JPH01189397A - Air quantity controller for aeration tank - Google Patents

Air quantity controller for aeration tank

Info

Publication number
JPH01189397A
JPH01189397A JP63012681A JP1268188A JPH01189397A JP H01189397 A JPH01189397 A JP H01189397A JP 63012681 A JP63012681 A JP 63012681A JP 1268188 A JP1268188 A JP 1268188A JP H01189397 A JPH01189397 A JP H01189397A
Authority
JP
Japan
Prior art keywords
air
controller
air quantity
aeration tank
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63012681A
Other languages
Japanese (ja)
Inventor
Yasuyuki Noda
野田 康行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63012681A priority Critical patent/JPH01189397A/en
Publication of JPH01189397A publication Critical patent/JPH01189397A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Flow Control (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To accelerate efficient nitrification reaction and to enhance a nitrogen removal rate by providing an air quantity controller for controlling the air quantity with the control output signal of an ammonia controller as a target. CONSTITUTION:The ammonia nitrogen in an aeration tank 7 is detected as ammonium ion concn. by a concn. meter 1. This detected ammonium ion concn. is controlled and computed by the controller 2 so as to be set near zero and the computed operation output signal MV1 is determined as the set value of the air quantity controller 3. The air quantity regulator 3 makes control and computation of the air quantity detection signal PV2 of an air flow meter 4 provided in the air piping for supplying the air from a blower to the aeration tank 7 and the operation output signal MV1 as SV. The operation output signal MV2 determined by such computation is applied as a rotating speed control signal to a rotating speed controller 5 of the blower 6 to control the air quantity. The efficient nitrification reaction is thereby accelerated and the nitrogen removing rate is enhanced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、活性汚泥処理方式によるし尿処理プラントに
おけるプロセス計装制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a process instrumentation control device in a human waste treatment plant using an activated sludge treatment method.

(従来の技術) し尿処理プロセスでは、従来は有機性汚濁物質の指標と
してBODの除去に重点が置かれていたが、近年稲作の
窒素過多障害や、閉鎖性水域における富栄養化が問題と
なり、窒素の規制が注目されてきた。このため窒素の除
去率が高い低希釈二段活性汚泥処理方式が多く採用され
るようになってきた。
(Conventional technology) In the human waste treatment process, emphasis has traditionally been placed on the removal of BOD as an indicator of organic pollutants, but in recent years, problems such as excessive nitrogen in rice cultivation and eutrophication in closed water bodies have become a problem. Nitrogen regulation has been attracting attention. For this reason, a low dilution two-stage activated sludge treatment system with a high nitrogen removal rate has come to be widely adopted.

し尿中の窒素の形態はアンモニア性窒素NH4−Nが大
部分で、残りは尿素の形をした有機性窒素である。この
有機性窒素は活性汚泥処理によってほとんどアンモニア
性窒素に変化して処理される。
Most of the nitrogen in human waste is ammonia nitrogen NH4-N, with the remainder being organic nitrogen in the form of urea. Most of this organic nitrogen is converted into ammonia nitrogen by activated sludge treatment.

即ち、曝気槽内において好気性条件下で曝気を続けると
、活性汚泥中の活性汚泥菌の生物酸化作用により、 B
OD成分が炭酸ガスCO2と水H20になって酸化分解
除去されるとともに、アンモニア性窒素は硝化菌の生物
酸化作用により亜硝酸性窒素NO。
That is, if aeration is continued under aerobic conditions in the aeration tank, B
OD components become carbon dioxide gas CO2 and water H20 and are oxidized and decomposed and removed, and ammonia nitrogen becomes nitrite nitrogen NO through the biological oxidation action of nitrifying bacteria.

−N及び硝酸性窒素No3−Nに酸化される。-N and nitrate nitrogen No3 -N.

このような反応を硝化反応といい、次の化学反応式で現
わされる。
This kind of reaction is called a nitrification reaction, and is expressed by the following chemical reaction equation.

NH,T+Z u2→+vu、−+zH’+)lzO−
11)そして、かくはん槽内においては嫌気性条件下で
脱窒菌が存在し、この細菌の生物化学的反応により窒素
ガスN2に還元され、窒素除去が完了する。
NH,T+Z u2→+vu,-+zH'+)lzO-
11) In the stirring tank, denitrifying bacteria exist under anaerobic conditions, and the biochemical reaction of these bacteria reduces nitrogen gas to N2, completing nitrogen removal.

BOD成分の酸化分解にはBOD量とほぼ等量の理論酸
素量で足りるが、(1)式が示すようにNH4−をN0
1−□まで酸化するには窒素の4〜5倍量(重量比)の
酸素量が必要となる。
For the oxidative decomposition of the BOD component, a theoretical amount of oxygen approximately equal to the amount of BOD is sufficient, but as shown in equation (1), NH4- is
In order to oxidize to 1-□, an amount of oxygen that is 4 to 5 times the amount of nitrogen (weight ratio) is required.

この酸化に必要な空気量を供給するための制御方法とし
ては、従来比率空気量制御方法や、溶存酸素DOによる
空気量制御が行なわれていた。
Conventional control methods for supplying the amount of air necessary for this oxidation include a ratio air amount control method and air amount control using dissolved oxygen DO.

(発明が解決しようとする課題) 汚水中のBOD負荷、アンモニア性窒素負荷が変動する
場合には、高いBOD除去率や硝化率が得られなかった
。また、汚水中の組成、例えばし尿中に多く含まれる塩
素イオンにより酸素の溶解度。
(Problems to be Solved by the Invention) When the BOD load and ammonia nitrogen load in wastewater fluctuate, high BOD removal rates and nitrification rates cannot be obtained. In addition, the composition of wastewater, for example, the solubility of oxygen due to the chlorine ions that are abundant in human waste.

即ちDoが減少するだけでなく、溶解度そのものも時間
とともに減少するため、Do検出点の選択次第によって
は槽内が過曝気状態又は曝気不足の状態になることがあ
り、常に安定した反応状態にあるとは言えないことが多
かった。
In other words, not only Do decreases, but solubility itself also decreases over time, so depending on the selection of the Do detection point, the inside of the tank may become over-aerated or under-aerated, and is always in a stable reaction state. There were many things I could not say.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は活性汚泥処理方式によるし尿処理プロセスに付
属する空気量制御装置において、曝気槽内のアンモニア
性窒素をアンモニウムイオン濃度として検出するアンモ
ニア濃度計と、曝気槽における酸化反応に必要な酸素を
供給するため力空気斌を検出する空気流量計と、空気量
を調整するためのブロワ回転数制御装置又は調節弁開度
制御装置と、検出したアンモニウムイオン濃度を目標と
なる設定値と比較して制御し、その制御出力信号を目標
として空気量を制御するようにしたことを特徴とする曝
気槽空気量制御装置である。
(Means for Solving the Problems) The present invention provides an air amount control device attached to a human waste treatment process using an activated sludge treatment method, which includes an ammonia concentration meter that detects ammonia nitrogen in an aeration tank as an ammonium ion concentration, and an aeration tank. An air flow meter that detects the air flow in order to supply the oxygen necessary for the oxidation reaction in This is an aeration tank air amount control device characterized in that the air amount is controlled by comparing it with a set value, and the air amount is controlled using the control output signal as a target.

(作 用) 本発明は、曝気槽空気量制御の指標としてアンモニウム
イオン濃度を使用することにより高窒素除去率と省電力
が可能となる。
(Function) The present invention enables high nitrogen removal rate and power saving by using ammonium ion concentration as an index for controlling the amount of air in the aeration tank.

(実施例) 硝化反応式に示すとおり、NH4+は硝化反応が充分に
進行している状態では零に近い値となる。従って、第1
図のフローシート及び第2図の構成に示すように、曝気
槽中のNH,十をアンモニウムイオン濃度自動測定器1
により検出し、調節計2により零付近の設定値となるよ
うに調節演算した操作出力信号MVIを空気量調節計3
の設定値とする。
(Example) As shown in the nitrification reaction equation, NH4+ takes a value close to zero when the nitrification reaction is sufficiently progressing. Therefore, the first
As shown in the flow sheet shown in the figure and the configuration shown in Fig. 2, the ammonium ion concentration automatic measuring device 1
The operation output signal MVI is detected by the air flow controller 3 and is adjusted and calculated by the controller 2 to a set value near zero.
The setting value shall be .

空気量調節計3はブロワ6から曝気槽7へ供給する空気
配管中に設けた空気流量計4の空気量検出信号PV2、
及び操作出力信号MVIをSvとして調節演算し、その
操作出力信号MV2をブロワの回転数制御装置5に回転
数制御信号として与え、空気量を操作する。即ち、NH
4十一定制御を1次ループとし、この1次ループのMV
を2次ループとなる空気量制御のSvとするカスケード
制御となるように調節計を構成する。プロセスの形態に
よっては空気量をブロワの回転数ではなく、供給配管中
に設ける調節弁によって制御する手段も考えられるが、
調節計機能は前述と同様な機能が得られる。尚、Aは攪
拌槽、Dは循環ポンプである。
The air volume controller 3 receives an air volume detection signal PV2 from the air flow meter 4 installed in the air piping that supplies the air from the blower 6 to the aeration tank 7.
and the operation output signal MVI as Sv, and the operation output signal MV2 is given to the rotation speed control device 5 of the blower as a rotation speed control signal to control the air amount. That is, N.H.
40 constant control is the primary loop, and the MV of this primary loop is
The controller is configured to perform cascade control in which Sv is the air amount control that becomes the secondary loop. Depending on the form of the process, it may be possible to control the amount of air not by the rotation speed of the blower but by a control valve installed in the supply piping.
The controller function provides the same functions as described above. In addition, A is a stirring tank and D is a circulation pump.

測定対象液には浮遊物質成分が多く含まれるため、アン
モニウムイオン濃度自動測定器には希釈沈降による浮遊
物質分の分離除去を行なう前処理装置を付属させる。従
って、測定周期は沈澱分離除去の前処理時間を含んだ間
欠自動連続測定となる。生物学的には、BOD除去に比
べ硝化反応速度が遅いため、間欠自動連続による測定の
場合でも空気量制御の応答性には実用上問題はない。尚
、4aは空気量検出器、4bは空気流量発信器である。
Since the liquid to be measured contains many suspended solids, the automatic ammonium ion concentration meter is equipped with a pretreatment device that separates and removes the suspended solids by dilution and sedimentation. Therefore, the measurement period is an intermittent automatic continuous measurement including the pretreatment time for precipitate separation and removal. Biologically, the nitrification reaction rate is slower than that of BOD removal, so there is no practical problem in the responsiveness of air amount control even in the case of intermittent automatic continuous measurement. Note that 4a is an air amount detector, and 4b is an air flow rate transmitter.

調節計はNH4”一定値によるカスケード制御機能だけ
でなく、第3図の構成に示すようにDo一定制御による
カスケード制御機能ももたせることとし、手動操作によ
る切換又は指定条件による自動切換が可能なようにモー
ド切替器を設け、空気量制御の最適化、多機能化の対応
が可能なように考慮する。
The controller has not only a cascade control function using a constant value of NH4, but also a cascade control function using a constant Do control as shown in the configuration of Figure 3, so that it can be switched manually or automatically according to specified conditions. A mode switch will be installed in the system to optimize air volume control and enable multi-functionality.

〔発明の効果〕〔Effect of the invention〕

本発明は、NH4+に注目して空気量を制御する装置を
供給するもので、効率の良い硝化反応を促進することが
でき、高い窒素除去率が期待できる。
The present invention provides a device that controls the amount of air by focusing on NH4+, which can promote efficient nitrification reaction and can expect a high nitrogen removal rate.

また、し尿処理プラントの使用電力量のうち約30%は
曝気ブロワの電力量で占められるため、効率良くブロワ
の回転数を制御することは電力費節減に大きく寄与する
ことになる。
Furthermore, since approximately 30% of the electricity used in a human waste treatment plant is consumed by the aeration blower, efficiently controlling the rotation speed of the blower will greatly contribute to reducing electricity costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す曝気槽空気量制御装置
の構成図、第2図及び第3図は他の実施例の構成図であ
る。 2・・・アンモニア調節計  3・・・空気量調節計5
・・・回転数制御装置   6・・・ブロワ7・・・曝
気槽 代理人 弁理士 則 近 憲 佑 同  山王 − 第1図
FIG. 1 is a block diagram of an aeration tank air amount control device showing one embodiment of the present invention, and FIGS. 2 and 3 are block diagrams of other embodiments. 2...Ammonia controller 3...Air amount controller 5
...Rotation speed control device 6...Blower 7...Aeration tank Agent Patent attorney Nori Chika Ken Yudo Sanno - Figure 1

Claims (1)

【特許請求の範囲】[Claims] 曝気槽内のアンモニア性窒素をアンモニウムイオン濃度
として検出するアンモニア濃度計と、曝気槽における酸
化反応に必要な酸素を供給するための空気量を検出する
空気流量計と、検出したアンモニウムイオン濃度を目標
となる設定値と比較して制御するアンモニア調節計と、
このアンモニア調節計の制御出力信号を目標として空気
量を制御する空気量調整装置とを具備してなる曝気槽空
気量制御装置。
An ammonia concentration meter that detects ammonia nitrogen in the aeration tank as ammonium ion concentration, an air flow meter that detects the amount of air to supply the oxygen necessary for the oxidation reaction in the aeration tank, and a target for the detected ammonium ion concentration. an ammonia controller that controls by comparing it with a set value,
An aeration tank air amount control device comprising an air amount adjusting device that controls the air amount using the control output signal of the ammonia controller as a target.
JP63012681A 1988-01-25 1988-01-25 Air quantity controller for aeration tank Pending JPH01189397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63012681A JPH01189397A (en) 1988-01-25 1988-01-25 Air quantity controller for aeration tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012681A JPH01189397A (en) 1988-01-25 1988-01-25 Air quantity controller for aeration tank

Publications (1)

Publication Number Publication Date
JPH01189397A true JPH01189397A (en) 1989-07-28

Family

ID=11812122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012681A Pending JPH01189397A (en) 1988-01-25 1988-01-25 Air quantity controller for aeration tank

Country Status (1)

Country Link
JP (1) JPH01189397A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353496A (en) * 2000-06-12 2001-12-25 Toshiba Corp Sewage disposal system and measuring system
JP2005199116A (en) * 2004-01-13 2005-07-28 Toshiba Corp Aeration air quantity controller for sewage treatment plant
JP2007245146A (en) * 2007-03-12 2007-09-27 Toshiba Corp Sewage treatment system and measurement system
JP2008501500A (en) * 2004-06-02 2008-01-24 オテヴェ・ソシエテ・アノニム Water treatment method using bioreactor and corresponding apparatus in which the speed of the air continuously injected into the reactor is adjusted
JP2012076081A (en) * 2011-12-12 2012-04-19 Hitachi Plant Technologies Ltd Membrane separation type activated sludge treatment apparatus and method thereof
JP2012143696A (en) * 2011-01-11 2012-08-02 Japan Sewage Works Agency Wastewater treatment apparatus, and method for driving the same
JP2012200705A (en) * 2011-03-28 2012-10-22 Swing Corp Nitrogen-containing wastewater treatment method and apparatus
WO2013021591A1 (en) * 2011-08-10 2013-02-14 川崎重工業株式会社 Water treatment system and method for controlling amount of aeration

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353496A (en) * 2000-06-12 2001-12-25 Toshiba Corp Sewage disposal system and measuring system
JP2005199116A (en) * 2004-01-13 2005-07-28 Toshiba Corp Aeration air quantity controller for sewage treatment plant
JP4509579B2 (en) * 2004-01-13 2010-07-21 株式会社東芝 Aeration air volume control device of sewage treatment plant
JP2008501500A (en) * 2004-06-02 2008-01-24 オテヴェ・ソシエテ・アノニム Water treatment method using bioreactor and corresponding apparatus in which the speed of the air continuously injected into the reactor is adjusted
JP2007245146A (en) * 2007-03-12 2007-09-27 Toshiba Corp Sewage treatment system and measurement system
JP2012143696A (en) * 2011-01-11 2012-08-02 Japan Sewage Works Agency Wastewater treatment apparatus, and method for driving the same
JP2012200705A (en) * 2011-03-28 2012-10-22 Swing Corp Nitrogen-containing wastewater treatment method and apparatus
WO2013021591A1 (en) * 2011-08-10 2013-02-14 川崎重工業株式会社 Water treatment system and method for controlling amount of aeration
JP2013034966A (en) * 2011-08-10 2013-02-21 Kawasaki Heavy Ind Ltd Water treatment system and method for controlling amount of aeration
JP2012076081A (en) * 2011-12-12 2012-04-19 Hitachi Plant Technologies Ltd Membrane separation type activated sludge treatment apparatus and method thereof

Similar Documents

Publication Publication Date Title
Isaacs et al. External carbon source addition as a means to control an activated sludge nutrient removal process
US7329352B2 (en) Nitrifying method of treating water containing ammonium-nitrogen
EP0417098B1 (en) Method of sewage treatment
JPH01189397A (en) Air quantity controller for aeration tank
Weissenbacher et al. NOx monitoring of a simultaneous nitrifying–denitrifying (SND) activated sludge plant at different oxidation reduction potentials
KR102203751B1 (en) Sludge reduction and its sewage treatment system
JP2002263686A (en) Method for computing amount of circulating water and method for controlling operation of biological device for removing nitrogen in discharged water
KR20200046874A (en) Sludge reduction and its sewage treatment method
JP3023921B2 (en) Activated sludge treatment equipment
JP2002001388A (en) Equipment and process for treating sewage
JPS6365399B2 (en)
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3837765B2 (en) Nitric acid concentration measuring device
CN111217449A (en) Sewage treatment device and method based on accurate control of oxygen input
JPS6320033A (en) Oxidation and reduction treatment device
JPH08267089A (en) Method for controlling supplied waste water amount in denitrification reaction
JPS6154296A (en) Treatment of sewage
JP2005000715A (en) Method for controlling operation of aerating stirrer
JPS58124596A (en) Apparatus for controlling active sludge process
JP3677811B2 (en) Biological denitrification method
JPS62286598A (en) Biological nitration and denitrification of high temperature ammonia-containing waste water
JPH01130790A (en) Treatment of sewage
Lee et al. Control of external carbon addition in biological nitrogen removal process for the treatment of coke‐plant wastewater
Roman Aeration control of nitrification process based on the ammonium concentration in the aeration tank
JPS5814997A (en) Control method for biological denitrification process