch flangeability becomes excessive, and the stretch flangeability as an average value decreases.

以下、焼戻しマルテンサイトの面積率およびその硬さ、フェライト粒の最大径(円相当直径)、ならびに、Mnの偏析度合いの各測定方法について説明する。   Hereinafter, each measuring method of the area ratio of tempered martensite and its hardness, the maximum diameter of the ferrite grains (equivalent circle diameter), and the degree of segregation of Mn will be described.

まず、各供試鋼板についてその圧延方向が法線方向となる面を観察できるように調整した後、鏡面研磨し、ナイタール液で腐食して金属組織を顕出させた後、走査型電子顕微鏡にて倍率1000倍で3視野観察した。マルテンサイト面積率については、走査型電子顕微鏡像中の白い粒状コントラストが含まれる領域をマルテンサイトとして、その領域が全体に占める割合を画像解析によって測定し、マルテンサイト面積率とした。   First, after adjusting the surface of each test steel plate so that its rolling direction can be observed in the normal direction, it was mirror-polished, corroded with a nital solution, and the metal structure was revealed, and then applied to a scanning electron microscope. And 3 fields of view were observed at a magnification of 1000 times. About the martensite area ratio, the area | region where the white granular contrast in a scanning electron microscope image was contained was made into the martensite, and the ratio for which the area | region occupied to the whole was measured by image analysis, and it was set as the martensite area ratio.

次に、マルテンサイトの硬さについては、JIS Z 2244の試験方法に従って各供試鋼板表面のビッカース硬さ(98.07N)Hvを測定し、下記式(1)を用いてマルテンサイトの硬さHvMに換算を行った。   Next, regarding the hardness of martensite, the Vickers hardness (98.07N) Hv of the surface of each test steel sheet is measured according to the test method of JIS Z 2244, and the hardness of martensite is expressed using the following formula (1). Conversion to HvM was performed.

HvM=(100×Hv-VF×HvF)/VM …式(1)
ただし、HvF=102+209[%P]+27[%Si]+10[%Mn]+4[%Mo]−10[%Cr]+12[%Cu](藤田利夫ら訳:「鉄鋼材料の設計と理論」(丸善株式会社)、昭和56年9月30日発行、p.10の図2.1から、低Cフェライト鋼の降伏応力の変化に及ぼす各合金元素量の影響の度合い(直線の傾き)を読み取って定式化を行った。なお、Al、Nなどその他の元素はフェライトの硬さに影響しないとした。)
ここに、HvF:フェライトの硬さ、VF:フェライトの面積率(%)、VM:マルテンサイトの面積率(%)、[%X]:成分元素Xの含有量(質量%)である。
HvM = (100 × Hv−VF × HvF) / VM (1)
However, HvF = 102 + 209 [% P] +27 [% Si] +10 [% Mn] +4 [% Mo] −10 [% Cr] +12 [% Cu] (Toshio Fujita et al .: “Design and Theory of Steel Materials” ( Maruzen Co., Ltd., published on September 30, 1981, p.10, Fig. 2.1, reads the degree of influence of each alloy element amount on the change in yield stress of low C ferritic steel (straight line) (Note that other elements such as Al and N do not affect the hardness of the ferrite.)
Here, HvF: hardness of ferrite, VF: area ratio (%) of ferrite, VM: area ratio (%) of martensite, [% X]: content (mass%) of component element X.

フェライトの平均粒径(円相当直径)については、画像解析により、200個の粒子について、個々の粒子の面積を画像解析により測定した後、下記式(2)で円相当直径に換算し、その算術平均を平均粒径とした。   Regarding the average particle diameter (equivalent circle diameter) of ferrite, the area of each particle was measured by image analysis for 200 particles by image analysis, and then converted to the equivalent circle diameter by the following formula (2). The arithmetic average was taken as the average particle size.

[円相当直径]=2×(A/π)0.5・・・式(2)
ここに、A:個々の粒子の面積である。
[Circular equivalent diameter] = 2 × (A / π) 0.5 Formula (2)
Here, A is the area of each particle.

Mnの偏析度合いについては、各供試鋼板についてその圧延方向が法線方向となる面を観察できるように調整した後、鏡面研磨し、EPMA装置により、該鋼板の厚さ方向断面において鋼板の両表面からそれぞれ25μmの部分を除いた範囲について、鋼板厚さ方向に沿って片面側から他面側に向かって1μm間隔でMn濃度を測定する。鋼板断面内のほぼ全領域をカバーする5ライン上で同様な測定を行い、全5ライン上で測定されたMn濃度の中で、最高値をMn濃度の上限値C1(単位:質量%)とし、最低値をMn濃度の下限値C2(質量%)とし、比C1/C2を算出した。   About the segregation degree of Mn, after adjusting so that the surface where the rolling direction might become a normal line direction could be observed about each test steel plate, mirror polishing was carried out, and both of steel plates in the thickness direction cross section of this steel plate were carried out by the EPMA apparatus. Mn concentration is measured at intervals of 1 μm from one side to the other side along the thickness direction of the steel sheet in the range excluding the 25 μm portion from the surface. The same measurement is performed on 5 lines covering almost the entire area in the cross section of the steel sheet, and the maximum value among the Mn concentrations measured on all 5 lines is the upper limit C1 (unit: mass%) of the Mn concentration. The ratio C1 / C2 was calculated by setting the minimum value to the lower limit value C2 (mass%) of the Mn concentration.

次に、本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。   Next, the component composition which comprises this invention steel plate is demonstrated. Hereinafter, all the units of chemical components are mass%.

〔本発明鋼板の成分組成〕
C:0.03〜0.30%
Cは、マルテンサイトの面積率およびマルテンサイト硬さに影響し、引張強度および伸びフランジ性に影響する重要な元素である。0.03%未満ではマルテンサイトの面積率が不足するため引張強度が確保できず、一方、0.30%超ではマルテンサイトの硬さが高くなりすぎて伸びフランジ性が確保できない。C含有量の範囲は、好ましくは0.05〜0.25%、さらに好ましくは0.07〜0.20%である。
[Component composition of the steel sheet of the present invention]
C: 0.03-0.30%
C is an important element that affects the martensite area ratio and martensite hardness, and affects the tensile strength and stretch flangeability. If it is less than 0.03%, the area ratio of martensite is insufficient, so that the tensile strength cannot be secured. On the other hand, if it exceeds 0.30%, the hardness of martensite becomes too high and stretch flangeability cannot be secured. The range of C content is preferably 0.05 to 0.25%, more preferably 0.07 to 0.20%.

Si:3.0%以下(0%を含む)
Siは、固溶強化により伸びと伸びフランジ性を低下させずに引張強度を高められる有用な元素である。3.0%超では加熱時におけるオーステナイトの形成を阻害するため、マルテンサイトの面積率を確保できず、伸びフランジ性を確保できない。Si含有量の範囲は、好ましくは0.3〜2.5%、さらに好ましくは0.5〜2.0%である。
Si: 3.0% or less (including 0%)
Si is a useful element that can increase tensile strength without decreasing elongation and stretch flangeability by solid solution strengthening. If it exceeds 3.0%, the formation of austenite at the time of heating is inhibited, so the area ratio of martensite cannot be ensured and stretch flangeability cannot be ensured. The range of Si content becomes like this. Preferably it is 0.3-2.5%, More preferably, it is 0.5-2.0%.

Mn:0.5〜5.0%
Mnは、固溶強化によって鋼板の引張強度を高くするとともに、鋼板の焼入れ性を向上させ、低温変態相の生成を促進する効果を有し、マルテンサイト面積率を確保するために有用な元素である。0.5%未満では十分な焼入れ性が確保できず急冷時に十分なマルテンサイト面積率を確保できないため、引張強度が得られない。一方、5.0%超とするとオーステナイトが残存し、伸びフランジ性を低下させる。Mn含有量の範囲は、好ましくは0.7〜4.0%、さらに好ましくは1.0〜3.0%である。
Mn: 0.5 to 5.0%
Mn increases the tensile strength of the steel sheet by solid solution strengthening, has the effect of improving the hardenability of the steel sheet and promoting the generation of the low temperature transformation phase, and is a useful element for securing the martensite area ratio. is there. If it is less than 0.5%, sufficient hardenability cannot be secured, and a sufficient martensite area ratio cannot be secured during rapid cooling, so that tensile strength cannot be obtained. On the other hand, if it exceeds 5.0%, austenite remains and stretch flangeability is deteriorated. The range of the Mn content is preferably 0.7 to 4.0%, more preferably 1.0 to 3.0%.

P:0.1%以下
Pは不純物元素として不可避的に存在し、固溶強化により引張強度の上昇に寄与するが、旧オーステナイト粒界に偏析し、粒界を脆化させることで伸びフランジ性を劣化させるので、0.1%以下とする。好ましくは0.05%以下、さらに好ましくは0.03%以下である。
P: 0.1% or less P is unavoidably present as an impurity element, and contributes to an increase in tensile strength by solid solution strengthening, but segregates at the prior austenite grain boundaries and embrittles the grain boundaries, thereby extending flangeability. Is made 0.1% or less. Preferably it is 0.05% or less, More preferably, it is 0.03% or less.

S:0.005%以下
Sも不純物元素として不可避的に存在し、MnS介在物を形成し、穴拡げ時に亀裂の起点となることで伸びフランジ性を低下させるので、0.005%以下とする。より好ましくは0.003%以下である。
S: 0.005% or less S is also unavoidably present as an impurity element, forms MnS inclusions, and becomes a starting point of cracks when expanding holes, thereby reducing stretch flangeability. . More preferably, it is 0.003% or less.

N:0.01%以下
Nも不純物元素として不可避的に存在し、ひずみ時効により伸びと伸びフランジ性を低下させるので、低い方が好ましく、0.01%以下とする。
N: 0.01% or less N is also unavoidably present as an impurity element and lowers the elongation and stretch flangeability by strain aging, so the lower one is preferable, and the content is made 0.01% or less.

Al:0.01〜0.3%
AlはNと結合してAlNを形成し、ひずみ時効の発生に寄与する固溶Nを低減させることで伸びフランジ性の劣化を防止するとともに、固溶強化により引張強度向上に寄与する。0.01%未満では鋼中に固溶Nが残存するため、ひずみ時効が起こり、伸びと伸びフランジ性を確保できず、一方、0.3%超ではAr3点が900℃を超えるので、オーステナイト粒微細化のために必要な熱間仕上げ圧延の終了温度:Ar点以上900℃以下(後記[熱間圧延条件]の項参照)が実現できなくなる。
Al: 0.01 to 0.3%
Al combines with N to form AlN and reduces the solid solution N contributing to the occurrence of strain aging, thereby preventing the stretch flangeability from deteriorating and contributing to the improvement in tensile strength by solid solution strengthening. If it is less than 0.01%, solute N remains in the steel, so strain aging occurs, and elongation and stretch flangeability cannot be secured. On the other hand, if it exceeds 0.3%, the Ar3 point exceeds 900 ° C., so austenite End temperature of hot finish rolling necessary for grain refinement: Ar 3 points or more and 900 ° C. or less (refer to the section “Hot rolling conditions” below) cannot be realized.

本発明の鋼は上記成分を基本的に含有し、残部が実質的に鉄及び不純物であるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。   The steel of the present invention basically contains the above components, and the balance is substantially iron and impurities. In addition, the following allowable components can be added as long as the effects of the present invention are not impaired.

Cr:0.01〜1.0%、
Mo:0.01〜1.0%、
Cu:0.05〜1.0%、
Ni:0.05〜1.0%、
の1種または2種以上
これらの元素は、固溶強化により伸びと伸びフランジ性を低下させずに引張強度を高められる有用な元素である。各元素とも、上記各下限値未満の添加では上記のような作用を有効に発揮しえず、一方、各元素とも1.0%を超える添加では焼入れ時にオーステナイトが残存し、伸びフランジ性を低下させる。
Cr: 0.01 to 1.0%,
Mo: 0.01 to 1.0%,
Cu: 0.05 to 1.0%,
Ni: 0.05 to 1.0%,
These elements are useful elements that can increase tensile strength without lowering elongation and stretch flangeability by solid solution strengthening. When each element is added below the lower limit value, the above-mentioned effects cannot be exhibited effectively. On the other hand, when each element exceeds 1.0%, austenite remains at the time of quenching and the stretch flangeability is deteriorated. Let

B:0.0001〜0.0050%、
Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%、
の1種または2種以上
これらの元素は、介在物を微細化し、破壊の起点を減少させることで、伸びフランジ性を向上させるのに有用な元素である。各元素とも下限値未満の添加では上記のような作用を有効に発揮しえず、一方、上限値を超える添加では、BはB炭化物を形成し、CaとMgは上記と逆に介在物を粗大化し、いずれも伸びフランジ性が低下する。
B: 0.0001 to 0.0050%,
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
These elements are useful elements for improving stretch flangeability by refining inclusions and reducing the starting point of fracture. When each element is added below the lower limit, the above effect cannot be exhibited effectively. On the other hand, when the element exceeds the upper limit, B forms B carbide, and Ca and Mg contain inclusions contrary to the above. It becomes coarse and the stretch flangeability decreases in both cases.

次に、本発明鋼板を得るための好ましい製造方法を以下に説明する。   Next, the preferable manufacturing method for obtaining this invention steel plate is demonstrated below.

〔本発明鋼板の好ましい製造方法〕
上記のような冷延鋼板を製造するには、まず、上記成分組成を有する鋼を溶製し、造塊または連続鋳造によりスラブとしてから熱間圧延を行う。熱間圧延終了後は酸洗してから冷間圧延を行うが、冷間圧延率は30%程度以上とするのがよい。そして、上記冷間圧延後、引き続き、2回焼鈍を繰り返し、さらには焼戻しを行う。
[Preferred production method of the steel sheet of the present invention]
In order to manufacture the cold-rolled steel sheet as described above, first, steel having the above composition is melted and formed into a slab by ingot forming or continuous casting and then hot-rolled. After hot rolling is completed, pickling is performed and then cold rolling is performed. The cold rolling rate is preferably about 30% or more. Then, after the cold rolling, the annealing is repeated twice and further tempering is performed.

[熱間圧延条件]
熱間圧延条件としては、熱延前加熱温度:1200〜1300℃に加熱し、熱延前加熱保持時間:0.5〜5h保持した後に熱間圧延を行い、仕上げ圧延の終了温度をAr点以上900℃以下に設定し、適宜冷却を行った後、450〜700℃の範囲で巻き取る。
[Hot rolling conditions]
As hot rolling conditions, heating temperature before hot rolling: 1200 to 1300 ° C., heating holding time before hot rolling: 0.5-5 h, hot rolling is performed, and finish rolling finish temperature is Ar 3 The temperature is set to the point or more and 900 ° C. or less, and appropriately cooled, and then wound in the range of 450 to 700 ° C.

従来鋼板では、熱間圧延前における加熱温度は1200℃未満で、保持時間も0.25h前後と短時間であり、生産効率を優先した条件で加熱されていた。これに対し本発明鋼板では従来鋼板より高温でかつ長時間保持することでMn元素の拡散が促進され、凝固時に生じたMn元素の偏析が緩和される。加熱温度が1200℃未満または保持時間が0.5h未満では、Mn元素の拡散が不十分となるため十分なMn偏析緩和効果が得られない。一方、加熱温度が1300℃超または保持時間が5hを超えると、Mn偏析緩和効果が飽和するため加熱用燃料の無駄や生産効率の低下を来たすので好ましくない。   In the conventional steel plate, the heating temperature before hot rolling is less than 1200 ° C., the holding time is as short as about 0.25 h, and the steel plate is heated under conditions that prioritize production efficiency. On the other hand, in the steel sheet of the present invention, the diffusion of Mn element is promoted by holding at a higher temperature for a longer time than the conventional steel sheet, and the segregation of Mn element generated during solidification is alleviated. When the heating temperature is less than 1200 ° C. or the holding time is less than 0.5 h, the diffusion of Mn element becomes insufficient, so that sufficient Mn segregation mitigating effect cannot be obtained. On the other hand, if the heating temperature exceeds 1300 ° C. or the holding time exceeds 5 hours, the effect of mitigating Mn segregation is saturated, so that heating fuel is wasted and production efficiency is lowered.

また、仕上げ圧延の終了温度がAr点未満では、二相域での圧延となるため圧延荷重が安定せず、適正な鋼板形状を保てなくなる。一方、仕上げ圧延の終了温度が900℃を超えると、熱間圧延直後のオーステナイト粒が粗大化するため、熱延材の組織はもとより、冷間圧延、焼鈍、焼戻しを経た後の鋼板の組織も粗大化し、引張強度や伸びフランジ性が低下するので好ましくない。 Further, when the finish rolling finish temperature is less than the Ar 3 point, rolling is performed in a two-phase region, so that the rolling load is not stable and an appropriate steel plate shape cannot be maintained. On the other hand, if the finish temperature of finish rolling exceeds 900 ° C, the austenite grains immediately after hot rolling coarsen, so the structure of the steel sheet after cold rolling, annealing and tempering as well as the structure of hot rolled material It is not preferable because it is coarsened and the tensile strength and stretch flangeability are lowered.

[1回目の焼鈍条件]
1回目の焼鈍条件としては、焼鈍加熱温度:Ac〜1000℃に加熱し、焼鈍保持時間:3600s以下保持した後、焼鈍加熱温度から直接Ms点以下の温度まで 50℃/s以上の冷却速度で急冷する。
[First annealing condition]
As annealing conditions for the first time, after heating to annealing temperature: Ac 3 to 1000 ° C. and holding for annealing holding time: 3600 s or less, a cooling rate of 50 ° C./s or more from the annealing heating temperature to directly below the Ms point. Cool quickly.

<焼鈍加熱温度:Ac〜1000℃、焼鈍保持時間:3600s以下>
1回目の焼鈍加熱時に十分にオーステナイトに変態させることで、その後の冷却時にオーステナイトから変態生成するマルテンサイトの面積率をできるだけ高く確保するためである。
<Annealing heating temperature: Ac 3 to 1000 ° C., annealing holding time: 3600 s or less>
This is because by sufficiently transforming to austenite during the first annealing, the area ratio of martensite that is transformed from austenite during subsequent cooling is ensured as high as possible.

焼鈍加熱温度がAc℃未満では、焼鈍加熱時においてオーステナイトへの変態量が不足するため、その後の冷却時にオーステナイトから変態生成するマルテンサイトの量が減少して十分な面積率を確保できなくなり、一方、1000℃を超えると、オーステナイト組織が粗大化して、2回目の焼鈍、焼戻しを施した後のフェライト粒径が粗大になるため、伸びフランジ性が得られなくなるとともに、焼鈍設備の劣化をもたらすため好ましくない。 If the annealing heating temperature is less than Ac 3 ° C., the amount of transformation to austenite is insufficient during annealing heating, so that the amount of martensite produced by transformation from austenite during subsequent cooling is reduced and a sufficient area ratio cannot be secured. On the other hand, when the temperature exceeds 1000 ° C., the austenite structure becomes coarse, and the ferrite grain size after the second annealing and tempering becomes coarse, so that stretch flangeability cannot be obtained and the annealing equipment is deteriorated. Therefore, it is not preferable.

また、焼鈍保持時間が3600sを超えると、生産性が極端に悪化するので好ましくない。   Further, if the annealing holding time exceeds 3600 s, productivity is extremely deteriorated, which is not preferable.

<Ms点以下の温度まで50℃/s以上の冷却速度で急冷>
冷却中にオーステナイトからフェライトやベイナイト組織が形成されることを抑制し、マルテンサイト組織を得るためである。
<Rapid cooling at a cooling rate of 50 ° C./s or higher to a temperature below Ms>
This is because a martensite structure is obtained by suppressing the formation of a ferrite or bainite structure from austenite during cooling.

Ms点より高い温度で急冷を終了させたり、冷却速度が50℃/s未満になると、ベイナイトが形成されるようになり、最終組織でフェライト粒径が粗大になり伸びフランジ性が得られない。   When quenching is terminated at a temperature higher than the Ms point or when the cooling rate is less than 50 ° C./s, bainite is formed, the ferrite grain size becomes coarse in the final structure, and stretch flangeability cannot be obtained.

[2回目の焼鈍条件]
2回目の焼鈍条件としては、焼鈍温度:(Ac+Ac)/2以上Ac未満に加熱し、加熱保持時間:600s以下保持した後、焼鈍加熱温度から直接Ms点以下の温度まで 50℃/s以上の冷却速度で急冷する。
[Second annealing condition]
As annealing conditions for the second time, annealing temperature: (Ac 1 + Ac 3 ) / 2 or more and less than Ac 3 and heating holding time: after holding for 600 s or less, from annealing heating temperature to directly below Ms point 50 ° C. Rapid cooling at a cooling rate of at least / s.

なお、先行発明鋼板では、フェライト粒の配向性の等方化を図るため、焼鈍温度まで15℃/s以上の昇温速度で加熱することとしたが、本発明鋼板ではフェライト粒の配向性等方化の必要がないので、昇温速度は特に規定する必要がない。   In the steel sheet of the prior invention, in order to make the orientation of the ferrite grains isotropic, it was heated to the annealing temperature at a heating rate of 15 ° C./s or more. Since heating is not necessary, the rate of temperature rise need not be specified.

<焼鈍加熱温度:(Ac+Ac)/2以上Ac未満、焼鈍保持時間:600s以下>
2回目の焼鈍加熱時に適量のオーステナイトに変態させ、その後の冷却時にオーステナイトから変態生成するマルテンサイトの面積率を40%以上70%以下とするためである。
<Annealing heating temperature: (Ac 1 + Ac 3 ) / 2 or more and less than Ac 3 , annealing holding time: 600 s or less>
This is because the area ratio of martensite that is transformed into an appropriate amount of austenite during the second annealing and is transformed from austenite during subsequent cooling is 40% or more and 70% or less.

焼鈍加熱温度が(Ac+Ac)/2未満では、2回目の焼鈍加熱時においてオーステナイトへの変態量が不足するため、その後の冷却時にオーステナイトから変態生成するマルテンサイトの量が減少して面積率40%以上を確保できなくなり、一方、Ac以上になると、オーステナイトへの変態量が過剰になり残部であるフェライトの面積率が減少するので、十分な伸びを確保できない。焼鈍加熱温度のより好ましい上限は(0.3Ac+0.7Ac)である。 When the annealing heating temperature is less than (Ac 1 + Ac 3 ) / 2, the amount of transformation to austenite is insufficient at the time of the second annealing heating, so that the amount of martensite transformed from austenite during the subsequent cooling is reduced and the area is reduced. On the other hand, if it becomes Ac 3 or more, the amount of transformation to austenite becomes excessive, and the area ratio of the remaining ferrite decreases, so that sufficient elongation cannot be secured. A more preferable upper limit of the annealing heating temperature is (0.3Ac 1 + 0.7Ac 3 ).

また、焼鈍保持時間が600sを超えると、生産性が悪化するので好ましくない。   Further, if the annealing holding time exceeds 600 s, productivity is not preferable.

<Ms点以下の温度まで50℃/s以上の冷却速度で急冷>
上記[1回目の焼鈍条件]の項で述べたのと同様、冷却中にオーステナイトからフェライトやベイナイト組織が形成されることを抑制し、マルテンサイト組織を得るためである。
<Rapid cooling at a cooling rate of 50 ° C./s or higher to a temperature below Ms>
As described in the above section [First annealing condition], it is intended to suppress the formation of ferrite and bainite structure from austenite during cooling and obtain a martensite structure.

Ms点より高い温度で急冷を終了させたり、冷却速度が50℃/s未満になると、ベイナイトが形成されるようになり、鋼板の引張強度が確保できなくなる。   When quenching is terminated at a temperature higher than the Ms point, or when the cooling rate is less than 50 ° C./s, bainite is formed, and the tensile strength of the steel sheet cannot be secured.

[焼戻し条件]
焼鈍ままのマルテンサイトは非常に硬質であり、伸びフランジ性が低下する。引張強度を確保しつつ伸びフランジ性を確保するためにはマルテンサイト硬さを330Hv以上450Hv以下にする必要があり、そのためには300〜550℃の温度範囲に60s以上1200s以下保持するような焼戻し(再加熱処理)を行う必要がある。
[Tempering conditions]
As-annealed martensite is very hard and stretch flangeability decreases. In order to secure stretch flangeability while ensuring tensile strength, the martensite hardness needs to be set to 330 Hv or more and 450 Hv or less, and for that purpose, tempering that maintains a temperature range of 300 to 550 ° C. for 60 to 1200 s. (Reheating treatment) needs to be performed.

この焼戻し工程での保持温度が300℃未満では、マルテンサイトの軟質化が十分でないので、伸びフランジ性が低下することになる。一方、保持温度が550℃よりも高くなると、マルテンサイト硬さが低下し過ぎて、引張強度が得られなくなる。   If the holding temperature in this tempering process is less than 300 ° C., the martensite is not sufficiently softened, so that the stretch flangeability is deteriorated. On the other hand, if the holding temperature is higher than 550 ° C., the martensite hardness is excessively lowered and tensile strength cannot be obtained.

また焼戻し工程での保持時間が60s未満では、マルテンサイトの軟質化が十分でないので、鋼板の伸びおよび伸びフランジ性が低下することになる。一方、保持時間が1200sよりも長くなると、マルテンサイトが軟質化し過ぎて引張強度の確保が困難になる。この保持時間は好ましくは90s以上、900s以下であり、より好ましくは120s以上、600s以下である。   Further, if the holding time in the tempering process is less than 60 s, the martensite is not sufficiently softened, so that the elongation and stretch flangeability of the steel sheet are deteriorated. On the other hand, if the holding time is longer than 1200 s, the martensite becomes too soft and it becomes difficult to ensure the tensile strength. This holding time is preferably 90 s or more and 900 s or less, more preferably 120 s or more and 600 s or less.

下記表1および表2に示す成分の鋼を溶製し、厚さ120mmのインゴットを作成した。   Steels having the components shown in Tables 1 and 2 below were melted to prepare 120 mm thick ingots.

なお、同表1および表2に各鋼種のAc点、Ac点、Ms点などを併記した。Ac点、Ac点、Ar点、Ms点は以下の式で求めた。 In Table 1 and Table 2, the Ac 1 point, Ac 3 point, Ms point, etc. of each steel type are also shown. Ac 1 point, Ac 3 point, Ar 3 point and Ms point were determined by the following equations.

Ac(℃)=723+29.1・[Si]−10.7・[Mn]+16.9・[Cr]−16.9[Ni] …式(2) Ac 1 (° C.) = 723 + 29.1 · [Si] −10.7 · [Mn] + 16.9 · [Cr] −16.9 [Ni] (2)

Ac(℃)=910−203・√[C]−15.2・[Ni]+44.7・[Si]+31.5・[Mo]−(10・[Mn]+11・[Cr]+20・[Cu]+700・[P]−400[Al]) …式(3) Ac 3 (° C.) = 910−203 · √ [C] −15.2. [Ni] + 44.7 · [Si] + 31.5 · [Mo] − (10 · [Mn] + 11 · [Cr] + 20 · [Cu] + 700 · [P] −400 [Al]) (3)

Ar(℃)=739−222・[C]+31・[Si]−5・[Mn]−697・[P]+423[Al]−1904[N]+5・[Cr]+75・[Mo]−8・[Cu]+14・[Ni] …式(4) Ar 3 (° C.) = 739-222 · [C] + 31 · [Si] -5 · [Mn] -697 · [P] +423 [Al] -1904 [N] + 5 · [Cr] + 75 · [Mo] − 8 [Cu] +14 [Ni] Formula (4)

Ms(℃)=550−361・[C]−39・[Mn]−20・[Cr]−17・[Ni]−10・[Cu]−5・[Mo]+30・[Al] …式(5)     Ms (° C.) = 550-361 · [C] −39 · [Mn] −20 · [Cr] −17 · [Ni] −10 · [Cu] −5 · [Mo] + 30 · [Al] 5)

ただし、[C]、[Ni]、[Si]、[Mo]、[Mn]、[Cr]、[Cu]、[P]、[Al]、[N]は、それぞれC、Ni、Si、Mo、Mn、Cr、Cu、P、Al、Nの含有量(質量%)を示す。   However, [C], [Ni], [Si], [Mo], [Mn], [Cr], [Cu], [P], [Al], and [N] are C, Ni, Si, Content (mass%) of Mo, Mn, Cr, Cu, P, Al, and N is shown.

これを、加熱温度:1150〜1350℃、保持時間:1〜10hの条件にて均熱処理した後、熱間圧延し厚さ3.2mmとした。そして、これを酸洗した後、厚さ1.6mmに冷間圧延して供試材とし、熱処理(焼鈍・焼戻し)を施した。   This was soaked under conditions of heating temperature: 1150 to 1350 ° C. and holding time: 1 to 10 h, and then hot rolled to a thickness of 3.2 mm. And after pickling this, it cold-rolled to thickness 1.6mm to make a test material, and heat-processed (annealing and tempering).

なお、本実施例はラボ試験装置を用いて実施したため、熱間圧延のための加熱操作の前に均熱処理を行うようにしたが、実機装置においては、上記〔本発明鋼板の好ましい製造方法〕の項にて説明したように、この均熱処理は省略することができる。

Figure 0005270274
Figure 0005270274
In addition, since this example was carried out using a laboratory test apparatus, soaking was performed before the heating operation for hot rolling, but in the actual apparatus, the above [preferred production method of the steel sheet of the present invention] As explained in the section, this soaking treatment can be omitted.
Figure 0005270274
Figure 0005270274

〔試験1〕製造条件の影響調査
まず、製造条件の影響、すなわち、熱間圧延条件および熱処理条件の各影響を調査するため、本発明鋼板の成分組成を満たす、上記表1の鋼種S−5を代表鋼種として用い、下記表3に示す各熱間圧延条件と下記表4に示す各熱処理条件とを種々組み合わせた製造条件にて試験鋼板を作製した。
[Test 1] Investigation of influence of production conditions First, in order to investigate the influence of production conditions, that is, the influences of hot rolling conditions and heat treatment conditions, steel type S-5 in Table 1 above satisfying the composition of the steel sheet of the present invention. Was used as a representative steel type, and test steel sheets were produced under production conditions in which various hot rolling conditions shown in the following Table 3 and various heat treatment conditions shown in the following Table 4 were variously combined.

〔試験2〕鋼の成分組成の影響調査
ついで、鋼の成分組成の影響を調査するため、上記表1および表2に示した各鋼種を用い、下記表5に示す各製造条件(熱間圧延条件および熱処理条件)にて試験鋼板を作製した。

Figure 0005270274
Figure 0005270274
Figure 0005270274
[Test 2] Investigation of effect of steel component composition Next, in order to investigate the effect of steel component composition, each steel type shown in Table 1 and Table 2 above was used and each production condition shown in Table 5 below (hot rolling) The test steel sheet was produced under the conditions and heat treatment conditions.
Figure 0005270274
Figure 0005270274
Figure 0005270274

上記試験1および試験2による熱処理後の各鋼板について、上記[発明を実施するための最良の形態]の項で説明した測定方法により、マルテンサイトの面積率およびその硬さ、フェライトの平均粒径、ならびに、Mnの偏析度合いを測定した。   For each steel plate after the heat treatment in Test 1 and Test 2, the area ratio of martensite, its hardness, and the average grain diameter of ferrite were measured by the measurement method described in the above section [Best Mode for Carrying Out the Invention]. In addition, the degree of segregation of Mn was measured.

また、上記各鋼板について、引張強度TS、伸びEl、および伸びフランジ性λを測定した。なお、引張強度TSと伸びElは、圧延方向と直角方向に長軸をとってJIS Z 2201に記載の5号試験片を作成し、JIS Z 2241に従って測定を行った。また、伸びフランジ性λは、鉄連規格JFST1001に則り、穴拡げ試験を実施して穴拡げ率の測定を行い、これを伸びフランジ性とした。   Moreover, about each said steel plate, tensile strength TS, elongation El, and stretch flangeability (lambda) were measured. The tensile strength TS and elongation El were measured in accordance with JIS Z 2241 by preparing a No. 5 test piece described in JIS Z 2201 with the long axis perpendicular to the rolling direction. Moreover, stretch flangeability (lambda) performed the hole expansion test according to the iron continuous standard JFST1001, and measured the hole expansion rate, and made this the stretch flangeability.

上記試験1の各鋼板についての測定結果を下記表6に、上記試験2の各鋼板についての測定結果を下記表7に、それぞれ分けて示す。   The measurement results for each steel plate in Test 1 are shown in Table 6 below, and the measurement results for each steel plate in Test 2 are shown in Table 7 below.

これらの表に示すように、発明鋼である鋼No.1〜5、9〜20、31〜49は、いずれも、引張強度TSが980MPa以上、伸びElが13%以上で、かつ、伸びフランジ性(穴広げ率)λが平均値で確実に90%以上を満足し、上記[背景技術]の項で述べた要望レベルをより確実に満足する、伸びと伸びフランジ性を兼備した高強度冷延鋼板が得られた。   As shown in these tables, Steel No. 1 to 5, 9 to 20, and 31 to 49 all have a tensile strength TS of 980 MPa or more, an elongation El of 13% or more, and a stretch flangeability (hole expansion ratio) λ of 90% with an average value. A high-strength cold-rolled steel sheet having both elongation and stretch flangeability that satisfies the above requirements and more reliably satisfies the demand level described in the above [Background Art] section was obtained.

これに対して、下記表6に示す、比較鋼である鋼No.6〜8、21〜29は、製造条件、すなわち、熱間圧延条件、焼鈍条件または焼戻し条件が推奨範囲を外れていることにより、本発明の組織を規定する要件のうち少なくとも一つを満たさず、引張強度、伸び、および、平均値としての伸びフランジ性のうち少なくとも一つが劣っている。   On the other hand, steel No. which is a comparative steel shown in Table 6 below. 6-8 and 21-29 do not satisfy at least one of the requirements for defining the structure of the present invention because the production conditions, that is, the hot rolling conditions, annealing conditions or tempering conditions are out of the recommended range. At least one of tensile strength, elongation, and stretch flangeability as an average value is inferior.

すなわち、鋼No.6、7は、熱間圧延前の加熱温度、加熱保持時間がそれぞれ推奨範囲を下回ったため、Mn偏析の緩和が不十分となり、引張強度と伸びには優れているものの、平均値としての伸びフランジ性が劣っている。   That is, Steel No. Nos. 6 and 7 have a heating temperature before hot rolling and a heating holding time that are less than the recommended ranges, respectively, so that the relaxation of Mn segregation is insufficient and the tensile strength and elongation are excellent, but the stretch flange as an average value The sex is inferior.

また、鋼No.8は、熱間圧延における仕上げ圧延の終了温度が推奨範囲を上回ったため、フェライト粒が粗大化し、引張強度と伸びには優れているものの、平均値としての伸びフランジ性が劣っている。   Steel No. In No. 8, since the finish rolling finish temperature in the hot rolling exceeded the recommended range, the ferrite grains became coarse and the tensile strength and elongation were excellent, but the stretch flangeability as an average value was inferior.

一方、鋼No.21は、1回目の焼鈍の際における加熱温度が推奨範囲を下回ったため、この段階で粗大なフェライト粒が生成し、伸びおよび伸びフランジ性が劣っている。   On the other hand, Steel No. In No. 21, since the heating temperature during the first annealing was below the recommended range, coarse ferrite grains were generated at this stage, and the elongation and stretch flangeability were inferior.

また、鋼No.22は、2回目の焼鈍の際における加熱温度が推奨範囲を下回ったため、フェライトの面積率が過大(すなわち、マルテンサイトの面積率が過小)となり、引張強度が劣っている。   Steel No. In No. 22, since the heating temperature in the second annealing was lower than the recommended range, the area ratio of ferrite was excessive (that is, the area ratio of martensite was excessively low) and the tensile strength was inferior.

また、鋼No.23は、上記鋼No.22と逆に、2回目の焼鈍の際における加熱温度が推奨範囲を上回ったため、フェライトの面積率が過小(すなわち、マルテンサイトの面積率が過大)となり、伸びが劣っている。   Steel No. No. 23 is the steel No. On the contrary, since the heating temperature in the second annealing exceeded the recommended range, the area ratio of ferrite was too small (that is, the area ratio of martensite was excessive), and the elongation was inferior.

また、鋼No.24は、2回目の焼鈍の際における加熱保持時間が推奨範囲を上回ったため、フェライト粒が粗大化し、伸びフランジ性が劣っている。   Steel No. In No. 24, since the heat holding time during the second annealing exceeded the recommended range, the ferrite grains became coarse and the stretch flangeability was inferior.

また、鋼No.25は、2回目の焼鈍後における冷却速度が推奨範囲を下回ったため、該冷却中にフェライト変態が進みすぎてフェライトの面積率が過大(すなわち、マルテンサイトの面積率が過小)となり、引張強度が劣っている。   Steel No. 25, the cooling rate after the second annealing was lower than the recommended range, so the ferrite transformation progressed too much during the cooling, the ferrite area ratio was excessive (that is, the martensite area ratio was too low), and the tensile strength was Inferior.

一方、鋼No.26は、焼戻しの際における加熱温度が推奨範囲を下回ったため、伸びが劣っている。   On the other hand, Steel No. No. 26 is inferior in elongation because the heating temperature during tempering was below the recommended range.

また、鋼No.27は、上記鋼No.26と逆に、焼戻しの際における加熱温度が推奨範囲を上回ったため、引張強度が劣っている。   Steel No. 27 is the above steel No. 27. Contrary to 26, since the heating temperature during tempering exceeded the recommended range, the tensile strength was inferior.

また、鋼No.28は、焼戻しの際における加熱保持時間が推奨範囲を下回ったため、伸びが劣っている。   Steel No. No. 28 is inferior in elongation because the heat holding time during tempering was less than the recommended range.

また、鋼No.29は、上記鋼No.28と逆に、焼戻しの際における加熱保持時間が推奨範囲を上回ったため、引張強度と伸びフランジ性が劣っている。   Steel No. 29 is the above steel No. 29. Contrary to 28, since the heat holding time during tempering exceeded the recommended range, the tensile strength and stretch flangeability were inferior.

これに対し、下記表7に示す、比較鋼である鋼No.50〜63は、鋼の成分組成が本発明鋼板の規定範囲を外れるため、機械的性質のいずれかが劣っている。   On the other hand, steel No. which is a comparative steel shown in Table 7 below. Nos. 50 to 63 are inferior in mechanical properties because the component composition of steel deviates from the specified range of the steel sheet of the present invention.

すなわち、鋼No.50、51は、鋼中のP、Sがそれぞれ過多のため、伸びフランジ性が劣っている。   That is, Steel No. Nos. 50 and 51 are inferior in stretch flangeability because P and S in steel are excessive.

一方、鋼No.52は、鋼中のAlが過多のため、マルテンサイトの面積率が過小となり、伸びフランジ性が劣っている。   On the other hand, Steel No. No. 52 has an excessive amount of Al in the steel, so that the martensite area ratio is too small and the stretch flangeability is poor.

また、鋼No.53は、鋼中のNが過多のため、伸びと伸びフランジ性が劣っている。   Steel No. No. 53 is inferior in elongation and stretch flangeability due to excessive N in the steel.

また、鋼No.54、55は、鋼中のSi、Mnがそれぞれ過多のため、マルテンサイトの面積率が過小となり、伸びフランジ性が劣っている。   Steel No. Nos. 54 and 55 have excessive martensite area ratio due to excessive amounts of Si and Mn in the steel, respectively, and have poor stretch flangeability.

また、鋼No.56〜59は、鋼中のCr、Mo、Cu、Niがそれぞれ過多のため、焼入れ時に残留オーステナイトが形成され、マルテンサイトの面積率が過小となり、伸びフランジ性が劣っている。   Steel No. In Nos. 56 to 59, Cr, Mo, Cu, and Ni in the steel are excessive, so that retained austenite is formed during quenching, the martensite area ratio is excessive, and stretch flangeability is inferior.

また、鋼No.60は、鋼中のBが過多のため、B炭化物が形成され、伸びフランジ性が劣っている。   Steel No. In No. 60, since B in steel is excessive, B carbide is formed and stretch flangeability is inferior.

また、鋼No.61、62は、鋼中のCa、Mgがそれぞれ過多のため、介在物が粗大化し、伸びフランジ性が劣っている。   Steel No. Nos. 61 and 62 have excessive Ca and Mg in the steel, so that the inclusions are coarsened and the stretch flangeability is inferior.

また、鋼No.61は、鋼中のCが過多のため、マルテンサイトの硬さが過大となり、伸びフランジ性が劣っている。

Figure 0005270274
Figure 0005270274
Steel No. No. 61 has too much C in the steel, so the hardness of martensite is excessive and stretch flangeability is inferior.
Figure 0005270274
Figure 0005270274

ちなみに、発明鋼(鋼No.2)と比較鋼(鋼No.7)の、鋼板厚さ方向断面におけるMn濃度の分布状態を図1に例示する。同図に見られるように、比較鋼(鋼No.7)に比べ、発明鋼(鋼No.2)の方が、Mn濃度のバラツキが大幅に低減しているのが明らかである。   Incidentally, the distribution state of the Mn concentration in the cross section in the steel sheet thickness direction of the inventive steel (steel No. 2) and the comparative steel (steel No. 7) is illustrated in FIG. As seen in the figure, it is clear that the variation in Mn concentration is significantly reduced in the invention steel (steel No. 2) compared to the comparative steel (steel No. 7).

鋼板厚さ方向断面におけるMn濃度の分布状態を示す図であり、(a)は発明鋼、(b)は比較鋼である。It is a figure which shows the distribution state of Mn density | concentration in a steel plate thickness direction cross section, (a) is invention steel, (b) is comparative steel.

Claims (3)

質量%で(以下、化学成分について同じ。)、
C:0.03〜0.30%、
Si:3.0%以下(0%含む)
Mn:0.5〜5.0%、
P:0.1%以下、
S:0.005%以下、
N:0.01%以下、
Al:0.01〜0.3%
Cr:0.01〜1.0%
を含み、残部が鉄および不可避的不純物からなる成分組成を有し、硬さ330Hv以上450Hv以下の焼戻しマルテンサイトが面積率で40%以上70%以下、残部がフェライトからなる組織を有し、
前記フェライトはその平均粒径が円相当直径8μm以下であり、
鋼板の厚さ方向断面における、Mn濃度の上限値C1(単位:質量%)と下限値C2(単位:質量%)の比C1/C2が2.0以下である
ことを特徴とする伸びおよび伸びフランジ性に優れた高強度冷延鋼板。
% By mass (hereinafter the same for chemical components)
C: 0.03 to 0.30%,
Si: 3.0% or less (including 0%)
Mn: 0.5 to 5.0%,
P: 0.1% or less,
S: 0.005% or less,
N: 0.01% or less,
Al: 0.01~0.3%,
Cr: 0.01 to 1.0%
The balance is composed of iron and inevitable impurities, the tempered martensite having a hardness of 330 Hv or more and 450 Hv or less has an area ratio of 40% to 70%, and the balance has a structure made of ferrite.
The ferrite has an average particle diameter of 8 μm or less in equivalent circle diameter,
Elongation and elongation, wherein the ratio C1 / C2 of the upper limit C1 (unit: mass%) and the lower limit C2 (unit: mass%) of the Mn concentration in the cross section in the thickness direction of the steel sheet is 2.0 or less. High-strength cold-rolled steel sheet with excellent flangeability.
成分組成が、更に
o:0.01〜1.0%、
Cu:0.05〜1.0%、
Ni:0.05〜1.0%、
の1種または2種以上を含むものである
請求項1に記載の伸びおよび伸びフランジ性に優れた高強度冷延鋼板。
Component composition further comprises
M o: 0.01~1.0%,
Cu: 0.05 to 1.0%,
Ni: 0.05 to 1.0%,
The high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability according to claim 1, comprising one or more of the following.
成分組成が、更に、
B:0.0001〜0.0050%、
Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%、
の1種または2種以上を含むものである
請求項1または2に記載の伸びおよび伸びフランジ性に優れた高強度冷延鋼板。
Ingredient composition further
B: 0.0001 to 0.0050%,
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
The high-strength cold-rolled steel sheet having excellent elongation and stretch flangeability according to claim 1 or 2, comprising one or more of the following.
JP2008235101A 2008-09-12 2008-09-12 High strength cold-rolled steel sheet with excellent elongation and stretch flangeability Expired - Fee Related JP5270274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008235101A JP5270274B2 (en) 2008-09-12 2008-09-12 High strength cold-rolled steel sheet with excellent elongation and stretch flangeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008235101A JP5270274B2 (en) 2008-09-12 2008-09-12 High strength cold-rolled steel sheet with excellent elongation and stretch flangeability

Publications (2)

Publication Number Publication Date
JP2010065307A JP2010065307A (en) 2010-03-25
JP5270274B2 true JP5270274B2 (en) 2013-08-21

Family

ID=42191138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235101A Expired - Fee Related JP5270274B2 (en) 2008-09-12 2008-09-12 High strength cold-rolled steel sheet with excellent elongation and stretch flangeability

Country Status (1)

Country Link
JP (1) JP5270274B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359168B2 (en) * 2008-10-08 2013-12-04 Jfeスチール株式会社 Ultra-high strength cold-rolled steel sheet with excellent ductility and method for producing the same
BR112013006143B1 (en) 2010-09-16 2018-12-18 Nippon Steel & Sumitomo Metal Corporation high strength steel sheet and high strength zinc coated steel sheet which have excellent ductility and stretch-flanging ability and manufacturing method thereof
EP2738276B1 (en) 2011-07-29 2019-04-24 Nippon Steel & Sumitomo Metal Corporation High-strength galvanized steel sheet and high-strength steel sheet having superior moldability, and method for producing each
KR101353838B1 (en) * 2011-12-28 2014-01-20 주식회사 포스코 Wear resistant steel having excellent toughness and weldability
EP2746409A1 (en) * 2012-12-21 2014-06-25 Voestalpine Stahl GmbH Method for the heat treatment a manganese steel product and manganese steel product with a special alloy
KR101594670B1 (en) 2014-05-13 2016-02-17 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof
US10570475B2 (en) 2014-08-07 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP5943157B1 (en) 2014-08-07 2016-06-29 Jfeスチール株式会社 High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
EP3178953A4 (en) * 2014-08-07 2017-07-05 JFE Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
MX2017001529A (en) 2014-08-07 2017-05-11 Jfe Steel Corp High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet.
JP6737338B2 (en) 2016-08-08 2020-08-05 日本製鉄株式会社 Steel plate
US11242583B2 (en) 2017-11-08 2022-02-08 Nippon Steel Corporation Steel sheet
MX2020009171A (en) 2018-03-30 2020-10-15 Nippon Steel Corp High-strength steel sheet having excellent ductility and hole expansion property.
WO2020071523A1 (en) * 2018-10-04 2020-04-09 日本製鉄株式会社 Alloyed hot-dipped galvanized steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213640A (en) * 2004-02-02 2005-08-11 Kobe Steel Ltd High-strength cold rolled steel sheet excellent in ductility and stretch-flanging property and manufacturing method for the same
JP4655782B2 (en) * 2005-06-30 2011-03-23 Jfeスチール株式会社 Method for producing ultra-high-strength cold-rolled steel sheet having a tensile strength of 780 MPa or more that has high ductility and excellent chemical conversion properties
JP2007171321A (en) * 2005-12-20 2007-07-05 Epson Imaging Devices Corp Electrooptical apparatus and electronic device

Also Published As

Publication number Publication date
JP2010065307A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP5270274B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
JP5457840B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
WO2011062012A1 (en) Steel wire for low-temperature annealing and method for producing the same
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP5329979B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4193315B2 (en) High strength steel sheet and high strength galvanized steel sheet with excellent ductility and low yield ratio, and methods for producing them
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5747249B2 (en) High-strength steel material excellent in strength, ductility and energy absorption capacity and its manufacturing method
JP4324228B1 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP4712842B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP2007031771A (en) High strength steel thin sheet excellent in fatigue characteristic, hardenability in coating/baking and cold-aging resistance, and method for producing the same
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP4848722B2 (en) Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability
JP4324227B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5270274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees