JP2016180592A - Method of determining absorption state of organic substances absorbed by resin particles, and method of managing water treatment system - Google Patents

Method of determining absorption state of organic substances absorbed by resin particles, and method of managing water treatment system Download PDF

Info

Publication number
JP2016180592A
JP2016180592A JP2015059416A JP2015059416A JP2016180592A JP 2016180592 A JP2016180592 A JP 2016180592A JP 2015059416 A JP2015059416 A JP 2015059416A JP 2015059416 A JP2015059416 A JP 2015059416A JP 2016180592 A JP2016180592 A JP 2016180592A
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
water treatment
fluorescence
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015059416A
Other languages
Japanese (ja)
Other versions
JP6581372B2 (en
Inventor
晃彦 津田
Akihiko Tsuda
晃彦 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2015059416A priority Critical patent/JP6581372B2/en
Publication of JP2016180592A publication Critical patent/JP2016180592A/en
Application granted granted Critical
Publication of JP6581372B2 publication Critical patent/JP6581372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of determining the absorption state of organic substances absorbed by an ion exchange resin, and to provide a method of managing a water treatment system by grasping the state of contamination by traces of organic substances contained in raw water being treated using the method of determining the absorption state and managing a replacement schedule for the ion exchange resin.SOLUTION: A method of determining the absorption state of organic substances absorbed by resin particles involves; comminuting the resin particles with organic substances absorbed thereby; sweeping excitation wavelength and measuring intensities at fluorescence peaks of at least two excitation wavelengths using fluorometry; and predicting an amount of absorbed organic substances based on a ratio of two intensities. The absorbed amount thus predicted by using this method is used to determine a replacement schedule of the ion exchange resin for water treatment system management.SELECTED DRAWING: Figure 2

Description

本発明は、樹脂粒子に吸着した有機物の吸着状態判定方法に関する。また、本発明は、純水製造システムなどの水処理システムに使用されるイオン交換樹脂の汚染物質、特に処理水中に微量含まれる有機物汚染によるイオン交換樹脂の劣化状況を把握し、管理する方法に関する。   The present invention relates to an organic substance adsorption state determination method adsorbed on resin particles. The present invention also relates to a method for grasping and managing the deterioration state of ion exchange resin pollutants used in water treatment systems such as a pure water production system, in particular, ion exchange resin deterioration due to organic matter contamination contained in trace amounts in treated water. .

純水装置で使用するイオン交換樹脂が、処理原水中に含まれる有機物によって汚染され、薬品再生後の再生薬品の残留により採水開始までの時間が延長する事例がある。これまで有機物の構造に含まれるカルボン酸基に再生薬品のナトリウムが結合し、再生薬品の残留が高くなると考えられてきたが、原水に含まれる有機物は、フルボ酸やフミン酸といった土壌分解性の有機物であり、イオン交換樹脂の母体も有機物であるためイオン交換樹脂を直接分析し、有機物の特定や濃度を測定することは難しい。   There is a case where the ion exchange resin used in the pure water apparatus is contaminated by organic substances contained in the treated raw water, and the time until the start of water sampling is extended due to the residual of the regenerated chemical after chemical regeneration. So far, it has been thought that regenerative chemical sodium binds to the carboxylic acid group contained in the structure of organic matter, and the residual of the regenerative chemical becomes high. Since it is an organic substance and the base of the ion exchange resin is also an organic substance, it is difficult to directly analyze the ion exchange resin and to determine the concentration and the concentration of the organic substance.

構造がある程度予測される有機物の吸着に関しては、特許文献1には表面分析法により試料の表面部分に吸着した物質の試料深さ方向の分布を測定することを特徴とする試料表面に吸着した物質の吸着状態判定方法が開示され、表面分析法として電子線プローブマイクロアナライザー法、二次イオン質量分析法、光電子分光法、光音響分光法、赤外全反射分光法(ATR法)、ラマン分光法が挙げられおり、特にATR法を使用した判定方法が開示されている。   Regarding the adsorption of organic substances whose structure is predicted to some extent, Patent Document 1 discloses a substance adsorbed on the sample surface characterized by measuring the distribution in the sample depth direction of the substance adsorbed on the surface part of the sample by a surface analysis method. The method for determining the adsorption state of an electron beam is disclosed, and as a surface analysis method, an electron beam probe microanalyzer method, secondary ion mass spectrometry, photoelectron spectroscopy, photoacoustic spectroscopy, infrared total reflection spectroscopy (ATR method), Raman spectroscopy In particular, a determination method using the ATR method is disclosed.

特開2002−156327号公報JP 2002-156327 A

しかしながら、特許文献1の方法は、原水中に含まれる有機物ではなく、多段に組み合わせた他のイオン交換樹脂からの溶出物に対して効果を奏するものである。そのため、フルボ酸やフミン酸といった土壌分解性の有機物、特にこれら酸性の無定形高分子有機物については十分な方法とはいえなかった。   However, the method of Patent Document 1 is effective not for organic substances contained in raw water but for eluates from other ion exchange resins combined in multiple stages. For this reason, it has not been a sufficient method for soil-decomposable organic substances such as fulvic acid and humic acid, especially these acidic amorphous polymer organic substances.

原水中に含まれる有機物濃度は、TOCとしては数十μg/lと低いが、処理の過程で徐々にイオン交換樹脂に有機物が蓄積されると考えられるため、安定した運転管理を行うには、イオン交換樹脂の有機物吸着状況を把握することは重要である。   The concentration of organic substances contained in the raw water is as low as several tens of μg / l as TOC, but it is considered that organic substances are gradually accumulated in the ion exchange resin during the treatment process. It is important to understand the organic matter adsorption status of ion exchange resins.

本発明では、有機物によるイオン交換樹脂の吸着状況を判定する方法及びそれに処理原水中に微量含まれる酸性の無定形高分子有機物汚染の状況をこの吸着状態の判定方法に基づいて把握し、イオン交換樹脂の交換時期を管理する水処理システムの管理方法を提供することを目的とする。   In the present invention, the method for determining the adsorption status of the ion exchange resin by the organic matter and the acidic amorphous polymer organic matter contamination status contained in a trace amount in the treated raw water are grasped based on this adsorption status determination method, and ion exchange is performed. It aims at providing the management method of the water treatment system which manages the exchange time of resin.

本発明者が鋭意検討した結果、イオン交換樹脂の性能低下を引き起こす酸性の無定形高分子有機物と同等の性能低下挙動を示す構造既知の有機物を見出し、その有機物を用いて、有機物の吸着状態を蛍光光度法にて評価する方法に到達したものである。   As a result of diligent study by the present inventor, the present inventors have found an organic substance having a known structure exhibiting a performance deterioration behavior equivalent to that of an acidic amorphous polymer organic substance that causes a decrease in the performance of the ion exchange resin, and the organic substance is used to determine the adsorption state of the organic substance. It has reached the method of evaluation by the fluorescence photometry.

すなわち、本発明の一形態によれば、樹脂粒子への有機物の吸着状態を判定する方法であって、有機物を吸着した樹脂粒子を粉砕して、粉砕した前記樹脂粒子に対して蛍光光度法により励起波長を走査して少なくとも2つの励起波長における蛍光ピークの強度を取得し、2つの前記蛍光ピークの強度の比に基づいて前記有機物の吸着量を予測する吸着状態判定方法が提供される。   That is, according to one aspect of the present invention, a method for determining an adsorption state of an organic substance on a resin particle, the resin particle adsorbing an organic substance is pulverized, and the pulverized resin particle is obtained by a fluorometric method. An adsorption state determination method is provided that scans excitation wavelengths to acquire fluorescence peak intensities at at least two excitation wavelengths, and predicts an adsorption amount of the organic substance based on a ratio of the two fluorescence peak intensities.

又、本発明の別の形態によれば、水処理システムに使用されるイオン交換樹脂に吸着した外来有機物の吸着状態について上記吸着状態判定方法により、イオン交換樹脂への外来有機物の吸着量を予測し、該吸着量からイオン交換樹脂の交換時期を決定する水処理システムの管理方法が提供される。   According to another aspect of the present invention, the amount of foreign organic matter adsorbed on the ion exchange resin is predicted by the adsorption state determination method for the state of adsorption of the foreign organic matter adsorbed on the ion exchange resin used in the water treatment system. And the management method of the water treatment system which determines the replacement | exchange time of ion exchange resin from this adsorption amount is provided.

本発明よれば、特定の有機物のイオン交換樹脂への吸着状態より、再生薬品の残留性を把握できるようになり、安定した水処理系の管理ができ、適切な交換時期の判断や決定ができるようになる。   According to the present invention, it becomes possible to grasp the persistence of regenerated chemicals from the adsorption state of a specific organic substance on an ion exchange resin, and it is possible to manage a stable water treatment system and to judge and determine an appropriate replacement time. It becomes like this.

指標有機物吸着前のイオン交換樹脂の3次元蛍光スペクトルを示す図である。It is a figure which shows the three-dimensional fluorescence spectrum of the ion exchange resin before parameter | index organic substance adsorption | suction. 指標有機物を所定濃度で吸着させた際の蛍光波長430nmにおける励起スペクトルを示す図である。It is a figure which shows the excitation spectrum in fluorescence wavelength 430nm at the time of making a parameter | index organic substance adsorb | suck with predetermined concentration. イオン交換樹脂の有機物汚染濃度に伴う蛍光強度比を示す図である。It is a figure which shows the fluorescence intensity ratio accompanying the organic substance contamination density | concentration of an ion exchange resin. イオン交換樹脂への吸着有機物量と、60分後のイオン交換樹脂塔出口の電気伝導率の測定結果を示すグラフである。It is a graph which shows the measurement result of the electric conductivity of the amount of organic substances adsorbed to the ion exchange resin, and the ion exchange resin tower outlet after 60 minutes. イオン交換樹脂への吸着有機物量と、60分後のイオン交換樹脂塔出口の電気伝導率の測定結果をまとめたグラフである。It is the graph which put together the measurement result of the amount of organic substance adsorbed to an ion exchange resin, and the electrical conductivity of the ion exchange resin tower exit after 60 minutes.

フルボ酸やフミン酸といった土壌分解性の有機物は不定形であるため、これを直接用いて、イオン交換樹脂への吸着状況を確認することは極めて困難である。そこで、本発明ではこのような酸性の無定形高分子有機物と同等の性能低下挙動を示す構造既知の有機物を用いて、その吸着状況を把握し、それを実際の原水処理などの水処理システムに使用したイオン交換樹脂にも適用できることを見出した。   Since soil-decomposable organic substances such as fulvic acid and humic acid are indefinite, it is extremely difficult to directly check the adsorption state on the ion exchange resin. Therefore, in the present invention, using an organic substance with a known structure that exhibits the same performance degradation behavior as that of the acidic amorphous polymer organic substance, the adsorption state is grasped, and this is applied to a water treatment system such as actual raw water treatment. It was found that the present invention can also be applied to the ion exchange resin used.

ここで、指標となる構造既知の有機物としては、カルボン酸基含有芳香族化合物、特にカルボン酸基とフェノール性水酸基をそれぞれ1つ以上有する化合物が同等の性能低下挙動を示すことを見出した。中でも下記構造式に示す没食子酸鉄を指標化合物として用いるものである。   Here, it has been found that as an organic substance having a known structure serving as an index, a carboxylic acid group-containing aromatic compound, particularly a compound having at least one carboxylic acid group and one or more phenolic hydroxyl groups, exhibits equivalent performance-decreasing behavior. Among them, iron gallate shown in the following structural formula is used as an indicator compound.

Figure 2016180592
Figure 2016180592

没食子酸鉄(ビス(3,4,5−トリヒドロキシ安息香酸)鉄(II))は、万年筆などの黒色インク成分として古くから知られており、容易に入手することができる。   Iron gallate (bis (3,4,5-trihydroxybenzoate) iron (II)) has been known for a long time as a black ink component such as a fountain pen and can be easily obtained.

本発明が適用されるイオン交換樹脂としては、陰イオン交換樹脂であり、特に弱塩基性の陰イオン交換樹脂である。また、イオン交換樹脂のベース樹脂としては、ポリアクリル系とポリスチレン系とがあるが、本発明ではポリスチレン系の弱塩基性の陰イオン交換樹脂に対して特に有効である。   The ion exchange resin to which the present invention is applied is an anion exchange resin, particularly a weakly basic anion exchange resin. In addition, as the base resin of the ion exchange resin, there are a polyacrylic type and a polystyrene type. In the present invention, it is particularly effective for a polystyrene type weakly basic anion exchange resin.

(測定方法およびイオン交換樹脂性能評価方法)
イオン交換樹脂の有機物吸着量の測定法としては、蛍光光度法を用いる。蛍光光度法とは、測定試料に光を照射することで試料に含まれる物質が励起状態になり、基底状態に戻る際に発する蛍光を測定する方法である。測定するイオン交換樹脂や有機物により励起波長や蛍光波長が異なるため、3次元の蛍光スペクトルのデータが収集できる機器が好ましい。測定するイオン交換樹脂を乾燥後粉砕し、プレート上に成型する。その際に正確な定量を実施するため成型の型や成型するイオン交換樹脂量は一定にする必要がある。成型したイオン交換樹脂に対して励起波長を走査し、蛍光波長を求め、3次元の蛍光スペクトルデータを取得する。波長範囲は励起波長、蛍光波長ともに200nm〜600nmで測定を行う。
(Measurement method and ion exchange resin performance evaluation method)
As a method for measuring the organic substance adsorption amount of the ion exchange resin, a fluorometric method is used. The fluorescence photometry is a method for measuring fluorescence emitted when a substance contained in a sample is excited by irradiating the measurement sample with light and returns to the ground state. Since the excitation wavelength and fluorescence wavelength differ depending on the ion exchange resin or organic substance to be measured, an apparatus capable of collecting three-dimensional fluorescence spectrum data is preferable. The ion exchange resin to be measured is dried, pulverized, and molded on a plate. At that time, in order to carry out accurate quantification, it is necessary to make the mold and the amount of ion exchange resin to be molded constant. The excitation ion wavelength is scanned with respect to the molded ion exchange resin, the fluorescence wavelength is obtained, and three-dimensional fluorescence spectrum data is obtained. The wavelength range is measured at 200 nm to 600 nm for both excitation wavelength and fluorescence wavelength.

有機物が吸着していないイオン交換樹脂について、蛍光光度法による測定を行い、この時、異なる励起波長において少なくとも2つの蛍光ピークがあることを確認する。次に、有機物を吸着させると、蛍光ピークの強度が吸着量により減衰する。しかしながら、一つのピークのみの減衰傾向は有機物吸着以外の要因もあり、有機物の吸着量を正確に把握することはできない。そこで、本発明では2つのピークにおける強度比(蛍光強度比という)を求めることで、有機物吸着以外の要因は相殺され、有機物の吸着量に依存した減衰傾向が求められる。   The ion exchange resin to which no organic matter is adsorbed is measured by a fluorometric method, and at this time, it is confirmed that there are at least two fluorescent peaks at different excitation wavelengths. Next, when an organic substance is adsorbed, the intensity of the fluorescence peak is attenuated by the amount of adsorption. However, the decay tendency of only one peak is caused by factors other than organic matter adsorption, and the amount of organic matter adsorbed cannot be accurately grasped. Therefore, in the present invention, by obtaining the intensity ratio (referred to as fluorescence intensity ratio) at the two peaks, factors other than organic substance adsorption are offset, and an attenuation tendency depending on the amount of organic substance adsorption is obtained.

蛍光強度比は、蛍光ピーク強度の低いものを蛍光ピーク強度の高いもので除した値である。また、2つの蛍光ピークは、同じ波長であっても異なる波長であっても良いが、同じ蛍光波長であることが好ましい。   The fluorescence intensity ratio is a value obtained by dividing the low fluorescence peak intensity by the high fluorescence peak intensity. The two fluorescence peaks may be the same wavelength or different wavelengths, but are preferably the same fluorescence wavelength.

本発明では、構造既知の指標化合物の吸着量を蛍光光度法で測定される蛍光強度比から推定し、それに基づいて実機の有機物汚染状況を把握するものである。   In the present invention, the amount of adsorption of an index compound having a known structure is estimated from the fluorescence intensity ratio measured by the fluorometric method, and based on this, the actual state of organic contamination is grasped.

このように、本発明では指標有機物の選択と、有機物量による蛍光光度法における蛍光強度比の減衰傾向という2つの新たな知見により、再生薬品の残留性を予測できるようになり、安定した水処理系の管理ができ、適切な交換時期の判断や決定ができるようになる。   As described above, in the present invention, it is possible to predict the persistence of the regenerative chemical by the two new findings of the selection of the indicator organic substance and the decay tendency of the fluorescence intensity ratio in the fluorometric method based on the amount of organic substance, and stable water treatment The system can be managed, and it will be possible to judge and determine an appropriate replacement time.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited only to these Examples.

イオン交換樹脂として弱塩基性ポリスチレン系陰イオン交換樹脂(アンバーライトIRA96SB、商品名、ダウ・ケミカル社製)を用いた。
乾燥した試料を粉砕し、ペレット状に成型したものを測定した。測定機器を以下に示す。
測定機器:F−7000型 分光蛍光光度計 日立製
付属品 固体試料ホルダー
測定モード:3次元 データモード:蛍光
励起開始波長:200.0nm 励起終了波長:600.0nm 励起サンプリング間隔:5.0nm
蛍光開始波長:200.0nm 蛍光終了波長:600.0nm 蛍光サンプリング間隔:5.0nm
Weakly basic polystyrene anion exchange resin (Amberlite IRA 96SB, trade name, manufactured by Dow Chemical Company) was used as the ion exchange resin.
The dried sample was pulverized and measured into a pellet shape. The measuring equipment is shown below.
Measuring instrument: F-7000 type spectrofluorophotometer Hitachi accessory Solid sample holder measurement mode: 3D data mode: fluorescence excitation start wavelength: 200.0 nm excitation end wavelength: 600.0 nm excitation sampling interval: 5.0 nm
Fluorescence start wavelength: 200.0 nm Fluorescence end wavelength: 600.0 nm Fluorescence sampling interval: 5.0 nm

図1に3次元蛍光スペクトルの測定結果の一例を示す。3次元蛍光スペクトルは、励起波長(nm)、蛍光波長(nm)、蛍光強度の3軸から構成される。図1において測定対象とした試料は、有機物未吸着の陰イオン交換樹脂である。この蛍光スペクトルにおいて励起波長280nmと励起波長380nmともに蛍光波長430nmに蛍光強度が高く検出されている。   FIG. 1 shows an example of the measurement result of the three-dimensional fluorescence spectrum. The three-dimensional fluorescence spectrum is composed of three axes: excitation wavelength (nm), fluorescence wavelength (nm), and fluorescence intensity. The sample to be measured in FIG. 1 is an anion exchange resin that does not adsorb organic matter. In this fluorescence spectrum, both the excitation wavelength 280 nm and the excitation wavelength 380 nm are detected with high fluorescence intensity at the fluorescence wavelength 430 nm.

次に、指標化合物として没食子酸鉄を用いて、有機物を上記のイオン交換樹脂に吸着させた。   Next, using iron gallate as an indicator compound, organic substances were adsorbed on the ion exchange resin.

イオン交換樹脂の没食子酸鉄の吸着量は、イオン交換樹脂一定量に没食子酸鉄を一定量添加した状態で、所定時間振とうし、没食子酸鉄を吸着させ、イオン交換樹脂と水溶液を分離した後にTOC濃度を測定し、添加量との差(没食子酸鉄の添加濃度−TOC濃度)から算出したものである。   The amount of iron gallate adsorbed on the ion-exchange resin was shaken for a predetermined time with a certain amount of iron gallate added to a certain amount of ion-exchange resin to adsorb iron gallate and separate the ion exchange resin and aqueous solution. The TOC concentration was measured later and calculated from the difference from the addition amount (addition concentration of iron gallate-TOC concentration).

図2に蛍光波長430nmにおける励起スペクトルの測定結果を示す。図2の横軸は励起波長を示し、図2の縦軸は蛍光強度を示す。図2においては、異なる有機物汚染濃度(0mg/L、20mg/L、200mg/L、870mg/L、4400mg/L)のイオン交換樹脂のスペクトルを重ねている。蛍光波長430nmにおける励起波長280nmの蛍光強度と励起波長380nmの蛍光強度の比を蛍光強度比と定義し、有機物濃度(有機物汚染濃度)と蛍光強度比をプロットした結果を図3に示す。   FIG. 2 shows the measurement results of the excitation spectrum at a fluorescence wavelength of 430 nm. The horizontal axis in FIG. 2 indicates the excitation wavelength, and the vertical axis in FIG. 2 indicates the fluorescence intensity. In FIG. 2, spectra of ion exchange resins having different organic contamination concentrations (0 mg / L, 20 mg / L, 200 mg / L, 870 mg / L, 4400 mg / L) are superimposed. The ratio of the fluorescence intensity at the excitation wavelength of 280 nm and the fluorescence intensity at the excitation wavelength of 380 nm at the fluorescence wavelength of 430 nm is defined as the fluorescence intensity ratio, and the result of plotting the organic substance concentration (organic matter contamination concentration) and the fluorescence intensity ratio is shown in FIG.

次に、イオン交換樹脂の再生薬品の残留性と有機物濃度の評価法を説明する。先ず、イオン交換樹脂に没食子酸鉄を一定量吸着させた樹脂(作成方法に関しては、上記の蛍光法による試料の作成法と同様)を樹脂搭に充填した後、その樹脂搭に再生薬品を樹脂の約5倍量通薬した。次に、樹脂搭に一定流速で純水を流し、充填された樹脂に対して純水洗浄を行った。そして、純水洗浄を開始してから60分後に樹脂搭の出口から流れる水の電気伝導率を測定した。再生薬品を通薬する工程において、樹脂からの没食子酸鉄の脱離が考えられるため、樹脂を通過した薬液を回収し、その通過した薬液中のTOC量を測定することで樹脂の残留有機物量(有機物濃度)を算出した。   Next, the evaluation method of the persistence of the regenerative chemical of the ion exchange resin and the organic substance concentration will be described. First, the resin tower is filled with a resin in which a certain amount of iron gallate is adsorbed on an ion exchange resin (the preparation method is the same as the preparation method of the sample by the fluorescence method described above), and then a regenerative chemical is put on the resin tower. About 5 times the dose. Next, pure water was allowed to flow through the resin tower at a constant flow rate, and the filled resin was washed with pure water. And the electrical conductivity of the water which flows from the exit of a resin tower 60 minutes after starting pure water washing | cleaning was measured. In the process of feeding regenerated chemicals, iron gallate can be detached from the resin. Therefore, the amount of residual organic matter in the resin is measured by collecting the chemical that has passed through the resin and measuring the amount of TOC in the passed chemical. (Organic substance concentration) was calculated.

図4に残留有機物濃度と、純水洗浄を開始してから60分後のイオン交換樹脂塔出口から流れる水の電気伝導率の測定結果を示す。図4の横軸は、1回目の有機物吸着後の1回目の通液−純水洗浄後(1−1)、2回目の有機物吸着後の1回目の通液−純水洗浄後(2−1)、2回目の通液−純水洗浄後(2−2)、3回目の通液−純水洗浄後(2−3)等を意味する。図5は、図4の結果に基づき、イオン交換樹脂塔の出口から流れる水の電気伝導率を横軸に示し、樹脂の残留有機物量を縦軸に示したものである。図4及び図5を参照すると、樹脂の残留有機物量(有機物濃度)は、イオン交換樹脂塔の出口から流れる水の電気伝導率にほぼ正比例することが分かる。すなわち、この電気伝導率の変動は、フルボ酸やフミン酸といった土壌分解性の有機物に影響を受けており、このことから、没食子酸鉄が指標化合物として使用できることが確認された。   FIG. 4 shows the measurement results of the residual organic matter concentration and the electrical conductivity of water flowing from the ion exchange resin tower outlet 60 minutes after the start of pure water cleaning. The horizontal axis of FIG. 4 shows the first flow after the first organic adsorption-after pure water cleaning (1-1), the first liquid flow after the second organic adsorption-after pure water cleaning (2- 1) After the second liquid-purified water washing (2-2), the third liquid-purified water-washed (2-3), etc. FIG. 5 shows the electric conductivity of water flowing from the outlet of the ion exchange resin tower on the horizontal axis and the residual organic matter amount of the resin on the vertical axis based on the result of FIG. 4 and 5, it can be seen that the amount of residual organic substances (organic substance concentration) of the resin is almost directly proportional to the electric conductivity of the water flowing from the outlet of the ion exchange resin tower. That is, the change in electrical conductivity is affected by soil-decomposable organic substances such as fulvic acid and humic acid, which confirms that iron gallate can be used as an indicator compound.

例えば、イオン交換樹脂の性能が低下したと判断する電気伝導率基準値を、純水洗浄を開始してから60分後に50μS/cmと設定すると、有機物濃度は2100mg/L−樹脂となる。これは図5の出口電気伝導率と有機物濃度より計算できる。そして、この有機物濃度と蛍光光度法の結果を示す図3より、蛍光強度比が0.45以下の時にイオン交換樹脂の性能が低下したと判断できる。   For example, if the electric conductivity reference value for determining that the performance of the ion exchange resin has deteriorated is set to 50 μS / cm 60 minutes after the start of pure water cleaning, the organic matter concentration becomes 2100 mg / L-resin. This can be calculated from the outlet electrical conductivity and organic substance concentration in FIG. And from FIG. 3 which shows the result of this organic substance density | concentration and the fluorescence photometry, it can be judged that the performance of the ion exchange resin fell when the fluorescence intensity ratio was 0.45 or less.

この指標を用いて、実際の原水処理においては、イオン交換樹脂の蛍光強度比が、指標化合物を用いて決定された性能低下の基準値に応じた所定値以下で確認された場合に性能低下と判断し、交換時期を管理することが可能となる。   With this index, in actual raw water treatment, when the fluorescence intensity ratio of the ion exchange resin is confirmed to be a predetermined value or less according to the reference value of the performance decrease determined using the index compound, the performance deterioration It is possible to judge and manage the replacement time.

本発明に係る吸着状態判定方法は、イオン交換樹脂に限定されず樹脂粒子全般に対して有機物の吸着状態の把握に利用することができる。   The adsorption state determination method according to the present invention is not limited to ion-exchange resins, and can be used for grasping the adsorption state of organic substances for all resin particles.

Claims (7)

樹脂粒子への有機物の吸着状態を判定する方法であって、有機物を吸着した樹脂粒子を粉砕して、粉砕した前記樹脂粒子に対して蛍光光度法により励起波長を走査して少なくとも2つの励起波長における蛍光ピークの強度を取得し、2つの前記蛍光ピークの強度の比に基づいて前記有機物の吸着量を予測する吸着状態判定方法。   A method for determining an adsorption state of an organic substance on a resin particle, wherein the resin particle adsorbed with an organic substance is pulverized, and the pulverized resin particle is scanned with an excitation wavelength by a fluorometric method to at least two excitation wavelengths. An adsorption state determination method that obtains the intensity of the fluorescence peak in and predicts the adsorption amount of the organic matter based on the ratio of the intensity of the two fluorescence peaks. 前記2つの励起波長における蛍光ピークの蛍光波長は等しい請求項1に記載の吸着状態判定方法。   The adsorption state determination method according to claim 1, wherein fluorescence wavelengths of fluorescence peaks at the two excitation wavelengths are equal. 前記樹脂粒子は、イオン交換樹脂である請求項1又は2に記載の吸着状態判定方法。   The adsorption state determination method according to claim 1, wherein the resin particles are an ion exchange resin. 前記有機物は、カルボン酸基含有芳香族化合物である請求項1ないし3のいずれか一項に記載の吸着状態判定方法。   The adsorption state determination method according to any one of claims 1 to 3, wherein the organic substance is a carboxylic acid group-containing aromatic compound. 水処理システムに使用されるイオン交換樹脂に吸着した外来有機物の吸着状態を請求項1ないし4のいずれか一項に記載の吸着状態判定方法により、イオン交換樹脂への外来有機物の吸着量を予測し、前記吸着量からイオン交換樹脂の交換時期を決定する水処理システムの管理方法。   The adsorption state of the foreign organic matter adsorbed on the ion exchange resin used in the water treatment system is predicted by the adsorption state determination method according to any one of claims 1 to 4. And a method for managing the water treatment system, wherein the exchange time of the ion exchange resin is determined from the adsorption amount. 前記イオン交換樹脂への外来有機物の吸着量から、イオン交換樹脂の再生薬品の残留性を把握することによって、前記イオン交換樹脂の交換時期を決定する請求項5に記載の水処理システムの管理方法。   The method for managing a water treatment system according to claim 5, wherein the replacement time of the ion exchange resin is determined by grasping the persistence of the regenerated chemicals of the ion exchange resin from the amount of the adsorbed organic substance on the ion exchange resin. . 構造既知の指標有機物を所定濃度で吸着させたイオン交換樹脂をイオン交換樹脂塔に充填し、
前記イオン交換樹脂塔に再生薬品の通液し、
前記イオン交換樹脂に対して純水洗浄を行い、
前記純水洗浄を開始してから所定時間経過後の前記イオン交換樹脂塔の出口から流れる液の電気伝導率を測定し、
前記電気伝導率が基準値を超える際の前記イオン交換樹脂に残留する残留有機物濃度を求め、
前記指標化合物の濃度を変えて測定した蛍光光度法による蛍光ピークの強度比から前記残留有機物濃度に対応する強度比を決定し、この強度比以下に外来有機物の前記強度比が確認された場合に性能低下と判断し、イオン交換樹脂の交換を行う請求項6に記載の水処理システムの管理方法。
An ion-exchange resin tower in which an indicator organic substance having a known structure is adsorbed at a predetermined concentration is packed in an ion-exchange resin tower,
Regenerative chemicals are passed through the ion exchange resin tower,
Perform pure water cleaning on the ion exchange resin,
Measure the electrical conductivity of the liquid flowing from the outlet of the ion exchange resin tower after a predetermined time has elapsed since the start of the pure water cleaning,
Obtain the residual organic matter concentration remaining in the ion exchange resin when the electrical conductivity exceeds a reference value,
When the intensity ratio corresponding to the residual organic matter concentration is determined from the fluorescence peak intensity ratio measured by changing the concentration of the indicator compound, and when the intensity ratio of the exogenous organic matter is confirmed below this intensity ratio. The method of managing a water treatment system according to claim 6, wherein the ion exchange resin is replaced by judging that the performance is lowered.
JP2015059416A 2015-03-23 2015-03-23 Adsorption state determination method for organic substances adsorbed on resin particles Active JP6581372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059416A JP6581372B2 (en) 2015-03-23 2015-03-23 Adsorption state determination method for organic substances adsorbed on resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059416A JP6581372B2 (en) 2015-03-23 2015-03-23 Adsorption state determination method for organic substances adsorbed on resin particles

Publications (2)

Publication Number Publication Date
JP2016180592A true JP2016180592A (en) 2016-10-13
JP6581372B2 JP6581372B2 (en) 2019-09-25

Family

ID=57131803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059416A Active JP6581372B2 (en) 2015-03-23 2015-03-23 Adsorption state determination method for organic substances adsorbed on resin particles

Country Status (1)

Country Link
JP (1) JP6581372B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115575368A (en) * 2022-10-11 2023-01-06 北京工业大学 Method for judging adsorption affinity of granular activated carbon to organic pollution components
WO2023032315A1 (en) * 2021-08-31 2023-03-09 栗田工業株式会社 Method for operating ion exchange device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086449A (en) * 1983-09-14 1985-05-16 アライド・コーポレーシヨン Optical sensor and usage thereof
JP2002156327A (en) * 2000-11-20 2002-05-31 Japan Organo Co Ltd Adsorption state determination method of material adsorbed on sample surface, and control method of water treatment system
JP2012192315A (en) * 2011-03-15 2012-10-11 Toshiba Corp Fouling prediction method, and membrane filtration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086449A (en) * 1983-09-14 1985-05-16 アライド・コーポレーシヨン Optical sensor and usage thereof
US4548907A (en) * 1983-09-14 1985-10-22 Allied Corporation Fluorescent fluid determination method and apparatus
JP2002156327A (en) * 2000-11-20 2002-05-31 Japan Organo Co Ltd Adsorption state determination method of material adsorbed on sample surface, and control method of water treatment system
JP2012192315A (en) * 2011-03-15 2012-10-11 Toshiba Corp Fouling prediction method, and membrane filtration system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI H , ET AL.: "Fouling of anion exchange resin by fluorescence analysis in advanced treatment of municipal wastewat", WATER RES, vol. 66, JPN6018045712, 28 August 2014 (2014-08-28), pages 233 - 241, XP029082566, ISSN: 0004051044, DOI: 10.1016/j.watres.2014.08.027 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032315A1 (en) * 2021-08-31 2023-03-09 栗田工業株式会社 Method for operating ion exchange device
JP2023034710A (en) * 2021-08-31 2023-03-13 栗田工業株式会社 Method of operating ion exchanger
JP7327450B2 (en) 2021-08-31 2023-08-16 栗田工業株式会社 How to operate an ion exchange device
CN115575368A (en) * 2022-10-11 2023-01-06 北京工业大学 Method for judging adsorption affinity of granular activated carbon to organic pollution components
CN115575368B (en) * 2022-10-11 2024-03-26 北京工业大学 Method for judging adsorption affinity of granular activated carbon to organic pollution components

Also Published As

Publication number Publication date
JP6581372B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
Kankare et al. Cathodically induced time-resolved lanthanide (III) electroluminescence at stationary aluminium disc electrodes
JP6581372B2 (en) Adsorption state determination method for organic substances adsorbed on resin particles
CN105044071B (en) A kind of N doping carbon dots detection clean water Hg2+Method
CN106053421A (en) Method and apparatus for on-line detection of content of organic substances in water and break warning of core filters/membranes
Lin et al. Is energy pooling necessary in ultraviolet matrix‐assisted laser desorption/ionization?
DE102011017280A1 (en) Method of measuring wood material emitting volatiles and apparatus for measuring the emission of volatile materials from wood-based materials
KR101305993B1 (en) Method for mesuring biochemical oxygen demand
JP2016180594A (en) Method of determining absorption state of organic substances absorbed by resin particles, and method of managing water treatment system
Ferreira da Silva et al. On the size of ions solvated in helium clusters
KR101305425B1 (en) Method for analyzing of fluorine in soil using x-ray fluorescence technique and xrf sample used for the same
KR20170003625A (en) Method for eliminating metal ions from a viscous organic solution
Maji et al. Feasibility study for quantification of lanthanides in LiF–KCl salt by laser induced breakdown spectroscopy
Silanpää et al. Natural Organic Matter in Water: Characterization, Treatment Methods, and Climate Change Impact
JP6622074B2 (en) Water quality analyzer, water quality analysis system
EP3011364A1 (en) Method for detecting radiation
Abbrescia et al. Results about HF production and bakelite analysis for the CMS Resistive Plate Chambers
Zeroual et al. Study of ions exchanges during the adsorption of La3+ ions onto montmorillonite K10
JP5246803B2 (en) Water evaluation method
JP3633195B2 (en) Ion exchange resin performance evaluation method and water treatment system management method
KR101580894B1 (en) Method for measuring COD with Multi-wavelength analysis
JPH08178875A (en) Method for measuring concentration of rubber adhesion prevention agent
JP4552645B2 (en) Determination of heavy metal elements
KR101984366B1 (en) Use of rare metals as key components
JP4958076B2 (en) Method for analyzing red phosphorus in resin composition
JP2017198463A (en) Method for determining alkali-silica reaction and method for quantifying alkali-silica gel produced by alkali-silica reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190830

R150 Certificate of patent or registration of utility model

Ref document number: 6581372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250