JP2012214335A - Carbon material including carbon nanotube and method for manufacturing the same - Google Patents

Carbon material including carbon nanotube and method for manufacturing the same Download PDF

Info

Publication number
JP2012214335A
JP2012214335A JP2011080977A JP2011080977A JP2012214335A JP 2012214335 A JP2012214335 A JP 2012214335A JP 2011080977 A JP2011080977 A JP 2011080977A JP 2011080977 A JP2011080977 A JP 2011080977A JP 2012214335 A JP2012214335 A JP 2012214335A
Authority
JP
Japan
Prior art keywords
carbon
side wall
sugarcane
carbide
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011080977A
Other languages
Japanese (ja)
Other versions
JP5676345B2 (en
Inventor
Hiroyuki Fujimoto
宏之 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011080977A priority Critical patent/JP5676345B2/en
Publication of JP2012214335A publication Critical patent/JP2012214335A/en
Application granted granted Critical
Publication of JP5676345B2 publication Critical patent/JP5676345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon material including a carbon nanotube industrially manufactured simply and at a low cost using sugar cane bagasse as a starting raw material, and to provide a method for manufacturing the same.SOLUTION: The carbon material including the carbon nanotube is manufactured by carbonizing the sugar cane bagasse obtained by compressing a sugar cane containing a silicon dioxide in a carbonization furnace in an inert gas atmosphere and graphitizing obtained carbide at a temperature of 1,100°C or higher and 2,200°C or lower in an inert gas atmosphere, and formed by including a cylindrical sidewall having carbon as a main component and a laminating part having silicon carbide crystallized in a state of subsequently being laminated in a cylinder axis direction of the sidewall in an inside space of the sidewall as a main component.

Description

本発明は、カーボンナノチューブを含む炭素材料及びその製造方法に関する。   The present invention relates to a carbon material containing carbon nanotubes and a method for producing the same.

電子系ナノ炭素物質(以下、単に炭素材料という場合がある)は、フラーレンの発見以来、ナノサイエンス、ナノテクノロジーの基本的物質として、大きな注目を集めており、その高強度、高弾性率、高導電性等の優れた特性から各種の複合材料に使用されている。近年のエレクトロニクス技術の発展に伴い、電磁波遮蔽材、静電防止材用の導電性フィラーとして、あるいは、樹脂への静電塗装のためのフィラーや透明導電性樹脂用のフィラーとしての用途が期待されている。また、摺動性、耐磨耗性が高い材料として電気ブラシ、可変抵抗器などの応用にも期待されている。さらに、高導電性、耐熱伝導性、耐エレクトロマイグレーションを有するため、LSI等のデバイスの配線材料としても注目を浴びている。   Electronic nanocarbon materials (hereinafter sometimes referred to simply as carbon materials) have attracted a great deal of attention as basic materials for nanoscience and nanotechnology since the discovery of fullerene, and their high strength, high elasticity, It is used for various composite materials because of its excellent properties such as conductivity. With the recent development of electronics technology, it is expected to be used as a conductive filler for electromagnetic shielding materials and antistatic materials, or as a filler for electrostatic coating on resins and fillers for transparent conductive resins. ing. In addition, it is expected to be applied to electric brushes, variable resistors and the like as a material having high slidability and wear resistance. Furthermore, since it has high conductivity, heat resistance, and electromigration resistance, it has attracted attention as a wiring material for devices such as LSI.

とりわけ、カーボンナノチューブ(CNT)や一枚のグラファイトシート(グラフェン)が発見され、Dirac型のフェルミ粒子の固体物理の基礎的な問題として、また、電子デバイス/スピンデバイス等の応用技術の側面から大きな関心を呼んでいる。カーボンナノチューブやグラフェンは、天然黒鉛や人造黒鉛とは異なる電子状態を形成し、特異な電子的・磁気的・化学的性質を発現することが、最近の理論や実験から明らかにされつつあり、炭素系分子素子としての発展が期待されている。   In particular, carbon nanotubes (CNT) and a single graphite sheet (graphene) were discovered, which is a major problem in the solid state physics of Dirac-type fermions and from the aspect of applied technology such as electronic devices / spin devices. I am interested. Carbon nanotubes and graphene form an electronic state different from that of natural graphite and artificial graphite, and it is clarified from recent theories and experiments that unique electronic, magnetic, and chemical properties are expressed. Development as a molecular device is expected.

カーボンナノチューブの合成方法としては、アーク放電法、レーザーアブレーション法、プラズマ合成法、炭化水素触媒分解法などがあり、アーク放電法、レーザーアブレーション法で合成されたカーボンナノチューブは市販されている(非特許文献1〜4参照)。   Carbon nanotube synthesis methods include arc discharge method, laser ablation method, plasma synthesis method, hydrocarbon catalytic decomposition method, etc. Carbon nanotubes synthesized by arc discharge method and laser ablation method are commercially available (non-patented) References 1-4).

Saito Y,Yoshikawa T,Okuda M,Fujimoto N,Sumiyama K,Suzuki K,Kasuya A,Nishina Y,J Phys Chem Solids,1993;54,1849‐60Saito Y, Yoshikawa T, Okuda M, Fujimoto N, Sumiyama K, Suzuki K, Kasua A, Nishina Y, J Phys Chem Solids, 1993; 54, 1849-60. Thess A,Lee R,Nikolaev P,Dai HJ,Petit P,Robert J,Xu C,Lee YH,Kim SG,Colbert DT,Scuseria G,Tomanek D,Fischer JE,Smalley RE,Crystalline ropes of metallic carbon nanotubes.Science, 1996;273:483‐87Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu C, Lee YH, Kim SG, Colbert DT, Scuseria G, Tomanek D, Fischer JE, Small J Science, 1996; 273: 483-87. Kataura H,Kimura A,Ohtsuka Y,Suzuki S,Maniwa Y,Hanyu T,Achiba Y,Formation of thin single‐wall carbon nanotubes by laser Vvporization of Rh/Pd‐graphite composite rod.Jpn J Appl Phys 1998;37:L616‐18Kataura H, Kimura A, Ohtsuka Y, Suzuki S, Maniwa Y, Hanyu T, Achiba Y, Formation of thin carbon ribozyr-by-Vs. Jpn J Appl Phys 1998; 37: L616-18 Bandow S,Asaka S,Saito Y,Rao AM,Grigorian L,Richter E,Eklund PC,Effect of the growth environment temperature on the diameter of single wall carbon nanotubes.Phys Rev Lett,1998;80:3779‐82Bandow S, Asaka S, Saito Y, Rao AM, Grigorian L, Richter E, Eklund PC, Effect of the height ambient on the diameter of the meter. Phys Rev Lett, 1998; 80: 3779-82.

ここで、工業的に、カーボンナノチューブを製造するためには、カーボンナノチューブ製造に適した前駆体構造を有する原料を見出すことが重要である。化石燃料であるコールタールやアスファルトは、人造黒鉛の製造原料として古くから用いられているが、これらを出発原料としてカーボンナノチューブを製造する方法については、報告されていない。炭化の初期段階で、芳香族化合物の積層構造体が形成され、重合反応が開始するため、ナノチューブを直接製造することは困難と考えられる。   Here, in order to produce carbon nanotubes industrially, it is important to find a raw material having a precursor structure suitable for carbon nanotube production. Coal tar and asphalt, which are fossil fuels, have been used for a long time as raw materials for producing artificial graphite, but no method for producing carbon nanotubes using these as starting materials has been reported. At the initial stage of carbonization, a laminated structure of an aromatic compound is formed, and a polymerization reaction is started. Therefore, it is considered difficult to directly produce a nanotube.

一方、こうした原料系に対して、環境面からカーボンニュートラルな植物由来の炭素原料として、バイオマス原料が注目されている。例えば、サトウキビの搾りかすであるサトウキビバガスは、製糖工業副産物として沖縄県で年間20万トン近く生産される大量かつ容易に入手可能なセルロース系バイオマス資源であり、そのほとんどが製糖工場の燃料として使用されているが、このサトウキビバガスを出発原料としてカーボンナノチューブを製造する方法については、報告されていない。   On the other hand, biomass raw materials have attracted attention as plant-derived carbon raw materials that are carbon neutral from the environmental aspect. For example, sugarcane bagasse, a sugarcane pomace, is a large and readily available cellulosic biomass resource produced in Okinawa Prefecture annually in Okinawa Prefecture as a by-product of sugar industry. Most of it is used as fuel for sugar mills. However, a method for producing carbon nanotubes using this sugarcane bagasse as a starting material has not been reported.

本発明は、上記実情に鑑み、サトウキビバガスを出発原料として、簡易かつ安価で工業的に製造されたカーボンナノチューブを含む炭素材料及びその製造方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a carbon material containing carbon nanotubes that are industrially produced simply and inexpensively from sugarcane bagasse as a starting material, and a method for producing the same.

〔構成〕
上記課題を解決するための本発明のカーボンナノチューブを含む炭素材料の特徴構成は、
二酸化ケイ素を含むサトウキビを圧搾処理して得られるサトウキビバガスが炭化炉にて不活性ガス雰囲気下で炭化され、得られた炭化物が不活性ガス雰囲気下で1100℃以上2200℃以下の温度で黒鉛化されることにより製造され、炭素を主成分とする筒状の側壁部と、前記側壁部の内部空間において前記側壁部の筒軸方向に順次積層する状態で結晶化した炭化ケイ素を主成分とする積層部とを備えて形成されたカーボンナノチューブを含む炭素材料である点にある。
〔Constitution〕
The characteristic configuration of the carbon material containing the carbon nanotube of the present invention for solving the above problems is as follows:
Sugar cane bagasse obtained by squeezing sugar cane containing silicon dioxide is carbonized in an inert gas atmosphere in a carbonization furnace, and the obtained carbide is graphitized at a temperature of 1100 ° C. to 2200 ° C. in an inert gas atmosphere. The main component is a cylindrical side wall portion made of carbon and crystallized in a state where the side wall portion is sequentially laminated in the cylindrical axis direction in the inner space of the side wall portion. And a carbon material including carbon nanotubes formed with a laminated portion.

〔作用効果〕
本発明者らは、植物由来の木質系原料であるサトウキビのサトウキビバガスは、セルロース系繊維状組織構造を形成し、細胞壁そのものが繊維状組織で形成されているとともに、細胞内部は液体で満たされているため、骨格を保持したまま炭素化ができれば、カーボンナノチューブが生成する可能性に着目して、今回、本発明を新たに創作したものである。
[Function and effect]
The present inventors have found that sugarcane bagasse of sugarcane, which is a plant-derived woody material, forms a cellulosic fibrous tissue structure, the cell wall itself is formed of a fibrous tissue, and the inside of the cell is filled with a liquid. Therefore, the present invention has been newly created by paying attention to the possibility of producing carbon nanotubes if carbonization can be performed while maintaining the skeleton.

具体的には、サトウキビバガスが、炭化炉にて不活性ガス雰囲気下で炭化されると、サトウキビバガスに含まれる有機物は炭化し、ヘテロ原子の少ない炭化物に変換される。この炭化物が、不活性ガス雰囲気下で、1100℃以上2200℃以下の温度で黒鉛化されると、黒鉛化された黒鉛構造中には、非晶質炭素組織以外に板状粒子、繊維状粒子及び棒状粒子が生成され、この棒状粒子は、直径が2〜200nm程度、長さが0.01〜10μm程度のカーボンナノチューブであることが、本発明者により確認された。特に、当該カーボンナノチューブには、サトウキビの成長過程において当該サトウキビに取込まれていた土壌中のSi成分(二酸化ケイ素)が、炭化ケイ素(六方晶)の結晶形態で内包されていることが確認された。   Specifically, when sugarcane bagasse is carbonized in an inert gas atmosphere in a carbonization furnace, the organic matter contained in the sugarcane bagasse is carbonized and converted to a carbide containing few heteroatoms. When this carbide is graphitized at a temperature of 1100 ° C. or higher and 2200 ° C. or lower in an inert gas atmosphere, in the graphitized graphite structure, in addition to the amorphous carbon structure, plate-like particles, fibrous particles The present inventors confirmed that the rod-like particles are carbon nanotubes having a diameter of about 2 to 200 nm and a length of about 0.01 to 10 μm. In particular, it was confirmed that the carbon nanotubes contained the Si component (silicon dioxide) in the soil, which had been incorporated into the sugarcane during the sugarcane growth process, in the form of silicon carbide (hexagonal crystal). It was.

説明を加えると、カーボンナノチューブの側壁部には、植物の節に似た構造が存在し、この構造は一定の間隔を保って周期的に存在することから、サトウキビの繊維状組織がもともと持っていた骨格構造を基礎にして、当該カーボンナノチューブが生成されているものと考えられる。このカーボンナノチューブの側壁部は、炭素を主成分とし少量のケイ素を含むグラファイト積層構造から構成されていることが確認された。また、カーボンナノチューブにおける側壁部の内部空間は、側壁部の筒軸方向に順次積層する状態(らせん状或いは平面状(直線状)に積層する状態)で結晶化した炭化ケイ素を主成分とし、少量のアルミニウムを含む積層部が形成されていることが確認された。この積層部を構成する炭化ケイ素は、積層数の異なる複数の多形(2H,4H,6H等)を含んでいる。   To explain, there is a structure similar to a plant node on the side wall of the carbon nanotube, and this structure periodically exists at regular intervals, so the sugarcane fibrous structure originally has. It is considered that the carbon nanotube is generated based on the skeleton structure. The side wall portion of the carbon nanotube was confirmed to be composed of a graphite laminated structure containing carbon as a main component and a small amount of silicon. In addition, the internal space of the side wall portion of the carbon nanotube is mainly composed of silicon carbide crystallized in a state where the side wall portion is sequentially laminated in the direction of the cylinder axis (a state where the side walls are laminated in a spiral shape or a planar shape (straight shape)). It was confirmed that the laminated part containing aluminum was formed. The silicon carbide constituting the laminated portion includes a plurality of polymorphs (2H, 4H, 6H, etc.) having different numbers of laminated layers.

また、炭化物の黒鉛化温度が1100℃未満では、サトウキビバガス中のSi成分(二酸化ケイ素)が炭化ケイ素に変化せず、また、2200℃を超えると、カーボンナノチューブ中に生成した炭化ケイ素が分解してしまい、炭素を主成分とする筒状の側壁部と、側壁部の内部空間において側壁部の筒軸方向に順次積層する状態で結晶化した炭化ケイ素を主成分とする積層部とを備えて形成されたカーボンナノチューブを良好に形成することができないことが、確認された。   Further, when the graphitization temperature of the carbide is less than 1100 ° C., the Si component (silicon dioxide) in the sugarcane bagasse does not change to silicon carbide, and when it exceeds 2200 ° C., the silicon carbide generated in the carbon nanotubes decomposes. A cylindrical side wall part mainly composed of carbon, and a laminated part mainly composed of silicon carbide crystallized in a state of being sequentially laminated in the cylindrical axis direction of the side wall part in the internal space of the side wall part. It was confirmed that the formed carbon nanotubes could not be formed satisfactorily.

このような側壁部の内部空間に、筒軸に沿って複数の炭化ケイ素の結晶層が高密度に積層された積層部が形成されたカーボンナノチューブは、上記炭化物や非晶質炭素組織と構造的に異なり従来の炭素材料とは異なる物性を発揮し得るものとして期待でき、例えば、電圧変換器など半導体材料用途への応用が期待される。   A carbon nanotube in which a laminated portion in which a plurality of crystal layers of silicon carbide are densely laminated along the cylinder axis is formed in the internal space of such a side wall portion is structurally related to the above-described carbide and amorphous carbon structure. Unlike other conventional carbon materials, it can be expected to exhibit physical properties, and for example, application to semiconductor materials such as voltage converters is expected.

よって、二酸化ケイ素を含むサトウキビバガスを出発原料として、これを適切に炭化及び黒鉛化することにより、簡易かつ安価で工業的に製造され、炭化ケイ素を内部空間に内包するカーボンナノチューブを含む炭素材料を得ることができた。   Therefore, a carbon material containing carbon nanotubes, which is produced simply and inexpensively and industrially by appropriately carbonizing and graphitizing sugar cane bagasse containing silicon dioxide, and containing silicon carbide in the internal space. I was able to get it.

〔構成〕
また、前記炭化物を加熱して黒鉛化する温度範囲が、1800℃以上2000℃以下であることが好ましい。
〔Constitution〕
Moreover, it is preferable that the temperature range which heats the said carbide | carbonized_material and graphitizes is 1800 degreeC or more and 2000 degrees C or less.

〔作用効果〕
炭化物を加熱して黒鉛化する温度範囲が1800℃以上2000℃以下であれば、黒鉛化された炭素材料中に、カーボンナノチューブを破壊させない状態で良好に生成させることができるとともに、カーボンナノチューブの内部空間に炭化ケイ素が結晶化して積層した積層部を良好に形成することができる。また、当該温度範囲内で黒鉛化の温度を適切に調整することにより、カーボンナノチューブの内部空間に結晶化する炭化ケイ素の結晶量を適切に調整することができる。
[Function and effect]
If the temperature range in which the carbide is graphitized by heating is 1800 ° C. or more and 2000 ° C. or less, the carbonized material can be favorably generated without destroying the carbon nanotube, and the inside of the carbon nanotube A laminated part in which silicon carbide is crystallized and laminated in the space can be formed favorably. Further, by appropriately adjusting the graphitization temperature within the temperature range, the amount of silicon carbide crystallized in the internal space of the carbon nanotube can be appropriately adjusted.

〔構成〕
さらに、前記サトウキビバガスが、前記サトウキビの幹部分において、当該幹部分から芯部分及び実部分を除く部分で構成されることが好ましい。
〔Constitution〕
Furthermore, it is preferable that the sugarcane bagasse is composed of a portion excluding the core portion and the real portion from the trunk portion in the sugarcane trunk portion.

〔作用効果〕
サトウキビの幹部分において芯部分及び実部分を除く部分をサトウキビバガスとして炭化の対象とすることにより、当該部分の繊維状組織断面の構造に依存した状態で、その繊維状組織を生かして、炭化物を得ることができる。
[Function and effect]
By making the part of the sugarcane trunk part excluding the core part and the real part as the subject of carbonization as sugarcane bagasse, depending on the structure of the cross section of the fibrous structure of the part, taking advantage of the fibrous structure, the carbide Obtainable.

〔構成〕
上記課題を解決するための本発明のカーボンナノチューブを含む炭素材料の製造方法の特徴構成は、
二酸化ケイ素を含むサトウキビを圧搾処理して得られるサトウキビバガスを、炭化炉にて不活性ガス雰囲気下で炭化する炭化工程の実行後、前記炭化工程により得られた炭化物を不活性ガス雰囲気下で1100℃以上2200℃以下の温度で黒鉛化する黒鉛化工程を実行して、炭素を主成分とする筒状の側壁部と、前記側壁部の内部空間において前記側壁部の筒軸方向に順次積層する状態で結晶化した炭化ケイ素を主成分とする積層部とを備えて形成されたカーボンナノチューブを含む炭素材料を製造する製造方法である点にある。
〔Constitution〕
In order to solve the above problems, the characteristic configuration of the method for producing a carbon material containing the carbon nanotube of the present invention is as follows:
After performing the carbonization step of carbonizing sugarcane bagasse obtained by squeezing sugarcane containing silicon dioxide in an inert gas atmosphere in a carbonization furnace, the carbide obtained by the carbonization step is 1100 in an inert gas atmosphere. A graphitization step of graphitizing at a temperature of not less than 2 ° C. and not more than 2200 ° C. is performed, and a cylindrical side wall portion mainly composed of carbon and a cylindrical axis of the side wall portion are sequentially stacked in an inner space of the side wall It is a manufacturing method which manufactures the carbon material containing the carbon nanotube formed by providing the laminated part which has the silicon carbide as a main component crystallized in the state.

〔作用効果〕
サトウキビバガスを、炭化炉にて不活性ガス雰囲気下で炭化する炭化工程を実行すると、サトウキビバガスに含まれる有機物は炭化し、ヘテロ原子の少ない炭化物に変換される。この炭化物を、不活性ガス雰囲気下で、1100℃以上2200℃以下の温度で黒鉛化する黒鉛化工程を実行すると、黒鉛化された黒鉛構造中には、非晶質炭素組織以外に板状粒子、繊維状粒子及び棒状粒子が生成され、この棒状粒子は、直径が2〜200nm程度、長さが0.01〜10μm程度のカーボンナノチューブであることが、本発明者により確認された。特に、当該カーボンナノチューブには、サトウキビの成長過程において当該サトウキビに取込まれていた土壌中のSi成分(二酸化ケイ素)が、炭化ケイ素(六方晶)の結晶形態で内包されていることが確認された。
[Function and effect]
When a carbonization step of carbonizing sugarcane bagasse in an inert gas atmosphere in a carbonization furnace is performed, the organic matter contained in the sugarcane bagasse is carbonized and converted to a carbide with fewer heteroatoms. When a graphitization step of graphitizing the carbide in an inert gas atmosphere at a temperature of 1100 ° C. or higher and 2200 ° C. or lower is performed, the graphitized graphite structure includes plate-like particles in addition to the amorphous carbon structure. The present inventors have confirmed that fibrous particles and rod-like particles are produced, and these rod-like particles are carbon nanotubes having a diameter of about 2 to 200 nm and a length of about 0.01 to 10 μm. In particular, it was confirmed that the carbon nanotubes contained the Si component (silicon dioxide) in the soil, which had been incorporated into the sugarcane during the sugarcane growth process, in the form of silicon carbide (hexagonal crystal). It was.

説明を加えると、カーボンナノチューブの側壁部には、植物の節に似た構造が存在し、この構造は一定の間隔を保って周期的に存在することから、サトウキビの繊維状組織がもともと持っていた骨格構造を基礎にして、当該カーボンナノチューブが生成されているものと考えられる。このカーボンナノチューブの側壁部は、炭素を主成分とし少量のケイ素を含むグラファイト積層構造から構成されていることが確認された。また、カーボンナノチューブにおける側壁部の内部空間は、側壁部の筒軸方向に順次積層する状態(らせん状或いは平面状(直線状)に積層する状態)で結晶化した炭化ケイ素を主成分とし、少量のアルミニウムを含む積層部が形成されていることが確認された。この積層部を構成する炭化ケイ素は、積層数の異なる複数の多形(2H,4H,6H等)を含んでいる。   To explain, there is a structure similar to a plant node on the side wall of the carbon nanotube, and this structure periodically exists at regular intervals, so the sugarcane fibrous structure originally has. It is considered that the carbon nanotube is generated based on the skeleton structure. The side wall portion of the carbon nanotube was confirmed to be composed of a graphite laminated structure containing carbon as a main component and a small amount of silicon. In addition, the internal space of the side wall portion of the carbon nanotube is mainly composed of silicon carbide crystallized in a state where the side wall portion is sequentially laminated in the direction of the cylinder axis (a state where the side walls are laminated in a spiral shape or a planar shape (straight shape)). It was confirmed that the laminated part containing aluminum was formed. The silicon carbide constituting the laminated portion includes a plurality of polymorphs (2H, 4H, 6H, etc.) having different numbers of laminated layers.

また、黒鉛化工程における炭化物の黒鉛化温度が1100℃未満では、サトウキビバガス中のSi成分(二酸化ケイ素)が炭化ケイ素に変化せず、また、2200℃を超えると、カーボンナノチューブ中に生成した炭化ケイ素が分解してしまい、炭素を主成分とする筒状の側壁部と、側壁部の内部空間において側壁部の筒軸方向に順次積層する状態で結晶化した炭化ケイ素を主成分とする積層部とを備えて形成されたカーボンナノチューブを良好に形成することができないことが、確認された。   Further, when the graphitization temperature of the carbide in the graphitization step is less than 1100 ° C., the Si component (silicon dioxide) in the sugarcane bagasse does not change to silicon carbide, and when it exceeds 2200 ° C., carbonization generated in the carbon nanotubes A silicon-decomposed cylindrical side wall part and a laminated part mainly composed of silicon carbide crystallized in a state of being laminated in the inner space of the side wall part in the direction of the cylindrical axis of the side wall part. It was confirmed that the carbon nanotubes formed with the above cannot be formed satisfactorily.

このような側壁部の内部空間に、筒軸に沿って複数の炭化ケイ素の結晶層が高密度に積層された積層部が形成されたカーボンナノチューブは、上記炭化物や非晶質炭素組織と構造的に異なり従来の炭素材料とは異なる物性を発揮し得るものとして期待でき、例えば、電圧変換器など半導体材料用途への応用が期待される。   A carbon nanotube in which a laminated portion in which a plurality of crystal layers of silicon carbide are densely laminated along the cylinder axis is formed in the internal space of such a side wall portion is structurally related to the above-described carbide and amorphous carbon structure. Unlike other conventional carbon materials, it can be expected to exhibit physical properties, and for example, application to semiconductor materials such as voltage converters is expected.

よって、二酸化ケイ素を含むサトウキビバガスを出発原料として、これを適切に炭化及び黒鉛化することにより、簡易かつ安価で工業的に、炭化ケイ素を内部空間に内包するカーボンナノチューブを含む炭素材料を製造することができた。   Therefore, by using carbon dioxide bagasse containing silicon dioxide as a starting material, and carbonizing and graphitizing it appropriately, a carbon material containing carbon nanotubes containing silicon carbide in the interior space is manufactured simply, inexpensively and industrially. I was able to.

1800℃でサトウキビバガス(炭化物)を黒鉛化した炭素材料のTEM写真TEM photograph of carbon material graphitized with sugarcane bagasse (carbide) at 1800 ° C 図1の要部を示す拡大TEM写真Enlarged TEM picture showing the main part of FIG. (a)図1の要部を示す拡大TEM写真、(b)STEM‐EDXによる測定点Aの組成分析グラフ図、(c)STEM‐EDXによる測定点Bの組成分析グラフ図(A) Enlarged TEM photograph showing the main part of FIG. 1, (b) Composition analysis graph of measurement point A by STEM-EDX, (c) Composition analysis graph of measurement point B by STEM-EDX 図3の測定点Bの制限視野電子線回折結果を示す図The figure which shows the restriction | limiting visual field electron diffraction result of the measurement point B of FIG. 2000℃でサトウキビバガス(炭化物)を黒鉛化した炭素材料のTEM写真TEM photograph of carbon material graphitized with sugarcane bagasse (carbide) at 2000 ° C 図5の要部を示す拡大TEM写真Enlarged TEM picture showing the main part of FIG. 図5の要部を示す拡大TEM写真Enlarged TEM picture showing the main part of FIG. 図5の要部を示す拡大TEM写真Enlarged TEM picture showing the main part of FIG. (a)図5の要部を示す拡大TEM写真、(b)STEM‐EDXによる測定点Cの組成分析グラフ図(A) Enlarged TEM photograph showing the main part of FIG. 5, (b) Composition analysis graph of measurement point C by STEM-EDX 図9の測定点Cの制限視野電子線回折結果を示す図The figure which shows the restriction | limiting visual field electron diffraction result of the measurement point C of FIG. 1200℃でサトウキビバガス(炭化物)を黒鉛化した炭素材料のTEM写真TEM photograph of carbon material graphitized with sugarcane bagasse (carbide) at 1200 ° C 2400℃でサトウキビバガス(炭化物)を黒鉛化した炭素材料のTEM写真TEM photograph of carbon material graphitized with sugarcane bagasse (carbide) at 2400 ° C 図12の炭素材料の制限視野電子線回折結果を示す図The figure which shows the restricted-field electron diffraction result of the carbon material of FIG.

以下に、本発明のカーボンナノチューブを含む炭素材料及びその製造方法を、図面に基づいて説明するが、まず、出発原料となるサトウキビについて説明する。
尚、以下に好適な実施例を記すが、これら実施例はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。
Below, the carbon material containing the carbon nanotube of the present invention and the method for producing the same will be described with reference to the drawings. First, sugarcane as a starting material will be described.
Preferred examples are described below, but these examples are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

サトウキビは、その幹部分を横断面方向の構造を、「芯部分」、「実部分」、「皮部分」に分けることができる。ここで、皮部分は、サトウキビの断面で最も外表面側に位置する部位であり、芯部分はサトウキビの断面で中心側に位置する部位である。そして、実部分は、これら皮部分と芯部分との間に位置する部位となる。通常、サトウキビは、この実部分を圧搾することで精糖原料を得る。   The sugarcane can be divided into a “core part”, “real part”, and “skin part” in the cross-sectional structure of the trunk part. Here, the skin part is the part located on the outermost surface side in the cross section of the sugar cane, and the core part is the part located on the center side in the cross section of the sugar cane. The real part is a part located between the skin part and the core part. Usually, sugarcane obtains a refined sugar raw material by squeezing this real part.

これら各部のサトウキビ全体に占める割合(サトウキビの根元近傍及び先端近傍を除く中間の幹部分における、サトウキビ全質量に対する各部の質量割合で、質量パーセントとしたもの)は、皮部分が約21質量%程度(30質量%以下)であり、実部分が約56%質量程度(40質量%〜65質量%)であり、芯部分が約23質量%程度(30質量%以下)である。   The ratio of these parts to the whole sugarcane (mass percentage of the total part of the sugarcane in the middle trunk part excluding the vicinity of the root of the sugarcane and the vicinity of the tip, with the mass percentage), the skin part is about 21% by mass The actual part is about 56% by mass (40% to 65% by mass), and the core part is about 23% by mass (30% by mass or less).

本発明では、このようなサトウキビの皮部分(幹部分において、芯部分及び実部分を除いた部分)からなるサトウキビバガス(絞りかす)を用いて、炭化工程及び黒鉛化工程を実行する。また、皮部分以外のサトウキビのサトウキビバガスを用いて、炭化工程及び黒鉛化工程を実行することも可能である。なお、サトウキビバガスには、不溶性、難消化性のセルロースやリグニンが多く含まれている。   In the present invention, the carbonization step and the graphitization step are carried out using sugarcane bagasse (squeezed residue) composed of such a sugarcane skin portion (portion excluding the core portion and the real portion in the trunk portion). Moreover, it is also possible to perform a carbonization process and a graphitization process using sugarcane bagasse of sugarcane other than a skin part. In addition, sugarcane bagasse is rich in insoluble and indigestible cellulose and lignin.

〔皮分離工程〕
まず、サトウキビから皮部分を分離する皮分離工程を実行する。
例えば、サトウキビに関して、その皮部分のみを皮剥きの要領で分離することで、所謂、芯部分及び実部分が分離された皮部分を得ることができるが、この場合、最外表面側に位置する皮部分のみを原料とするため、サトウキビ全体の質量に対して、15〜25質量%程度(30質量%以下)となる皮部分のみが分離される。分離に際しては、一対のローラ間に、所定長さに切断されたサトウキビの幹部分を挿入・落下させて皮剥ぎを行う工程を、幹部分の移動方向に複数段備えるとともに、落下物を、その大きさ、重量に従って分類するケーンセパレーターを使用することで、所望の部位の分離を行うことができる。なお、分離された皮部分からなるサトウキビバガスを、100℃で予め乾燥させておき、次に実行される炭化工程に備える。
[Skin separation process]
First, a skin separation step for separating a skin portion from sugarcane is performed.
For example, with regard to sugarcane, it is possible to obtain a skin part in which the core part and the real part are separated by separating only the skin part in the manner of peeling, but in this case, it is located on the outermost surface side. Since only the skin part is used as a raw material, only the skin part that is about 15 to 25% by mass (30% by mass or less) is separated with respect to the mass of the entire sugarcane. For separation, a step of inserting and dropping a sugarcane trunk portion cut into a predetermined length between a pair of rollers and performing a peeling process in the moving direction of the trunk portion is provided. By using a cane separator that classifies according to size and weight, desired sites can be separated. In addition, the sugarcane bagasse which consists of the isolate | separated skin part is previously dried at 100 degreeC, and it prepares for the carbonization process performed next.

〔炭化工程〕
乾燥したサトウキビバガスを、炭化炉において所定の乾留状態で炭化処理を施す。この炭化処理における、皮部分を加熱し炭化する加熱温度は、700℃以上1000℃以下であり、且つ、その加熱時間は、5分以上120分以下とする。常温から加熱温度までの昇温時間は、60分程度とし、雰囲気として、無酸素条件である不活性ガス雰囲気を使用する。このような処理を経て、サトウキビバガスの炭化物を得ることができる。なお、不活性ガスとしては、例えば、窒素ガス、アルゴンガス、ヘリウムガス等を例示することができる。
[Carbonization process]
The dried sugarcane bagasse is carbonized in a predetermined carbonization state in a carbonization furnace. In this carbonization treatment, the heating temperature for heating and carbonizing the skin portion is 700 ° C. or more and 1000 ° C. or less, and the heating time is 5 minutes or more and 120 minutes or less. The temperature rising time from room temperature to the heating temperature is about 60 minutes, and an inert gas atmosphere that is an oxygen-free condition is used as the atmosphere. Through such treatment, sugarcane bagasse carbide can be obtained. In addition, as an inert gas, nitrogen gas, argon gas, helium gas etc. can be illustrated, for example.

〔黒鉛化工程〕
炭化されたサトウキビバガスの炭化物を、炭化炉において所定の乾留状態で黒鉛化処理を施す。この黒鉛化工程における、当該炭化物を加熱する温度(目標温度)は、1100℃以上2200℃以下であり、且つ、その加熱時間は、30分以上3時間程度とする。雰囲気温度を、2000℃までは500℃/H、2000℃〜2500℃では200℃/H、2500℃以上では50℃/Hで昇温することができる炉を用いる。なお、本発明者らは、黒鉛化工程における昇温速度及び目標温度における保持時間は、得られる炭素材料の構造にはあまり影響を与えないことを実験的に知得している。また、なお、不活性ガスとしては、例えば、窒素ガス、アルゴンガス、ヘリウムガス等を例示することができる。
[Graphitization process]
The carbonized sugarcane bagasse carbide is graphitized in a predetermined carbonization state in a carbonization furnace. In this graphitization step, the temperature (target temperature) for heating the carbide is 1100 ° C. or more and 2200 ° C. or less, and the heating time is about 30 minutes or more and about 3 hours. A furnace that can raise the ambient temperature to 500 ° C./H up to 2000 ° C., 200 ° C./H at 2000 ° C. to 2500 ° C., and 50 ° C./H at 2500 ° C. or higher is used. The present inventors have experimentally known that the heating rate in the graphitization step and the holding time at the target temperature do not significantly affect the structure of the obtained carbon material. In addition, as an inert gas, nitrogen gas, argon gas, helium gas etc. can be illustrated, for example.

これにより、直径が2〜200nm程度、長さが0.01〜10μm程度のカーボンナノチューブを含む炭素材料を得ることができ、当該カーボンナノチューブの側壁部が、炭素を主成分とし少量のケイ素を含むグラファイト積層構造から構成されるとともに、当該側壁部の内部空間に、側壁部の筒軸方向に順次積層する状態(らせん状或いは平面状(直線状)に積層する状態)で結晶化した炭化ケイ素を主成分とし、少量のアルミニウムを含む積層部を形成できることがわかった。   Thereby, a carbon material containing a carbon nanotube having a diameter of about 2 to 200 nm and a length of about 0.01 to 10 μm can be obtained, and the side wall of the carbon nanotube contains carbon as a main component and a small amount of silicon. A silicon carbide crystallized in a state of being laminated in the inner space of the side wall portion in the direction of the cylinder axis of the side wall portion (in a state of being laminated in a spiral shape or a planar shape (straight shape)). It was found that a laminated portion containing a small amount of aluminum as a main component can be formed.

以下に、本発明の製造方法のさらに詳細な実施例を示す。
〔実施例〕
100℃で予め乾燥したサトウキビバガス(皮部分)を、炭化炉にてアルゴン雰囲気下900℃で1時間炭化した後、アルゴン雰囲気下種々の温度(1100℃〜2200℃)で1時間黒鉛化を行った。
Below, the more detailed Example of the manufacturing method of this invention is shown.
〔Example〕
Sugar cane bagasse (skin part) previously dried at 100 ° C. is carbonized in a carbonization furnace at 900 ° C. for 1 hour in an argon atmosphere, and then graphitized at various temperatures (1100 ° C. to 2200 ° C.) for 1 hour in an argon atmosphere. It was.

得られた黒鉛化バガス(炭素材料)を、X線回折測定、TEM(Transmission Electron Microscope)観察により構造解析を行い、STEM‐EDX(Scanning Transmission Electron Microscope‐Energy Dispersive X‐ray Analysis)及び制限視野電子線解析観察により組成解析を行った。これら解析には、(株)リガク製ULTIMA IV、日本電子製電界放出型透過電子顕微鏡JEM‐2010及びJEM‐2100、日本電子製エネルギー分散型X線分析装置JED‐2300Tを用いた。
なお、X線回折測定による構造解析の結果は図示しないが、黒鉛化工程の温度の上昇とともに002回折線及び10回折線の強度が強くなり、また、10回折線の非対称性が明瞭になることから、黒鉛化バガス(炭素材料)の積層構造は、主に乱層積層であると考えられる。
The obtained graphitized bagasse (carbon material) was subjected to structural analysis by X-ray diffraction measurement and TEM (Transmission Electron Microscope) observation, and STEM-EDX (Scanning Transmission Electron Microscope-Energy Dispersion Electron Dispersive Electron Dispersion) Composition analysis was performed by line analysis observation. For these analyses, Rigaku ULTIMA IV, JEOL field emission transmission electron microscopes JEM-2010 and JEM-2100, and JEOL energy dispersive X-ray analyzer JED-2300T were used.
Although the results of the structural analysis by X-ray diffraction measurement are not shown, the intensity of the 002 and 10 diffraction lines becomes stronger as the temperature of the graphitization process increases, and the asymmetry of the 10 diffraction lines becomes clear. Therefore, it is considered that the laminated structure of graphitized bagasse (carbon material) is mainly a turbulent layer lamination.

図示しないが、まず、900℃でサトウキビバガスをアルゴン雰囲気下で炭化した炭化物について、説明する。
この900℃で炭化した炭化物は、非晶質構造組織と薄片状組織が混在している。薄片状組織部分を拡大して調べると、薄片が数十層積層した薄層グラファイト構造であることがわかる。一般に、石油系や石炭系の炭素前駆体を900℃で熱処理を行うと、2〜3nm程度のジグザグ網面が数層積層した構造体が観察されるが、上記のような薄層グラファイト構造は観察されず、サトウキビバガス特有の炭素化挙動である。さらに、非常に含有量は少ないが、サトウキビバガスの繊維構造由来と思われるミルド状カーボンナノチューブの存在も確認された。
Although not shown, first, a carbide obtained by carbonizing sugarcane bagasse at 900 ° C. in an argon atmosphere will be described.
The carbide carbonized at 900 ° C. has a mixed amorphous structure and flaky structure. When the flaky structure portion is enlarged and examined, it can be seen that the flaky structure has a thin graphite structure in which several tens of layers are laminated. In general, when a petroleum-based or coal-based carbon precursor is heat-treated at 900 ° C., a structure in which several zigzag network surfaces of about 2 to 3 nm are laminated is observed. It is not observed and is a carbonization behavior peculiar to sugarcane bagasse. Furthermore, the presence of milled carbon nanotubes, which are very low in content, but are believed to be derived from the sugarcane bagasse fiber structure, was also confirmed.

図1〜図3に、1800℃でサトウキビバガス(炭化物)を黒鉛化した炭素材料のTEM写真を示す。この1800℃で加熱処理(黒鉛化)を施した黒鉛化バガスでは、非晶質炭素組織以外に、板状粒子、繊維状粒子及び棒状粒子の微小要素が観察された。図示しないが、板状粒子は数nm〜50nm程度の粒子径分布を持ち、明視野像において弱い位相コントラストを呈したことから、その厚さは数原子〜十原子層程度であると推察される。繊維状粒子は直径が5nm程度の曲線状あるいは屈曲した直線状であり、凝集体として観察されるものが大半であった。特に、図1に示すように、棒状粒子は直径約50nm、長さ約2μmの直線状で、両端部が閉じた管状構造(筒状構造)を有していた。図2及び図3(a)に示すように、この棒状粒子の内部空間にはらせん状(平面状或いは直線状)のコントラストが観察され、後述する制限視野電子線回折結果(図4参照)より結晶性物質が存在することが判明した。棒状粒子の側壁部(図3(a)の測定点A)及び棒状粒子の内部空間(積層部)における一端部(図3(a)の測定点B)において、STEM‐EDXによる組成分析を実施した結果を図3(b)及び(c)に示す。図3(b)が測定点Aの組成分析結果であり、図3(c)が測定点Bの組成分析結果である。この結果により、棒状粒子の側壁部は少量のケイ素を含む炭素(主として炭素)によって構成されており(図3(b)の実線参照)、内部空間(積層部)は炭素、ケイ素及び少量のアルミニウムから構成されること(図3(c)の実線参照)が判明した。内部空間における炭素とケイ素の比(C/Si比)は1.4であった。サトウキビバガスには、土壌からのSi成分(SiO2)などが取り込まれているため、組成分析の結果に、SI成分が含まれているものと考えられる。なお、図3(b)及び(c)において、破線で示す線(Cu等)は組成分析に用いられる資料ホルダであるため、カーボンナノチューブに由来する組成物を示すものではない。また、図2に示すように、側壁部は厚さ約3〜5nmの湾曲したグラファイト積層構造(図2の上下方向に延びる複数の層)から構成されていた。図4に制限視野電子線回折結果を示す。グラファイト積層構造に由来する002及び004回折斑点(図4では、それぞれ単にCarbonと記載)が観察され、その平均層間隔は0.351nmであった。また、六方晶炭化ケイ素の構造に由来する回折斑点(図4では単に2H‐SiCと記載)及び強度の高い直線状の回折(ストリーク)も観察された。ストリークは、連続的に配列した複数の回折斑点により構成されていることに加えて、明視野像に見られた積層欠陥のトレースに垂直であったことから、高密度に配列した積層欠陥を含む炭化ケイ素(SiC)を内部空間に内包したカーボンナノチューブ(CNT)であると結論できる。ここで、炭化ケイ素(SiC)は積層数の異なる複数の多形(2H、4H、6H等)を含み、積層欠陥がカーボンナノチューブの長軸(筒軸)に対してほぼ垂直に存在することから、主として炭化ケイ素(SiC)からなる積層部(図2の左右方向に延びる複数の層)の成長はカーボンナノチューブの長軸に沿って進行したと推察される。 1 to 3 show TEM photographs of carbon materials graphitized from sugarcane bagasse (carbides) at 1800 ° C. In the graphitized bagasse subjected to heat treatment (graphitization) at 1800 ° C., microelements of plate-like particles, fibrous particles, and rod-like particles were observed in addition to the amorphous carbon structure. Although not shown, the plate-like particles have a particle size distribution of several nm to 50 nm and exhibit a weak phase contrast in the bright field image, so that the thickness is estimated to be about several atoms to ten atomic layers. . The fibrous particles have a curved shape with a diameter of about 5 nm or a bent straight shape, and most of them are observed as aggregates. In particular, as shown in FIG. 1, the rod-like particles had a linear structure with a diameter of about 50 nm and a length of about 2 μm, and had a tubular structure (tubular structure) with both ends closed. As shown in FIG. 2 and FIG. 3 (a), a spiral (planar or linear) contrast is observed in the internal space of the rod-like particles, and from the limited-field electron diffraction results (see FIG. 4) described later. It was found that crystalline material was present. Composition analysis by STEM-EDX is performed on the side wall of the rod-shaped particles (measurement point A in FIG. 3A) and one end portion (measurement point B in FIG. 3A) in the internal space (lamination portion) of the rod-shaped particles. The results are shown in FIGS. 3 (b) and (c). FIG. 3B shows the composition analysis result at the measurement point A, and FIG. 3C shows the composition analysis result at the measurement point B. As a result, the side wall portion of the rod-like particle is composed of carbon (mainly carbon) containing a small amount of silicon (see the solid line in FIG. 3B), and the internal space (laminated portion) is carbon, silicon, and a small amount of aluminum. (See the solid line in FIG. 3C). The ratio of carbon to silicon (C / Si ratio) in the internal space was 1.4. Since sugarcane bagasse contains Si component (SiO 2 ) and the like from soil, it is considered that the SI component is included in the result of the composition analysis. In FIGS. 3B and 3C, a broken line (Cu or the like) is a data holder used for composition analysis and does not indicate a composition derived from carbon nanotubes. Moreover, as shown in FIG. 2, the side wall part was comprised from the curved graphite laminated structure (a several layer extended in the up-down direction of FIG. 2) with a thickness of about 3-5 nm. FIG. 4 shows the result of limited-field electron diffraction. 002 and 004 diffraction spots (simply described as Carbon in FIG. 4) derived from the graphite laminated structure were observed, and the average layer interval was 0.351 nm. In addition, diffraction spots derived from the structure of hexagonal silicon carbide (simply described as 2H-SiC in FIG. 4) and high intensity linear diffraction (streaks) were also observed. In addition to being composed of a plurality of diffraction spots arranged in series, the streak was perpendicular to the stacking fault trace seen in the bright-field image, so it included stacking faults arranged at high density It can be concluded that it is a carbon nanotube (CNT) in which silicon carbide (SiC) is encapsulated in the internal space. Here, silicon carbide (SiC) includes a plurality of polymorphs (2H, 4H, 6H, etc.) having different numbers of layers, and stacking faults exist substantially perpendicular to the long axis (cylinder axis) of the carbon nanotube. It is presumed that the growth of the laminated portion (a plurality of layers extending in the left-right direction in FIG. 2) mainly composed of silicon carbide (SiC) progressed along the long axis of the carbon nanotube.

図5〜図9に、2000℃でサトウキビバガス(炭化物)を黒鉛化した炭素材料のTEM写真を示す。この2000℃で加熱処理(黒鉛化)を施した黒鉛化バガスでは、1800℃で加熱処理した黒鉛化バガスと同様に、非晶質炭素組織以外に、板状粒子、繊維状粒子及び棒状粒子の微小要素が観察された。特に、図5に示すように、直径約100nm、長さ6μm前後で、炭化ケイ素(SiC)の積層部を内部空間に内包する棒状粒子(カーボンナノチューブ)の存在が認められた。また、図5〜図7に示すように、炭化ケイ素はカーボンナノチューブの内部空間において、中央部付近にのみ生成し、筒軸に沿う方向における両端部には中空領域が存在した。ここで、炭化ケイ素の分解温度は約2200℃より高いが、内包されている炭化ケイ素が徐々に分解し、カーボンナノチューブの先端から気化して当該中空領域が形成されたものと考えられる。さらに、図8に示すように、カーボンナノチューブの側壁部の一部に、植物の節に似た構造が観察され、この構造は一定の間隔(100〜200nm)を保って周期的に存在することから、サトウキビバガスが持つ骨格構造を基礎にして生成したものと考えられる。カーボンナノチューブの側壁部の厚さはおよそ10〜15nm程度であった(図8参照)。カーボンナノチューブの内部空間の炭化ケイ素の積層部(図9(a)の測定点C)において、STEM‐EDXによる組成分析を実施した結果を図9(b)に示す。この結果により、カーボンナノチューブの内部空間(積層部)は炭素、ケイ素及び少量のアルミニウムから構成されること(図9(b)の実線参照)が判明した。内部空間における積層部の炭素とケイ素の比(C/Si比)は1.6であった。この比は、1800℃で加熱処理した黒鉛化バガスの場合に比べてやや高い値であるが、カーボンナノチューブの全体積に対する側壁部体積の割合が増大したことがその原因であると考えられる。なお、図9(b)において、破線で示す線(Cu等)は組成分析に用いられる資料ホルダであるため、カーボンナノチューブに由来する組成物を示すものではない。図10に制限視野電子線回折結果を示す。六方晶炭化ケイ素の構造に由来する回折斑点(図10では単に2H‐SiCと記載)及び強度の高い直線状の回折(ストリーク)が、1800℃で加熱処理した黒鉛化バガスに比べて、より明瞭であり、炭化ケイ素の結晶性が高くなっていることがわかる。   5 to 9 show TEM photographs of carbon materials obtained by graphitizing sugarcane bagasse (carbides) at 2000 ° C. In the graphitized bagasse subjected to the heat treatment (graphitization) at 2000 ° C., in the same manner as the graphitized bagasse heat-treated at 1800 ° C., in addition to the amorphous carbon structure, plate-like particles, fibrous particles, and rod-like particles Small elements were observed. In particular, as shown in FIG. 5, the presence of rod-like particles (carbon nanotubes) having a diameter of about 100 nm and a length of around 6 μm and containing a laminated portion of silicon carbide (SiC) in the internal space was observed. Moreover, as shown in FIGS. 5-7, the silicon carbide was produced | generated only near center part in the internal space of the carbon nanotube, and the hollow area | region existed in the both ends in the direction along a cylinder axis. Here, although the decomposition temperature of silicon carbide is higher than about 2200 ° C., it is considered that the embedded silicon carbide gradually decomposed and vaporized from the tip of the carbon nanotube to form the hollow region. Furthermore, as shown in FIG. 8, a structure resembling a plant node is observed on a part of the side wall of the carbon nanotube, and this structure periodically exists with a certain interval (100 to 200 nm). Therefore, it is thought that it was generated based on the skeletal structure of sugarcane bagasse. The thickness of the side wall of the carbon nanotube was about 10 to 15 nm (see FIG. 8). FIG. 9B shows the result of the composition analysis by STEM-EDX in the silicon carbide laminated portion (measurement point C in FIG. 9A) in the inner space of the carbon nanotube. From this result, it was found that the internal space (stacked portion) of the carbon nanotube is composed of carbon, silicon, and a small amount of aluminum (see the solid line in FIG. 9B). The ratio of carbon to silicon (C / Si ratio) in the laminated portion in the internal space was 1.6. This ratio is slightly higher than that in the case of graphitized bagasse heat-treated at 1800 ° C., but it is thought that this is because the ratio of the volume of the side wall portion to the total volume of the carbon nanotubes is increased. In FIG. 9B, a line (Cu or the like) indicated by a broken line is a data holder used for composition analysis, and does not indicate a composition derived from the carbon nanotube. FIG. 10 shows the result of limited-field electron diffraction. Diffraction spots derived from the structure of hexagonal silicon carbide (simply referred to as 2H-SiC in FIG. 10) and high intensity linear diffraction (streaks) are clearer than graphitized bagasse heated at 1800 ° C. It can be seen that the crystallinity of silicon carbide is high.

図11に、1200℃でサトウキビバガス(炭化物)を黒鉛化した炭素材料のTEM写真を示す。この1200℃で加熱処理された黒鉛化バガスでも、上記1800℃又は2000℃で加熱処理された黒鉛化バガスと同様に、直径約150nm、長さ2μm前後の棒状粒子であるカーボンナノチューブが、その内部空間に炭化ケイ素の結晶が積層した積層部を備えた状態で生成されていることが確認された。   FIG. 11 shows a TEM photograph of a carbon material obtained by graphitizing sugarcane bagasse (carbide) at 1200 ° C. In the graphitized bagasse heat-treated at 1200 ° C., similarly to the graphitized bagasse heat-treated at 1800 ° C. or 2000 ° C., carbon nanotubes, which are rod-like particles having a diameter of about 150 nm and a length of about 2 μm, It was confirmed that the silicon carbide crystal was produced in a state having a laminated portion in which silicon carbide crystals were laminated in the space.

〔比較例〕
100℃で予め乾燥したサトウキビバガス(皮部分)を、炭化炉にてアルゴン雰囲気下900℃で1時間炭化した後、アルゴン雰囲気下種々の温度(1100℃未満、2200℃超(例えば、2400℃))で1時間黒鉛化を行った。
[Comparative Example]
Sugar cane bagasse (skin part) previously dried at 100 ° C. is carbonized in a carbonization furnace at 900 ° C. for 1 hour in an argon atmosphere, and then at various temperatures (less than 1100 ° C., more than 2200 ° C. (for example, 2400 ° C.)) ) For 1 hour.

図12に、2400℃でサトウキビバガス(炭化物)を黒鉛化した炭素材料のTEM写真を示す。この2400℃で加熱処理(黒鉛化)を施した黒鉛化バガスでは、非晶質炭素組織以外に、板状粒子、繊維状粒子の微小要素が観察された。当該2400℃で加熱処理した黒鉛化バガスでは、1800℃及び2000℃の黒鉛化バガスと比較して、図示しないが、板状粒子(薄片状粒子)を構成する微小要素の薄片状グラファイトの結晶成長が更に進行し、その大きさが200nmに達する領域が観察された。この領域の結晶子内部には正六角形の原子配列を示す格子像が観察され、この粒子から得た制限視野電子線回折像は、図13に示すように、二次以上の高次の回折斑点を含んでおり、全ての回折斑点はグラファイト構造に基づいた指数付けが可能であった。また、上述のX線回折測定の結果より、サトウキビバガスの黒鉛化バガスは、基本的に乱層積層体であると考えられるが、以上の観察結果は、局所的にAB型積層構造体が生成していることを示している。さらに、図示しないが、繊維状粒子では、直径が10nmを超える粒子が目立つようになり、その内部には層状構造が観察された。特に、1800℃及び2000℃で加熱処理された黒鉛化バガスにおいて観察された内部空間に炭化ケイ素の結晶が内包されたカーボンナノチューブの存在は、2400℃で加熱処理された黒鉛化バガス中では認められなかったが、図12に示すように、炭化ケイ素が分解気化した残渣状の構造の崩れたナノチューブが観察された。すなわち、2400℃の加熱処理を行った黒鉛化バガスには、カーボンナノチューブは生成されておらず、特に、内部空間に炭化ケイ素の結晶が積層したカーボンナノチューブも生成されていないことが確認された。
なお、1100℃未満で加熱処理を行ったとしても、サトウキビバガス(炭化物)に含まれる二酸化ケイ素が炭化ケイ素に変化する温度未満であるので、カーボンナノチューブの内部空間に炭化ケイ素の結晶が積層することはないと考えられる。
FIG. 12 shows a TEM photograph of a carbon material obtained by graphitizing sugarcane bagasse (carbide) at 2400 ° C. In the graphitized bagasse subjected to heat treatment (graphitization) at 2400 ° C., microelements of plate-like particles and fibrous particles were observed in addition to the amorphous carbon structure. In the graphitized bagasse heat-treated at 2400 ° C., the crystal growth of flaky graphite as a microelement constituting plate-like particles (flaky particles) is not shown, compared with graphitized bagasse at 1800 ° C. and 2000 ° C. Further progressed, and a region in which the size reached 200 nm was observed. A lattice image showing a regular hexagonal atomic arrangement is observed inside the crystallites in this region, and a limited-field electron diffraction pattern obtained from this particle is a second-order or higher-order diffraction spot as shown in FIG. All diffraction spots could be indexed based on the graphite structure. From the results of the above X-ray diffraction measurement, it is considered that the sugarcane bagasse graphitized bagasse is basically a turbulent layered structure, but the above observation results show that an AB-type layered structure is locally generated. It shows that you are doing. Furthermore, although not shown, in the fibrous particles, particles having a diameter of more than 10 nm became conspicuous, and a layered structure was observed in the inside. In particular, the presence of carbon nanotubes with silicon carbide crystals encapsulated in the internal space observed in graphitized bagasse heat-treated at 1800 ° C. and 2000 ° C. was observed in graphitized bagasse heat-treated at 2400 ° C. However, as shown in FIG. 12, a nanotube having a broken structure in which the residue of silicon carbide was decomposed and vaporized was observed. That is, it was confirmed that no carbon nanotubes were produced in the graphitized bagasse subjected to the heat treatment at 2400 ° C., and in particular, no carbon nanotubes in which silicon carbide crystals were laminated in the internal space were produced.
In addition, even if it heat-processes below 1100 degreeC, since the silicon dioxide contained in sugarcane bagasse (carbide) is less than the temperature which changes to silicon carbide, the crystal | crystallization of a silicon carbide is laminated | stacked in the internal space of a carbon nanotube. It is not considered.

よって、出発原料をサトウキビバガスとして炭化を行い、この炭化物を温度範囲が1100℃以上2200℃以下で黒鉛化を行うことで、カーボンナノチューブを含む炭素材料を生成でき、特に、当該カーボンナノチューブの内部空間に炭化ケイ素の結晶を内包した炭素材料を生成することができ、さらに、好ましくは1800℃以上2000℃以下の温度範囲で黒鉛化工程を行うことが好ましいことがわかる。また、1800℃以上2000℃以下の温度範囲において、温度を調整することにより、カーボンナノチューブの内部空間に結晶化した状態で積層する炭化ケイ素の結晶量が調整可能なこともわかる。   Therefore, carbonization is performed using sugarcane bagasse as a starting material, and carbonization of the carbide is performed at a temperature range of 1100 ° C. or higher and 2200 ° C. or lower, so that a carbon material containing carbon nanotubes can be generated. It can be seen that a carbon material containing silicon carbide crystals can be produced, and that the graphitization step is preferably performed in a temperature range of 1800 ° C. or higher and 2000 ° C. or lower. It can also be seen that by adjusting the temperature in the temperature range of 1800 ° C. or higher and 2000 ° C. or lower, the crystal amount of silicon carbide laminated in the crystallized state in the internal space of the carbon nanotube can be adjusted.

本発明は、簡易かつ安価で工業的に製造され、炭化ケイ素を内部空間に内包するカーボンナノチューブを含む炭素材料として、半導体材料用途等への応用が期待される。   The present invention is expected to be applied to semiconductor materials and the like as a carbon material containing carbon nanotubes that are manufactured simply and inexpensively and industrially and encapsulate silicon carbide in the internal space.

Claims (4)

二酸化ケイ素を含むサトウキビを圧搾処理して得られるサトウキビバガスが炭化炉にて不活性ガス雰囲気下で炭化され、得られた炭化物が不活性ガス雰囲気下で1100℃以上2200℃以下の温度で黒鉛化されることにより製造され、炭素を主成分とする筒状の側壁部と、前記側壁部の内部空間において前記側壁部の筒軸方向に順次積層する状態で結晶化した炭化ケイ素を主成分とする積層部とを備えて形成されたカーボンナノチューブを含む炭素材料。   Sugar cane bagasse obtained by squeezing sugar cane containing silicon dioxide is carbonized in an inert gas atmosphere in a carbonization furnace, and the obtained carbide is graphitized at a temperature of 1100 ° C. to 2200 ° C. in an inert gas atmosphere. The main component is a cylindrical side wall portion made of carbon and crystallized in a state where the side wall portion is sequentially laminated in the cylindrical axis direction in the inner space of the side wall portion. A carbon material including a carbon nanotube formed with a laminated portion. 前記炭化物を加熱して黒鉛化する温度範囲が、1800℃以上2000℃以下である請求項1に記載のカーボンナノチューブを含む炭素材料。   The carbon material containing carbon nanotubes according to claim 1, wherein a temperature range in which the carbide is graphitized by heating is 1800 ° C or higher and 2000 ° C or lower. 前記サトウキビバガスが、前記サトウキビの幹部分において、当該幹部分から芯部分及び実部分を除く部分で構成される請求項2に記載のカーボンナノチューブを含む炭素材料。   The carbon material containing carbon nanotubes according to claim 2, wherein the sugarcane bagasse is composed of a portion of the trunk portion of the sugarcane excluding the core portion and the real portion from the trunk portion. 二酸化ケイ素を含むサトウキビを圧搾処理して得られるサトウキビバガスを、炭化炉にて不活性ガス雰囲気下で炭化する炭化工程の実行後、前記炭化工程により得られた炭化物を不活性ガス雰囲気下で1100℃以上2200℃以下の温度で黒鉛化する黒鉛化工程を実行して、炭素を主成分とする筒状の側壁部と、前記側壁部の内部空間において前記側壁部の筒軸方向に順次積層する状態で結晶化した炭化ケイ素を主成分とする積層部とを備えて形成されたカーボンナノチューブを含む炭素材料を製造する製造方法。   After performing the carbonization step of carbonizing sugarcane bagasse obtained by squeezing sugarcane containing silicon dioxide in an inert gas atmosphere in a carbonization furnace, the carbide obtained by the carbonization step is 1100 in an inert gas atmosphere. A graphitization step of graphitizing at a temperature of not less than 2 ° C. and not more than 2200 ° C. is performed, and a cylindrical side wall portion mainly composed of carbon and a cylindrical axis of the side wall portion are sequentially stacked in an inner space of the side wall portion The manufacturing method which manufactures the carbon material containing the carbon nanotube formed by providing the laminated part which has as a main component the silicon carbide crystallized in the state.
JP2011080977A 2011-03-31 2011-03-31 Manufacturing method for manufacturing carbon material including carbon nanotube Active JP5676345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080977A JP5676345B2 (en) 2011-03-31 2011-03-31 Manufacturing method for manufacturing carbon material including carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080977A JP5676345B2 (en) 2011-03-31 2011-03-31 Manufacturing method for manufacturing carbon material including carbon nanotube

Publications (2)

Publication Number Publication Date
JP2012214335A true JP2012214335A (en) 2012-11-08
JP5676345B2 JP5676345B2 (en) 2015-02-25

Family

ID=47267561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080977A Active JP5676345B2 (en) 2011-03-31 2011-03-31 Manufacturing method for manufacturing carbon material including carbon nanotube

Country Status (1)

Country Link
JP (1) JP5676345B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090455A (en) * 2016-12-05 2018-06-14 大阪瓦斯株式会社 Manufacturing method for manufacturing carbon material containing carbon nano-tube and carbon material
CN115400774A (en) * 2022-09-23 2022-11-29 江西师范大学 Method for preparing SiC/C photocatalyst by using biomass waste as raw material through two-step method and SiC/C photocatalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000207953A (en) * 1999-01-19 2000-07-28 Nec Corp Nanocable and its manufacture
JP2008124034A (en) * 1995-03-06 2008-05-29 Sony Corp Manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124034A (en) * 1995-03-06 2008-05-29 Sony Corp Manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery
JP2000207953A (en) * 1999-01-19 2000-07-28 Nec Corp Nanocable and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090455A (en) * 2016-12-05 2018-06-14 大阪瓦斯株式会社 Manufacturing method for manufacturing carbon material containing carbon nano-tube and carbon material
CN115400774A (en) * 2022-09-23 2022-11-29 江西师范大学 Method for preparing SiC/C photocatalyst by using biomass waste as raw material through two-step method and SiC/C photocatalyst

Also Published As

Publication number Publication date
JP5676345B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
Qiu et al. A novel form of carbon micro-balls from coal
Endo et al. Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment
Behler et al. Effect of thermal treatment on the structure of multi-walled carbon nanotubes
Choucair et al. The gram-scale synthesis of carbon onions
Purohit et al. Carbon nanotubes and their growth methods
Liu et al. Carbon nanotubes: Controlled growth and application
Tománek Guide through the Nanocarbon Jungle: Buckyballs, nanotubes, graphene and beyond
Sengupta et al. The effect of Fe and Ni catalysts on the growth of multiwalled carbon nanotubes using chemical vapor deposition
Li et al. Self-assembly of graphene on carbon nanotube surfaces
Velasquez et al. Chemical and morphological characterization of multi-walled-carbon nanotubes synthesized by carbon deposition from an ethanol–glycerol blend
Lee et al. Carbon nanosheets by the graphenization of ungraphitizable isotropic pitch molecules
Chen et al. A brief introduction of carbon nanotubes: history, synthesis, and properties
Ye et al. Biotemplate synthesis of carbon nanostructures using bamboo as both the template and the carbon source
Lee et al. Preparation of carbon nanotubes from graphite powder at room temperature
Abu Bakar et al. The effect of precursor vaporization temperature on the growth of vertically aligned carbon nanotubes using palm oil
JP5676345B2 (en) Manufacturing method for manufacturing carbon material including carbon nanotube
Fan et al. Understanding the structural transformation of carbon black from solid spheres to hollow polyhedra during high temperature treatment
Chen et al. Catalyst-free in situ carbon nanotube growth in confined space via high temperature gradient
Shamsudin et al. Synthesis and nucleation-growth mechanism of almost catalyst-free carbon nanotubes grown from Fe-filled sphere-like graphene-shell surface
Krishnia et al. As-pyrolyzed sugarcane bagasse possessing exotic field emission properties
Salifairus et al. Raman spectroscopy study of carbon nanotubes prepared at different deposition temperature using camphor oil as a precursor
Yin et al. Effect of annealing temperature on the continuity and conductivity of coal-based carbon films prepared by ball milling
Doherty et al. Solid-state synthesis of multiwalled carbon nanotubes
Abu Bakar et al. Effect of temperature on the growth of vertically aligned carbon nanotubes from palm oil
Kim et al. Cone-type multi-shell in the hollow core of multi-wall carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150