JP2012221735A - Electrode catalyst for fuel cell - Google Patents

Electrode catalyst for fuel cell Download PDF

Info

Publication number
JP2012221735A
JP2012221735A JP2011086206A JP2011086206A JP2012221735A JP 2012221735 A JP2012221735 A JP 2012221735A JP 2011086206 A JP2011086206 A JP 2011086206A JP 2011086206 A JP2011086206 A JP 2011086206A JP 2012221735 A JP2012221735 A JP 2012221735A
Authority
JP
Japan
Prior art keywords
nitrogen
electrode
containing carbon
fuel cell
carbon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011086206A
Other languages
Japanese (ja)
Inventor
Shigeru Mashita
茂 真下
Omurzak Uulu Emil
ウル エミル オムルザク
Yoshiaki Yasuda
佳明 安田
Hideji Iwasaki
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Kumamoto University NUC
Original Assignee
Kuraray Co Ltd
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Kumamoto University NUC filed Critical Kuraray Co Ltd
Priority to JP2011086206A priority Critical patent/JP2012221735A/en
Publication of JP2012221735A publication Critical patent/JP2012221735A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a novel electrode catalyst for a fuel cell capable of being substituted for a precious metal material such as platinum, using a mild condition and a simplified means as compared with conventional arts.SOLUTION: An electrode catalyst for a fuel cell includes a nitrogen-containing carbon compound which contains 1-20 mass% of nitrogen, has a graphite structure with a distance on the d002 face measured by a powder X-ray diffraction method of 3.40-4.00 Å, and has at least three peaks in a range of 1,200-1,600 cmof a Raman shift wavenumber in a Raman spectrum.

Description

本発明は、酸素還元活性を有する含窒素炭素化合物からなる、燃料電池用電極触媒に関する。   The present invention relates to a fuel cell electrode catalyst comprising a nitrogen-containing carbon compound having oxygen reduction activity.

燃料電池の原理は次のようなものである。まず、一方の電極(燃料極)に供給した水素などの燃料をプロトンおよび電子に変換し、かかるプロトンおよび電子をそれぞれ電解質および回路を通して、他方の電極(空気極)に移動させる。一方、空気極では別途供給する酸素を燃料極から移動してきたプロトンおよび電子と還元的に反応させて水を生成する。このように燃料極に供給した燃料によって空気極に供給した酸素を還元し、この際移動する電子によって通電する。燃料のプロトンおよび電子への変換と、酸素の水への変換はそれぞれ燃料極、空気極に含まれる電極触媒によって促進される。   The principle of the fuel cell is as follows. First, fuel such as hydrogen supplied to one electrode (fuel electrode) is converted into protons and electrons, and these protons and electrons are moved to the other electrode (air electrode) through an electrolyte and a circuit, respectively. On the other hand, in the air electrode, oxygen supplied separately is reductively reacted with protons and electrons that have moved from the fuel electrode to generate water. In this way, the oxygen supplied to the air electrode is reduced by the fuel supplied to the fuel electrode, and energized by the moving electrons. The conversion of fuel into protons and electrons and the conversion of oxygen into water are promoted by electrode catalysts contained in the fuel electrode and the air electrode, respectively.

かかる電極触媒としては、白金や白金合金等の貴金属材料が使用されている。しかしながら、かかる貴金属材料は希少かつ高価であるため、燃料電池の実用化および普及の観点からその一部または全部を代替でき、かつ安価に入手可能な燃料電池用の電極触媒の開発が求められている。   As such an electrode catalyst, a noble metal material such as platinum or a platinum alloy is used. However, since such noble metal materials are rare and expensive, it is necessary to develop an electrode catalyst for a fuel cell that can be replaced partially or wholly and can be obtained at low cost from the viewpoint of practical use and spread of the fuel cell. Yes.

異種元素として窒素がグラファイト層内に炭素と置換されるように取り込まれている含窒素炭素化合物が電極触媒として提案されている。かかる含窒素炭素化合物は、イオン交換樹脂(例えばイミノジアセテート基が導入されたスチレン−ジビニルベンゼン共重合体により構成されるキレートイオン交換樹脂)を窒素流通下1000℃で熱処理して得られる炭化材料にメラミンを混合し、550〜1500℃で熱処理する製造方法が開示されている。また、他の窒素源として、アセトニトリルを含む窒素ガス、またはアンモニアなどの気体を使用してもよいことが記載されている(特許文献1参照)。   A nitrogen-containing carbon compound in which nitrogen is incorporated as a different element so that carbon is substituted into the graphite layer has been proposed as an electrode catalyst. Such a nitrogen-containing carbon compound is a carbonized material obtained by heat-treating an ion exchange resin (for example, a chelate ion exchange resin composed of a styrene-divinylbenzene copolymer having an iminodiacetate group introduced) at 1000 ° C. under a nitrogen flow. A production method is disclosed in which melamine is mixed and heat-treated at 550 to 1500 ° C. Further, it is described that nitrogen gas containing acetonitrile or a gas such as ammonia may be used as another nitrogen source (see Patent Document 1).

含窒素炭素化合物の別の製法として、窒素源であるフタロシアニン(またはメラミン)と、フラン樹脂の前駆体であるフルフリルアルコールの反応により得られるフタロシアニン含有フラン樹脂(またはメラミン含有フラン樹脂)を、窒素雰囲気下1000℃で熱処理する方法が知られている(特許文献2参照)。また、含窒素炭素化合物は、フェノールとキノリノールとから形成される共重合体を配位子として含む高分子金属錯体を1000℃で焼成することによって得ることもできる(特許文献3参照)。   As another method for producing a nitrogen-containing carbon compound, a phthalocyanine-containing furan resin (or melamine-containing furan resin) obtained by a reaction between a phthalocyanine (or melamine) that is a nitrogen source and furfuryl alcohol that is a precursor of a furan resin, A method of heat treatment at 1000 ° C. in an atmosphere is known (see Patent Document 2). Moreover, a nitrogen-containing carbon compound can also be obtained by baking the polymeric metal complex which contains the copolymer formed from a phenol and quinolinol as a ligand at 1000 degreeC (refer patent document 3).

さらに、石炭系バインダーピッチとメラミンとの混合物を1000℃で焼成することにより、同様の含窒素炭素化合物が得られることが知られている(特許文献4参照)。   Furthermore, it is known that a similar nitrogen-containing carbon compound can be obtained by firing a mixture of coal-based binder pitch and melamine at 1000 ° C. (see Patent Document 4).

他方、異種元素を含有しないグラフェン構造を有する炭素材料(カーボンナノチューブ)は、炭化水素液中アセチレンおよび水素の混合ガスの供給下で、炭素電極間にプラズマ放電を生じさせることにより得られることが報告されている(特許文献5参照)。   On the other hand, it is reported that a carbon material (carbon nanotube) having a graphene structure not containing different elements can be obtained by generating plasma discharge between carbon electrodes under the supply of a mixed gas of acetylene and hydrogen in a hydrocarbon liquid. (See Patent Document 5).

特開2007−207662号公報JP 2007-207662 A 特開2007−311026号公報JP 2007-311026 A 特開2008−282725号公報JP 2008-282725 A 特開2009−090287号公報JP 2009-090287 A 特開2007−169159号公報JP 2007-169159 A

特許文献1〜4の製造方法では原料が炭化しにくくグラファイト構造が成長しにくいため、得られる含窒素炭素化合物は炭素−水素結合を多く有し、酸素の還元に伴って酸化されやすいので電極触媒としての寿命が短い。また、特許文献4の方法では、窒素源となる化合物が機械的に混合されるため窒素を均一に分布させることが困難なこと、約1000℃の高温を用いる必要があり、含窒素炭素化合物の生成反応中に発生するガスに対処するために反応装置に付帯設備が必要となるなどの問題点がある。
他方、引用文献5には、炭化水素系の有機液体媒体中で炭素電極間に放電を発生させることによりグラフェン構造を有する炭素化合物が生成することは記載されているが、含窒素炭素化合物を生成させた例は記載されていない。
In the production methods of Patent Documents 1 to 4, since the raw material is difficult to be carbonized and the graphite structure is difficult to grow, the obtained nitrogen-containing carbon compound has many carbon-hydrogen bonds and is easily oxidized with the reduction of oxygen. As a short life. Further, in the method of Patent Document 4, since a compound serving as a nitrogen source is mechanically mixed, it is difficult to uniformly distribute nitrogen, and it is necessary to use a high temperature of about 1000 ° C. There is a problem that incidental equipment is required for the reaction apparatus in order to cope with the gas generated during the production reaction.
On the other hand, Cited Document 5 describes that a carbon compound having a graphene structure is generated by generating a discharge between carbon electrodes in a hydrocarbon-based organic liquid medium, but a nitrogen-containing carbon compound is generated. No examples have been described.

本発明の目的は、簡易な製造装置で穏和な条件で製造できる、窒素を均一に含有する含窒素炭素化合物からなる燃料電池用電極触媒を提供することである。   The objective of this invention is providing the electrode catalyst for fuel cells which consists of a nitrogen-containing carbon compound which contains nitrogen uniformly which can be manufactured on mild conditions with a simple manufacturing apparatus.

本発明者らは、含窒素有機化合物を含む有機液体媒体中に炭素電極を配置して、該炭素電極間にプラズマ放電を発生させたところ、窒素が炭素と置換されるように取り込まれたグラファイト構造を有する新規な含窒素炭素化合物が生成し、これが酸素還元活性を有し、燃料電池の空気極の電極触媒に適した材料であることを見出した。   The inventors of the present invention have arranged a carbon electrode in an organic liquid medium containing a nitrogen-containing organic compound and generated a plasma discharge between the carbon electrodes. As a result, graphite is incorporated so that nitrogen is replaced with carbon. It has been found that a novel nitrogen-containing carbon compound having a structure is produced, which has an oxygen reduction activity and is a material suitable for an electrode catalyst for an air electrode of a fuel cell.

すなわち本発明は、
[1]1〜20質量%の窒素を含有し、粉末X線回折法により測定されるd002面の間隔が3.40〜4.00Åであるグラファイト構造を有し、ラマンスペクトルのラマンシフト波数の1200〜1600cm−1の範囲に少なくとも3つピークを有する含窒素炭素化合物を含む燃料電池用電極触媒;および
[2]燃料電池の空気極用である上記[1]の電極触媒;
を提供する。
That is, the present invention
[1] It contains 1 to 20% by mass of nitrogen, has a graphite structure in which the distance between d002 planes measured by powder X-ray diffraction method is 3.40 to 4.00 mm, and has a Raman shift wave number of Raman spectrum. An electrode catalyst for a fuel cell containing a nitrogen-containing carbon compound having at least three peaks in the range of 1200 to 1600 cm −1 ; and [2] the electrode catalyst of the above [1] for use in an air electrode of a fuel cell;
I will provide a.

本発明によれば、簡易な製造装置で、温和な条件で均一に窒素が分布したグラファイト構造を有する含窒素炭素化合物を含む燃料電池用電極触媒を提供できる。   According to the present invention, it is possible to provide a fuel cell electrode catalyst including a nitrogen-containing carbon compound having a graphite structure in which nitrogen is uniformly distributed under mild conditions with a simple manufacturing apparatus.

実施例1から得られた含窒素炭素化合物のラマンスペクトルである。2 is a Raman spectrum of the nitrogen-containing carbon compound obtained from Example 1. 実施例1から得られた含窒素炭素化合物の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of the nitrogen-containing carbon compound obtained from Example 1. FIG. 実施例2から得られた含窒素炭素化合物のラマンスペクトルである。2 is a Raman spectrum of a nitrogen-containing carbon compound obtained from Example 2. 実施例2から得られた含窒素炭素化合物の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the nitrogen-containing carbon compound obtained from Example 2. FIG. 実施例3から得られた含窒素炭素化合物のラマンスペクトルである。3 is a Raman spectrum of a nitrogen-containing carbon compound obtained from Example 3. 実施例3から得られた含窒素炭素化合物の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of the nitrogen-containing carbon compound obtained from Example 3. FIG. 本発明の含窒素炭素化合物の酸素還元活性を測定するための装置の概略図である。It is the schematic of the apparatus for measuring the oxygen reduction activity of the nitrogen-containing carbon compound of this invention.

<燃料電池用電極触媒として使用する含窒素炭素化合物の製造について>
本発明の燃料電池用電極触媒を構成する含窒素炭素化合物は、含窒素有機化合物を含有する有機液体媒体中で、炭素電極間にプラズマ放電する方法で製造できる。かかる製造方法によれば、窒素が均一に分布した含窒素炭素化合物が得られる。
<About the production of nitrogen-containing carbon compounds used as fuel cell electrode catalysts>
The nitrogen-containing carbon compound constituting the fuel cell electrode catalyst of the present invention can be produced by plasma discharge between carbon electrodes in an organic liquid medium containing a nitrogen-containing organic compound. According to this production method, a nitrogen-containing carbon compound in which nitrogen is uniformly distributed is obtained.

前記製造方法で用いる有機液体媒体は、含窒素有機化合物が液体である場合、含窒素有機化合物のみからなっていてもよい。かかる含窒素有機化合物としては、例えば、ピリジン、キノリン、イソキノリン、メチルピリジン、ルチジン、アミノピリジン、ピロールなどの含窒素芳香族化合物;アニリン、モノメチルアニリン、モノエチルアニリン、ジメチルアニリン、ジエチルアニリンなどの芳香族アミン、ピペリジン、ピロリジンなどの含窒素環式化合物;トリメチルアミン、トリエチルアミン、トリブチルアミン、ジエチルアミン、ジブチルアミンなどの脂肪族アミン;エタノールアミン、N−メチルエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコールなどが挙げられる。中でも含窒素有機化合物の安定性および生成物である含窒素炭素化合物のグラファイト構造の成長の容易性の観点から、含窒素芳香族化合物、芳香族アミンが好ましい。これらは、1種を単独で使用しても、複数種を混合して使用しても構わない。   When the nitrogen-containing organic compound is a liquid, the organic liquid medium used in the production method may consist of only the nitrogen-containing organic compound. Examples of such nitrogen-containing organic compounds include nitrogen-containing aromatic compounds such as pyridine, quinoline, isoquinoline, methylpyridine, lutidine, aminopyridine, and pyrrole; aromatics such as aniline, monomethylaniline, monoethylaniline, dimethylaniline, and diethylaniline. Nitrogen-containing cyclic compounds such as aromatic amines, piperidine, pyrrolidine; aliphatic amines such as trimethylamine, triethylamine, tributylamine, diethylamine, and dibutylamine; amino alcohols such as ethanolamine, N-methylethanolamine, diethanolamine, and triethanolamine Is mentioned. Of these, nitrogen-containing aromatic compounds and aromatic amines are preferred from the viewpoint of the stability of the nitrogen-containing organic compound and the ease of growth of the graphite structure of the nitrogen-containing carbon compound that is the product. These may be used individually by 1 type, or may mix and use multiple types.

上記有機液体媒体は、含窒素有機化合物以外の有機化合物(すなわち窒素を含有しない有機化合物)を含有してもよい。該窒素を含有しない有機化合物としては、例えば、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン、シクロオクタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレン、メシチレン、ナフタレンなどの芳香族炭化水素;メタノール、エタノール、プロパノールなどのアルコール;ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、テトラヒドロピランなどのエーテルが挙げられる。生成物である含窒素炭素化合物を構成するグラファイト構造の成長の容易性の観点から、芳香族炭化水素を使用するのが好ましい。該窒素を含有しない有機化合物は、単独で使用しても、複数を混合して使用しても構わない。含窒素有機化合物と窒素を含有しない有機化合物の混合比率としては、特に限定されるものではないが、生成物である含窒素炭素化合物への窒素導入量を考慮して、通常モル比として含窒素化合物:窒素を含有しない有機化合物の比率が1:10〜10000:1の範囲、好ましくは1:1〜1000:1の範囲で混合する。   The organic liquid medium may contain an organic compound other than the nitrogen-containing organic compound (that is, an organic compound not containing nitrogen). Examples of the organic compound not containing nitrogen include aliphatic hydrocarbons such as hexane, heptane, octane, decane, cyclohexane, and cyclooctane; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, and naphthalene; methanol, ethanol And alcohols such as propanol; ethers such as diethyl ether, dibutyl ether, tetrahydrofuran, and tetrahydropyran. From the viewpoint of easy growth of the graphite structure constituting the product nitrogen-containing carbon compound, it is preferable to use an aromatic hydrocarbon. The organic compound not containing nitrogen may be used alone or in combination. The mixing ratio of the nitrogen-containing organic compound and the organic compound not containing nitrogen is not particularly limited, but in consideration of the amount of nitrogen introduced into the product nitrogen-containing carbon compound, the nitrogen-containing organic compound is usually used as a molar ratio. The ratio of compound: organic compound containing no nitrogen is in the range of 1:10 to 10000: 1, preferably in the range of 1: 1 to 1000: 1.

上記製造方法では、放電のための電極として炭素電極を使用する。電極に用いる炭素材料の種類としては、グラファイト、アモルファスカーボン、グラッシーカーボンのいずれでもよく、陽極および陰極の各電極の材料に、同一または相異なる炭素材料を使用してよい。放電効率、電極の材料コストの観点から、グラファイトを電極に使用することが好ましい。   In the above manufacturing method, a carbon electrode is used as an electrode for discharging. The carbon material used for the electrode may be any of graphite, amorphous carbon, and glassy carbon, and the same or different carbon materials may be used for the anode and cathode electrodes. From the viewpoint of discharge efficiency and electrode material cost, it is preferable to use graphite for the electrode.

炭素電極の形状に特に限定はなく、板状、棒状、針状などのものを使用できる。電極のサイズにも特に限定はなく、板状の場合、一辺10mm〜1mの長さの平面と0.2mm〜20mmの厚みを有するもの、棒状の場合、1辺1mm〜30mmの角状の断面、または1mmφ〜3mmφの円形の断面で長さ1mm〜1mのものを使用できる。   The shape of the carbon electrode is not particularly limited, and a plate shape, a rod shape, a needle shape, or the like can be used. There is no particular limitation on the size of the electrode. In the case of a plate shape, a flat surface having a length of 10 mm to 1 m and a thickness of 0.2 mm to 20 mm. Alternatively, a circular cross section of 1 mmφ to 3 mmφ and a length of 1 mm to 1 m can be used.

炭素電極の純度は、生成するグラファイト中に取り込まれる不純物の量に影響するため、金属や他の元素を含まないものが好ましく、通常、99.0%以上、より好ましくは99.9%以上の純度のものを用いる。   Since the purity of the carbon electrode affects the amount of impurities incorporated into the generated graphite, it preferably contains no metal or other elements, and is usually 99.0% or more, more preferably 99.9% or more. Use one of purity.

上記製造方法において、燃料電池用電極触媒としての使用に適した含窒素炭素化合物を生成させるためのプラズマ放電は、炭素電極間に電圧を印加して発生させることができる。このときの電圧に特に制限はなく、含窒素有機化合物を含有する有機液体媒体中で放電させることが可能な電圧であればよい。通常、10〜800Vの範囲内であり、好ましくは20〜500Vの範囲内であり、より好ましくは50〜300Vの範囲内である。過大な電圧を加えると、目的とする含窒素炭素化合物の生成速度が律速となり、エネルギー効率が低くなる。他方、電圧が極端に低い場合にはプラズマ放電が安定せず、生成効率が低くなる傾向となる。   In the above production method, plasma discharge for generating a nitrogen-containing carbon compound suitable for use as an electrode catalyst for a fuel cell can be generated by applying a voltage between the carbon electrodes. There is no restriction | limiting in particular in the voltage at this time, What is necessary is just the voltage which can be made to discharge in the organic liquid medium containing a nitrogen-containing organic compound. Usually, it exists in the range of 10-800V, Preferably it exists in the range of 20-500V, More preferably, it exists in the range of 50-300V. When an excessive voltage is applied, the production rate of the target nitrogen-containing carbon compound becomes rate-determining and the energy efficiency is lowered. On the other hand, when the voltage is extremely low, the plasma discharge is not stable and the generation efficiency tends to be low.

電流は含窒素炭素化合物の生成量に関係しており、通常5〜200Aの範囲内であり、好ましくは10〜180Aの範囲内であり、より好ましくは20〜160Aの範囲内である。過剰な電流を流すと目的とする含窒素炭素化合物の生成速度が律速となり、エネルギー効率が低下する。電流が少ないと生産性が低下する傾向となる。   The current is related to the amount of nitrogen-containing carbon compound produced, and is usually in the range of 5 to 200 A, preferably in the range of 10 to 180 A, and more preferably in the range of 20 to 160 A. When an excessive current is passed, the production rate of the target nitrogen-containing carbon compound becomes rate-determining and the energy efficiency is lowered. If the current is small, the productivity tends to decrease.

プラズマ放電時の電流および電圧のパターンは特に限定されず、正弦波、矩形波、三角波などいずれの波形を用いてもよい。反応場にプラズマ放電が迅速かつ均一に発生し、得られる含窒素炭素化合物の構造および組成の均一性が高まることから、矩形波を用いることが好ましい。   The current and voltage patterns during plasma discharge are not particularly limited, and any waveform such as a sine wave, a rectangular wave, or a triangular wave may be used. It is preferable to use a rectangular wave because plasma discharge is rapidly and uniformly generated in the reaction field and the uniformity of the structure and composition of the resulting nitrogen-containing carbon compound is enhanced.

電流の種類としては、直流電流または交流電流のいずれを用いてもよい。電流を矩形波とする場合、波形制御の観点から直流電流が好ましい。   As the type of current, either direct current or alternating current may be used. When the current is a rectangular wave, a direct current is preferable from the viewpoint of waveform control.

プラズマ放電の方式は、パルスプラズマ放電および連続プラズマ放電のいずれの方式を採用してもよい。プラズマ放電の持続時間は特に限定されず、パルスプラズマ放電および連続プラズマ放電のいずれの方式を採用するかによっても異なる。含窒素炭素化合物のグラファイト構造を大きく成長させるには放電持続時間を長くすることが好ましく、グラファイト構造を小さくするためには放電持続時間を短くすることが好ましい。   As a method of plasma discharge, any of pulse plasma discharge and continuous plasma discharge may be adopted. The duration of the plasma discharge is not particularly limited, and varies depending on which of the pulse plasma discharge and the continuous plasma discharge is adopted. In order to grow the graphite structure of the nitrogen-containing carbon compound largely, it is preferable to lengthen the discharge duration, and in order to reduce the graphite structure, it is preferable to shorten the discharge duration.

パルスプラズマ放電を採用する場合、1回あたりのプラズマ放電持続時間を1μ秒以上とすることが好ましく、プラズマ放電をより安定させるためには10μ秒以上とすることがより好ましい。パルス休止時間は通常1μ秒〜100m秒の範囲、より好ましくは、2μ秒〜50m秒の範囲で実施される。パルス休止時間が長すぎる場合、含窒素炭素化合物の生成量が少なくなる一方、パルス休止時間が短すぎる場合、得られる含窒素炭素化合物の構造や組成の均一性が低下する傾向となる。   When using pulsed plasma discharge, the plasma discharge duration per time is preferably 1 μsec or more, and more preferably 10 μsec or more in order to further stabilize the plasma discharge. The pulse pause time is usually in the range of 1 μsec to 100 msec, more preferably in the range of 2 μsec to 50 msec. When the pulse pause time is too long, the amount of nitrogen-containing carbon compound produced is reduced. On the other hand, when the pulse pause time is too short, the uniformity of the structure and composition of the resulting nitrogen-containing carbon compound tends to decrease.

連続プラズマ放電を採用する場合、必要に応じて、プラズマ放電持続時間を秒単位、分単位ないし時間単位で任意に設定することができるが、1秒以上の持続時間が好ましく、高電流を流す際の機器への負荷制限を考慮して1分以下の持続時間が好ましい。   When using continuous plasma discharge, the duration of plasma discharge can be set arbitrarily in seconds, minutes or hours as necessary. Considering the load limitation on the equipment, the duration of 1 minute or less is preferable.

プラズマ放電を発生させる反応装置内の圧力に関して特に制限はなく、加圧状態から減圧状態にわたるいずれの圧力の下でも本発明を実施できるが、通常、大気圧下にて、窒素、アルゴンなどの不活性ガス下で実施される。圧力調整のための付帯設備の増加は、反応装置の操作性を低下させ、また、気体の反応性が高い場合には、操作上の安全性を考慮する必要が生じる。   There is no particular limitation on the pressure in the reactor that generates plasma discharge, and the present invention can be carried out under any pressure ranging from a pressurized state to a reduced pressure state. It is carried out under active gas. The increase in incidental facilities for pressure adjustment reduces the operability of the reaction apparatus, and when the gas reactivity is high, it is necessary to consider operational safety.

プラズマ放電を実施する温度は、使用する有機液体媒体を構成する化合物の種類、性質、状態を考慮して決定するが、通常、0〜200℃の範囲、好ましくは5〜160℃の範囲であり、操作性、安全性の観点から、より好ましくは10〜140℃の範囲である。   The temperature at which the plasma discharge is carried out is determined in consideration of the type, nature and state of the compound constituting the organic liquid medium to be used. From the viewpoint of operability and safety, it is more preferably in the range of 10 to 140 ° C.

プラズマ放電によって生成した含窒素炭素化合物は、ろ過および/または有機液体媒体の留去などにより容易に分離・回収することができる。   The nitrogen-containing carbon compound produced by plasma discharge can be easily separated and recovered by filtration and / or evaporation of the organic liquid medium.

本発明の燃料電池用電極触媒を構成する含窒素炭素化合物は、通常1〜20質量%、好ましくは2〜15質量%、より好ましくは3〜12質量%、最も好ましくは3.5〜10質量%の窒素を含有する。   The nitrogen-containing carbon compound constituting the fuel cell electrode catalyst of the present invention is usually 1 to 20% by mass, preferably 2 to 15% by mass, more preferably 3 to 12% by mass, and most preferably 3.5 to 10% by mass. % Nitrogen.

また、本発明の燃料電池用電極触媒を構成する含窒素炭素化合物は、粉末X線回折法により測定される回折強度のピークトップの2θ値から算出されるd002面の間隔が3.40〜4.00Åであり、好ましくは3.40〜3.90Å、より好ましくは3.45〜3.80Å、最も好ましくは3.50〜3.76Åであるようなグラファイト構造を有することにより特徴づけられる。   The nitrogen-containing carbon compound constituting the fuel cell electrode catalyst of the present invention has a d002 plane interval of 3.40 to 4 calculated from the 2θ value at the peak top of the diffraction intensity measured by the powder X-ray diffraction method. It is characterized by having a graphite structure such that it is 0.000, preferably 3.40-3.90, more preferably 3.45-3.80, and most preferably 3.50-3.76.

また、本発明の燃料電池用電極触媒を構成する含窒素炭素化合物のラマンスペクトルを測定すると、1200〜1600cm−1のラマンシフトの波数範囲に少なくとも3つのピークが存在することが確認できる。かかる波数領域に観測される3つのピークは、本発明の燃料電池用電極触媒を構成する含窒素炭化水素の化学構造を特徴付ける、グラファイト構造と、グラファイト構造に取り込まれている窒素の存在に由来する。 Moreover, when the Raman spectrum of the nitrogen-containing carbon compound which comprises the electrode catalyst for fuel cells of this invention is measured, it can confirm that at least three peaks exist in the wave number range of 1200-1600cm < -1 >. The three peaks observed in the wave number region are derived from the graphite structure, which characterizes the chemical structure of the nitrogen-containing hydrocarbon constituting the fuel cell electrode catalyst of the present invention, and the presence of nitrogen incorporated in the graphite structure. .

本発明の燃料電池用電極触媒は、上記の含窒素炭素化合物に、他の金属を担持したものであってもよい。かかる他の金属としては白金、パラジウム、ルテニウムが挙げられ、その使用量は、含窒素炭素化合物に対して、好ましくは0.001〜100質量%、より好ましくは0.01〜50質量%である。   The electrode catalyst for a fuel cell of the present invention may be one in which another metal is supported on the above nitrogen-containing carbon compound. Examples of such other metals include platinum, palladium, and ruthenium, and the amount used is preferably 0.001 to 100% by mass, more preferably 0.01 to 50% by mass, based on the nitrogen-containing carbon compound. .

かかる他の金属を含窒素炭素化合物に担持する方法は、公知の方法を適用できる。例えば、白金塩化物と含窒素炭素化合物を混合し、ホルマリンなどの還元剤を用いて、含窒素炭素化合物上に添着することができる。   A known method can be applied to the method of supporting the other metal on the nitrogen-containing carbon compound. For example, platinum chloride and a nitrogen-containing carbon compound can be mixed and added onto the nitrogen-containing carbon compound using a reducing agent such as formalin.

<電極触媒>
上述したとおり、燃料電池の空気極では酸素を還元的に水素化し、水を生成する反応が進行する。この酸素還元反応を促進するために、空気極の表面には酸素の還元を促進する触媒が担持されている。本発明で用いる含窒素炭素化合物は、後述するように酸素還元活性を有しており、燃料電池の空気極用の電極触媒として使用するのに適している。
<Electrocatalyst>
As described above, the reaction of reductively hydrogenating oxygen to produce water proceeds at the air electrode of the fuel cell. In order to promote this oxygen reduction reaction, a catalyst for promoting the reduction of oxygen is supported on the surface of the air electrode. The nitrogen-containing carbon compound used in the present invention has oxygen reduction activity as described later, and is suitable for use as an electrode catalyst for an air electrode of a fuel cell.

<燃料電池用電極の作製>
上記の含窒素炭素化合物を燃料電池用の電極触媒として使用する場合、常法に従って燃料電池用電極(空気極)を作製することができる。例えば、プロトン伝導性物質またはアニオン伝導性物質からなる固体高分子電解質膜に本発明の燃料電池用の電極触媒を塗布して電極触媒層を形成することができる。さらに、電極触媒の結着性を向上させるために、必要に応じて、テトラフルオロエチレン等のバインダーを添加してもよく、電極活性を高めるために、含窒素炭素化合物にカーボンブラック、ケッチェンブラック、アセチレンブラックなどの導電剤を加えたものを電極触媒とすることができる。
<Fabrication of fuel cell electrode>
When the above nitrogen-containing carbon compound is used as an electrode catalyst for a fuel cell, a fuel cell electrode (air electrode) can be produced according to a conventional method. For example, the electrode catalyst layer can be formed by applying the electrode catalyst for a fuel cell of the present invention to a solid polymer electrolyte membrane made of a proton conductive material or an anion conductive material. Furthermore, in order to improve the binding property of the electrode catalyst, a binder such as tetrafluoroethylene may be added as necessary, and in order to increase the electrode activity, carbon black, ketjen black is added to the nitrogen-containing carbon compound. A catalyst obtained by adding a conductive agent such as acetylene black can be used as an electrode catalyst.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
粉末X線回折測定は、リガクRINT-2500VHF(CuKα)を使用して行った。
ラマン分光スペクトルの測定は、顕微レーザラマン分光装置(堀場製作所製 LabRAM ARAMIS)を使用して行った。
プラズマ放電用の炭素電極は、株式会社ニラコから入手した炭素ロッド(C Rod C−072621, 8mmφ, 100mm)を使用した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
The powder X-ray diffraction measurement was performed using Rigaku RINT-2500VHF (CuKα).
The Raman spectrum was measured using a microscopic laser Raman spectrometer (LabRAM ARAMIS manufactured by Horiba).
As a carbon electrode for plasma discharge, a carbon rod (C Rod C-076212, 8 mmφ, 100 mm) obtained from Niraco Co., Ltd. was used.

<燃料電池用電極触媒の製造>
[実施例1]
ピリジン(和光純薬工業社製、特級試薬)50mlを容量100mlのビーカーに入れ、8mmφの炭素電極と10mm×5mm×2mmの炭素板電極をピリジンに浸漬し、極間距離を1mmとして、各電極を直流電源に接続した。反応器を窒素ボックスに入れ、ボックス内を窒素置換した後、両極間に200Vの電圧を印加した。1回あたりのプラズマ放電時間を250μ秒に、パルス休止時間を30m秒にそれぞれ設定して矩形波で60Aの電流を流した。放電回数をオシロスコープと放電カウンターで算出し、10万回のプラズマ放電を行った。反応液をろ過し、100.5mgの生成物を得た。得られた生成物の元素分析値は、炭素84.6質量%、水素0.7質量%、窒素6.2質量%であり、含窒素炭素化合物であることがわかった。
<Manufacture of fuel cell electrode catalyst>
[Example 1]
Place 50 ml of pyridine (made by Wako Pure Chemical Industries, Ltd., special grade reagent) into a beaker with a capacity of 100 ml, immerse an 8 mmφ carbon electrode and a 10 mm × 5 mm × 2 mm carbon plate electrode in pyridine, and set the distance between the electrodes to 1 mm. Was connected to a DC power source. The reactor was placed in a nitrogen box, and the inside of the box was purged with nitrogen, and then a voltage of 200 V was applied between both electrodes. The plasma discharge time per one time was set to 250 μs and the pulse pause time was set to 30 milliseconds, and a current of 60 A was applied by a rectangular wave. The number of discharges was calculated with an oscilloscope and a discharge counter, and 100,000 plasma discharges were performed. The reaction solution was filtered to obtain 100.5 mg of product. The elemental analysis values of the obtained product were 84.6% by mass of carbon, 0.7% by mass of hydrogen, and 6.2% by mass of nitrogen, and were found to be nitrogen-containing carbon compounds.

得られた含窒素炭素化合物のラマン分光スペクトルを測定したところ、図1に示すスペクトルが得られ、1200〜1600cm−1のラマンシフトの波数範囲内に3つのピークが存在することが確認された。図1中、矢印で示したピークのラマンシフト波数は1520cm−1であった。 When the Raman spectrum of the obtained nitrogen-containing carbon compound was measured, the spectrum shown in FIG. 1 was obtained, and it was confirmed that three peaks were present within the wave number range of 1200 to 1600 cm −1 . In FIG. 1, the Raman shift wave number of the peak indicated by the arrow was 1520 cm −1 .

また、粉末X線回折測定の結果、図2に示す回折強度パターンが得られた。回折強度のピークトップの位置(2θ)が、24.8°であり、グラファイトのピーク(2θ=26.5°)より低角側に現れた。上記のピークトップの2θ値から、d002面間隔を3.59Åと算出した。   Further, as a result of the powder X-ray diffraction measurement, the diffraction intensity pattern shown in FIG. 2 was obtained. The position (2θ) of the peak top of the diffraction intensity was 24.8 °, which appeared on the lower angle side from the peak of graphite (2θ = 26.5 °). From the 2θ value of the peak top, the d002 plane spacing was calculated to be 3.59 cm.

[実施例2]
アニリン(和光純薬製、特級試薬)50mlを用いた以外は実施例1と同様の操作を行い、166.1mgの生成物を得た。得られた生成物の元素分析値は、炭素86.9質量%、水素0.5質量%、窒素4.4質量%であり、含窒素炭素化合物であることがわかった。
[Example 2]
The same operation as in Example 1 was carried out except that 50 ml of aniline (manufactured by Wako Pure Chemicals, special grade reagent) was used, and 166.1 mg of product was obtained. The elemental analysis value of the obtained product was 86.9% by mass of carbon, 0.5% by mass of hydrogen, and 4.4% by mass of nitrogen, and was found to be a nitrogen-containing carbon compound.

得られた含窒素炭素化合物のラマン分光スペクトルを測定したところ、図3に示すスペクトルが得られ、1200〜1600cm−1のラマンシフトの波数範囲内に3つのピークが存在することが確認された。図3中、矢印で示したピークのラマンシフト波数は1515cm−1であった。 When the Raman spectrum of the obtained nitrogen-containing carbon compound was measured, the spectrum shown in FIG. 3 was obtained, and it was confirmed that three peaks were present within the wave number range of 1200 to 1600 cm −1 . In FIG. 3, the Raman shift wave number of the peak indicated by the arrow was 1515 cm −1 .

また、粉末X線回折測定の結果、図4に示す回折強度のパターンが得られた。回折強度のピークトップは、グラファイトのピーク(2θ=26.5°)より低角側の2θ=24.6°の位置に現れた。上記のピークトップの2θ値から、d002面間隔を3.58Åと算出した。   As a result of the powder X-ray diffraction measurement, the diffraction intensity pattern shown in FIG. 4 was obtained. The peak top of the diffraction intensity appeared at a position of 2θ = 24.6 ° lower than the graphite peak (2θ = 26.5 °). From the 2θ value of the peak top, the d002 plane spacing was calculated to be 3.58 cm.

[実施例3]
実施例1において、放電時間を50μ秒、休止時間を30m秒にそれぞれ設定して矩形波で60Aの電流を流した以外は、実施例1と同様の操作を行い、90.1mgの生成物を得た。得られた生成物の元素分析値は、炭素86.1質量%、水素0.9質量%、窒素7.8質量%であり、含窒素炭素化合物であることがわかった。
[Example 3]
In Example 1, the same operation as in Example 1 was performed except that a discharge time was set to 50 μs and a resting time was set to 30 milliseconds, and a current of 60 A was applied in a rectangular wave, and 90.1 mg of product was obtained. Obtained. The elemental analysis values of the obtained product were 86.1% by mass of carbon, 0.9% by mass of hydrogen, and 7.8% by mass of nitrogen, and were found to be nitrogen-containing carbon compounds.

得られた含窒素炭素化合物のラマン分光スペクトルを測定したところ、図4に示すスペクトルが得られ、1200〜1600cm−1のラマンシフトの波数範囲内に3つのピークが存在することが確認された。図5中、矢印で示したピークのラマンシフト波数は1520cm−1であった。 When the Raman spectrum of the obtained nitrogen-containing carbon compound was measured, the spectrum shown in FIG. 4 was obtained, and it was confirmed that three peaks were present within the wave number range of 1200 to 1600 cm −1 . In FIG. 5, the Raman shift wave number of the peak indicated by the arrow was 1520 cm −1 .

また、粉末X線回折測定の結果、図6に示す回折強度パターンが得られた。回折強度のピークトップが、グラファイトのピーク(2θ=26.5°)より低角側の2θ=23.6°の位置に現れた。上記のピークトップの2θ値から、d002面間隔を3.76Åと算出した。   Further, as a result of the powder X-ray diffraction measurement, a diffraction intensity pattern shown in FIG. 6 was obtained. The peak top of the diffraction intensity appeared at a position of 2θ = 23.6 ° lower than the graphite peak (2θ = 26.5 °). From the 2θ value of the peak top, the d002 plane spacing was calculated to be 3.76 mm.

<燃料電池用電極触媒の酸素還元活性の測定>
[実施例4]
(1)試験用電極の作製
実施例1で調製した含窒素炭素化合物50mgを、カーボンブラック(キャボット社製、商標名「Vulcan XC−72R」)5mgとともに、5質量%パーフルオロスルホン酸樹脂溶液(アルドリッチ社製)0.5mlをイオン交換水で1mlに溶解させた溶液に加え、超音波により分散させて触媒ペーストを調製した。触媒ペースト2μlを回転グラッシーカーボンディスク電極に塗布面積0.07cmで塗布し、十分に乾燥して、電極触媒層を形成し、試験用電極とした。
<Measurement of oxygen reduction activity of fuel cell electrode catalyst>
[Example 4]
(1) Production of Test Electrode 50 mg of the nitrogen-containing carbon compound prepared in Example 1 was mixed with 5 mg of carbon black (trade name “Vulcan XC-72R” manufactured by Cabot Corporation) and a 5 mass% perfluorosulfonic acid resin solution ( A catalyst paste was prepared by adding 0.5 ml of Aldrich Co.) to a solution in 1 ml of ion-exchanged water and dispersing by ultrasonic waves. 2 μl of catalyst paste was applied to a rotating glassy carbon disk electrode with an application area of 0.07 cm 2 and sufficiently dried to form an electrode catalyst layer, which was used as a test electrode.

(2)測定装置
図7に示す3極回転電極セルを用いて測定した。この3極回転電極セルには、前記試験用電極からなる作用電極の両側に、参照電極(Ag/AgCl)と対極(Pt)を装着した。電極触媒層を形成した作用電極を酸素で飽和した0.1mol/L過塩素酸水溶液に浸漬し、サイクリックボルタンメトリーを操作速度50mV/s、電位幅0.05V〜1.02V、25℃にて測定した。電圧が0.7Vの時の還元電流密度を酸素還元活性値とした。得られた酸素還元活性値は、−0.312mA/cmであった。
(2) Measuring apparatus It measured using the tripolar rotating electrode cell shown in FIG. In this tripolar rotating electrode cell, a reference electrode (Ag / AgCl) and a counter electrode (Pt) were mounted on both sides of the working electrode made of the test electrode. The working electrode on which the electrode catalyst layer is formed is immersed in a 0.1 mol / L perchloric acid aqueous solution saturated with oxygen, and cyclic voltammetry is performed at an operation speed of 50 mV / s, a potential range of 0.05 V to 1.02 V, and 25 ° C. It was measured. The reduction current density when the voltage was 0.7 V was defined as the oxygen reduction activity value. The obtained oxygen reduction activity value was −0.312 mA / cm 2 .

[実施例5]
実施例1で調製した含窒素炭素化合物の代わりに実施例2で調製した含窒素炭素化合物を用いたこと以外は、実施例4と同様に行った。得られた酸素還元活性値は−0.300mA/cmであった。
[Example 5]
The same procedure as in Example 4 was performed except that the nitrogen-containing carbon compound prepared in Example 2 was used instead of the nitrogen-containing carbon compound prepared in Example 1. The obtained oxygen reduction activity value was −0.300 mA / cm 2 .

[実施例6]
実施例1で調製した含窒素炭素化合物の代わりに実施例3で調製した含窒素炭素化合物を用いたこと以外は、実施例4と同様に行った。得られた酸素還元活性値は−0.287mA/cmであった。
[Example 6]
The same procedure as in Example 4 was performed except that the nitrogen-containing carbon compound prepared in Example 3 was used instead of the nitrogen-containing carbon compound prepared in Example 1. The obtained oxygen reduction activity value was −0.287 mA / cm 2 .

[比較例1]
実施例1で調製した含窒素炭素化合物の代わりにカーボンブラック(商標名「Vulcan XC−72R」、キャボット社製)を用いたこと以外は、実施例4と同様に行った。酸素還元活性値は0であり、酸素還元活性は得られなかった。
[Comparative Example 1]
The same procedure as in Example 4 was performed except that carbon black (trade name “Vulcan XC-72R”, manufactured by Cabot Corporation) was used instead of the nitrogen-containing carbon compound prepared in Example 1. The oxygen reduction activity value was 0, and no oxygen reduction activity was obtained.

本発明は、従来技術に比べて穏和な条件と簡易な手段を用いて燃料電池用電極触媒を提供できることから、燃料電池の製造に有用である。   INDUSTRIAL APPLICABILITY The present invention can provide an electrode catalyst for a fuel cell using mild conditions and simple means as compared with the prior art, and thus is useful for manufacturing a fuel cell.

Claims (2)

1〜20質量%の窒素を含有し、粉末X線回折法により測定されるd002面の間隔が3.40〜4.00Åであるグラファイト構造を有し、ラマンスペクトルのラマンシフト波数の1200〜1600cm−1の範囲に少なくとも3つピークを有する含窒素炭素化合物を含む燃料電池用電極触媒。 It has 1 to 20% by mass of nitrogen, has a graphite structure with a d002 plane interval of 3.40 to 4.00 mm measured by powder X-ray diffraction, and has a Raman shift wavenumber of 1200 to 1600 cm in the Raman spectrum. A fuel cell electrode catalyst comprising a nitrogen-containing carbon compound having at least three peaks in the range of -1 . 燃料電池の空気極用である請求項1に記載の電極触媒。   The electrode catalyst according to claim 1, which is used for an air electrode of a fuel cell.
JP2011086206A 2011-04-08 2011-04-08 Electrode catalyst for fuel cell Pending JP2012221735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011086206A JP2012221735A (en) 2011-04-08 2011-04-08 Electrode catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086206A JP2012221735A (en) 2011-04-08 2011-04-08 Electrode catalyst for fuel cell

Publications (1)

Publication Number Publication Date
JP2012221735A true JP2012221735A (en) 2012-11-12

Family

ID=47273025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086206A Pending JP2012221735A (en) 2011-04-08 2011-04-08 Electrode catalyst for fuel cell

Country Status (1)

Country Link
JP (1) JP2012221735A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100617A (en) * 2012-11-16 2014-06-05 Nagoya Univ Production method of carbon based catalyst
JP2015065016A (en) * 2013-09-25 2015-04-09 トヨタ自動車株式会社 Method for manufacturing electrode catalyst for fuel batteries
JP2020038831A (en) * 2018-09-03 2020-03-12 学校法人近畿大学 Oxygen electrocatalyst for air battery and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116091A (en) * 1987-10-28 1989-05-09 Bridgestone Corp Carbon electrode
JPH11317231A (en) * 1999-03-19 1999-11-16 Toyobo Co Ltd Carbon-based electrode material for electrolytic cell
JP2001357857A (en) * 2000-06-12 2001-12-26 Asahi Glass Co Ltd Solid high polymer type fuel cell and its manufacturing method
WO2007043311A1 (en) * 2005-09-30 2007-04-19 Asahi Kasei Chemicals Corporation Nitrogenous carbon material and process for producing the same
JP2007136283A (en) * 2005-11-15 2007-06-07 Toyota Central Res & Dev Lab Inc Nitrogen-containing carbon type electrode catalyst
WO2007088829A1 (en) * 2006-01-31 2007-08-09 Japan Science And Technology Agency Carbon nanohorn-carried material and method for synthesis of carbon nanotube
JP2008531245A (en) * 2005-02-20 2008-08-14 ヘルムホルツ−ツェントルム ベルリン フュア マテリアリーエン ウント エネルギー ゲゼルシャフト ミット ベシュレンクテル ハフツング Production of platinum-free chelate catalyst materials as intermediate products and subsequent processing into electrocatalyst coatings as final products
JP2009057362A (en) * 2007-03-09 2009-03-19 Sumitomo Chemical Co Ltd Modified metal complex and its application
JP2009534177A (en) * 2006-04-20 2009-09-24 スリーエム イノベイティブ プロパティズ カンパニー Method for producing oxygen-reducing catalyst layer
JP2009291706A (en) * 2008-06-04 2009-12-17 Seizo Miyata Carbon catalyst, method for manufacturing the same, fuel cell, electric storage apparatus and method for using the catalyst
WO2010127767A1 (en) * 2009-05-02 2010-11-11 Bayer Technology Services Gmbh Method for producing carbon materials having nitrogen modification starting from carbon nanotubes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116091A (en) * 1987-10-28 1989-05-09 Bridgestone Corp Carbon electrode
JPH11317231A (en) * 1999-03-19 1999-11-16 Toyobo Co Ltd Carbon-based electrode material for electrolytic cell
JP2001357857A (en) * 2000-06-12 2001-12-26 Asahi Glass Co Ltd Solid high polymer type fuel cell and its manufacturing method
JP2008531245A (en) * 2005-02-20 2008-08-14 ヘルムホルツ−ツェントルム ベルリン フュア マテリアリーエン ウント エネルギー ゲゼルシャフト ミット ベシュレンクテル ハフツング Production of platinum-free chelate catalyst materials as intermediate products and subsequent processing into electrocatalyst coatings as final products
WO2007043311A1 (en) * 2005-09-30 2007-04-19 Asahi Kasei Chemicals Corporation Nitrogenous carbon material and process for producing the same
JP2007136283A (en) * 2005-11-15 2007-06-07 Toyota Central Res & Dev Lab Inc Nitrogen-containing carbon type electrode catalyst
WO2007088829A1 (en) * 2006-01-31 2007-08-09 Japan Science And Technology Agency Carbon nanohorn-carried material and method for synthesis of carbon nanotube
JP2009534177A (en) * 2006-04-20 2009-09-24 スリーエム イノベイティブ プロパティズ カンパニー Method for producing oxygen-reducing catalyst layer
JP2009057362A (en) * 2007-03-09 2009-03-19 Sumitomo Chemical Co Ltd Modified metal complex and its application
JP2009291706A (en) * 2008-06-04 2009-12-17 Seizo Miyata Carbon catalyst, method for manufacturing the same, fuel cell, electric storage apparatus and method for using the catalyst
WO2010127767A1 (en) * 2009-05-02 2010-11-11 Bayer Technology Services Gmbh Method for producing carbon materials having nitrogen modification starting from carbon nanotubes
JP2012526035A (en) * 2009-05-02 2012-10-25 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing carbon material having nitrogen modification starting from carbon nanotube

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHITTURI VENKATESWARA RAO ET AL.,: ""In Search of the Active Site in Nitrogen-Doped CarbonNanotube Electrodes for the Oxygen Reduction R", J. PHYS. CHEM. LETT, vol. 1 (18), JPN6014039288, 20 August 2010 (2010-08-20), pages 2622 - 2627, ISSN: 0002901159 *
FANNY CHARRETEUR ET AL.,: ""Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristin", ELECTROCHIMICA ACTA, vol. Volume 53, Issue 6, JPN6014039286, 15 February 2008 (2008-02-15), pages 2925 - 2938, ISSN: 0002901158 *
STEPHEN MALDONADO ET AL.,: ""Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes"", J. PHYS. CHEM. B, vol. 109 (10), JPN6014039291, 19 February 2005 (2005-02-19), US, pages 4707 - 4716, ISSN: 0002901157 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100617A (en) * 2012-11-16 2014-06-05 Nagoya Univ Production method of carbon based catalyst
JP2015065016A (en) * 2013-09-25 2015-04-09 トヨタ自動車株式会社 Method for manufacturing electrode catalyst for fuel batteries
JP2020038831A (en) * 2018-09-03 2020-03-12 学校法人近畿大学 Oxygen electrocatalyst for air battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5865893B2 (en) Nitrogen-containing carbon compounds
Ramakrishna et al. Nitrogen doped CNTs supported Palladium electrocatalyst for hydrogen evolution reaction in PEM water electrolyser
Bambagioni et al. Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol= methanol, ethanol, glycerol)
Ramos-Sánchez et al. PdNi electrocatalyst for oxygen reduction in acid media
Wang et al. Electrocatalytic performance of PdCo–C catalyst for formic acid oxidation
US10501855B2 (en) Bifunctional non-noble metal oxide/chalcogenide nanoparticle electrocatalysts through lithium-induced conversion for overall water-splitting
KR101270809B1 (en) Platinum alloy carbon-supported catalysts
JP5893305B2 (en) Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
JP2008041253A (en) Electrocatalyst and power generation system using the same
KR20180124921A (en) Metal-doped tin oxide for electrocatalyst applications
Galal et al. Electrocatalytic evolution of hydrogen on a novel SrPdO3 perovskite electrode
Li et al. Evaluation of A-Site Ba 2+-Deficient Ba Co 0.4 Fe 0.4 Zr 0.1 Y 0.1 O Oxides as Electrocatalysts for Efficient Hydrogen Evolution Reaction
Ali et al. Recent advances in material design and reactor engineering for electrocatalytic ambient nitrogen fixation
Naik et al. Bifunctional intermetallic PdZn nanoparticle-loaded deficient TiO 2 nanosheet electrocatalyst for electrochemical water splitting
JP2012221735A (en) Electrode catalyst for fuel cell
Uribe-Godínez et al. Novel osmium-based electrocatalysts for oxygen reduction and hydrogen oxidation in acid conditions
CN114892197B (en) Electrocatalysis synthesis of H2O2Catalyst, preparation method and application thereof
WO2021251341A1 (en) Electrode catalyst, and anion exchange membrane electrochemical cell
ZHANG et al. Preparation of Mn-NC catalyst and its electrocatalytic activity for the oxygen reduction reaction in alkaline medium
KR102571771B1 (en) Method of producing platinum alloy catalyst for fuel cell, and fuel cell using same
KR102247287B1 (en) Pt-N-C TYPE ELECTROCATALYST FOR CHLORINE EVOLUTION REACTION AND PREPARATION METHOD THEREOF
Ju et al. Study on ethanol electro-oxidation over a carbon-supported Pt–Cu alloy catalyst by pinhole on-line electrochemical mass spectrometry
Jiang et al. Non-precious Mn 1.5 Co 1.5 O 4–FeN x/C nanocomposite as a synergistic catalyst for oxygen reduction in alkaline media
CN114108027B (en) Obviously improved RuO 2 Electrochemical lithium intercalation modification method for OER catalytic performance in acidity
US11791476B2 (en) Method of fabricating a material for use in catalytic reactions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150128