JP2012211561A - 劣化判定装置 - Google Patents

劣化判定装置 Download PDF

Info

Publication number
JP2012211561A
JP2012211561A JP2011078334A JP2011078334A JP2012211561A JP 2012211561 A JP2012211561 A JP 2012211561A JP 2011078334 A JP2011078334 A JP 2011078334A JP 2011078334 A JP2011078334 A JP 2011078334A JP 2012211561 A JP2012211561 A JP 2012211561A
Authority
JP
Japan
Prior art keywords
response time
ratio sensor
fuel ratio
rear air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011078334A
Other languages
English (en)
Inventor
Manabu Okada
学 岡田
Takeshi Oshima
武 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2011078334A priority Critical patent/JP2012211561A/ja
Publication of JP2012211561A publication Critical patent/JP2012211561A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】触媒コンバータおよびリヤ空燃比センサの劣化判定をより精度良く行い、それらの誤判定を行うことを抑制する劣化判定装置を提供する。
【解決手段】劣化判定装置において、内燃機関の排出ガスを浄化する触媒コンバータと、この触媒コンバータの下流側に配置されたリヤ空燃比センサとを備え、内燃機関への燃料の供給を停止する燃料供給停止手段と、リヤ空燃比センサの応答時間を測定する応答時間測定手段と、応答時間傾向をみる応答時間傾向算出手段とを備え、燃料供給が停止されてからリヤ空然比センサが所定の出力信号を出力するまでの応答時間を異なる吸入空気量条件下で求め、求めた複数の応答時間からリヤ空燃比センサの応答時間傾向である傾き量を求め、求めた傾き量が所定傾き量よりも小さい場合に触媒コンバータが劣化していると判定する劣化判定手段を備える。
【選択図】図1

Description

この発明は劣化判定装置に係り、特に、内燃機関の排出ガスの有害成分を浄化する触媒コンバータおよび、触媒コンバータの下流側に配置されるリヤ空燃比センサを備えた排出ガス浄化システムの劣化判定装置に関する。
従来、内燃機関を有する車両には、排出ガスを浄化する排出ガス浄化システムを設けている。排出ガス浄化システムは、排出ガスの有害成分を浄化する触媒を内蔵した触媒コンバータを設け、その触媒コンバータの排出ガス内の有害成分の浄化率をみるために、触媒コンバータの上流側にフロント空燃比センサを設け、触媒コンバータの下流側にリヤ空燃比センサを設け、このフロント空燃比センサとリヤ空燃比センサとの検出結果から排出ガス中の有害成分の浄化効率を高めている。
排出ガス浄化システムの劣化を判定する劣化判定装置は、燃料供給停止時のリヤ空燃比センサ信号の応答時間をモニタすることにより、リヤ空燃比センサの応答劣化の異常検知を行う(図4参照)。リヤ空燃比センサ信号の応答時間は、図10に示すように、燃料供給停止時Aからリヤ空燃比センサ信号の電圧が規定値の判定電圧に低下した時Bまでの時間を計測することによって得る。
リヤ空燃比センサの応答時間と触媒コンバータの劣化状態は密接に関係しており、リヤ空燃比センサの応答時間は、触媒コンバータが正常な状態では触媒コンバータ前の空燃比の変化を触媒コンバータが吸収する(排出ガス中の酸素を吸着する量が多い)ため、リヤ空燃比センサの信号には空燃比の変化が遅れて現れる(リヤ空燃比センサの応答が遅い。つまり、応答時間が長い。)。触媒コンバータが劣化すると、空燃比の変化を触媒コンバータが吸収できず(排出ガス中の酸素を吸着する量が少ない)、リヤ空然比センサの信号には空燃比の変化が早く現れる(リヤ空燃比センサの応答が速くなる。つまり、応答時間が短くなる。)。
前述した様に、リヤ空燃比センサの応答時間は、触媒コンバータの状態(劣化度合い)に影響を受けることとなる。リヤ空燃比センサの信号は、図11に示すように、(A).触媒コンバータが正常でリヤ空燃比センサが正常のときは振幅が小となり、(B).触媒コンバータが劣化でリヤ空燃比センサが正常のときは振幅が大となり、(C).触媒コンバータが劣化でリヤ空燃比センサが劣化のときは振幅が小となる。
つまり、リヤ空燃比センサと触媒コンバータとが互いに劣化している場合(図11(C))と、リヤ空燃比センサと触媒コンバータとが互いに正常である場合(図11(A))とのリヤ空燃比センサの応答時間に大きな変化が現れないために、それらの劣化が検出できない。そこで、触媒コンバータの劣化度合いの影響を受けずにリヤ空燃比センサの応答劣化を検出するために、燃料供給停止中の平均吸入空気量に対するリヤ空燃比センサの応答時間の関係からリヤ空燃比センサの応答劣化を検出する方法がある。
図12(A)は触媒コンバータが劣化した条件下でのリヤ空燃比センサが正常及び劣化(応答遅れ発生)のときの各応答時間を示し、図12(B)は触媒コンバータが正常に作動している条件下での空燃比センサが正常及び劣化(応答遅れ発生)のときの各応答時間を示している。また、図12(C)は図12(A)、図12(B)を合わせて表示したものである。
従来では、リヤ空燃比センサが劣化していることを判定するために、図12(C)の破線で示すようにリヤ空燃比センサ応答劣化閾値を比較的長い応答時間とし、この閾値よりも長い応答時間である場合にリヤ空燃比センサが劣化していると判定していた。ただし、この方法は触媒コンバータが正常に作動している場合においてリヤ空燃比センサが劣化していることを判定できるものである。触媒コンバータが劣化している場合はリヤ空燃比センサの応答時間が短いため、リヤ空燃比センサが劣化している場合であってもリヤ空燃比センサが正常に作動していると誤判定してしまう問題があった。
また、リヤ空燃比センサが劣化しリヤ空燃比センサの応答遅れが発生することで、劣化した触媒コンバータを正常に作動していると判定してしまう問題もあった(図13参照)。
上記問題に対する従来技術として、特許文献1(特許第2858406号)がある。上記特許文献1では、排出ガス中の空燃比をみるために、排出ガス中の酸素濃度をみて空燃比を算出する酸素センサを用いた技術が紹介されている。詳しくは、内燃機関への燃料供給が停止された後に、リヤ酸素センサからの出力信号が所定レベルをリッチ側からリーン側に横切った時点からの経過時間を測定して、この経過時間が所定時間に達した時のリヤ酸素センサの出力値がリーン側に設定された第一の判定レベルよりもリッチ側である場合、もしくは前記第一の判定レベルに達するまでの時間が所定時間を越える場合に、リヤ酸素センサの劣化を判定する技術が紹介されている。これより、特許文献1では、触媒コンバータの劣化度合いの影響を受けずに、リヤ酸素センサの劣化を検出することができる。
特許第2858406号
しかし、上記特許文献1では、以下の問題がある。
吸入空気量が多い場合には、リヤ酸素センサの応答時間に大きな差が現れず、リヤ酸素センサの誤った劣化判定がなされる可能性がある。
前述したように、触謀コンバータは劣化が進むほど、酸素吸着能力が落ちる。内燃機関ヘの吸入空気量が増大し、劣化した状態にある触媒コンバータに大量の空気が流れ込むと、空気中の酸素のほとんどが触媒コンバータに吸着されずにリヤ酸素センサに流れ込む。すると正常に機能しているリヤ酸素センサと劣化しているリヤ酸素センサの応答時間に差が出ない場合もある。
酸素センサを空燃比センサに置き換えた場合も同様の問題が発生する。空然比センサも劣化が進むと出力信号の変化が鈍化するので、空燃比センサや触媒コンバータの劣化判定が正確に行われないといった不都合がある。
この発明は、触媒コンバータおよびリヤ空燃比センサの劣化判定をより精度良く行い、それらの誤判定を行うことを抑制する劣化判定装置を提供することを目的とする。
この発明は、排出ガス浄化システムの劣化を判定する劣化判定装置において、前記排出ガス浄化システムは、内燃機関の排出ガスを浄化する触媒コンバータと、この触媒コンバータの下流側に配置されて排出ガス中の空燃比を検出するためのリヤ空燃比センサとを備え、前記内燃機関への燃料の供給を停止する燃料供給停止手段と、前記リヤ空燃比センサの応答時間を測定する応答時間測定手段と、複数の応答時間から応答時間傾向をみる応答時間傾向算出手段とを備え、燃料供給が停止されてから前記リヤ空然比センサが所定の出力信号を出力するまでの応答時間を異なる吸入空気量条件下で求め、求めた複数の応答時間から前記リヤ空燃比センサの応答時間傾向である傾き量を求め、求めた傾き量が所定傾き量よりも小さい場合に前記触媒コンバータが劣化していると判定する劣化判定手段を備えることを特徴とする。
この発明の劣化判定装置は、内燃機関の複数の異なる運転状況下においてリヤ空燃比センサの応答時間傾向をみることで、触媒コンバータの劣化判定をより精度よく求めることができる。
図1は劣化判定装置の判定のフローチャート図である。(実施例) 図2は劣化判定装置の概略構成図である。(実施例) 図3は劣化判定装置のシステム構成図である。(実施例) 図4はリヤ空燃比センサの応答時間の遅れを示す図である。(実施例) 図5はリヤ空燃比センサの応答時間からの傾き量の算出を示す図である。(実施例) 図6は傾き量からの補正量の算出を示す図である。(実施例) 図7は触媒コンバータが劣化でリヤ空燃比センサが正常及び劣化のときの各応答時間と、触媒コンバータが正常で空燃比センサが正常及び劣化のときの各応答時間と、補正後の劣化判定用の閾値とを示す図である。(実施例) 図8はリヤ空燃比センサの劣化判定用の閾値補正による触媒コンバータの劣化判定領域を示す図である。(実施例) 図9は吸入空気量に対するリヤ空燃比センサの応答時間のマップを示す図である。(実施例) 図10はリヤ空燃比センサの応答時間測定を示す図である。(従来例) 図11はリヤ空燃比センサ信号の変化を示し、(A)は触媒コンバータが正常でリヤ空燃比センサが正常のときのリヤ空燃比センサ信号の振幅を示す図、(B)は触媒コンバータが劣化でリヤ空燃比センサが正常のときのリヤ空燃比センサ信号の振幅を示す図、(C)は触媒コンバータが劣化でリヤ空燃比センサが劣化のときのリヤ空燃比センサ信号の振幅を示す図である。(従来例) 図12はリヤ空燃比センサの応答時間と閾値を示し、(A)は触媒コンバータが劣化でリヤ空燃比センサが正常及び劣化のときの各応答時間を示す図、(B)は触媒コンバータが正常で空燃比センサが正常及び劣化のときの各応答時間を示す図、(C)は前記(A)及び(B)を合わせたリヤ空燃比センサが正常及び劣化のときの各応答時間と劣化判定用の閾値を示す図である。(従来例) 図13は触媒コンバータの劣化判定値とリヤ空燃比センサの応答時間遅れの関係を示す図である。(従来例)
以下、図面に基づいて、この発明の実施例を説明する。
図1〜図9は、この発明の実施例を示すものである。図2において、1は内燃機関、2はシリンダブロック、3はシリンダヘッド、4はシリンダヘッドカバー、5はピストン、6は燃焼室、7は吸気ポート、8は排気ポート、9は吸気弁、10は排気弁、11は吸気カム軸、12は排気カム軸である。
内燃機関1は、吸気系として、エアクリーナ13と吸気管14とスロットルボディ15とサージタンク16と吸気マニホルド17とを順次に接続し、吸気ポート7に連通する吸気通路18を設けている。スロットルボディ15の吸気通路18には、スロットルバルブ19を設けている。また、内燃機関1は、排気系として、排気マニホルド20と上流側排気管21と触媒コンバータ22と下流側排気管23とを順次に接続し、排気ポート8に連通する排気通路24を設けている。触媒コンバータ22は、触媒25を内蔵している。
前記内燃機関1は、燃料系として、燃料タンク26を設け、燃料タンク26内に燃料を吸引して圧送する燃料ポンプ27を設け、この燃料ポンプ27に燃料フィルタ28と圧力レギュレータ29とを介して一端側が接続される燃料供給管30を設けている。圧力レギュレータ29には、燃料タンク26内に開口した燃料戻り管31を接続している。燃料供給管30の他端側は、燃料分配管32に接続している。燃料分配管32には、吸気マニホルド17に取り付けられた各気筒毎の燃料噴射弁33を接続している。
前記燃料タンク26には、2ウェイチェックバルブ34を介してエバポ管35の一端側を接続している。エバポ管35は、他端側をキャニスタ36に接続している。キャニスタ36には、パージ管37の一端側を接続している。パージ管37は、他端側をスロットルボディ15に設けたスロットルバルブ19上流側の吸気通路18に連通している。
前記内燃機関1は、点火系として、シリンダヘッドカバー4に各気筒毎のイグニションコイル38を取り付けている。イグニションコイル38は、各気筒の燃焼室6に臨ませた点火プラグに飛び火させる。内燃機関1には、シリンダヘッドカバー4内をPCVバルブ39を介してサージタンク16の吸気通路18に連通するタンク側ブローバイガス通路40を設け、シリンダヘッドカバー4内をエアクリーナ13内に連通するクリーナ側ブローバイガス通路41を設けている。また、内燃機関1は、スロットルバルブ19を迂回して吸気通路18を連通するバイパス空気通路42を設け、このバイパス空気通路42の途中にアイドル空気量を調整するアイドル空気量制御バルブ43を設けている。
前記内燃機関1は、電子制御部44を備えている。電子制御部44には、図3に示すように、燃料ポンプリレー45を介して燃料ポンプ27を接続し、燃料噴射弁33を接続し、イグナイタ46を介してイグニションコイル38を接続し、アイドル空気量制御バルブ43を接続している。
前記電子制御部44には、スロットルバルブ19のスロットル開度を検出するスロットル開度センサ47と、スロットルバルブ19下流側の吸気圧力を検出する吸気圧力センサ48と、エンジン回転速度を検出するためクランク角を検出するクランク角センサ49と、冷却水温度を検出する水温センサ50と、ノッキングを検出するノッキングセンサ51と、触媒コンバータ22の上流側に配置されて排出ガス中の空燃比を検出するためのフロント空燃比センサ52と、触媒コンバータ22の下流側に配置されて排出ガス中の空燃比を検出するためのリヤ空燃比センサ53とを接続し、メインリレー54及びフューズ55を介してバッテリ56(図2参照)を接続している。
また、電子制御部44には、チェックエンジンランプ57を接続し、ラジエータファンリレー58を介してラジエータクーリングファン59を接続し、エアコンのA/Cコンプレッサクラッチ60を接続し、タコメータ61を接続し、自動変速機のA/Tコントローラ62を接続し、さらに、バッテリ電圧、イグニションスイッチ状態信号、車速信号、ブレーキスイッチ信号、エアコンのA/C信号、自動変速機のA/T信号等の各種信号を入力する内燃機関用信号部63を接続している。
電子制御部44は、スロットル開度センサ47からスロットル開度、吸気圧力センサ48から吸気圧力、クランク角センサ49からエンジン回転速度及び気筒判別、水温センサ50から冷却水温度、ノッキングセンサ51からノックレベル、フロント空燃比センサ52から触媒コンバータ22上流側の排出ガスの空燃比、リヤ空燃比センサ53から触媒コンバータ22下流側の排出ガスの空燃比、の各検出信号を入力する。電子制御部44は、これら入力する検出信号によって、燃料ポンプ27、燃料噴射弁33、イグニションコイル38、アイドル制御バルブ43等の動作を制御し、燃料噴射量、点火時期、アイドル回転数等を制御する。なお、吸気圧力センサ48の吸入空気圧力からは、内燃機関1の吸入空気量を求める。吸入空気量の求め方は一例であり、吸気圧力センサ48ではなく、直接的に吸入空気量を検出できるエアフローセンサを用いても良い。
前記内燃機関1は、図2に示すように、排出ガスを浄化する触媒コンバータ22と、この触媒コンバータ22の上流側に配置されて排出ガス中の空燃比を検出するためのフロント空燃比センサ52と、触媒コンバータ22の下流側に配置されて排出ガス中の空燃比を検出するためのリヤ空燃比センサ53とを備えた排出ガス浄化システム64を設けている。排出ガス浄化システム64は、前記電子制御部44によりフロント空燃比センサ52とリヤ空燃比センサ53との検出結果から燃料供給量を制御し、触媒コンバータ22に内蔵する触媒25による排出ガス中の有害成分の浄化効率を高めている。
内燃機関1は、前記排出ガス浄化システム64の劣化を判定する劣化判定装置65を設けている。劣化判定装置65は、図3に示すように、排出ガス浄化システム64の排出ガスを浄化する触媒コンバータ22と、この触媒コンバータ22の下流側に配置されて排出ガス中の空燃比を検出するためのリヤ空燃比センサ53とを備え、前記電子制御部44に設けられている。劣化判定装置65は、電子制御部44に、燃料供給停止手段66と応答時間測定手段67と応答時間傾向算出手段68と補正値算出手段69と劣化判定手段70とを備えている。
前記燃料供給停止手段66は、燃料噴射弁33による内燃機関1への燃料の供給を停止する。前記応答時間測定手段67は、リヤ空燃比センサ53の応答時間を測定する。前記応答時間傾向算出手段68は、応答時間測定手段67が検出した複数の応答時間から応答時間傾向をみる。前記補正値算出手段69は、リヤ空燃比センサ53の応答時間傾向である傾き量からリヤ空燃比センサ53の応答時間を補正するための補正値を求める。
前記劣化判定手段70は、内燃機関1への燃料供給が停止されてからリヤ空然比センサ53が所定の出力信号を出力するまでの応答時間を異なる吸入空気量条件下で求め、求めた複数の応答時間からリヤ空燃比センサ53の応答時間傾向である傾き量を求め、求めた傾き量が所定傾き量よりも小さい場合に触媒コンバータ22の触媒25が劣化していると判定する。また、劣化判定手段70は、補正値により補正したリヤ空燃比センサ53の応答時間が所定応答時間よりも大きい場合にリヤ空燃比センサ53が劣化していると判定する。
次に、劣化判定装置65の作用を説明する。
劣化判定装置65は、図1に示すように、劣化判定のプログラムがスタートすると(100)、燃料供給状態を検出し(101)、燃料供給停止であるかを判断する(102
)。この判断(102)がNOの場合は、この判断を繰り返す。この判断(102)がYESの場合は、触媒コンバータ22の劣化の有無を判定するために、燃料供給停止中の異なる複数の平均吸入空気量におけるリヤ空然比センサ53の応答時間trを測定し(103)、それらの応答時間trから平均吸入空気量に対するリヤ空燃比センサ53の応答時間傾向(傾き量g)を求める(104)。
リヤ空然比センサ53の応答時間trは、図10に示すように、燃料供給停止時Aからリヤ空燃比センサ信号53の電圧が規定値の判定電圧に低下した時Bまでの時間を計測することによって得る。また、応答時間trは、図9のマップに示すように、平均吸入空気量に対する応答時間trの測定データの採取数が多いほど、応答時間傾向はより正確なものを求めることができる。なお、応答時間trの測定データの採取数は状況に応じて適宜変更可能としても良い。
前記(105)で求めた傾き量gが、所定傾き量GDよりも小さいか(傾き量g<所定傾き量GD)を判断する(105)。触媒コンバータ22は、劣化が進むと酸素吸着能力が落ちるので、劣化が進んだ触媒コンバータ22である場合のリヤ空然比センサ53の応答時間は吸入空気量の大小によらず同程度の応答時間を示す(図5参照)。つまり、傾き量gが、触媒コンバータ22が劣化していると判断できる所定傾き量GDよりも小さい場合(105:YES)には、触媒コンバータ22が劣化状態に有ると判断し(106)、補正値COVの算出(108)に移行する。一方、傾き量gが、所定傾き量GDよりも大きい場合(105:NO)には、触媒コンバータ22が正常であると判断し(107)、補正値COVの算出(108)に移行する。
複数の異なる平均吸入空気量に対するリヤ空燃比センサ53の応答時間を測定する際には、同様の条件で測定するのが望ましい。この条件とは、例えば内燃機関1の冷却水温やエンジン回転速度、リヤ空然比センサ53の状態(電圧やリヤ空燃比センサ53の活性状況)等である。これより、劣化判定装置65は、内燃機関1の複数の異なる運転状況下においてリヤ空燃比センサ53の応答時間傾向をみることで、触媒コンバータ22の劣化判定を、より精度高く行なうことができる。
前記触媒コンバータ22が劣化状態の判定(106)・(107)を行った後に、前記(104)で算出した傾き量gから、図6に示すように、リヤ空燃比センサ53の応答時間を補正するための補正値COVを求める(108)。求めた補正値COVにより計測したリヤ空燃比センサ53の応答時間trを補正して補正応答時間Ctrとし(図7参照)、補正応答時間Ctrが所定応答時間Dtrよりも大きいか(補正応答時間Ctr>所定応答時間Dtr)を判断する(109)。
補正応答時間Ctrが所定応答時間Dtrよりも大きい場合(109:YES)には、リヤ空燃比センサ53が劣化状態に有ると判断し(110)、プログラムをエンドにする(112)。一方、補正応答時間Ctrが所定応答時間Dtrよりも小さい場合(109:NO)には、リヤ空燃比センサ53が正常であると判断し(111)、プログラムをエンドにする(112)。
応答時間trの補正値COVは、傾き量gが小さいほど小さく設定する(図6参照)。この補正値COVは、触媒コンバータ22の酸素吸着能力を反映したものである。前述したように、触媒コンバータ22は劣化が進むほど酸素吸着能力が落ちるので、傾き量gが小さいほど補正値COVを小さくする必要がある。これより触媒コンバータ22の劣化度合いによらないリヤ空燃比センサ53のみの補正応答時間Ctrを求めることができ、触媒コンバータ22の劣化度合いに影響を受けずに、リヤ空燃比センサ53の劣化を判定できる。
これより、劣化判定装置65は、リヤ空然比センサ53の応答時間傾向から触媒コンバータ22の劣化状況を排除したリヤ空燃比センサ53の応答時間を求めることができ、リヤ空燃比センサ53の劣化判定を触媒コンバータ22の劣化状況に影響を受けることなく行うことができる。また、劣化判定装置65は、リヤ空燃比センサ53の応答時間trを傾き量gから求めた補正値COVで補正することで、リヤ空燃比センサ53の応答時間trによる劣化判定の領域を拡張することができ、リヤ空燃比センサ53の劣化や異常の検知を行うことができない領域をなくすことができる(図8参照)。
なお、リヤ空燃比センサ53が劣化していると判断された場合には、触媒コンバータ22の劣化診断を行うことを禁止する構成としても良い。この場合は、(104)の処理後に(108)に進む構成とする。その劣化したリヤ空燃比センサ53の検出結果を用いて触媒コンバータ22の誤った劣化診断を行うことを防止する。
このように、劣化判定装置65は、触媒コンバータ22の劣化度合いに応じて触媒コンバータ22に内蔵する触媒25の酸素吸蔵能力が変化する特性を利用し、触媒コンバータ22及びリヤ空燃比センサ53の劣化を判定している。正常な触媒コンバータ22では、酸素吸蔵能力が大きく、リヤ空然比センサ53の信号の電圧が燃料供給停止時から規定値の判定電圧に低下するまでの応答時間に遅れが生じる(図4参照)。
これに対して、劣化した触媒コンバータ22では、酸素吸蔵能力が低下するため、応答時間の遅れは生じ難い。この触媒コンバータ22の劣化度合いによる応答時間への影響は、燃料供給停止中の平均吸入空気量が小さい程大きくなる。つまり、燃料供給停止中の平均吸入空気量ベースで応答時間の傾向を見ると、その傾きが異なることとなる。図5に示すように、正常な触媒コンバータ22の応答時間の傾き量は、劣化した触媒コンバータ22の応答時間の傾き量よりも大きい。
劣化判定装置65は、この応答時間傾向の差を利用し、触媒コンバータ22の酸素吸蔵能力を推定して傾き量から触媒コンバータ22の劣化度合いを判定し、また、傾き量から補正値を求め(図6参照)、リヤ空燃比センサ53の応答時間を補正することにより(図7参照)、リヤ空燃比センサ53の劣化判定を正確に実施することが可能となり、リヤ空燃比センサ53の劣化判定検知が不可の範囲を無くすことが可能となる。
これにより、劣化判定装置65は、触媒コンバータ22の劣化判定を精度よく求めることができとともに、触媒コンバータ22の劣化度合いの影響を受けることなくリヤ空燃比センサ53の応答劣化診断を正確に実行できる(図8参照)。なお、リヤ空燃比センサ53のみが劣化した場合、劣化なしのリヤ空燃比センサ53の応答時間と比較して、劣化したリヤ空燃比センサ53の応答時間の遅れは増加するが、燃料供給停止中の平均吸入空気量ベースの応答時間の傾きに変化は無い(図2参照)。
なお、応答時間の補正値の算出は、上述実施例においては異なる吸入空気量条件下で求めた応答時間から求めたが、下記内容に変更することで同様の効果が得られる。
1.設定したエンジン回転速度のマップに応じてリヤ空燃比センサ53の応答時間を記憶し、エンジン回転速度に応じて読み出した応答時間から補正値を算出する。エンジン回転速度が小さいほど吸入空気量が少ないので、その場合の応答時間は大となる。
2.設定した吸入空気量のマップに応じてリヤ空燃比センサ53の応答時間を記憶し、吸入空気量に応じて読み出した応答時間の傾き量から補正値を算出する。吸入空気量は、燃料供給停止となってから所定時間経過後の瞬間の吸入空気量とする。ある瞬間、もしくは所定期間中の吸入空気量を測定し、リヤ酸素センサの応答時間傾向を求める。
この発明は、触媒コンバータおよびリヤ空燃比センサの劣化判定をより精度良く行うことができるものであり、排出ガス浄化システムを備えた内燃機関を搭載する車両、船舶等に応用することができる。
1 内燃機関
20 排気マニホルド
21 上流側排気管
22 触媒コンバータ
23 下流側排気管
24 排気通路
44 電子制御部
52 フロント空燃比センサ
53 リヤ空燃比センサ
64 排出ガス浄化システム
65 劣化判定装置
66 燃料供給停止手段
67 応答時間測定手段
68 応答時間傾向算出手段
69 補正値算出手段
70 劣化判定手段

Claims (2)

  1. 排出ガス浄化システムの劣化を判定する劣化判定装置において、前記排出ガス浄化システムは、内燃機関の排出ガスを浄化する触媒コンバータと、この触媒コンバータの下流側に配置されて排出ガス中の空燃比を検出するためのリヤ空燃比センサとを備え、前記内燃機関への燃料の供給を停止する燃料供給停止手段と、前記リヤ空燃比センサの応答時間を測定する応答時間測定手段と、複数の応答時間から応答時間傾向をみる応答時間傾向算出手段とを備え、燃料供給が停止されてから前記リヤ空然比センサが所定の出力信号を出力するまでの応答時間を異なる吸入空気量条件下で求め、求めた複数の応答時間から前記リヤ空燃比センサの応答時間傾向である傾き量を求め、求めた傾き量が所定傾き量よりも小さい場合に前記触媒コンバータが劣化していると判定する劣化判定手段を備えることを特徴とする劣化判定装置。
  2. 前記傾き量から前記リヤ空燃比センサの応答時間を補正する補正値を求める補正値算出手段を備え、前記劣化判定手段は、前記補正値により補正した前記リヤ空燃比センサの応答時間が所定応答時間よりも大きい場合に前記リヤ空燃比センサが劣化していると判定することを特徴とする請求項1に記載の劣化判定装置。




JP2011078334A 2011-03-31 2011-03-31 劣化判定装置 Withdrawn JP2012211561A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078334A JP2012211561A (ja) 2011-03-31 2011-03-31 劣化判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078334A JP2012211561A (ja) 2011-03-31 2011-03-31 劣化判定装置

Publications (1)

Publication Number Publication Date
JP2012211561A true JP2012211561A (ja) 2012-11-01

Family

ID=47265713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078334A Withdrawn JP2012211561A (ja) 2011-03-31 2011-03-31 劣化判定装置

Country Status (1)

Country Link
JP (1) JP2012211561A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056731A (ja) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 空燃比センサの異常診断装置
JP2016056753A (ja) * 2014-09-10 2016-04-21 日立オートモティブシステムズ株式会社 内燃機関の空燃比センサ診断装置
JP2022016890A (ja) * 2020-07-13 2022-01-25 日立Astemo株式会社 内燃機関の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056731A (ja) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 空燃比センサの異常診断装置
US9624808B2 (en) 2014-09-09 2017-04-18 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensor
JP2016056753A (ja) * 2014-09-10 2016-04-21 日立オートモティブシステムズ株式会社 内燃機関の空燃比センサ診断装置
JP2022016890A (ja) * 2020-07-13 2022-01-25 日立Astemo株式会社 内燃機関の制御装置
JP7299862B2 (ja) 2020-07-13 2023-06-28 日立Astemo株式会社 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
US10323562B2 (en) Gasoline particulate filter diagnostics
US10408114B2 (en) Gasoline particulate filter diagnostics
US11073063B2 (en) Gasoline particulate filter diagnostics
RU2634911C2 (ru) Система диагностики двигателя внутреннего сгорания
JP2009221992A (ja) 排出ガスセンサの異常診断装置
JP6358101B2 (ja) 異常診断装置
US7117729B2 (en) Diagnosis apparatus for fuel vapor purge system and method thereof
JP4892878B2 (ja) 燃料レベルゲージの故障診断装置
WO2012146620A1 (en) Engine air to fuel ratio cylinder imbalance diagnostic
JP4403156B2 (ja) 内燃機関の酸素センサ診断装置
WO2016035498A1 (ja) エンジンの制御装置
JP2012211561A (ja) 劣化判定装置
JP2010163932A (ja) 内燃機関の触媒劣化診断装置
JP2010275912A (ja) 可変バルブタイミング制御システムの異常診断装置
JP4470661B2 (ja) 排出ガスセンサの異常診断装置
US9429089B2 (en) Control device of engine
JP4101133B2 (ja) 内燃機関の空燃比制御装置の自己診断装置
SE1051374A1 (sv) Metod och apparat för att bestämma proportionen etanol i bränslet i ett motorfordon
JP6166646B2 (ja) 内燃機関の制御装置
JP3975436B2 (ja) 排出ガスセンサの異常診断装置
US20170370317A1 (en) Abnormality diagnosis device for pm sensor
JP2015004319A (ja) 内燃機関の排気浄化システム
JP2006242067A (ja) 吸気系センサの異常診断装置
JP2005282475A (ja) 空燃比センサの異常診断装置
JP2017137835A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603