JP2012192315A - Fouling prediction method, and membrane filtration system - Google Patents

Fouling prediction method, and membrane filtration system Download PDF

Info

Publication number
JP2012192315A
JP2012192315A JP2011056698A JP2011056698A JP2012192315A JP 2012192315 A JP2012192315 A JP 2012192315A JP 2011056698 A JP2011056698 A JP 2011056698A JP 2011056698 A JP2011056698 A JP 2011056698A JP 2012192315 A JP2012192315 A JP 2012192315A
Authority
JP
Japan
Prior art keywords
fouling
generation
membrane module
raw water
fluorescence intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011056698A
Other languages
Japanese (ja)
Other versions
JP5618874B2 (en
Inventor
Ryoichi Arimura
良一 有村
Takeshi Matsushiro
武士 松代
Miwa Ishizuka
美和 石塚
Futoshi Kurokawa
太 黒川
Shioko Kurihara
潮子 栗原
Osamu Yamanaka
理 山中
Eiken Yamagata
英顕 山形
Yuka Hiraga
夕佳 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011056698A priority Critical patent/JP5618874B2/en
Priority to PCT/JP2012/055643 priority patent/WO2012124538A1/en
Publication of JP2012192315A publication Critical patent/JP2012192315A/en
Application granted granted Critical
Publication of JP5618874B2 publication Critical patent/JP5618874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2611Irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2649Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N2021/635Photosynthetic material analysis, e.g. chrorophyll
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for predicting fouling to a module which filters raw water containing salt components, and to provide a membrane filtration system which performs treatment using this prediction method.SOLUTION: There is provided the fouling prediction method in the membrane module 9 for filtering raw water containing ions and salt components, the method including: a step for irradiating raw water L2 before being filtered by the membrane module with excitation lights of a plurality of different wavelengths; a step for measuring the respective fluorescence intensities of fluorescent lights generated by irradiating excitation lights of a plurality of different wavelengths; and a step for predicting the occurrence of fouling by using a coefficient with a priority set for each fluorescent wavelength range of the fluorescent light and the values of the measured plurality of fluorescence intensities.

Description

本発明の実施形態は、膜ろ過の際に膜におけるファウリング生成の予測方法及びこの予測方法を利用して処理する膜ろ過システムに関する。   Embodiments of the present invention relate to a method for predicting fouling generation in a membrane during membrane filtration and a membrane filtration system for processing using this prediction method.

水処理分野において、イオンや塩類等の溶質を含む海水、汽水、地下水、埋立地浸出水又は産業廃水等の原水から膜モジュールを用いて生活用水、工業用水又は農業用水等を得る方法がある。例えば、膜モジュールに使用される逆浸透膜(RO膜(Reverse Osmosis Membrane))は、水を透過させるが水以外の不純物(イオンや塩類等)を透過させない膜である。具体的には、溶質の濃度に応じた浸透圧以上の圧力をかけることによって、水と溶質とを分離することができる。   In the field of water treatment, there is a method for obtaining domestic water, industrial water, agricultural water, or the like from raw water such as seawater, brackish water, groundwater, landfill leachate, or industrial wastewater containing solutes such as ions and salts, using membrane modules. For example, a reverse osmosis membrane (RO membrane (Reverse Osmosis Membrane)) used in a membrane module is a membrane that allows water to pass through but does not allow impurities other than water (such as ions and salts) to pass. Specifically, water and the solute can be separated by applying a pressure equal to or higher than the osmotic pressure corresponding to the concentration of the solute.

このような膜モジュールで海水をろ過すると、海水中の溶存有機物、微生物、微生物等が放出する粘性の高い有機物、無機イオン等が原因で、膜表面に生物的な汚れであるファウリング(バイオファウリング)が生成される。ファウリングは不可逆的な汚れであって、ろ過性を著しく低下させるため、膜モジュールではファウリングの生成を抑制する必要がある。   When seawater is filtered with such a membrane module, fouling (biofouling) is caused on the membrane surface due to high-viscosity organic matter, inorganic ions, etc. released by dissolved organic matter, microorganisms, and microorganisms in the seawater. Ring) is generated. Since fouling is an irreversible dirt and remarkably reduces filterability, it is necessary to suppress the generation of fouling in the membrane module.

ファウリングの生成の抑制には、ファウリングの要因物質の量の測定やファウリング生成の可能性の予測を利用したろ過システムの運転条件や洗浄条件等の操作が行われている。ファウリングの要因物質量の測定やファウリング生成の可能性の予測には、例えば、原水の濁度、JIS K3802に定義されているファウリングインデックス(FI)、TSTM D4189/22に定義されているシルト濃度指数(SDI)、修正ファウリング指数(Modified Fouling Index:MFI)等が用いられている。また例えば、ファウリングの要因物質量の測定やファウリング生成の可能性の予測には、全有機炭素濃度や紫外線吸光度等の水質指標や、原水中の有機物の大きさを表わす分子量、有機物の水に対する親和性(親水性や疎水性)等の指標も用いられている。さらに、近年では、原水の蛍光強度の測定結果を利用する方法もある(例えば、特許文献1参照)。   In order to suppress the generation of fouling, operations such as operating conditions and cleaning conditions of the filtration system using measurement of the amount of a fouling factor and prediction of the possibility of fouling are performed. For measuring the amount of fouling substances and predicting the possibility of fouling, for example, turbidity of raw water, fouling index (FI) defined in JIS K3802, TSTM D4189 / 22 Silt concentration index (SDI), modified fouling index (MFI), etc. are used. In addition, for example, for measuring the amount of fouling substances and predicting the possibility of fouling, water quality indicators such as total organic carbon concentration and UV absorbance, molecular weight indicating the size of organic matter in raw water, Indices such as affinity (hydrophilicity or hydrophobicity) are also used. Furthermore, in recent years, there is also a method using the measurement result of the fluorescence intensity of raw water (for example, see Patent Document 1).

しかしながら、原水中でファウリングの要因となる物質は単一の物質ではなく、複数の物質が相互に作用しあってファウリングを生成している。したがって、上述したような方法で要因物質量やファウリング生成の可能性を予測した場合、複数の要因が作用し合っていることは考慮されず、正確なファウリング生成の予測がしにくい問題がある。   However, a substance that causes fouling in the raw water is not a single substance, and a plurality of substances interact with each other to generate fouling. Therefore, when the amount of causative substances and the possibility of fouling generation are predicted by the method as described above, it is difficult to predict fouling generation accurately because it is not considered that multiple factors are working together. is there.

特開2007−252978号公報JP 2007-252978 A

上記課題に鑑み、膜ろ過の際に膜におけるファウリングの生成をより正確に予測するファウリング生成の予測方法及びこの予測方法を利用した予測結果をろ過の運転条件や膜の洗浄条件に利用する膜ろ過システムを提供する。   In view of the above problems, a fouling generation prediction method that more accurately predicts fouling generation in a membrane during membrane filtration, and a prediction result using this prediction method is used as a filtering operation condition or a membrane cleaning condition. A membrane filtration system is provided.

実施形態に係る予測方法は、膜モジュールでろ過する前の原水に、波長の異なる複数の励起光を照射するステップと、複数の励起光の照射により、それぞれ複数の蛍光強度を測定するステップと、蛍光強度の範囲毎に優先付けで定められた係数と、測定された複数の蛍光強度の値とを利用してファウリングの生成を予測するステップとを備える。   The prediction method according to the embodiment includes a step of irradiating the raw water before being filtered by the membrane module with a plurality of excitation lights having different wavelengths, a step of measuring a plurality of fluorescence intensities by irradiation of the plurality of excitation lights, and Predicting generation of fouling using a coefficient determined by prioritization for each range of fluorescence intensity and a plurality of measured fluorescence intensity values.

第1実施形態に係る膜ろ過システムを説明する図である。It is a figure explaining the membrane filtration system concerning a 1st embodiment. 原水に含まれる物質の励起波長と蛍光波長の関係を説明する図である。It is a figure explaining the relationship between the excitation wavelength of the substance contained in raw | natural water, and a fluorescence wavelength. 原水に含まれるファウリング要因物質とその寄与度を説明する図である。It is a figure explaining the fouling factor substance contained in raw | natural water, and its contribution. 第2実施形態に係る膜ろ過システムを説明する図である。It is a figure explaining the membrane filtration system which concerns on 2nd Embodiment. 第3実施形態に係る膜ろ過システムを説明する図である。It is a figure explaining the membrane filtration system which concerns on 3rd Embodiment.

以下に、図面を用いて本発明の実施形態に係るファウリング生成の予測方法及び膜ろ過システムについて説明する。この膜ろ過システムは、イオンや塩類等の溶質を含む海水、汽水、地下水、埋立地浸出水又は産業廃水等を膜ろ過するシステムである。また、この予測方法は、膜ろ過システムにおけるろ過の際に、膜へのファウリング(バイオファウリング)の蓄積を防止や除去のため、ファウリングの要因となる物質を測定し、ファウリングの生成を予測する方法である。以下の説明では、同一の構成には同一の符号を付して説明を省略する。   Hereinafter, a fouling generation prediction method and a membrane filtration system according to an embodiment of the present invention will be described with reference to the drawings. This membrane filtration system is a system for membrane filtration of seawater, brackish water, groundwater, landfill leachate, industrial wastewater, and the like containing solutes such as ions and salts. In addition, this prediction method measures the substances that cause fouling and prevents the generation of fouling in order to prevent or eliminate the accumulation of fouling (biofouling) on the membrane during filtration in the membrane filtration system. It is a method of predicting. In the following description, the same components are denoted by the same reference numerals and description thereof is omitted.

〈第1実施形態〉
図1に示すように、第1実施形態に係る膜ろ過システム100は、原水槽1と、供給ポンプ2と、蛍光分析計20と、保安フィルタ7と、高圧ポンプ8と、逆浸透膜モジュール9と、処理水槽10とを備えている。また、膜ろ過システム100は、ファウリング予測部22、運転操作処理部23とを備えている。
<First Embodiment>
As shown in FIG. 1, the membrane filtration system 100 according to the first embodiment includes a raw water tank 1, a supply pump 2, a fluorescence analyzer 20, a safety filter 7, a high-pressure pump 8, and a reverse osmosis membrane module 9. And a treated water tank 10. The membrane filtration system 100 includes a fouling prediction unit 22 and a driving operation processing unit 23.

原水槽1は、ラインL1を介して海水等の処理対象の原水が供給され、供給された原水を貯留する。原水槽1は、ラインL2を介して保安フィルタ7と接続されている。原水槽1内で貯留される原水は、ラインL2上に設置される供給ポンプ2によって、保安フィルタ7に送られる。   The raw water tank 1 is supplied with raw water to be processed such as seawater via the line L1 and stores the supplied raw water. The raw water tank 1 is connected to the security filter 7 via a line L2. The raw water stored in the raw water tank 1 is sent to the safety filter 7 by the supply pump 2 installed on the line L2.

保安フィルタ7は、逆浸透膜モジュール9での膜の目詰まりを抑制するため、ある程度粒径が大きな濁質等を原水から除去する。保安フィルタ7は、ラインL3を介して逆浸透膜モジュール9と接続されている。保安フィルタ7で粒径の大きな濁質が取り除かれた原水は、ラインL3上に設置される高圧ポンプ8によって、逆浸透膜モジュール9に送られる。ここで、高圧ポンプ8は、保安フィルタ7を通過した原水を、逆浸透膜モジュール9で必要な高圧(例えば、6MPa)の状態に昇圧する。   The safety filter 7 removes turbidity and the like having a large particle diameter from raw water in order to suppress clogging of the membrane in the reverse osmosis membrane module 9. The safety filter 7 is connected to the reverse osmosis membrane module 9 via a line L3. The raw water from which turbidity having a large particle diameter has been removed by the safety filter 7 is sent to the reverse osmosis membrane module 9 by the high-pressure pump 8 installed on the line L3. Here, the high-pressure pump 8 boosts the raw water that has passed through the safety filter 7 to a high pressure (for example, 6 MPa) necessary for the reverse osmosis membrane module 9.

逆浸透膜モジュール9は、原水に含まれるイオンや塩類等の溶質を除去するろ過膜で構成される。逆浸透膜モジュール9のろ過で得られた処理水は、ラインL4を介して処理水槽10に送られ、その後、ラインL6から送出され、処理水として使用されたり処理されたりする。また、逆浸透膜モジュール9で処理水が得られた後に残った濃縮水は、ラインL5を介して排出されて処理される。   The reverse osmosis membrane module 9 is configured by a filtration membrane that removes solutes such as ions and salts contained in raw water. The treated water obtained by the filtration of the reverse osmosis membrane module 9 is sent to the treated water tank 10 via the line L4, and then sent from the line L6 to be used or treated as treated water. The concentrated water remaining after the treated water is obtained by the reverse osmosis membrane module 9 is discharged through the line L5 and processed.

図1に示すように、膜ろ過システム100は、ラインL2を流れる原水の蛍光強度を測定する蛍光分析計20を有している。分子に励起光を当てると、物質は励起状態へ遷移し、その後、物質が元の基底状態へ戻る際に様々な波長の蛍光を放出する。この蛍光強度は物質量に比例するため、蛍光分析は物質量の定量に広く用いられており、膜ろ過システムでも蛍光分析計20を利用した蛍光分析によって原水に含まれる物質量を求めている。   As shown in FIG. 1, the membrane filtration system 100 has a fluorescence analyzer 20 that measures the fluorescence intensity of the raw water flowing through the line L2. When excitation light is applied to a molecule, the substance transitions to an excited state, and then emits fluorescence of various wavelengths when the substance returns to the original ground state. Since this fluorescence intensity is proportional to the amount of substance, fluorescence analysis is widely used for quantitative determination of the amount of substance, and even in a membrane filtration system, the amount of substance contained in raw water is obtained by fluorescence analysis using the fluorescence analyzer 20.

海水に含まれるファウリングの生成の原因物質にタンパク質様物質、フミン様物質、クロロフィルa等がある。図2は、3次元励起蛍光スペクトルで得られた各物質のピークと測定条件について説明する図である。   There are protein-like substances, humin-like substances, chlorophyll a, and the like as causative substances for generating fouling contained in seawater. FIG. 2 is a diagram for explaining the peak of each substance obtained by a three-dimensional excitation fluorescence spectrum and measurement conditions.

図2で示すピーク1は、タンパク質様物質のピーク領域を特定している。ある種のタンパク質様物質の量は、比較的低波長である200〜250nm付近の励起光を照射し、波長250〜400nm付近の蛍光を測定して求めることができる。   Peak 1 shown in FIG. 2 specifies the peak region of the proteinaceous substance. The amount of a certain protein-like substance can be determined by irradiating excitation light at a relatively low wavelength of 200 to 250 nm and measuring fluorescence at a wavelength of 250 to 400 nm.

図2で示すピーク2は、フミン様物質(humin)のピーク領域を特定している。フミン様物質は、水中に存在する有機物の中で代表的な物質であって、主として、植物等が微生物により分解される種々雑多な有機化合物によって構成される高分子化合物の1つであり、樹木等のセルロースやリグニン酸が酸化される過程で生じる有機物である。浄化処理においては、フミン様物質は、トリハロメタンの前駆物質と考えられており、塩素処理により、塩素と反応して処理水中のトリハロメタンが増大する。このフミン様物質の量は、フミン様物質を主とする溶存有機物の量を示す波長として、例えば、波長300〜350nmの励起光を照射して、例えば、波長400〜450nmの蛍光を測定して求めることができる。   Peak 2 shown in FIG. 2 specifies the peak region of humin-like substance (humin). A humic-like substance is a representative substance among organic substances present in water, and is mainly one of high molecular compounds composed of various organic compounds in which plants and the like are decomposed by microorganisms. It is an organic substance produced in the process of oxidizing cellulose and lignic acid. In the purification treatment, the humic substance is considered as a precursor of trihalomethane, and the chlorine treatment reacts with chlorine to increase trihalomethane in the treated water. The amount of the humin-like substance is determined by irradiating excitation light having a wavelength of 300 to 350 nm, for example, by measuring fluorescence having a wavelength of 400 to 450 nm, as a wavelength indicating the amount of dissolved organic matter mainly containing the humin-like substance. Can be sought.

図2で示すピーク3は、クロロフィルaのピークを特定している。藻類量の目安となるクロロフィルa濃度の量は、430nm付近の励起光を照射して、660nm付近の蛍光を測定して求めることができる。   The peak 3 shown in FIG. 2 specifies the peak of chlorophyll a. The amount of chlorophyll a concentration that is a measure of the amount of algae can be determined by irradiating excitation light around 430 nm and measuring fluorescence around 660 nm.

蛍光分析計20は、複数の蛍光強度を測定することができるものであればよい。例えばこの蛍光分析計20は、測定条件の異なる蛍光強度を測定することができる複数の分析計を集めて1つの蛍光分析計としてもよい。または、この蛍光分析計20は、一度の測定条件の異なる複数の蛍光強度を測定することのできる分析計であってもよい。   The fluorescence analyzer 20 only needs to be capable of measuring a plurality of fluorescence intensities. For example, the fluorescence analyzer 20 may be a single fluorescence analyzer by collecting a plurality of analyzers capable of measuring fluorescence intensities with different measurement conditions. Alternatively, the fluorescence analyzer 20 may be an analyzer capable of measuring a plurality of fluorescence intensities having different measurement conditions at one time.

なお、この励起光を照射する前段では、原水に予め前処理を施してもよい。例えば、前処理としては、ストレーナのようなフィルタを用いて粒径の大きな濁質成分を除去したりする方法を用いても良いし、一般的な濁度計のようなセンサの前処理として用いられている脱泡槽を用いても良い。   In addition, in the front | former stage which irradiates this excitation light, you may pre-process raw | natural water previously. For example, as a pretreatment, a method such as removing a turbid component having a large particle diameter using a filter such as a strainer may be used, or a pretreatment of a sensor such as a general turbidimeter. You may use the defoaming tank currently used.

ファウリング予測部22は、蛍光分析計20の測定結果を利用して、ファウリングの生成を予測する。ファウリング予測部22は、蛍光分析計20の測定結果で得られる複数の蛍光強度と、この複数の蛍光強度に定められる優先付けに対する重み係数を使用して、原水に含まれる複数の要因物質の含有量を求め、ファウリングが生成される可能性を予測することができる。   The fouling prediction unit 22 predicts the generation of fouling using the measurement result of the fluorescence analyzer 20. The fouling prediction unit 22 uses a plurality of fluorescence intensities obtained from the measurement results of the fluorescence analyzer 20 and a weighting factor for prioritization determined by the plurality of fluorescence intensities, and uses a plurality of factor substances contained in the raw water. The content can be determined and the possibility that fouling will be generated can be predicted.

近年、膜表面に生成されるファウリングの生成メカニズムにおいては、海水中の微生物や、微生物が放出する有機物(例えば、光透過性の細胞外ポリマー粒子(Transparent Exopolymer Particles))、フミン様物質、タンパク質様物質等の溶存有機物が主要因であることが分かってきている。また、原水中に存在する微生物や微生物が放出する有機物の濃度は、原水のクロロフィルa濃度と相関があり、クロロフィルaの濃度を測定することにより、間接的に微生物量や微生物が放出する有機物量を把握することができる。膜ろ過システム100では、これらの関係から各要因物質について優先付けを行って定めた重み係数A,B,Cを有している。   In recent years, the mechanism of fouling generated on the membrane surface is that of microorganisms in seawater, organic substances released by microorganisms (for example, light-permeable extracellular polymer particles), humin-like substances, proteins It has been found that dissolved organic substances such as like substances are the main factor. In addition, the concentration of microorganisms present in the raw water and the organic matter released by the microorganisms correlate with the chlorophyll a concentration of the raw water. By measuring the concentration of chlorophyll a, the amount of microorganisms and the amount of organic matter released by the microorganisms are indirectly measured. Can be grasped. The membrane filtration system 100 has weighting factors A, B, and C determined by prioritizing each factor substance from these relationships.

例えば、タンパク質様物質、フミン様物質、クロロフィルaによるファウリングの生成寄与の度合いを比較したとき、タンパク質様物質が最も生成寄与の度合いが最も高く、クロロフィルaが最も低いとする。このとき、タンパク質用物質の重み係数A、フミン様物質の重み係数B、クロロフィルaの重み係数Cは、A>B>Cの関係になる。   For example, when the degree of fouling generation contribution by protein-like substances, humic substances, and chlorophyll a is compared, it is assumed that protein-like substances have the highest generation contribution and chlorophyll a is the lowest. At this time, the weighting factor A of the protein substance, the weighting factor B of the humin-like substance, and the weighting factor C of the chlorophyll a have a relationship of A> B> C.

また、蛍光分析計20で得られた各蛍光強度がそれぞれタンパク質様物質でF(1)、フミン様物質でF(2)、クロロフィルaでF(3)であるとき、ファウリング予測部22は、ファウリングの生成の可能性を表わす値Xを式(1)を用いて求める。   Further, when each fluorescence intensity obtained by the fluorescence analyzer 20 is F (1) for a protein-like substance, F (2) for a humin-like substance, and F (3) for chlorophyll a, the fouling prediction unit 22 Then, a value X representing the possibility of fouling generation is obtained using equation (1).

X=A×F(1)+B×F(2)+C×F(3) …(1)
このように、ファウリング生成に対する寄与の度合いを表わす重み係数を用いることで、測定された複数の蛍光強度のファウリング生成に対する寄与の度合いを加味して評価を行なうことができる。すなわち、ファウリング生成に対する寄与の度合いが低いF(1)の蛍光強度が小さいときには、寄与の度合いが低いF(3)の蛍光強度が大きくても、被処理水全体としてのファウリングの生成の可能性は小さくなる。
X = A * F (1) + B * F (2) + C * F (3) (1)
Thus, by using the weighting coefficient representing the degree of contribution to the fouling generation, the evaluation can be performed in consideration of the degree of contribution to the fouling generation of a plurality of measured fluorescence intensities. That is, when the fluorescence intensity of F (1), which has a low degree of contribution to fouling generation, is small, even if the fluorescence intensity of F (3), which has a low contribution degree, is large, the generation of fouling as the entire treated water. The possibility is reduced.

図3は、式(1)を利用せずに、測定波長の異なる複数の原水の蛍光強度からファウリングの生成の可能性を求めるテーブルを表わす図である。例えば、ファウリング生成の寄与の度合いが大きいタンパク質様物質の濃度が高くF(1)の値が大きい場合、原水のファウリング生成の可能性が高くなりやすい結果(レベル1やレベル2)となる。ここでは生成の可能性のものをレベル1としている。また例えば、ファウリング生成の寄与の度合いが大きいタンパク質様物質の濃度が低くF(1)の値が小さい場合、原水のファウリング生成の可能性が低くなりやすい結果(レベル3やレベル4)となる。   FIG. 3 is a diagram showing a table for determining the possibility of fouling generation from the fluorescence intensities of a plurality of raw waters having different measurement wavelengths without using the equation (1). For example, when the concentration of a proteinaceous substance having a large contribution to fouling generation is high and the value of F (1) is large, the possibility of fouling generation of raw water is likely to increase (level 1 or level 2). . Here, the possibility of generation is set to level 1. In addition, for example, when the concentration of a proteinaceous substance having a large contribution to fouling generation is low and the value of F (1) is small, the possibility of generating fouling of raw water is likely to be low (level 3 or level 4). Become.

運転操作処理部23は、ファウリング予測部22でファウリングの生成について予測されると、ファウリング予測部22で求められた値を利用して、供給ポンプ2とラインL5上に設けられた調整弁B1とを操作する。すなわち、ろ過の流量が多い方がファウリング生成量が増加する。したがって、例えば、運転操作処理部23は、ファウリング予測部22の予測の結果でファウリング生成の可能性が所定値より大きくなった場合、供給ポンプ2及び調整弁B1を調節して逆浸透膜モジュール9からラインL4に透過する処理水の流量を少なくし、ファウリング生成の可能性が所定値より小さくなった場合、供給ポンプ2及び調整弁B1を調節して逆浸透膜モジュール9からラインL4に透過する処理水の流量を多くする。   When the fouling prediction unit 22 predicts the generation of fouling, the driving operation processing unit 23 uses the value obtained by the fouling prediction unit 22 to adjust the supply pump 2 and the line L5. The valve B1 is operated. That is, the amount of fouling increases as the flow rate of filtration increases. Therefore, for example, the driving operation processing unit 23 adjusts the supply pump 2 and the regulating valve B1 to adjust the reverse osmosis membrane when the possibility of fouling generation is larger than a predetermined value as a result of the prediction by the fouling prediction unit 22. When the flow rate of the treated water permeating from the module 9 to the line L4 is reduced and the possibility of fouling generation becomes smaller than a predetermined value, the supply pump 2 and the regulating valve B1 are adjusted to change the line L4 from the reverse osmosis membrane module 9 Increasing the flow rate of treated water permeating through

上述したように、膜ろ過システム100及びこの膜ろ過システムで利用されるファウリング生成の予測方法では、測定条件の異なる蛍光強度を測定することにより、逆浸透膜モジュール9へ通水される原水の複数の蛍光強度を測定することができる。したがって、本発明の第1実施形態に係る膜ろ過システム100及びファウリング生成の予測方法では、複数の蛍光強度の値からファウリングの生成の可能性をより正確に予測することができる。また、膜ろ過システム100では、このように予測された可能性を利用して膜モジュールでファウリングが生成されないようにシステムの運転を操作することができる。   As described above, in the membrane filtration system 100 and the fouling generation prediction method used in this membrane filtration system, raw water that is passed to the reverse osmosis membrane module 9 is measured by measuring fluorescence intensities with different measurement conditions. Multiple fluorescence intensities can be measured. Therefore, in the membrane filtration system 100 and the fouling generation prediction method according to the first embodiment of the present invention, the possibility of fouling generation can be predicted more accurately from a plurality of fluorescence intensity values. Further, in the membrane filtration system 100, the operation of the system can be operated so that the fouling is not generated in the membrane module by using the possibility predicted as described above.

なお、図1に示す例では、蛍光分析計20は、ラインL2に設置され、ラインL2を流れる原水を測定するものであるが、逆浸透膜モジュール9に流入する原水の蛍光強度を測定することのできる位置であれば、ラインL3やラインL1や原水槽1等、他の位置に設置されていてもよい。また、図1に示す例では、1つの逆浸透膜モジュールで原水をろ過する例で説明したが、さらに良質な水質を得るため、逆浸透膜モジュールを多段にしてもよい。   In the example shown in FIG. 1, the fluorescence analyzer 20 is installed in the line L2 and measures the raw water flowing through the line L2, but measures the fluorescence intensity of the raw water flowing into the reverse osmosis membrane module 9. If it is a position which can do, it may be installed in other positions, such as line L3, line L1, and raw water tank 1. Moreover, although the example shown in FIG. 1 demonstrated the example which filters raw | natural water with one reverse osmosis membrane module, in order to obtain a higher quality water quality, you may make a reverse osmosis membrane module multistage.

〈第2実施形態〉
図4に示すように、第2実施形態に係る膜ろ過システム200は、図1を用いて上述した膜ろ過システム100と比較すると、供給ポンプ2と保安フィルタ7の間に、膜モジュール3、第1処理水槽4、第2供給ポンプ6、洗浄用ポンプ24及びコンプレッサ11を備えている点で異なる。また、この膜ろ過システム200では、図1に示した処理水槽10は第2処理水槽10となり、供給ポンプ2は第1供給ポンプ2となる。
Second Embodiment
As shown in FIG. 4, the membrane filtration system 200 according to the second embodiment has a membrane module 3, a second filter between the supply pump 2 and the safety filter 7, as compared with the membrane filtration system 100 described above with reference to FIG. 1. The difference is that one treated water tank 4, a second supply pump 6, a cleaning pump 24, and a compressor 11 are provided. Moreover, in this membrane filtration system 200, the treated water tank 10 shown in FIG. 1 becomes the 2nd treated water tank 10, and the supply pump 2 becomes the 1st supply pump 2. FIG.

膜モジュール3は、例えば、MF膜(精密ろ過膜)又はUF膜(限外ろ過膜)を利用する膜モジュールであって、逆浸透膜モジュール9で処理する前の原水に含まれる濁度、藻類、微生物等の不溶解性成分を原水から除去する。この膜モジュール3は、ラインL21を介して原水槽1と接続されており、ラインL21上に設置される第1供給ポンプ2によって、原水槽1から原水が送られる。膜モジュール3における処理で得られた処理水は、ラインL22を介して第1処理水槽4に送られる。   The membrane module 3 is a membrane module using, for example, an MF membrane (microfiltration membrane) or a UF membrane (ultrafiltration membrane), and includes turbidity and algae contained in the raw water before being processed by the reverse osmosis membrane module 9 Remove insoluble components such as microorganisms from raw water. The membrane module 3 is connected to the raw water tank 1 via a line L21, and raw water is sent from the raw water tank 1 by a first supply pump 2 installed on the line L21. The treated water obtained by the treatment in the membrane module 3 is sent to the first treated water tank 4 via the line L22.

第1処理水槽4は、ラインL24を介して保安フィルタ7と接続されている。第1処理水槽4内の処理水は、ラインL24上に設置される第2供給ポンプ6によって、保安フィルタ7に送られ、その後は図1を用いて上述した場合と同様に処理される。   The first treated water tank 4 is connected to the security filter 7 via a line L24. The treated water in the first treated water tank 4 is sent to the safety filter 7 by the second supply pump 6 installed on the line L24, and thereafter treated in the same manner as described above with reference to FIG.

膜モジュール3は、第1処理水槽から分岐するラインL25を介して洗浄用ポンプ24により処理水が供給されることで、逆洗浄される。逆洗浄の排水はライン23を通って排水される。また、膜モジュール3は、コンプレッサ11から圧縮された空気等の気体が供給され、洗浄される。   The membrane module 3 is back-washed by supplying the treated water by the washing pump 24 through the line L25 branched from the first treated water tank. Backwash wastewater is drained through line 23. Further, the membrane module 3 is supplied with a gas such as compressed air from the compressor 11 and cleaned.

また、膜ろ過システムの運転操作処理部23は、ファウリング予測部22による予測結果を利用して、第1供給ポンプ2に加え、第2供給ポンプ6及びコンプレッサ11も操作する。一般に、空気洗浄の流量が多い程、また、洗浄時間が長い程、膜表面に付着した汚れが剥離し、ファウリングの生成は抑制される。したがって、例えば、運転操作処理部23は、ファウリング生成予測部22の予測の結果でファウリング生成の可能性が所定値より大きくなった場合、コンプレッサ11を調節して空気洗浄の流量を多くしたり洗浄時間を長くしたりする。一方、運転操作処理部23は、ファウリング生成予測部22の予測結果でファウリング生成の可能性が所定値より小さくなった場合、コンプレッサ11を調節して空気洗浄の流量を少なくしたり洗浄時間を短くしたりする。   Further, the operation processing unit 23 of the membrane filtration system operates the second supply pump 6 and the compressor 11 in addition to the first supply pump 2 using the prediction result by the fouling prediction unit 22. In general, the greater the air cleaning flow rate and the longer the cleaning time, the more the dirt adhered to the film surface will be peeled off, and the generation of fouling will be suppressed. Therefore, for example, if the possibility of fouling generation is greater than a predetermined value as a result of prediction by the fouling generation prediction unit 22, the driving operation processing unit 23 adjusts the compressor 11 to increase the flow rate of air washing. Increase the cleaning time. On the other hand, when the possibility of fouling generation becomes smaller than a predetermined value in the prediction result of the fouling generation prediction unit 22, the driving operation processing unit 23 adjusts the compressor 11 to reduce the air cleaning flow rate or the cleaning time. Or shorten it.

その他、運転操作処理部23は、洗浄用ポンプ24を利用してラインL25から逆洗水を供給供給して膜モジュール3の逆洗浄を制御する。逆洗浄とは、膜の透過側から水を反対の流れの方向に送水することで、膜表面に付着した汚れを除去する洗浄方法である。一般に、逆洗浄の流量が多い程、また洗浄時間が長い程、膜表面に付着した汚れが剥離し、ファウリングの生成は抑制される。したがって、例えば、運転操作処理部23は、ファウリング生成予測部22の予測の結果でファウリング生成の可能性が所定値より大きくなった場合、逆洗浄の流量を多くしたり洗浄時間を長くしたりする。一方、運転操作処理部23は、ファウリングの生成の可能性が所定値より小さくなった場合、逆洗浄の流量を少なくしたり洗浄時間を短くしたりする。   In addition, the driving operation processing unit 23 controls the back washing of the membrane module 3 by supplying and supplying back washing water from the line L25 using the washing pump 24. Reverse cleaning is a cleaning method that removes dirt adhering to the membrane surface by sending water in the opposite flow direction from the permeate side of the membrane. In general, the greater the back-cleaning flow rate and the longer the cleaning time, the more dirt adhered to the film surface will be peeled off, and the generation of fouling will be suppressed. Therefore, for example, when the possibility of fouling generation is greater than a predetermined value as a result of prediction by the fouling generation prediction unit 22, the driving operation processing unit 23 increases the flow rate of back cleaning or increases the cleaning time. Or On the other hand, when the possibility of generation of fouling becomes smaller than a predetermined value, the driving operation processing unit 23 reduces the flow rate of backwashing or shortens the washing time.

上述したように、膜ろ過システム200及びこの膜ろ過システムで利用されるファウリング生成の予測方法では、測定条件の異なる蛍光強度を測定することにより、膜モジュール3又は逆浸透膜モジュール9へ通水される原水の複数の蛍光強度を測定することができる。したがって、本発明の第2実施形態に係る膜ろ過システム200及びファウリング生成の予測方法では、複数の蛍光強度の値からファウリングの生成の可能性をより正確に予測することができる。また、膜ろ過システム200では、このように予測された可能性を利用して膜モジュールでファウリングが生成されないようにシステムの運転を操作したり、逆洗浄を操作することができる。   As described above, in the membrane filtration system 200 and the fouling generation prediction method used in this membrane filtration system, water is passed through the membrane module 3 or the reverse osmosis membrane module 9 by measuring fluorescence intensities with different measurement conditions. A plurality of fluorescence intensities of raw water can be measured. Therefore, in the membrane filtration system 200 and the fouling generation prediction method according to the second embodiment of the present invention, the possibility of fouling generation can be predicted more accurately from a plurality of fluorescence intensity values. Further, in the membrane filtration system 200, it is possible to operate the system operation or perform backwashing so that fouling is not generated in the membrane module by using the possibility predicted as described above.

また、MF膜又はUF膜を利用して前処理した場合には、原水中のファウリングの要因物質を測定してファウリング生成の予測をするに加え、原水中の不溶解性成分を除去したうえで逆浸透膜モジュールで処理する。したがって、膜ろ過システム200では、ファウリングの生成を防止することができる。   In addition, when pretreatment was performed using an MF membrane or a UF membrane, in addition to measuring the fouling causative substances in the raw water to predict fouling generation, insoluble components in the raw water were removed. Then, it is processed with a reverse osmosis membrane module. Therefore, in the membrane filtration system 200, generation of fouling can be prevented.

〈第3実施形態〉
図5に示すように、第3実施形態に係る膜ろ過システム300は、図4を用いて上述した膜ろ過システム200と比較すると、水質指標測定計21を備えている点で異なる。また、ファウリング予測部22は、蛍光分析計20の測定結果に加え、水質指標測定計21の測定結果を利用してファウリングの生成を予測する。
<Third Embodiment>
As shown in FIG. 5, the membrane filtration system 300 according to the third embodiment is different from the membrane filtration system 200 described above with reference to FIG. 4 in that a water quality indicator meter 21 is provided. The fouling prediction unit 22 predicts the generation of fouling using the measurement result of the water quality index measurement meter 21 in addition to the measurement result of the fluorescence analyzer 20.

ファウリングの生成は、原水に含まれる物質量の他、水温、気温、pH、全有機炭素濃度、紫外線吸光度、ファウリングインデックス(FI)、シルト濃度指数(SDI)、修正ファウリング指数(MFI)等の他の要因も影響される。したがって、水質指標測定計21は、このような蛍光強度以外のファウリング生成の要因となる原水の水質に関する値を測定する。ここでは、水質指標測定計21は、原水の水温(α)、この膜ろ過システム300が存在する位置の気温(β)、原水のpH値(γ)を測定するものとして説明する。   In addition to the amount of substances contained in raw water, fouling is generated in water temperature, temperature, pH, total organic carbon concentration, UV absorbance, fouling index (FI), silt concentration index (SDI), and modified fouling index (MFI). Other factors such as are also affected. Therefore, the water quality index measuring instrument 21 measures a value related to the quality of the raw water that causes fouling generation other than the fluorescence intensity. Here, description will be made assuming that the water quality indicator 21 measures the water temperature (α) of raw water, the temperature (β) at the position where the membrane filtration system 300 exists, and the pH value (γ) of the raw water.

ファウリング予測部22は、例えば、式(2)に示すように、水温、気温、pH等の蛍光強度以外の水質指標を利用してファウリング予測の結果を補正する。   For example, as shown in Expression (2), the fouling prediction unit 22 corrects the fouling prediction result using a water quality index other than the fluorescence intensity such as the water temperature, the air temperature, and the pH.

X=A×F(1)+B×F(2)+C×F(3)+F(α,β,γ) …(2)
上述したように、第3実施形態に係る膜ろ過システム300及びこの膜ろ過システムで利用されるファウリング生成の予測方法では、測定条件の異なる蛍光強度及び他の水質を測定することにより、ファウリングの生成の可能性をより正確に予測することができる。また、膜ろ過システム300では、このように予測された可能性を利用して膜モジュールでファウリングが生成されないようにシステムの運転を操作したり、逆洗浄を操作することができる。
X = A * F (1) + B * F (2) + C * F (3) + F ([alpha], [beta], [gamma]) (2)
As described above, in the membrane filtration system 300 according to the third embodiment and the fouling generation prediction method used in this membrane filtration system, the fouling is measured by measuring the fluorescence intensity and other water qualities with different measurement conditions. Can be predicted more accurately. Further, in the membrane filtration system 300, it is possible to operate the system operation or perform backwashing so that fouling is not generated in the membrane module by using the possibility predicted in this way.

本発明の各実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although the embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

100,200,300…過システム
1…原水槽
2…供給ポンプ,第1供給ポンプ
3…膜モジュール
4…第1処理水槽
6…第2供給ポンプ
7…保安フィルタ
8…高圧ポンプ
9…逆浸透膜モジュール
10…処理水槽,第2処理水槽
11…コンプレッサ
20…蛍光分析計
21…水質指標測定計
22…ファウリング予測部
23…運転操作処理部
DESCRIPTION OF SYMBOLS 100, 200, 300 ... Over-system 1 ... Raw water tank 2 ... Supply pump, 1st supply pump 3 ... Membrane module 4 ... 1st process water tank 6 ... 2nd supply pump 7 ... Security filter 8 ... High pressure pump 9 ... Reverse osmosis membrane Module 10 ... treated water tank, second treated water tank 11 ... compressor 20 ... fluorescence analyzer 21 ... water quality indicator measuring instrument 22 ... fouling prediction unit 23 ... operation operation processing unit

Claims (6)

イオン又は塩分を含む原水をろ過する膜モジュールでのファウリング生成の予測方法であって、
膜モジュールでろ過する前の原水に、波長の異なる複数の励起光を照射するステップと、
複数の励起光の照射により、それぞれ複数の蛍光強度を測定するステップと、
蛍光強度の範囲毎に優先付けで定められた係数と、測定された複数の蛍光強度の値とを利用してファウリングの生成を予測するステップと、
を備えることを特徴とするファウリング生成の予測方法。
A method for predicting fouling generation in a membrane module that filters raw water containing ions or salt,
Irradiating the raw water before filtering with a membrane module with a plurality of excitation lights having different wavelengths;
Measuring a plurality of fluorescence intensities by irradiation of a plurality of excitation lights,
Predicting the generation of fouling using a factor determined by prioritization for each fluorescence intensity range and a plurality of measured fluorescence intensity values;
The prediction method of the fouling production | generation characterized by comprising.
前記複数の波長の励起光と蛍光強度とはそれぞれ、
200〜300nmの波長範囲にある第1励起光と、この第1励起光により得られる250〜400nmの波長範囲にある第1蛍光強度と、
300〜400nmの波長範囲にある第2励起光と、この第2励起光により得られる350〜500nmの波長範囲にある第2蛍光強度と、
400〜500nmの波長範囲にある第3励起光と、この第3励起光により得られる500nm以上の波長範囲にある第3蛍光強度とである
ことを特徴とする請求項1に記載のファウリング生成の予測方法。
The excitation light and fluorescence intensity of the plurality of wavelengths are respectively
A first excitation light in a wavelength range of 200 to 300 nm, a first fluorescence intensity in a wavelength range of 250 to 400 nm obtained by the first excitation light,
A second excitation light in a wavelength range of 300 to 400 nm, a second fluorescence intensity in a wavelength range of 350 to 500 nm obtained by the second excitation light,
2. The fouling generation according to claim 1, wherein the third excitation light is in a wavelength range of 400 to 500 nm, and the third fluorescence intensity is in a wavelength range of 500 nm or more obtained by the third excitation light. Prediction method.
膜モジュールでろ過する前の原水の水質指標を測定するステップをさらに備え、
ファウリングの生成を予測するステップでは、係数及び蛍光強度の値とともに、測定された水質指標の値を利用する数式を利用してファウリングの生成を予測する
ことを特徴とする請求項1又は2のいずれか1に記載のファウリング生成の予測方法。
The method further comprises the step of measuring the water quality index of the raw water before being filtered by the membrane module,
The step of predicting the generation of fouling predicts the generation of fouling by using a mathematical formula that uses the measured value of the water quality index together with the value of the coefficient and the fluorescence intensity. The prediction method of the fouling production | generation of any one of these.
前記水質指標の値は、原水の濁度、温度、pH値、全有機炭素濃度又は紫外線吸光度の少なくともいずれかの値であることを特徴とする請求項1乃至3のいずれか1に記載のファウリング生成の予測方法。   4. The fau according to claim 1, wherein the value of the water quality index is at least one of turbidity, temperature, pH value, total organic carbon concentration, and ultraviolet absorbance of raw water. Prediction method for ring generation. 前記膜モジュールは逆浸透膜モジュールと、精密ろ過膜モジュール又は限外ろ過膜モジュールの組み合わせであることを特徴とする請求項1乃至4のいずれか1に記載のファウリング生成の予測方法。   The method for predicting fouling generation according to any one of claims 1 to 4, wherein the membrane module is a combination of a reverse osmosis membrane module and a microfiltration membrane module or an ultrafiltration membrane module. イオン又は塩分を含む原水をろ過する膜ろ過システムであって、
膜モジュールでろ過する前の原水に、波長の異なる複数の励起光を照射し、複数の蛍光強度を測定する蛍光分析計と、
蛍光強度の範囲毎に優先付けで定められた係数と、測定された複数の蛍光強度の値とを利用してファウリングの生成を予測するファウリング生成予測部と、
を備えることを特徴とする膜ろ過システム。
A membrane filtration system for filtering raw water containing ions or salt,
A fluorescence analyzer that irradiates a plurality of excitation lights with different wavelengths to raw water before being filtered with a membrane module, and measures a plurality of fluorescence intensities,
A fouling generation prediction unit that predicts generation of fouling using a coefficient determined by prioritization for each fluorescence intensity range and a plurality of measured fluorescence intensity values;
A membrane filtration system comprising:
JP2011056698A 2011-03-15 2011-03-15 Fouling generation prediction method and membrane filtration system Expired - Fee Related JP5618874B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011056698A JP5618874B2 (en) 2011-03-15 2011-03-15 Fouling generation prediction method and membrane filtration system
PCT/JP2012/055643 WO2012124538A1 (en) 2011-03-15 2012-03-06 Fouling prediction method, and membrane filtration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056698A JP5618874B2 (en) 2011-03-15 2011-03-15 Fouling generation prediction method and membrane filtration system

Publications (2)

Publication Number Publication Date
JP2012192315A true JP2012192315A (en) 2012-10-11
JP5618874B2 JP5618874B2 (en) 2014-11-05

Family

ID=46830613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056698A Expired - Fee Related JP5618874B2 (en) 2011-03-15 2011-03-15 Fouling generation prediction method and membrane filtration system

Country Status (2)

Country Link
JP (1) JP5618874B2 (en)
WO (1) WO2012124538A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757159A2 (en) 2013-01-17 2014-07-23 Azbil Corporation Microorganism detecting system and microorganism detecting method
WO2014112568A1 (en) * 2013-01-18 2014-07-24 株式会社 東芝 Membrane fouling diagnosis/control device, membrane fouling diagnosis/control method and membrane fouling diagnosis/control program
WO2016038726A1 (en) * 2014-09-11 2016-03-17 三菱重工業株式会社 Water treatment apparatus and water treatment method
JP2016180592A (en) * 2015-03-23 2016-10-13 オルガノ株式会社 Method of determining absorption state of organic substances absorbed by resin particles, and method of managing water treatment system
WO2017115423A1 (en) * 2015-12-28 2017-07-06 三菱重工業株式会社 Water treatment system and water treatment method
WO2017115429A1 (en) * 2015-12-28 2017-07-06 三菱重工業株式会社 Water treatment method and water treatment system
US9797823B2 (en) 2014-05-27 2017-10-24 Azbil Corporation Purified water manufacturing device monitoring system and purified water manufacturing device monitoring method
KR101795910B1 (en) * 2016-02-23 2017-11-08 두산중공업 주식회사 Prediction Method for Organic-Fouling of Membrane
JP2017536542A (en) * 2014-10-29 2017-12-07 ホリバ インスツルメンツ インコーポレイテッドHoriba Instruments Incorporated Determination of water treatment parameters based on absorbance and fluorescence
JP2017227575A (en) * 2016-06-24 2017-12-28 オルガノ株式会社 Bio-fouling evaluation method of organic separation membrane
JP2018179556A (en) * 2017-04-04 2018-11-15 三浦工業株式会社 Water quality monitoring device and water treatment system
JP2020134434A (en) * 2019-02-25 2020-08-31 オルガノ株式会社 Method of evaluating organic substances in ultrapure water, and organic substance identification method in ultrapure water production system
KR20210065521A (en) * 2019-11-27 2021-06-04 주식회사 제이제이앤컴퍼니스 Aquaculture system and control method therof
WO2022085802A1 (en) * 2020-10-23 2022-04-28 国立研究開発法人理化学研究所 Important factor calculation device for filter membrane fouling, fouling occurrence prediction device, important factor calculation method, fouling occurrence prediction method, program, trained model, storage medium, and trained model creation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102029013B1 (en) * 2018-02-26 2019-11-08 건국대학교 산학협력단 Membrane filtration system with on-site detection apparatus of biofouling in membrane filtration system and detection method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294434A (en) * 1994-04-28 1995-11-10 Toshiba Corp Water quality inspection method
JP2002166265A (en) * 2000-11-30 2002-06-11 Toshiba Corp Water treatment control system using fluorometric analyzer
JP2003090797A (en) * 2001-09-17 2003-03-28 Toshiba Eng Co Ltd Water quality measuring system by fluorescence analysis
JP2003126855A (en) * 2001-10-26 2003-05-07 Toshiba Corp Membrane filter system
JP2007090287A (en) * 2005-09-30 2007-04-12 Toray Ind Inc Apparatus and method for generating fresh water
JP2007252978A (en) * 2006-03-20 2007-10-04 Kurita Water Ind Ltd Evaluation process of reverse osmosis membrane feed water, and operation management process of arrangement and water treatment system
JP2008194560A (en) * 2007-02-08 2008-08-28 Kurita Water Ind Ltd Evaluation method of water to be treated in membrane separation device, water treatment method, and water treatment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294434A (en) * 1994-04-28 1995-11-10 Toshiba Corp Water quality inspection method
JP2002166265A (en) * 2000-11-30 2002-06-11 Toshiba Corp Water treatment control system using fluorometric analyzer
JP2003090797A (en) * 2001-09-17 2003-03-28 Toshiba Eng Co Ltd Water quality measuring system by fluorescence analysis
JP2003126855A (en) * 2001-10-26 2003-05-07 Toshiba Corp Membrane filter system
JP2007090287A (en) * 2005-09-30 2007-04-12 Toray Ind Inc Apparatus and method for generating fresh water
JP2007252978A (en) * 2006-03-20 2007-10-04 Kurita Water Ind Ltd Evaluation process of reverse osmosis membrane feed water, and operation management process of arrangement and water treatment system
JP2008194560A (en) * 2007-02-08 2008-08-28 Kurita Water Ind Ltd Evaluation method of water to be treated in membrane separation device, water treatment method, and water treatment device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757159A2 (en) 2013-01-17 2014-07-23 Azbil Corporation Microorganism detecting system and microorganism detecting method
WO2014112568A1 (en) * 2013-01-18 2014-07-24 株式会社 東芝 Membrane fouling diagnosis/control device, membrane fouling diagnosis/control method and membrane fouling diagnosis/control program
JP2014136210A (en) * 2013-01-18 2014-07-28 Toshiba Corp Film fouling diagnosis/control device, film fouling diagnosis/control method, and film fouling diagnosis/control program
US9797823B2 (en) 2014-05-27 2017-10-24 Azbil Corporation Purified water manufacturing device monitoring system and purified water manufacturing device monitoring method
WO2016038726A1 (en) * 2014-09-11 2016-03-17 三菱重工業株式会社 Water treatment apparatus and water treatment method
JPWO2016038726A1 (en) * 2014-09-11 2017-06-15 三菱重工業株式会社 Water treatment apparatus and water treatment method
JP2017536542A (en) * 2014-10-29 2017-12-07 ホリバ インスツルメンツ インコーポレイテッドHoriba Instruments Incorporated Determination of water treatment parameters based on absorbance and fluorescence
JP2016180592A (en) * 2015-03-23 2016-10-13 オルガノ株式会社 Method of determining absorption state of organic substances absorbed by resin particles, and method of managing water treatment system
WO2017115429A1 (en) * 2015-12-28 2017-07-06 三菱重工業株式会社 Water treatment method and water treatment system
WO2017115423A1 (en) * 2015-12-28 2017-07-06 三菱重工業株式会社 Water treatment system and water treatment method
KR101795910B1 (en) * 2016-02-23 2017-11-08 두산중공업 주식회사 Prediction Method for Organic-Fouling of Membrane
JP2017227575A (en) * 2016-06-24 2017-12-28 オルガノ株式会社 Bio-fouling evaluation method of organic separation membrane
JP2018179556A (en) * 2017-04-04 2018-11-15 三浦工業株式会社 Water quality monitoring device and water treatment system
JP2020134434A (en) * 2019-02-25 2020-08-31 オルガノ株式会社 Method of evaluating organic substances in ultrapure water, and organic substance identification method in ultrapure water production system
JP7195177B2 (en) 2019-02-25 2022-12-23 オルガノ株式会社 Method for evaluating organic matter in ultrapure water and method for identifying organic matter in ultrapure water production system
KR20210065521A (en) * 2019-11-27 2021-06-04 주식회사 제이제이앤컴퍼니스 Aquaculture system and control method therof
KR102445794B1 (en) * 2019-11-27 2022-09-22 주식회사 제이제이앤컴퍼니스 Aquaculture system and control method therof
WO2022085802A1 (en) * 2020-10-23 2022-04-28 国立研究開発法人理化学研究所 Important factor calculation device for filter membrane fouling, fouling occurrence prediction device, important factor calculation method, fouling occurrence prediction method, program, trained model, storage medium, and trained model creation method

Also Published As

Publication number Publication date
WO2012124538A1 (en) 2012-09-20
JP5618874B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5618874B2 (en) Fouling generation prediction method and membrane filtration system
JP4867413B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP5433633B2 (en) Seawater desalination system using forward osmosis membrane
Di Profio et al. Submerged hollow fiber ultrafiltration as seawater pretreatment in the logic of integrated membrane desalination systems
Qu et al. Tertiary treatment of secondary effluent using ultrafiltration for wastewater reuse: correlating membrane fouling with rejection of effluent organic matter and hydrophobic pharmaceuticals
Kimura et al. Irreversible fouling in hollow-fiber PVDF MF/UF membranes filtering surface water: Effects of precoagulation and identification of the foulant
JP2009240902A (en) Water treating method and water treating apparatus
JP6679439B2 (en) Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method
JP2008194560A (en) Evaluation method of water to be treated in membrane separation device, water treatment method, and water treatment device
Lidén et al. Integrity breaches in a hollow fiber nanofilter–Effects on natural organic matter and virus-like particle removal
JP2015009174A (en) Water treatment system and water treatment method for water treatment system
Malczewska et al. Efficacy of hybrid adsorption/membrane pretreatment for low pressure membrane
WO2013157188A1 (en) Method for evaluating membrane fouling and method for washing separation membrane
Jutaporn et al. Efficacy of selected pretreatment processes in the mitigation of low-pressure membrane fouling and its correlation to their removal of microbial DOM
Cran et al. Root cause analysis for membrane system validation failure at a full-scale recycled water treatment plant
Gasia-Bruch et al. Field experience with a 20,000 m3/d integrated membrane seawater desalination plant in Cyprus
JP4804176B2 (en) Seawater filtration
JP5526093B2 (en) Seawater desalination method and seawater desalination apparatus
JP5377553B2 (en) Membrane filtration system and its operation method
Alhussaini et al. Analysis of backwash settings to maximize net water production in an engineering-scale ultrafiltration system for water reuse
SA08290598B1 (en) Process and Apparatus for Reducing Biofouling on Membranes of Pressure-driven Membrane Separation Processes
Lipp et al. Treatment of reservoir water with a backwashable MF/UF spiral wound membrane
JP4079082B2 (en) Backwashing method for membrane filtration water treatment equipment
JPWO2018105569A1 (en) Water treatment method and apparatus
Łaskawiec et al. Treatment of pool water installation washings in a flocculation/ultrafiltration integrated system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

R151 Written notification of patent or utility model registration

Ref document number: 5618874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees