JPH08117793A - Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method - Google Patents

Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method

Info

Publication number
JPH08117793A
JPH08117793A JP6258606A JP25860694A JPH08117793A JP H08117793 A JPH08117793 A JP H08117793A JP 6258606 A JP6258606 A JP 6258606A JP 25860694 A JP25860694 A JP 25860694A JP H08117793 A JPH08117793 A JP H08117793A
Authority
JP
Japan
Prior art keywords
nitrification
denitrification
rate
reaction
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6258606A
Other languages
Japanese (ja)
Inventor
Takahiro Konishi
隆裕 小西
Masahide Ichikawa
雅英 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6258606A priority Critical patent/JPH08117793A/en
Publication of JPH08117793A publication Critical patent/JPH08117793A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To monitor the state of nitration and denitrification reactions. CONSTITUTION: A tank 13 is provided between denitrification tanks 1a, 1b and nitration tanks 2a to 2e for the combined use. A flow meter 15 is provided on the denitrification tank 1a. An Rr meter 16 is installed on the nitration tank 2a. The Nit-Rr value 17 obtained by calculation based on the inflow volume of untreated water measured by the flow meter 15 and a value measured by the Rr meter 16, and the DO value and the water quality analytical value measured by the DO meter 18 installed on the nitration tank 2a are input in a nitration reaction control system 19. A DO control 20 and an SRT control 21 are performed based on a value which is output from the control system 19. In a circulation volume control part 22, a value measured by the DO meter 23, a value measured by the flow meter 15, a value measured by the DO meter 24 on the dissolved oxygen of the nitration tank 2e, and a value measured by a flow meter 25 on the circulation flow of a nitration liquid in the tank 2e are input. A circulating volume control part 22 controls each measurement value to control a pump 6 for circulating the nitration liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、脱窒速度および硝化
速度を推定できるようにした循環式硝化脱窒法における
硝化反応および脱窒反応の状態監視方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrification reaction and a state monitoring method for the denitrification reaction in a circulating nitrification and denitrification method capable of estimating the denitrification rate and the nitrification rate.

【0002】[0002]

【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されている。特に近時は窒素の除去率を高めること
が要求されており、窒素に関する規制も厳しくなること
が予想されるので、これを除去することができる高度処
理プロセスを採用する施設が増加するものと考えられ
る。
2. Description of the Related Art Various methods have conventionally been proposed for efficiently removing organic matter in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative agents of eutrophication in closed water areas. . Particularly in recent years, it has been required to increase the removal rate of nitrogen, and it is expected that regulations on nitrogen will become stricter.Therefore, it is thought that the number of facilities that employ advanced treatment processes that can remove this will increase. To be

【0003】生物学的に窒素とリンを同時に除去する方
法として、従来の活性汚泥法の変法として嫌気−好気活
性汚泥法が注目されている。この嫌気−好気活性汚泥法
とは、例えば図6に示したように、生物反応槽を溶存酸
素(以下DOと略称)の存在しない嫌気槽1a,1bと
DOの存在する複数段の好気槽2a,2b,2cとに仕
切り、この嫌気槽1a,1bにより、流入する原水3を
無酸素状態下で撹拌機構10による撹拌を行って活性汚
泥中の脱窒菌による脱窒を行い、次に好気槽2a,2
b,2cの内方に配置した散気管4にブロワ5から空気
を供給することにより、エアレーションによる酸素の存
在下で活性汚泥による有機物の酸化分解と硝化菌による
アンモニアの硝化を行う。そして最終段の好気槽2cの
硝化液を硝化液循環ポンプ6を用いて嫌気槽1aに送り
込むことにより、嫌気槽1a,1bの脱窒効果が促進さ
れる。
As a biological method for simultaneously removing nitrogen and phosphorus, the anaerobic-aerobic activated sludge method has attracted attention as a modified method of the conventional activated sludge method. The anaerobic-aerobic activated sludge method is, for example, as shown in FIG. 6, the biological reaction tank is a anaerobic tank 1a, 1b in which dissolved oxygen (hereinafter abbreviated as DO) does not exist and a plurality of stages of aerobic cells in which DO exists. The anaerobic tanks 1a, 1b are divided into tanks 2a, 2b, 2c, and the anaerobic tanks 1a, 1b are used to agitate the inflowing raw water 3 with an agitation mechanism 10 to denitrify bacteria by denitrifying bacteria in the activated sludge. Aerobic tank 2a, 2
By supplying air from the blower 5 to the air diffusing pipe 4 arranged inside b and 2c, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are performed in the presence of oxygen by aeration. Then, the nitrifying solution in the last-stage aerobic tank 2c is fed into the anaerobic tank 1a by using the nitrifying solution circulating pump 6, whereby the denitrifying effect of the anaerobic tanks 1a and 1b is promoted.

【0004】前記脱窒菌とは、嫌気条件下で硝酸呼吸に
よりN02−N及びN03−NをN2やNO2に還元する細
菌を指している。又、原水中のリンは嫌気槽1a,1b
内で放出され、好気槽2a,2b,2c内で活性汚泥に
取り込まれて除去される。7は最終沈澱池であり、この
最終沈澱池7の上澄液は、処理水11として図外の消毒
槽等を経由してから放流され、該最終沈澱池7内に沈降
した汚泥の一部は汚泥返送ポンプ8により嫌気槽1aに
返送され、他の汚泥は余剰汚泥引抜ポンプ9から図外の
余剰汚泥処理装置に送り込まれて処理される。
The above-mentioned denitrifying bacterium refers to a bacterium that reduces N0 2 -N and N0 3 -N to N 2 and NO 2 by respiration of nitric acid under anaerobic conditions. Also, phosphorus in raw water is anaerobic tanks 1a and 1b.
It is released inside and is taken in and removed by the activated sludge in the aerobic tanks 2a, 2b and 2c. Reference numeral 7 denotes a final settling basin, and the supernatant of the final settling basin 7 is discharged as treated water 11 after passing through a disinfection tank or the like not shown in the figure, and a part of sludge settled in the final settling basin 7. Is returned to the anaerobic tank 1a by the sludge return pump 8, and other sludge is sent from the excess sludge drawing pump 9 to an excess sludge treatment device (not shown) for treatment.

【0005】一方で硝化反応を促進するため、硝化槽内
の活性汚泥濃度を高めて硝化菌が系外に排出されないよ
うに余剰汚泥引抜量を小さくするSRT(汚泥滞留時
間)制御が一般に採用されている。
On the other hand, in order to accelerate the nitrification reaction, SRT (sludge retention time) control is generally adopted in which the concentration of activated sludge in the nitrification tank is increased to reduce the amount of excess sludge drawn out so that nitrifying bacteria are not discharged to the outside of the system. ing.

【0006】循環式硝化脱窒法は通常の標準活性汚泥法
で達成される有機物除去効果と同程度の効果が得られる
上、窒素とリンに関しては活性汚泥法よりも高い除去率
が達成される。また、この循環式硝化脱窒法の処理状態
を把握するためには、硝化速度および脱窒速度といった
直接的指標を目安にするのが最も良いと考えられてい
る。
[0006] The circulation type nitrification denitrification method has the same effect as the organic substance removal effect achieved by the usual standard activated sludge method, and also achieves a higher removal rate of nitrogen and phosphorus than the activated sludge method. Further, in order to grasp the processing state of this circulation type nitrification denitrification method, it is considered best to use direct indicators such as nitrification rate and denitrification rate as a guide.

【0007】[0007]

【発明が解決しようとする課題】前述した循環式硝化脱
窒法における窒素除去には、大きく分けて嫌気槽におけ
る脱窒と好気槽における硝化の2つの工程がある。前者
は脱窒菌が引き起こすが、その活性は水温、DOなどの
変化に影響を与える。後者は硝化菌が引き起こすが、前
者より更に水温、DO、pHなどの変化に影響を受け易
い。
Nitrogen removal in the above-mentioned circulating nitrification and denitrification method is roughly divided into two steps: denitrification in an anaerobic tank and nitrification in an aerobic tank. The former is caused by denitrifying bacteria, but its activity affects changes in water temperature, DO, and the like. The latter is caused by nitrifying bacteria, but is more susceptible to changes in water temperature, DO, pH, etc. than the former.

【0008】また、脱窒反応および硝化反応は有機除去
反応に比べて速度は小さく、循環式硝化脱窒法はより長
い滞留時間が必要になる。そこで、脱窒速度および硝化
速度を上げなければ反応槽は大きなものが必要となり、
用地確保が困難な都市部では循環式硝化脱窒法は導入し
にくい問題がある。
Further, the denitrification reaction and the nitrification reaction are slower than the organic removal reaction, and the circulation type nitrification denitrification method requires a longer residence time. Therefore, if the denitrification rate and nitrification rate are not increased, a large reaction tank is required,
The cyclic nitrification denitrification method is difficult to introduce in urban areas where it is difficult to secure land.

【0009】一方制御法を改善して上記の硝化反応およ
び脱窒反応を促進させようとしても両者の状態監視の方
法としては窒素関係の分析(この分析は通常の下水処理
場では毎日行われるわけではない。また、この分析は手
間、時間がかかる)あるいはNit−Rrの測定(硝化
速度の推定)を行うしか手段がない状態で制御を行うた
めの指標が得にくい問題がある。特に、分析および測定
を行わないときには硝化反応および脱窒反応がどの程度
起こっているのか不明なため制御を手動で行わなければ
ならない煩わしさがある。
On the other hand, even if the control method is improved to promote the above-mentioned nitrification reaction and denitrification reaction, a nitrogen-related analysis is used as a method for monitoring the state of both (this analysis is usually performed every day in a sewage treatment plant. Further, this analysis has a problem that it takes time and labor) or it is difficult to obtain an index for performing control in a state where there is only means for measuring Nit-Rr (estimation of nitrification rate). In particular, when the analysis and measurement are not performed, it is unclear how much the nitrification reaction and the denitrification reaction are occurring, and thus the control must be manually performed.

【0010】この発明は上記の事情に鑑みてなされたも
ので、分析日間の脱窒速度およびNit−Rrの測定間
の硝化速度を推定できるとともに、硝化反応および脱窒
反応の状態監視(モニタリング)ができ、かつ各反応モ
デル中の動力学的パラメータの値を得てDO制御やSR
T制御が可能となる循環式硝化脱窒法における硝化反応
および脱窒反応の状態監視方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and it is possible to estimate the denitrification rate during the analysis day and the nitrification rate during the measurement of Nit-Rr, and to monitor the state of the nitrification reaction and the denitrification reaction. And the values of the kinetic parameters in each reaction model can be obtained to perform DO control and SR.
It is an object of the present invention to provide a method for monitoring the state of nitrification reaction and denitrification reaction in the circulation type nitrification denitrification method that enables T control.

【0011】[0011]

【課題を解決するための手段および作用】この発明は、
上記の目的を達成するために、第1発明は、原水を脱窒
槽で脱窒細菌により脱窒を行う工程と、複数段の硝化槽
で硝化細菌により硝化を行う工程と、沈澱槽で固液分離
して上澄液を処理水として放流する工程とを含む活性汚
泥循環変法処理において、上記脱窒槽に流入する原水の
流量計を配備するとともに、複数段の硝化槽の上流部に
全酸素消費速度から硝化反応に伴う酸素消費速度を差し
引いた値の計測器を付設し、硝化反応に基づく酸素消費
量及び溶存酸素量とから硝化槽内の硝化速度を推定し、
その値と原水の流入量に応じて目標とする硝化速度を確
保するためのSRT制御を可能ならしめるように硝化槽
に対するブロワの送風量をコントロールするDO制御を
実施し、前記脱窒槽に流入する原水の溶存酸素と流量を
計測するとともに、硝化槽の硝化液の呼吸速度と溶存酸
素とを計測し、かつ前記ポンプで吸い上げた硝化液の流
量を計測した各計測値を循環量制御部で制御した後、そ
の制御値で前記ポンプの吸い上げ量を可変させたことを
特徴とするものである。
Means and Actions for Solving the Problems
In order to achieve the above-mentioned object, the first invention is a step of denitrifying raw water with denitrifying bacteria in a denitrifying tank, a step of nitrifying with nitrifying bacteria in a plurality of stages of nitrifying tanks, and a solid-liquid solution in a settling tank. In the activated sludge circulation modification process including the step of separating and discharging the supernatant liquid as treated water, a flow meter of raw water flowing into the denitrification tank is provided, and total oxygen is provided in the upstream part of the multi-stage nitrification tank. A measuring instrument for the value obtained by subtracting the oxygen consumption rate associated with the nitrification reaction from the consumption rate is attached, and the nitrification rate in the nitrification tank is estimated from the oxygen consumption based on the nitrification reaction and the amount of dissolved oxygen,
Depending on the value and the inflow rate of raw water, DO control is performed to control the blower blow rate to the nitrification tank so as to enable SRT control to secure the target nitrification rate, and then flow into the denitrification tank. In addition to measuring the dissolved oxygen and flow rate of raw water, the respiratory rate and dissolved oxygen of the nitrification solution in the nitrification tank were measured, and the measured values of the flow rate of the nitrification solution sucked up by the pump were controlled by the circulation rate control unit. After that, the suction amount of the pump is changed by the control value.

【0012】第2発明は、前記水質分析において、NO
X−Nの分析が行われないときには、流入T−Nを推定
した後、Nit−Rrから硝化速度を推定し、しかる
後、硝化反応モデル計算を行って硝化速度を得た後、硝
化反応モデルを最適化してから脱窒反応モデル計算を行
って脱窒速度を得て最適操作量を得るようにしたもので
ある。
[0012] A second aspect of the present invention is NO in the water quality analysis.
When the analysis of X- N is not performed, the inflow T-N is estimated, and then the nitrification rate is estimated from Nit-Rr. Then, the nitrification reaction model is calculated to obtain the nitrification rate, and then the nitrification reaction model is calculated. The denitrification reaction model calculation is performed after optimizing the above to obtain the denitrification rate to obtain the optimum operation amount.

【0013】第3発明は、前記Nit−Rrから得た硝
化速度と硝化反応モデル計算による硝化速度の適合を非
線形シンプレックス法で行うことを特徴とするものであ
る。第4発明は、前記非線形シンプレックス法によって
脱窒反応モデル中の動力学的パラメータを得て最適モデ
ルを獲得し、その最適モデルに計測データを入力して脱
窒速度を推定することを特徴とするものである。
A third invention is characterized in that the nitrification rate obtained from the Nit-Rr and the nitrification rate by the nitrification reaction model calculation are adapted by a non-linear simplex method. A fourth invention is characterized in that a dynamic parameter in a denitrification reaction model is obtained by the nonlinear simplex method to obtain an optimum model, and measurement data is input to the optimum model to estimate the denitrification rate. It is a thing.

【0014】第5発明は、前記水質分析において、NO
X−Nの分析が行われないときには、Nit−Rrから
得られた硝化速度あるいは硝化反応最適モデルより計算
される硝化速度より硝化最終槽のNOX−N濃度を推定
し、これから脱窒槽に流入するNOX−N濃度を計算す
ることを特徴とするものである。
The fifth aspect of the present invention is that, in the water quality analysis, NO
When the analysis of the X -N is not performed, and estimates the NO X -N concentration of nitrifying final tank than nitrification rate as calculated from the nitrification rate or nitrification best model obtained from Nit-Rr, now flows into the denitrification reactor it is characterized in calculating the NO X -N concentration.

【0015】第6発明は、前記水質分析において、NO
X−Nの分析を行ったときには、硝化反応モデル計算に
より硝化速度を得、この硝化速度から硝化反応モデルの
最適化を行ってから、脱窒反応モデル計算を行って脱窒
速度を得、この脱窒速度から脱窒反応モデルの最適化を
行って最適操作量を得るようにしたことを特徴とするも
のである。
[0016] A sixth aspect of the present invention is NO in the water quality analysis.
When the analysis of X- N is performed, the nitrification rate is calculated by the nitrification reaction model calculation, the nitrification reaction model is optimized from this nitrification rate model, and then the denitrification reaction model calculation is performed to obtain the denitrification rate. The feature is that the denitrification reaction model is optimized from the denitrification rate to obtain the optimum manipulated variable.

【0016】[0016]

【実施例】以下この発明の一実施例を図面に基づいて説
明する。図1はこの発明の一実施例を示す制御システム
構成図で、図6と同一部分は同一符号を付して示す。図
1において、嫌気槽(この実施例では以下脱窒槽と称す
る)1a,1bと好気槽(この実施例では以下硝化槽と
称する)2a〜2eとの間に両用槽13が設けられてい
る。脱窒槽1aの前段には原水3の流入量を測定する流
量計15が配備されており、また硝化槽2aにRr計1
6が付設されている。この流量計15で測定された原水
3の流入量と、Rr計16で測定された値に基づいて演
算されたNit−Rr値17と、硝化槽2aに付設され
たDO計18によるDO値および水質分析値とが硝化反
応制御システム19に入力されている。そしてこの制御
システム19から出力された設定値に基づいてDO制御
20とSRT制御21とが実施される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a control system showing an embodiment of the present invention. The same parts as those in FIG. 6 are designated by the same reference numerals. In FIG. 1, a dual-use tank 13 is provided between an anaerobic tank (hereinafter referred to as a denitrification tank in this embodiment) 1a and 1b and an aerobic tank (hereinafter referred to as a nitrification tank in this embodiment) 2a to 2e. . In front of the denitrification tank 1a, a flow meter 15 for measuring the inflow of raw water 3 is provided, and in the nitrification tank 2a, an Rr meter 1 is installed.
6 is attached. The inflow amount of the raw water 3 measured by the flow meter 15, the Nit-Rr value 17 calculated based on the value measured by the Rr meter 16, the DO value by the DO meter 18 attached to the nitrification tank 2a, and The water quality analysis value is input to the nitrification reaction control system 19. Then, the DO control 20 and the SRT control 21 are performed based on the set value output from the control system 19.

【0017】かかるシステムの基本的作用は以下の通り
である。図1に示したように、先ず原水3が脱窒槽1
a,1bへ流入する時の流入量が流量計15によって測
定され、この測定値が硝化反応制御システム19に入力
される。脱窒槽1a,1bでは水中にある撹拌機構1
0,10の撹拌作用と脱窒細菌の作用に基づいて、NO
3−N、NO2−NイオンのN2への還元、即ち脱窒が行
われる。
The basic operation of such a system is as follows. As shown in FIG. 1, first, raw water 3 is denitrification tank 1
The inflow amount when flowing into a and 1b is measured by the flow meter 15, and this measured value is input to the nitrification reaction control system 19. In the denitrification tanks 1a and 1b, a stirring mechanism 1 that is in water
Based on the stirring action of 0 and 10 and the action of denitrifying bacteria, NO
3 -N, reduction to N 2 in the NO 2 -N ions, i.e. denitrification is performed.

【0018】次に原水3が硝化槽2a〜2eに流入し
て、ブロワ5の駆動に伴って散気管4からのエアレーシ
ョンによる曝気が行われ、硝化菌の作用に基づいてアン
モニア性窒素NH4−NのNO2−N又はNO3−Nへの
酸化、即ち硝化が行われる。Nit−Rrは硝化反応に
おける酸素利用速度であるから、これにより硝化速度を
推定できる。アンモニアが硝酸まで硝化される反応式は
次の(1)式で表すことができる。
Next, the raw water 3 flows into the nitrification tanks 2a to 2e, aeration is performed by aeration from the air diffuser 4 as the blower 5 is driven, and ammonia nitrogen NH 4 − is generated based on the action of nitrifying bacteria. Oxidation of N to NO 2 —N or NO 3 —N, that is, nitrification is performed. Since Nit-Rr is the oxygen utilization rate in the nitrification reaction, the nitrification rate can be estimated from this. The reaction equation for nitrifying ammonia to nitric acid can be expressed by the following equation (1).

【0019】 NH4 ++2O2→NO3 -+H2O+2H+ ……(1) よって、比硝化速度KNは次の(2)式によって推定で
きる。
NH 4 + + 2O 2 → NO 3 + H 2 O + 2H + (1) Therefore, the specific nitrification rate KN can be estimated by the following equation (2).

【0020】 KN=(Nit-Rr)・(14/2・16・2)・(1/MLSS) ……(2) なお、KN:比硝化速度(mg-N/g-ss/hr) Nit-Rr:硝化反応による酸素利用速度(mg-o2/L/hr) MLSS:汚泥濃度(g-ss/L)である。KN = (Nit-Rr) ・ (14/2 ・ 16 ・ 2) ・ (1 / MLSS) …… (2) KN: Specific nitrification rate (mg-N / g-ss / hr) Nit -Rr: Oxygen utilization rate by nitrification reaction (mg-o 2 / L / hr) MLSS: Sludge concentration (g-ss / L).

【0021】処理上立ち上げ時には以上の方法で硝化速
度を推定するが、Nit-Rrと硝化速度のデータの蓄積が行
われた後は、Nit-Rrと硝化速度の関係式を立て、これに
より硝化速度を推定することができる。
The nitrification rate is estimated by the above method at the start-up due to processing. After the data of Nit-Rr and nitrification rate have been accumulated, a relational expression between Nit-Rr and nitrification rate is established. The nitrification rate can be estimated.

【0022】上記の作用時に、原水3の流入量が流量計
15で測定されるとともに、Rr計16によって硝化反
応にかかる酸素利用速度Nit−Rr値17とDO計1
8のDO値とが測定され、このNit−Rr値17及び
DO値18の各値に基づいて各硝化槽2a〜2eに対す
るブロワ5の送風量をコントロールするDO制御20が
実施され、更に余剰汚泥引抜ポンプ9の稼働をコントロ
ールして硝化菌の流出量を減らす等のSRT制御21が
行われる。これを換言すれば、硝化反応制御システム1
9は原水3の流入量と硝化槽内2a内での硝化速度に応
じて目標とする硝化速度を確保するためのSRT制御を
可能ならしめるように硝化槽2a〜2eに対するブロワ
5の送風量をコントロールするDO制御を実施する。
During the above operation, the inflow rate of the raw water 3 is measured by the flow meter 15, and the oxygen utilization rate Nit-Rr value 17 and the DO meter 1 for the nitrification reaction are measured by the Rr meter 16.
The DO value of 8 and the DO value of 8 are measured, and the DO control 20 for controlling the air flow rate of the blower 5 to each of the nitrification tanks 2a to 2e is performed based on each of the Nit-Rr value 17 and the DO value 18, and the excess sludge is further added. The SRT control 21 such as controlling the operation of the extraction pump 9 to reduce the outflow amount of nitrifying bacteria is performed. In other words, the nitrification reaction control system 1
Reference numeral 9 designates the amount of air blown from the blower 5 to the nitrification tanks 2a to 2e so as to enable SRT control for ensuring a target nitrification speed in accordance with the inflow rate of the raw water 3 and the nitrification rate in the nitrification tank 2a. Perform DO control to control.

【0023】具体的な制御例としては、例えば水温変化
等でNit−Rr値が下限値よりも小さくなると、この
Nit−Rr値が高くなるようにDO設定値を上げる指
令を出力する。この時DO値が充分に高い場合には、D
O設定値はそのままでpHの設定値を上げてNit−R
r値が高くなるようにし、SRTの設定値を下げて硝化
菌の流出量を減らす運転制御を実施する。SRT制御と
は硝化反応を速くするために汚泥濃度を高くして硝化菌
が系外に排出されないようにし、且つ余剰汚泥の引き抜
き量を小さくする手法である。
As a specific control example, when the Nit-Rr value becomes smaller than the lower limit value due to, for example, a change in water temperature, a command for increasing the DO set value is output so that the Nit-Rr value becomes higher. At this time, if the DO value is sufficiently high, D
The O set value remains the same and the pH set value is increased to Nit-R.
The operation value is controlled so that the r value becomes high and the set value of SRT is lowered to reduce the outflow amount of nitrifying bacteria. The SRT control is a method of increasing the sludge concentration in order to accelerate the nitrification reaction so that nitrifying bacteria are not discharged to the outside of the system, and reducing the amount of excess sludge drawn out.

【0024】上記の運転時に硝化槽2eの硝化液が硝化
液循環ポンプ6を用いて脱窒槽1aに送り込まれること
により、この脱窒槽での脱窒効果が促進される。特に廃
水中のリンは脱窒槽内で放出され、硝化槽内で活性汚泥
に取り込まれて除去される。最終沈澱池7内に沈降した
汚泥の一部は返送汚泥ポンプ8により脱窒槽1aに返送
され、他の汚泥は余剰汚泥引抜ポンプ9により余剰汚泥
処理装置に送り込まれて処理される。最終沈澱池7の上
澄液は処理水11として図外の消毒槽等を経由してから
放流される。
During the above operation, the nitrification solution in the nitrification tank 2e is fed into the denitrification tank 1a by using the nitrification solution circulation pump 6, so that the denitrification effect in this denitrification tank is promoted. Particularly, phosphorus in the wastewater is released in the denitrification tank and taken into the activated sludge in the nitrification tank to be removed. A part of the sludge settled in the final settling basin 7 is returned to the denitrification tank 1a by the return sludge pump 8, and the other sludge is sent to the excess sludge treatment device by the excess sludge drawing pump 9 for treatment. The supernatant of the final settling tank 7 is discharged as treated water 11 after passing through a disinfection tank (not shown).

【0025】上記のRr計16は、硝化槽2aにおける
硝化反応の進行状況をモニターするために用いられる。
即ち、酸素利用速度には有機物の酸化分解の際に消費さ
れる酸素量と、活性汚泥の内生呼吸に消費される酸素量
及び硝化反応で消費される酸素量とが含まれる。
The Rr meter 16 is used to monitor the progress of the nitrification reaction in the nitrification tank 2a.
That is, the oxygen utilization rate includes the amount of oxygen consumed during oxidative decomposition of organic substances, the amount of oxygen consumed for endogenous respiration of activated sludge, and the amount of oxygen consumed for nitrification reaction.

【0026】この値は有機物の除去や内生呼吸による呼
吸速度、即ち、全酸素消費速度から硝化反応に伴う酸素
消費速度を差し引いた値として表わされる。測定された
値は硝化反応制御システム19に入力され、硝化槽の容
積及び水理学的滞留時間等から理想的硝化速度を算出
し、更に硝化槽2aの活性汚泥の硝化に伴う前記Nit
−Rr17,DO18とから活性汚泥の実際の硝化速度
を推定する。なお、硝化反応制御システム19には水質
分析値が分析が行われた日には分析値が入力される。
This value is expressed as a respiratory rate due to removal of organic substances and endogenous respiration, that is, a value obtained by subtracting the oxygen consumption rate associated with the nitrification reaction from the total oxygen consumption rate. The measured value is input to the nitrification reaction control system 19, the ideal nitrification rate is calculated from the volume of the nitrification tank and the hydraulic retention time, and the Nit accompanying the nitrification of the activated sludge in the nitrification tank 2a is calculated.
-Estimate the actual nitrification rate of activated sludge from Rr17 and DO18. The analysis value is input to the nitrification reaction control system 19 on the day when the water quality analysis value is analyzed.

【0027】そして、硝化反応を高めなければならない
時には、返送汚泥ポンプ8による最終沈澱池7から脱窒
槽1aに戻す汚泥量を多くすることにより、活性汚泥浮
遊物であるMLSSを高め、且つ余剰汚泥引抜ポンプ9
の制御により汚泥滞留時間であるSRTを調整し、硝化
槽2aによる硝化が順調に行われている場合には、硝化
液循環ポンプ6の作用に基づく硝化槽2aから脱窒槽1
aに対する硝化液の返送量を多くして液の循環比を高め
ることにより、窒素の除去率を大きくすることができ
る。特に水温低下とか負荷変動による硝化不良を防止し
て安定した窒素除去を行うことができる。
When it is necessary to enhance the nitrification reaction, the amount of sludge returned from the final settling basin 7 by the return sludge pump 8 to the denitrification tank 1a is increased to increase the MLSS, which is the activated sludge suspended matter, and to increase the excess sludge. Extraction pump 9
When the nitrification by the nitrification tank 2a is performed smoothly by adjusting the SRT, which is the sludge retention time, by controlling the sludge retention time, the denitrification tank 1 from the nitrification tank 2a based on the action of the nitrification solution circulation pump 6 is operated.
The rate of nitrogen removal can be increased by increasing the amount of the nitrification solution returned to a and increasing the circulation ratio of the solution. In particular, it is possible to perform stable nitrogen removal by preventing nitrification failure due to water temperature drop or load fluctuation.

【0028】又、夜間等の低負荷時にはNit−Rr値
も極めて小さくなるので、硝化槽における曝気量を低く
するとともに硝化液の循環量を低減するとか、MLSS
の濃度を高く保持して脱窒槽1a,1bのDOの消費量
を拡大する等の制御を実施することによって最適な運転
管理を実施することが出来る。
Also, since the Nit-Rr value becomes extremely small when the load is low such as at night, the aeration amount in the nitrification tank is reduced and the circulation amount of the nitrification solution is reduced, or the MLSS is reduced.
The optimum operation management can be carried out by controlling the operation such as increasing the consumption of DO in the denitrification tanks 1a and 1b while keeping the concentration of NOx high.

【0029】次に図2のフロー図に基づいて、前記制御
システム19における制御の実際例を説明する。先ずス
テップ100で制御がスタートし、ステップ101で窒素に関
する流入負荷量を測定する。この流入負荷量はケルダー
ル窒素又は総窒素の濃度と前記原水3の流入量から計算
される。
Next, an actual example of control in the control system 19 will be described based on the flow chart of FIG. First, control starts in step 100, and in step 101, the inflow load amount related to nitrogen is measured. This inflow load is calculated from the concentration of Kjeldahl nitrogen or total nitrogen and the inflow of the raw water 3.

【0030】次にステップ102で必要硝化速度、即ち、
流入負荷に対して硝化槽末端で硝化反応が完了するため
の硝化速度R(mg−N/g−ss・h)が演算され
る。
Next, at step 102, the required nitrification rate, that is,
The nitrification rate R (mg-N / g-ss-h) for completing the nitrification reaction at the end of the nitrification tank with respect to the inflow load is calculated.

【0031】R=(TN×Q)/(MLSS×V) ここでTN:流入総窒素濃度(mg/l),Q=流入水
量(l/h) MLSS:活性汚泥浮遊物濃度,V:硝化槽容積(l) ステップ103では、予め調査しておいた硝化速度と硝化
に要する呼吸速度Nit−RrからRに相当する前記硝
化反応に基づく呼吸速度を演算し、ステップ104で制御
のための下限値を設定してステップ105では実際のNi
t−Rr値を測定する。
R = (TN × Q) / (MLSS × V) where TN: total inflow nitrogen concentration (mg / l), Q = inflow water amount (l / h) MLSS: activated sludge suspension concentration, V: nitrification Tank volume (l) In step 103, a respiration rate based on the nitrification reaction corresponding to R is calculated from the nitrification rate and the respiration rate Nit-Rr required for nitrification which have been investigated in advance, and in step 104 the lower limit for control is calculated. Set the value and set the actual Ni in step 105.
The t-Rr value is measured.

【0032】そしてステップ106では測定値が設定され
た下限値よりも上にあるか否かを判定し、YESの場合に
はステップ107で新しい負荷量の測定があるか否かを判
定し、測定がある場合にはステップ101に戻り、ない場
合にはステップ105に戻って次のNit−Rr値の測定
を行う。
Then, in step 106, it is determined whether or not the measured value is above the set lower limit value, and if YES, it is determined in step 107 whether or not there is a new load amount measurement, and the measured value is measured. If there is, the process returns to step 101, and if not, the process returns to step 105 to measure the next Nit-Rr value.

【0033】前記ステップ106でNO,即ち測定値が下限
値以下である場合には、ステップ108により必要とする
SRTの推定を行う。ここで必要SRT=1/μ
S(μS:比増殖速度,l/day)で表すことができ
る。更にステップ109でMLSSの推定を行う。そして
ステップ110でMLSSが管理上の限界値内にあるか否
かを判定する。
If NO in step 106, that is, if the measured value is less than or equal to the lower limit value, the required SRT is estimated in step 108. Required here SRT = 1 / μ
It can be represented by SS : specific growth rate, 1 / day). Further, in step 109, MLSS is estimated. Then, in step 110, it is determined whether the MLSS is within the management limit value.

【0034】ステップ110でYES,即ちMLSSが限界値
内にある場合にはステップ111でこのSRT設定値を出
力し、ステップ110でNO,即ちMLSSが限界値を越え
ている場合にはステップ112でDO設定値を演算し、ス
テップ113でこのDO設定値を出力してステップ111に移
行する。
If YES at step 110, that is, if MLSS is within the limit value, this SRT set value is output at step 111, and if NO at step 110, that is, if MLSS exceeds the limit value, at step 112. The DO set value is calculated, the DO set value is output in step 113, and the process proceeds to step 111.

【0035】図1において、下水等の原水3中に含まれ
ているアンモニア性窒素のほとんどがそのままの形態で
脱窒槽1a,1bを通過する。このため、Rr計16が
設置されている硝化槽2aではアンモニア性窒素の低下
による硝化律速が起らない。又、Nit−Rrは水温が
一定でかつアンモニア性窒素が3mg/l以上存在すれば一
定になることが知られている。従って上記のようにRr
計16を設置してNit−Rrを計測することにより硝
化活性の変化を直接検出することができる。
In FIG. 1, most of the ammoniacal nitrogen contained in the raw water 3 such as sewage passes through the denitrification tanks 1a and 1b as it is. Therefore, in the nitrification tank 2a in which the Rr meter 16 is installed, the nitrification rate control due to the decrease of ammonia nitrogen does not occur. It is known that Nit-Rr becomes constant when the water temperature is constant and ammoniacal nitrogen is present at 3 mg / l or more. Therefore, as described above, Rr
By installing a total of 16 and measuring Nit-Rr, a change in nitrification activity can be directly detected.

【0036】次に硝化反応モデルについて以下に説明す
る。前記硝化菌の比増殖速度μSは次式で表わされる。
Next, the nitrification reaction model will be described below. The specific growth rate μ S of the nitrifying bacteria is represented by the following equation.

【0037】 μS=μS(max)・[exp(θS(t−15))]・[1−Z(KpH−pHA)]・[DOA/(DOA+Kdo)] …… (3) ここで、μS:硝化菌比増殖速度(1/day)、μS(max):硝
化菌最大比増殖速度(1/day)、θS:温度係数(-)、t:
水温(℃)、pHA:水素イオン濃度(-)好気最初槽と好
気最終槽の平均値、Z:pH係数(-)、KpH:pH飽和
定数(-)、DOA:溶存酸素濃度(mg-o2/L)好気最初槽と
好気最終槽の平均値、KDO :DO飽和定数(mg-o2/L)で
ある。
Μ S = μ S (max) · [exp (θ S (t−15))] · [1−Z (K pH −pH A )] · [DO A / (DO A + Kdo)] (3) where μ S : specific growth rate of nitrifying bacteria (1 / day), μ S (max) : maximum specific growth rate of nitrifying bacteria (1 / day), θ S : temperature coefficient (-), t:
Water temperature (℃), pH A : Hydrogen ion concentration (-) Average value of aerobic first tank and aerobic final tank, Z: pH coefficient (-), K pH : pH saturation constant (-), DO A : Dissolved oxygen Concentration (mg-o 2 / L) Average value of aerobic first tank and aerobic final tank, K DO : DO saturation constant (mg-o 2 / L).

【0038】(3)式において、硝化菌の比増殖速度は
最大比増殖速度に水温、pHおよびDOに律速が掛かっ
たものとなっている。そして、比硝化速度KNは次の
(4)式で表すことができる。
In the equation (3), the specific growth rate of nitrifying bacteria is the maximum specific growth rate with water temperature, pH and DO being rate-limiting. The specific nitrification rate KN can be expressed by the following equation (4).

【0039】 KN=(μS・XS)/(YS・24・MLSS・Vt) ……(4) ここで、KN:比硝化速度(mg-N/g-ss/hr)、XS:硝化菌
量(mg)、YS:硝化菌収率(mg/mg-N)、MLSS:汚泥濃度(g
-ss/L)、Vt:反応槽容積(L)である。
KN = (μ S · X S ) / (Y S · 24 · MLSS · V t ) ... (4) where KN: specific nitrification rate (mg-N / g-ss / hr), X S : amount of nitrifying bacteria (mg), Y S : yield of nitrifying bacteria (mg / mg-N), MLSS: sludge concentration (g
-ss / L), Vt: reaction tank volume (L).

【0040】次に硝化菌が流入するT−N量の60%を
利用できると仮定すると1日当たりの硝化菌増殖量DX
は次式で表される。
Next, assuming that 60% of the inflowing TN amount of nitrifying bacteria can be utilized, the nitrifying bacteria growth amount DX per day will be DX.
Is represented by the following equation.

【0041】 DXS=min(TNin・Qin・24・0.6・YSS・XS・(V0/Vt))…(5) ここで、DXS:1日当たりの硝化菌増殖量(mg/day)、
TNin:流入T−N濃度(mg-N/L)→分流式下水道を想定
すると、天候に係わらず流入T−Nは毎日規則的に時間
変動すると言われている。よって、過去24時間の平均
流入T−Nはこれから算出することができる。また、U
V計と流入T−N相関を取っておけばUV計の出力値よ
り流入T−Nの濃度を推定できる。
DX S = min (TNin · Qin · 24 · 0.6 · Y S , μ S · X S · (V 0 / V t )) (5) where DX S : Nitrifying bacteria growth amount per day (mg / day),
TNin: Inflow TN concentration (mg-N / L) → Assuming that a sewer system will be used, it is said that the inflow TN will regularly change with time regardless of the weather. Therefore, the average inflow TN for the past 24 hours can be calculated from this. Also, U
If the correlation between the V meter and the inflow TN is obtained, the concentration of the inflow TN can be estimated from the output value of the UV meter.

【0042】Qin:流入水量(L/hr)、V0:硝化槽容積
(L)。
Qin: Inflow amount (L / hr), V 0 : Nitrification tank volume
(L).

【0043】上記(5)式において、反応槽に流入する
利用可能T−N量と硝化能力との比較をして、小さい方
を採る。つまり硝化可能T−N量を越えるような比硝化
速度を持つ場合は、基質に対しての律速が掛かると考え
る。
In the above equation (5), the available TN amount flowing into the reaction tank is compared with the nitrification capacity, and the smaller one is selected. That is, when the specific nitrification rate exceeds the nitrifiable TN amount, it is considered that the rate is controlled for the substrate.

【0044】更に系内の新規硝化菌量XS(new)は次の
(6)式で表すことができる。
Further, the amount of new nitrifying bacteria in the system X S (new) can be expressed by the following equation (6).

【0045】 XS(new)=XS+DXS−(XS/SRT)−(XS・bS)……(6) ここで、XS(new):新規硝化菌量(mg)、SRT:汚泥滞
留時間(day)、bS:硝化菌自己分解係数(1/day)であ
る。
X S (new) = X S + DX S − (X S / SRT) − (X S · b S ) ... (6) where X S (new) is the amount of new nitrifying bacteria (mg), SRT: sludge retention time (day), b S : nitrifying bacteria autolysis factor (1 / day).

【0046】上記(6)式においては、元々存在する硝
化菌量、硝化菌増殖量、硝化菌引き抜き量および硝化菌
自己分解量を加味して新規硝化菌を表している。
In the above formula (6), a novel nitrifying bacterium is represented by taking into consideration the amount of nitrifying bacterium, the amount of nitrifying bacterium growth, the amount of nitrifying bacterium extraction and the amount of nitrifying bacterium autolysis which originally exist.

【0047】次に図3により上記硝化反応モデルを用い
た硝化速度予測方法の実際を説明する。先ずステップ2
00で制御がスタートし、ステップ201で窒素に関す
る分析値と計測値とが入力される。窒素に関する分析値
とは、流入水の総窒素,硝酸性窒素であり、窒素に関す
る計測値とは、呼吸速度,DO,MLSS,pH及び水
温である。
Next, the actual method of predicting the nitrification rate using the above-mentioned nitrification reaction model will be described with reference to FIG. First step 2
The control starts at 00, and at step 201, the analysis value and the measurement value regarding nitrogen are input. Analytical values for nitrogen are total nitrogen and nitrate nitrogen in the inflow water, and measured values for nitrogen are respiratory rate, DO, MLSS, pH and water temperature.

【0048】次にステップ202でモデル式の最適化処
理が行われ、ステップ203では過去のデータに基づく
予測条件が入力される。この予測条件とは水温変化の予
測,負荷変動予測である。
Next, in step 202, a model formula optimization process is performed, and in step 203, prediction conditions based on past data are input. These prediction conditions are prediction of water temperature change and load fluctuation prediction.

【0049】ステップ204ではモデル式に基づいて予
測の計算が行われ、ステップ205では計算された予測
値と目標値との比較が行われる。ここでYES,即ち異
常ありと判定された場合にはステップ201へ戻り、N
O,即ち異常なしと判定された場合にはステップ206
に対処方法が設定される。この対処方法には、DOとか
SRT,pH,循環比,脱窒/硝化容積比のそれぞれに
ついて一部又は全部を変更する手段が含まれ、この結果
からステップ207でモデル式に基づいて再度予測の計
算が行われ、ステップ208で計算が有効であるか否か
が判定される。ここでNO,即ち無効であった場合には
ステップ206に戻って次の対処方法が設定され、YE
S,即ち有効である場合にはステップ209で所定の操
作に移行する。この操作とはブロワの稼働量とか余剰汚
泥ポンプによる汚泥引抜量、或いは脱窒槽に対する硝化
液の循環量である。
At step 204, a prediction is calculated based on the model formula, and at step 205, the calculated predicted value and the target value are compared. Here, if YES, that is, if it is determined that there is an abnormality, the process returns to step 201 and N
O, that is, if it is determined that there is no abnormality, step 206
The handling method is set. This coping method includes means for changing a part or all of each of DO, SRT, pH, circulation ratio, and denitrification / nitrification volume ratio. From this result, in step 207, prediction is performed again based on the model formula. The calculation is performed and it is determined in step 208 whether the calculation is valid. If NO here, that is, if it is invalid, the routine returns to step 206, the next coping method is set, and YE
If S, that is, if it is valid, the operation proceeds to a predetermined operation in step 209. This operation is the operation amount of the blower, the amount of sludge drawn out by the excess sludge pump, or the amount of circulation of the nitrification liquid to the denitrification tank.

【0050】上記ステップ202におけるモデル式の最
適化処理とは、図4に示すようにステップ301でD
O,pH,水温を読み込んでμs(比増殖速度)を演算
し、得られたμs値とMLSS値に基づいてステップ3
02でRr(硝化速度)を演算する。次にステップ30
3で演算によりXS(new)(新規硝化菌量)を求める。こ
のような最適化処理後にステップ304で水温とか負荷
変動の予測をふまえてモデル式に基づいてシミュレーシ
ョンにより予測値を計算し、ステップ305では計算さ
れた予測値と目標値との比較が行われて図3のステップ
205以降のフローに戻る。
The model formula optimizing process in the above step 202 is the step D in step 301 as shown in FIG.
O, pH, and water temperature are read to calculate μ s (specific growth rate), and based on the obtained μ s value and MLSS value, step 3
At 02, Rr (nitrification rate) is calculated. Next step 30
In step 3, X S (new) (amount of new nitrifying bacteria ) is calculated. After such an optimization process, in step 304, the predicted value is calculated by simulation based on the model formula based on the prediction of the water temperature or the load fluctuation, and in step 305, the calculated predicted value and the target value are compared. It returns to the flow after step 205 of FIG.

【0051】このモデル式の最適化処理には定常状態で
のデータを必要とせず、しかも原水中の窒素成分を硝酸
性窒素に酸化して放流しようとする処理プロセスにおけ
る硝化反応の時々刻々と変化する状況を容易に推定する
ことができる。
The optimization treatment of this model formula does not require steady-state data, and the nitrification reaction changes momentarily in the treatment process in which the nitrogen component in the raw water is oxidized to nitrate nitrogen and is released. The situation can be easily estimated.

【0052】なお、必要実測データとしては、必要計測
データと必要分析データおよびSRT、反応槽容積(生
物反応槽全体、硝化槽)各種流量等である。
The necessary measurement data includes necessary measurement data, necessary analysis data, SRT, various reaction tank volumes (entire biological reaction tank, nitrification tank), various flow rates, and the like.

【0053】必要計測データは、硝化最初槽DO(1日
平均)、硝化最終槽DO(1日平均)、硝化最初槽pH
(1日平均)、硝化最終槽pH(1日平均)、反応槽水
温(1日平均)、MLSS(1日平均)およびNit−
Rr(1日平均)の7つの計測データ項目である。ま
た、必要分析データは、硝化最終槽NOX−N濃度(分
析日のデータ)と脱窒最終槽NOX−N濃度(分析日の
データ)の2つの分析データ項目である。
Necessary measurement data are nitrification first tank DO (1 day average), nitrification final tank DO (1 day average), nitrification first tank pH.
(1 day average), nitrification final tank pH (1 day average), reactor water temperature (1 day average), MLSS (1 day average) and Nit-
There are seven measurement data items for Rr (average daily). The necessary analysis data are two analysis data items, that is, the nitrification final tank NO X -N concentration (analysis date data) and the denitrification final tank NO X -N concentration (analysis date data).

【0054】次に動力学的パラメータの最適化を行うに
は、前述したモデル式(3)〜(6)式中の次の8つの
動力学的パラメータを実測硝化速度(NOX−N分析値
より求める)と(4)式の計算硝化速度との誤差を最小
にするように非線形シンプレックス法を用いて値を決定
する。従って、この最適化操作は実測硝化速度が得られ
る日にのみ行う。これは計算硝化速度と実測硝化速度の
フィティングを行うためである。
Next, in order to optimize the kinetic parameters, the following eight kinetic parameters in the above-mentioned model equations (3) to (6) are used to measure the actual nitrification rate (NO X -N analysis value). The value is determined by using the non-linear simplex method so as to minimize the error between the (calculated from the above) and the calculated nitrification rate of the equation (4). Therefore, this optimization operation is performed only on the day when the measured nitrification rate is obtained. This is for fitting the calculated nitrification rate and the measured nitrification rate.

【0055】μS(max):硝化菌最大比増殖速度(1/da
y)、θS:温度係数(-)、XS(0):硝化菌量(mg)、YS:硝
化菌収率(mg/mg-N)、bS:硝化菌自己分解係数(1/da
y)、KDO:DO飽和定数(mg-o2/L)、KpH:pH飽和定
数(-)、Z:pH係数(-) 最適化モデル式による硝化速度の推定は、最適を行った
日より次の最適化を行う日までは得られた最適モデル式
に計測データを入力することにより計算する。また、N
it−Rrとモデル式における最適化は、Nit−Rr
より得られる推定硝化速度とモデル式から得られる推定
硝化速度の誤差を最小にするようにモデル式中の動力学
的パラメータの最適化を再び非線形シンプレックス法に
よって行い、NOX−N分析日間の硝化反応モデルの更
に正確な最適化を行う。得られた動力学的パラメータを
制御の判断に用いることができる。
Μ S (max) : maximum specific growth rate of nitrifying bacteria (1 / da
y), θ S : temperature coefficient (-), X S (0) : amount of nitrifying bacteria (mg), Y S : yield of nitrifying bacteria (mg / mg-N), b S : autolysis coefficient of nitrifying bacteria (1 / da
y), K DO : DO saturation constant (mg-o 2 / L), K pH : pH saturation constant (-), Z: pH coefficient (-) The estimation of the nitrification rate by the optimization model formula was performed optimally. From one day to the next optimization day, calculation is performed by inputting measurement data into the obtained optimum model formula. Also, N
The optimization in it-Rr and the model formula is Nit-Rr.
It performed again by the non-linear simplex method to optimize the kinetic parameters of the model equation to minimize the error of the estimated nitrification speed obtained from obtained from an estimated nitrification rate and the model formula, nitrification of NO X -N Analysis days Perform more accurate optimization of the reaction model. The resulting kinetic parameters can be used for control decisions.

【0056】次に図1における、循環量制御部について
のべる。循環量制御部22には種々の計測値が入力され
る。計測値は次の4つである。第1は流入水(原水)の
溶存酸素DOをDO計23で計測した値、第2は流入水
(原水)の流量を流量計15で計測した値、第3は硝化
槽2eの溶存酸素をDO計24で計測した値、第4は硝
化槽2eの硝化液を循環させる流量を流量計25で計測
した値である。これら計測値が循環量制御部22に入力
されると、ここで各計測値は制御されて、その制御値に
応じて硝化液(循環水)を循環させるポンプ6が制御さ
れる。
Next, the circulation amount control section in FIG. 1 will be described. Various measurement values are input to the circulation amount control unit 22. The four measured values are as follows. The first is the dissolved oxygen DO of the inflow water (raw water) measured by the DO meter 23, the second is the flow rate of the inflow water (raw water) measured by the flow meter 15, and the third is the dissolved oxygen of the nitrification tank 2e. The value measured by the DO meter 24, and the fourth is the value measured by the flow meter 25 for the flow rate of circulating the nitrification liquid in the nitrification tank 2e. When these measured values are input to the circulation amount control unit 22, the measured values are controlled here, and the pump 6 that circulates the nitrification liquid (circulating water) is controlled according to the control values.

【0057】上記のように構成された制御システムにお
いて、脱窒槽1aに流入した溶存酸素DOが消費されて
無酸素状態になるまでの時間をRr計16を使用して予
測する。この予測した時間により、脱窒の良否を判定す
る。すなわち、時間が短ければ短いほど脱窒槽1a内で
の脱窒時間が確保できることになり、このため、窒素除
去効率が高くなる。
In the control system configured as described above, the time until the dissolved oxygen DO flowing into the denitrification tank 1a is consumed and becomes anoxic is predicted using the Rr meter 16. The quality of denitrification is determined based on this predicted time. That is, the shorter the time, the longer the denitrification time in the denitrification tank 1a can be secured, and therefore, the nitrogen removal efficiency becomes higher.

【0058】しかし、上記時間を短くすることは、硝化
槽2eの出口の溶存酸素DOを低くするか、ポンプ6を
制御して循環水量を減らさなければならないため、硝化
効率の低下や脱窒量の減少を招く。この結果、窒素除去
率が低下してしまうことになる。そこで、Rr計16を
使用して実質の脱窒時間を推定すれば、与えられた条件
で循環水量の比(循環比)を最大にして窒素除去率を高
める運転制御が可能となる。
However, shortening the above-mentioned time requires lowering the dissolved oxygen DO at the outlet of the nitrification tank 2e or controlling the pump 6 to reduce the circulating water amount. Result in a decrease. As a result, the nitrogen removal rate will decrease. Therefore, if the actual denitrification time is estimated using the Rr meter 16, it becomes possible to perform operation control in which the ratio of the amount of circulating water (circulation ratio) is maximized under a given condition to increase the nitrogen removal rate.

【0059】上記脱窒反応をモデル化するに当たり、脱
窒菌の比増殖速度μdは次の(7)式のように表すこと
ができる。
In modeling the above denitrification reaction, the specific growth rate μ d of the denitrifying bacteria can be expressed by the following equation (7).

【0060】 μd=μd(max)・(exp(θd(t−20)) ……(7) ここで、μd:脱窒菌比増殖速度(1/day)、μd(max):脱
窒菌最大比増殖速度(1/day)、θd:温度係数(-)、t:
水温(℃)である。
Μ d = μ d (max) · (exp (θ d (t−20)) (7) where μ d : specific denitrifying bacteria growth rate (1 / day), μ d (max) : Maximum specific growth rate of denitrifying bacteria (1 / day), θ d : Temperature coefficient (-), t:
The water temperature (° C).

【0061】また、比脱窒速度KDNは次の(8)式で
表される。
The specific denitrification rate KDN is expressed by the following equation (8).

【0062】 KDN=(μd・Xd)/(Yd・24・MLSS・Vt) ……(8) ここで、KDN:比脱窒速度(mg-N/g-ss/hr)、Xd:脱窒
菌量(mg)、Yd:脱窒菌収率(mg/mg-N)、MLSS:汚泥濃度
(g-ss/L)、Vt:反応槽容積(L)である。上記(8)式
は脱窒菌の増殖量から脱窒速度を計算するものである。
そして、実質脱窒時間tdは後述の(12)式で表され
る。
KDN = (μ d · X d ) / (Y d · 24 · MLSS · V t ) ... (8) where KDN: specific denitrification rate (mg-N / g-ss / hr), X d : Denitrifying bacterium amount (mg), Y d : Denitrifying bacterium yield (mg / mg-N), MLSS: Sludge concentration
(g-ss / L), Vt: reaction tank volume (L). The above formula (8) calculates the denitrification rate from the growth amount of denitrifying bacteria.
Then, the substantial denitrification time t d is expressed by the equation (12) described later.

【0063】ここで、流入水と返送汚泥のDOを0(mg-0
2/L)と仮定すると、 DOI=(DOL・Qr1)/(Qin+Qr1+Qr2) ……(9) なお、DOI:理論的脱窒槽流入DO(mg-02/L)、D
L:硝化槽最終DO(mg-02/L)、Qin:流入量(L/hr)、
r1:循環量(L/hr)、Qr2:返送量(L/hr)である。ま
た、脱窒槽へ流入してから理論的にDOが0(mg-02/L)と
なる平均滞留時間tSは、 tS=DOI/Rr ………(10) で、tS:理論的DO消費時間(hr)、Rr:酸素利
用速度(mg-02/L/hr)である。
Here, the DO of the inflow water and the returned sludge is 0 (mg-0
2 / L), DO I = (DO L · Q r1 ) / (Q in + Q r1 + Q r2 ) ... (9) DO I : theoretical denitrification tank inflow DO (mg-0 2 / L ), D
O L : final DO of nitrification tank (mg-0 2 / L), Q in : inflow (L / hr),
Qr1 : Circulation amount (L / hr), Qr2 : Return amount (L / hr). Further, the average residence time t S at which DO becomes 0 (mg-0 2 / L) theoretically after flowing into the denitrification tank is t S = DO I / Rr ... (10), and tS: theoretical DO consumption time (hr), Rr: oxygen utilization rate (mg-0 2 / L / hr).

【0064】更に、脱窒槽における平均滞留時間ta
次の(11)式になる。
[0064] Further, the average residence time t a in the denitrification tank is the next (11).

【0065】 ta=Va/(Qin+Qr1+Qr2) ……(11) ただし、ta:脱窒槽平均滞留時間(hr)、Va:脱窒
槽容積(L) よって、DOが存在する場合には脱窒反応が完全阻害さ
れるとすると実質的に脱窒反応が起こる時間tdは(1
2)式のようになる。なお、tdは実質脱窒時間(h
r)である。
[0065] t a = V a / (Q in + Q r1 + Q r2) ...... (11) However, t a: denitrification average residence time (hr), V a: denitrification tank volume (L) Thus, the presence DO is In this case, if the denitrification reaction is completely inhibited, the time t d at which the denitrification reaction substantially occurs is (1
It becomes like Formula 2). In addition, t d is the actual denitrification time (h
r).

【0066】td=ta−ts ……(12) 次に、1日当たりの脱窒菌増殖量DXdは(13)式で
表すことができる。
T d = t a −t s (12) Next, the growth amount of denitrifying bacteria DX d per day can be expressed by the equation (13).

【0067】 DXd=min{NOX・(Qr1+Qr2)・24・Yd・μd,Xd・(td・Qin/Vt)} ………(13) ここで、DXd:1日当たりの脱窒菌増殖量(mg/day)、NO
X:硝化最終槽のNOX-N濃度(mg-N/L)→分析日以外は後に
示す硝化反応モデルの計算式またはNit-Rrより推定でき
る。(13)式においては脱窒槽に流入するNOX量と脱
窒能力との比較をして、小さい方を採る。つまり、流入
NOX量を越えるような脱窒速度を持つ場合は基質量以上
の脱窒は起こらない。
DX d = min {NOX · (Q r1 + Q r2 ) · 24 · Y d · μ d , X d · (t d · Q in / V t )} ………… (13) where DX d : Denitrifying bacteria growth rate (mg / day) per day, NO
X: NO X -N concentration (mg-N / L) in the final nitrification tank → It can be estimated from the formula of the nitrification reaction model shown below or Nit-Rr except for the day of analysis. In the formula (13), the amount of NO X flowing into the denitrification tank is compared with the denitrification capacity, and the smaller one is selected. That is, the inflow
Substrate amounts above denitrification when having denitrification rate that exceeds the amount of NO X does not occur.

【0068】新規脱窒菌量Xd(new)は次の(14)式で
表すことができる。
The new denitrifying bacterium amount X d (new) can be expressed by the following equation (14).

【0069】 Xd(new)=Xd+DXd−(Xd/SRT)−Xd・bd ……(14) ここで、Xd(new)は新規脱窒菌量(mg)、SRTは汚泥
滞留時間(day)、bdは脱窒菌自己分解係数(1/day)であ
る。(14)式においては、元々存在する脱窒菌量、脱
窒菌増殖量、脱窒菌引き抜き量および脱窒菌自己分解量
を加味して新規脱窒菌量を表している。
X d (new) = X d + DX d − (X d / SRT) −X d · b d (14) Here, X d (new) is a new denitrifying bacterium amount (mg), and SRT is sludge retention time (day), b d is the denitrifying bacteria autolysis coefficient (1 / day). In equation (14), the new denitrifying bacterium amount is represented by taking into consideration the originally existing denitrifying bacterium amount, denitrifying bacterium growth amount, denitrifying bacterium extraction amount and denitrifying bacterium autolysis amount.

【0070】上記のように構成した実施例において、必
要実測データとしては、 (a)必要とする計測データ項目は、硝化最終槽DO
(1日平均)、反応槽水温(1日平均)、MLSS(1
日平均)およびRr(1日平均)である。
In the embodiment constructed as described above, the necessary actual measurement data are as follows: (a) Required measurement data items are nitrification final tank DO
(1 day average), reactor water temperature (1 day average), MLSS (1
Daily average) and Rr (daily average).

【0071】(b)必要とする分析データ項目は、硝化
最終槽NOX−N濃度(分析日のデータ)、脱窒槽NOX
−N濃度(分析日のデータ)である。
(B) Necessary analytical data items are nitrification final tank NO X -N concentration (analysis date data), denitrification tank NO X.
-N concentration (data on the day of analysis).

【0072】(c)その他として、SRT、反応槽容積
(脱窒槽)、各種流量などである。
(C) Others include SRT, reaction tank volume (denitrification tank), and various flow rates.

【0073】次に動力学的パラメータの最適化として、
前述したモデル式{(7)〜(14)}中の次に示す5
つの動力学的パラメータを実測脱窒速度(NOX−N)
分析値より求める)と、(8)式の計算脱窒速度との誤
差を最小にするように非線形シンプレックス法を用いて
値を決定する。よって、最適化操作は実測脱窒速度が得
られる日にのみ行う。この理由としては、計算脱窒速度
と実測速度のフィッティングを行うためである。なお、
脱窒槽の最初の段階から既にNOX−Nが存在しない場
合(脱窒速度が早過ぎる場合)には実測脱窒速度は手分
析によって求めなければならない。
Next, as optimization of kinetic parameters,
The following 5 in the model formula {(7) to (14)} described above
Two kinetic parameters are measured denitrification rate (NO x -N)
The value is determined using the non-linear simplex method so as to minimize the error between the calculated denitrification rate of equation (8) and the calculated denitrification rate of equation (8). Therefore, the optimization operation is performed only on the day when the actual denitrification rate is obtained. The reason for this is to fit the calculated denitrification rate and the measured rate. In addition,
When NOX-N does not already exist from the first stage of the denitrification tank (when the denitrification rate is too fast), the actual denitrification rate must be obtained by manual analysis.

【0074】μd(max):脱窒菌最大比増殖速度(1/day) θd:温度係数(-) Xd(0):初期脱窒菌量 Yd:脱窒菌収率(mg/g-N) bd:脱窒菌自己分解係数(1/day) また、脱窒速度を推定するには、最適化を行った日より次
の最適化を行うまでは前回最適モデル式に計測データを
入力することにより脱窒速度を計算することができる。 図5は上述した実施例の動作フローチャートで、図5に
おいて、実測硝化速度が得られない日(NOX−Nの分
析が行われない日)の結果、すなわち、ステップS1の
分析で「no」(分析が行われない日)のときには、ス
テップS2の流入T−Nの推定を行ってからステップS
3で硝化速度の推定を行う。その後、ステップS4で硝
化反応モデル計算を行って、ステップS5で硝化反応モ
デルの最適化を行う。この最適化の後、脱窒反応モデル
計算をステップS6で行って最適化操作量が得られるま
で上記処理を行う。
Μ d (max) : maximum specific growth rate of denitrifying bacteria (1 / day) θ d : temperature coefficient (-) X d (0) : initial denitrifying bacterium amount Y d : yield of denitrifying bacteria (mg / gN) b d : Denitrifying bacterium autolysis coefficient (1 / day) In order to estimate the denitrification rate, input measurement data to the previous optimal model formula from the day of optimization until the next optimization. The denitrification rate can be calculated by FIG. 5 is an operation flowchart of the above-described embodiment. In FIG. 5, the result on the day when the measured nitrification rate is not obtained (the day on which NO X -N analysis is not performed), that is, “no” in the analysis of step S1. If (the day when analysis is not performed), the inflow TN in step S2 is estimated and then step S
In step 3, the nitrification rate is estimated. Then, the nitrification reaction model is calculated in step S4, and the nitrification reaction model is optimized in step S5. After this optimization, denitrification reaction model calculation is performed in step S6, and the above processing is performed until the optimized manipulated variable is obtained.

【0075】前記ステップS1の分析で「yes」(分
析が行われた日)のときはステップS7の処理に進み、
硝化反応のモデル計算を行う。この計算を行った後は、
ステップS8で硝化反応モデルの最適化を行い、最適化
が達成されたなら、ステップS9で脱窒反応のモデル計
算を行った後、ステップS10で脱窒反応モデルの最適
化を行って最適操作量を得る。
If the result of the analysis in step S1 is "yes" (the day when the analysis was performed), the process proceeds to step S7,
Perform model calculation of nitrification reaction. After doing this calculation,
In step S8, the nitrification reaction model is optimized, and if the optimization is achieved, the denitrification reaction model is calculated in step S9, and then the denitrification reaction model is optimized in step S10 to obtain the optimum operation amount. To get

【0076】[0076]

【発明の効果】以上述べたように、この発明によれば、
従来、脱窒速度はNOX−N濃度の分析を行わないと得
ることができず、また、硝化速度はNOX−N濃度の分
析あるいはNit−Rrの測定を行わないと得ることが
できなかったことが、分析日間の脱窒速度およびNit
−Rrの測定間の硝化速度を推定でき、かつ硝化反応お
よび脱窒反応の状態監視(モニタリング)が可能となる
とともに、硝化速度および脱窒速度の他にも各反応モデ
ル中の動作力学的パラメータの値を知ることができるた
めに、DO制御やSRT制御も可能となる利点がある。
As described above, according to the present invention,
Conventionally, the denitrification rate cannot be obtained without analysis of NO X -N concentration, and the nitrification rate cannot be obtained without analysis of NO X -N concentration or measurement of Nit-Rr. Denitrification rate and Nit
-It is possible to estimate the nitrification rate during the measurement of Rr, and to monitor the status of the nitrification reaction and denitrification reaction. In addition to the nitrification rate and denitrification rate, the operating mechanical parameters in each reaction model Since the value of can be known, there is an advantage that DO control and SRT control are also possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す制御システム構成図。FIG. 1 is a configuration diagram of a control system showing an embodiment of the present invention.

【図2】実施例の制御フローチャート。FIG. 2 is a control flowchart of the embodiment.

【図3】硝化速度予測フローチャート。FIG. 3 is a flowchart for predicting nitrification rate.

【図4】最適化処理フローチャート。FIG. 4 is an optimization processing flowchart.

【図5】実施例の動作フローチャート。FIG. 5 is an operation flowchart of the embodiment.

【図6】一般的な循環式硝化脱窒処理装置を示す制御シ
ステム構成図。
FIG. 6 is a control system configuration diagram showing a general circulation type nitrification denitrification treatment apparatus.

【符号の説明】[Explanation of symbols]

1a,1b…脱窒槽 2a〜2e…硝化槽 5…ブロワ 6…硝化液循環ポンプ 15、25…流量計 16…Rr計 17…Nit−Rr 18、23…DO計 19…硝化反応制御システム 20…DO制御 21…SRT制御 22…循環量制御部 1a, 1b ... Denitrification tank 2a-2e ... Nitrification tank 5 ... Blower 6 ... Nitrification liquid circulation pump 15, 25 ... Flowmeter 16 ... Rr meter 17 ... Nit-Rr 18, 23 ... DO meter 19 ... Nitrification reaction control system 20 ... DO control 21 ... SRT control 22 ... Circulation amount control unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原水を脱窒槽で脱窒細菌により脱窒を行
う工程と、複数段の硝化槽で硝化細菌により硝化を行う
工程と、沈澱槽で固液分離して上澄液を処理水として放
流する工程とを含む活性汚泥循環変法処理において、 上記脱窒槽に流入する原水の流量計を配備するととも
に、複数段の硝化槽の上流部に全酸素消費速度から硝化
反応に伴う酸素消費速度を差し引いた値の計測器を付設
し、これら計測器の値および水質分析値を硝化反応制御
システムに入力して硝化反応に基づく酸素消費量及び溶
存酸素量とから硝化槽内の硝化速度を推定し、その値と
原水の流入量に応じて目標とする硝化速度を確保するた
めのSRT制御を可能ならしめるように硝化槽に対する
ブロワの送風量をコントロールするDO制御を実施し、
前記脱窒槽に流入する原水の溶存酸素と流量を計測する
とともに、硝化槽の硝化液の呼吸速度と溶存酸素とを計
測し、かつ前記ポンプで吸い上げた硝化液の流量を計測
した各計測値を循環量制御部で制御した後、その制御値
で前記ポンプの吸い上げ量を可変させたことを特徴とす
る循環式硝化脱窒法における硝化反応および脱窒反応の
状態監視方法。
1. A step of denitrifying raw water with denitrifying bacteria in a denitrifying tank, a step of nitrifying with nitrifying bacteria in a plurality of stages of nitrifying tanks, a solid-liquid separation in a settling tank, and a supernatant liquid being treated water. In a modified process of activated sludge circulation including a step of discharging as raw water, a flow meter of raw water flowing into the above denitrification tank is provided, and the total oxygen consumption rate increases from the total oxygen consumption rate to the upstream side of the nitrification tank in multiple stages. A measuring instrument with a value obtained by subtracting the velocity is attached, and the value of these measuring instruments and the water quality analysis value are input to the nitrification reaction control system to determine the nitrification rate in the nitrification tank from the oxygen consumption and the dissolved oxygen amount based on the nitrification reaction. Estimate, and perform DO control to control the blower air flow to the nitrification tank so that SRT control for securing the target nitrification rate according to the value and the inflow of raw water can be performed.
While measuring the dissolved oxygen and the flow rate of the raw water flowing into the denitrification tank, the respiratory rate and the dissolved oxygen of the nitrification solution in the nitrification tank were measured, and the measured values of the flow rate of the nitrification solution sucked by the pump were measured. A state monitoring method of a nitrification reaction and a denitrification reaction in a circulation type nitrification denitrification method, which is characterized in that the suction amount of the pump is varied by the control value after being controlled by a circulation amount control unit.
【請求項2】 前記水質分析において、NOX−Nの分
析が行われないときには、流入T−Nを推定した後、N
it−Rrから硝化速度を推定し、しかる後、硝化反応
モデル計算を行って硝化速度を得た後、硝化反応モデル
を最適化してから脱窒反応モデル計算を行って脱窒速度
を得て最適操作量を得るようにした請求項1記載の循環
式硝化脱窒法における硝化反応および脱窒反応の状態監
視方法。
2. When NO x -N is not analyzed in the water quality analysis, N after inflow TN is estimated.
Estimate the nitrification rate from it-Rr, and then calculate the nitrification reaction model to obtain the nitrification rate, and then optimize the nitrification reaction model and then calculate the denitrification reaction model to obtain the denitrification rate and optimize The method for monitoring the state of nitrification reaction and denitrification reaction in the circulating nitrification denitrification method according to claim 1, wherein the manipulated variable is obtained.
【請求項3】 前記Nit−Rrから得た硝化速度と硝
化反応モデル計算による硝化速度の適合を非線形シンプ
レックス法で行うことを特徴とする請求項2記載の循環
式硝化脱窒法における硝化反応および脱窒反応の状態監
視方法。
3. The nitrification reaction and denitrification in the circulating nitrification denitrification method according to claim 2, wherein the nitrification rate obtained from the Nit-Rr and the nitrification rate based on the nitrification reaction model calculation are adapted by a nonlinear simplex method. Method of monitoring the state of nitriding reaction.
【請求項4】 前記非線形シンプレックス法によって脱
窒反応モデル中の動力学的パラメータを得て最適モデル
を獲得し、その最適モデルに計測データを入力して脱窒
速度を推定することを特徴とする請求項3記載の循環式
硝化脱窒法における硝化反応および脱窒反応の状態監視
方法。
4. The denitrification rate is estimated by obtaining dynamic parameters in a denitrification reaction model by the nonlinear simplex method to obtain an optimal model and inputting measurement data to the optimal model. The method for monitoring the state of nitrification reaction and denitrification reaction in the circulating nitrification denitrification method according to claim 3.
【請求項5】 前記水質分析において、NOX−Nの分
析が行われないときには、Nit−Rrから得られた硝
化速度あるいは硝化反応最適モデルより計算される硝化
速度より硝化最終槽のNOX−N濃度を推定し、これか
ら脱窒槽に流入するNOX−N濃度を計算することを特
徴とする請求項1記載の循環式硝化脱窒法における硝化
反応および脱窒反応の状態監視方法。
5. The water quality analysis, NO when the analysis of X -N is not performed, the nitrification final tank than nitrification rate as calculated from the nitrification rate or nitrification best model obtained from Nit-Rr NO X - estimating the N concentration, nitrification and denitrification state monitoring method of the reaction in a circulating nitrification denitrification of claim 1, wherein the calculating the NO X -N concentration entering the now denitrification tank.
【請求項6】 前記水質分析において、NOX−Nの分
析を行ったときには、硝化反応モデル計算により硝化速
度を得、この硝化速度から硝化反応モデルの最適化を行
ってから、脱窒反応モデル計算を行って脱窒速度を得、
この脱窒速度から脱窒反応モデルの最適化を行って最適
操作量を得るようにしたことを特徴とする請求項1記載
の循環式硝化脱窒法における硝化反応および脱窒反応の
状態監視方法。
6. In the water quality analysis, when NO X -N is analyzed, a nitrification rate is obtained by calculating a nitrification reaction model, and the nitrification reaction model is optimized from this nitrification rate, and then a denitrification reaction model is obtained. To calculate the denitrification rate,
The denitrification reaction model is optimized from this denitrification rate to obtain an optimum manipulated variable, and the method for monitoring the state of nitrification reaction and denitrification reaction in the circulating nitrification denitrification method according to claim 1.
JP6258606A 1994-10-25 1994-10-25 Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method Pending JPH08117793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6258606A JPH08117793A (en) 1994-10-25 1994-10-25 Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6258606A JPH08117793A (en) 1994-10-25 1994-10-25 Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method

Publications (1)

Publication Number Publication Date
JPH08117793A true JPH08117793A (en) 1996-05-14

Family

ID=17322616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6258606A Pending JPH08117793A (en) 1994-10-25 1994-10-25 Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method

Country Status (1)

Country Link
JP (1) JPH08117793A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104979A (en) * 1999-10-13 2001-04-17 Meidensha Corp Wastewater treatment method
JP2001198590A (en) * 2000-01-17 2001-07-24 Hitachi Ltd Simulation method and device of activated-sludge water treating device
JP2002307094A (en) * 2001-04-13 2002-10-22 Toshiba Corp Sewage treatment system
JP2011147858A (en) * 2010-01-20 2011-08-04 Hitachi Ltd Apparatus and method for treating sewage
JP2012200705A (en) * 2011-03-28 2012-10-22 Swing Corp Nitrogen-containing wastewater treatment method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104979A (en) * 1999-10-13 2001-04-17 Meidensha Corp Wastewater treatment method
JP2001198590A (en) * 2000-01-17 2001-07-24 Hitachi Ltd Simulation method and device of activated-sludge water treating device
JP2002307094A (en) * 2001-04-13 2002-10-22 Toshiba Corp Sewage treatment system
JP2011147858A (en) * 2010-01-20 2011-08-04 Hitachi Ltd Apparatus and method for treating sewage
JP2012200705A (en) * 2011-03-28 2012-10-22 Swing Corp Nitrogen-containing wastewater treatment method and apparatus

Similar Documents

Publication Publication Date Title
KR100638158B1 (en) Sewage treatment system
JP3961835B2 (en) Sewage treatment plant water quality controller
JP2012200705A (en) Nitrogen-containing wastewater treatment method and apparatus
JP4229999B2 (en) Biological nitrogen removal equipment
JP4304453B2 (en) Operation control device for nitrogen removal system
JP4298405B2 (en) Wastewater treatment method
JPH08117793A (en) Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JPH1043787A (en) Device for simulating amount of nitrous oxide of activated sludge method
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3379199B2 (en) Operation control method of activated sludge circulation method
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JP4573575B2 (en) Advanced sewage treatment method and apparatus
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JP7158912B2 (en) Regulation compartment control device, regulation compartment control method, computer program and organic wastewater treatment system
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
JP3023921B2 (en) Activated sludge treatment equipment
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JP2001009497A (en) Biological water treatment and equipment therefor
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JPH08294698A (en) Measurement of activity of nitro-bacteria in sewage treatment facilities