JP6679439B2 - Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method - Google Patents

Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method Download PDF

Info

Publication number
JP6679439B2
JP6679439B2 JP2016143061A JP2016143061A JP6679439B2 JP 6679439 B2 JP6679439 B2 JP 6679439B2 JP 2016143061 A JP2016143061 A JP 2016143061A JP 2016143061 A JP2016143061 A JP 2016143061A JP 6679439 B2 JP6679439 B2 JP 6679439B2
Authority
JP
Japan
Prior art keywords
fluorescence
membrane
reverse osmosis
water
fluorescence intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016143061A
Other languages
Japanese (ja)
Other versions
JP2018012062A (en
Inventor
秀人 松山
秀人 松山
太郎 三好
太郎 三好
益啓 林
益啓 林
島村 和彰
和彰 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2016143061A priority Critical patent/JP6679439B2/en
Publication of JP2018012062A publication Critical patent/JP2018012062A/en
Application granted granted Critical
Publication of JP6679439B2 publication Critical patent/JP6679439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、逆浸透膜供給水の膜閉塞性評価方法、特に、直接供給水の膜閉塞性を測定することなく逆浸透膜に供給される供給水の膜閉塞性を評価する逆浸透膜供給水の膜閉塞性評価方法及びその膜閉塞性評価方法を用いた水処理装置の運転管理方法に関する。   The present invention relates to a method for evaluating a membrane clogging property of a reverse osmosis membrane feed water, and more particularly, a reverse osmosis membrane feed for evaluating a membrane clogging property of a feed water supplied to a reverse osmosis membrane without directly measuring the membrane clogging property of the feed water. The present invention relates to a method for evaluating water film clogging and an operation management method for a water treatment device using the method.

また、本発明は、逆浸透膜供給水の膜閉塞性評価方法に使用可能な逆浸透膜供給水の膜閉塞性評価装置に関する。   The present invention also relates to a membrane occlusiveness evaluation device for reverse osmosis membrane feed water that can be used in a method for evaluating the membrane occlusivity of reverse osmosis membrane feed water.

従来から、海水、汽水などの塩分を含む水の脱塩処理や、電子産業や飲料産業における用水処理や、下水再生処理のために逆浸透膜が広く普及している。逆浸透膜は運転を継続するにつれて、供給水中の有機物や無機物により、膜面および膜モジュール内流路の閉塞が起こり、膜の透水性が悪化するファウリングが生じる。   BACKGROUND ART Conventionally, reverse osmosis membranes have been widely used for desalination of water containing salt such as seawater and brackish water, water treatment in the electronic industry and beverage industry, and sewage regeneration treatment. As the operation of the reverse osmosis membrane is continued, the organic matter and the inorganic matter in the feed water cause the membrane surface and the flow passage in the membrane module to be clogged, resulting in fouling that deteriorates the water permeability of the membrane.

膜の透水性が著しく悪化した場合、処理装置を停止して、膜の洗浄や交換を行う必要がある。   When the water permeability of the membrane is significantly deteriorated, it is necessary to stop the processing device and wash or replace the membrane.

逆浸透膜を用いて水処理を行う場合、逆浸透膜に供給される供給水の膜閉塞性、すなわち、供給水がどのくらい逆浸透膜を閉塞させる潜在力を有しているかを、ASTM D4189に定義されているSilt Density Index(SDI)の値により評価することが多い。SDI値は逆浸透膜供給水を0.45μmの精密ろ過膜でろ過を行った際の、ろ過時間の変化を基に算出される値である。例えば、SDI値が4以下となるように、逆浸透膜の前段の処理方式を選択する、あるいは前段の処理の運転条件を変更するなどの対策をとることが行われている。このSDI値の推奨値は膜メーカーによって、膜の種類に合わせて設定されることが多い。   When water treatment is carried out using a reverse osmosis membrane, the film clogging property of the feed water supplied to the reverse osmosis membrane, that is, how much the feed water has the potential to occlude the reverse osmosis membrane is described in ASTM D4189. It is often evaluated by the value of the defined Silt Density Index (SDI). The SDI value is a value calculated based on the change in filtration time when the reverse osmosis membrane feed water is filtered through a 0.45 μm microfiltration membrane. For example, measures are taken such that the treatment method of the former stage of the reverse osmosis membrane is selected or the operating conditions of the former stage treatment are changed so that the SDI value becomes 4 or less. The recommended value of this SDI value is often set by the film manufacturer according to the type of film.

しかしながら、逆浸透膜供給水のSDI値を推奨値以下に保っていても、膜のファウリングが顕著に生じるケースもある。この理由として、SDI値の測定時に考慮される供給水中の物質は、概ね0.45μm以上の物質であり、0.45μm以下の溶存有機物などが考慮されていないことが考えられる。また、0.45μm以上の物質には、逆浸透膜のファウリングに寄与する物質も、寄与しない物質も併せて含まれていることも上記の理由として考えられる。   However, even if the SDI value of the reverse osmosis membrane feed water is kept below the recommended value, there are cases where the membrane fouling remarkably occurs. It is considered that the reason for this is that the substances in the feed water taken into consideration when measuring the SDI value are substances of 0.45 μm or more in general, and dissolved organic substances of 0.45 μm or less are not considered. Further, it is considered that the substances having a thickness of 0.45 μm or more include both substances that contribute to fouling of the reverse osmosis membrane and substances that do not contribute to the fouling of the reverse osmosis membrane.

溶存有機物を測定する手段として、全有機炭素濃度(Total Organic Carbon;TOC)が挙げられる。しかしながら、逆浸透膜のファウリング速度とTOCは必ずしも相関しない。この理由として、TOCとして測定される有機物のすべてが、逆浸透膜のファウリングに寄与するわけではないことが考えられる。   The total organic carbon concentration (Total Organic Carbon; TOC) can be mentioned as a means for measuring the dissolved organic matter. However, the fouling rate of the reverse osmosis membrane and the TOC are not necessarily correlated. It is considered that the reason for this is that not all the organic substances measured as TOC contribute to fouling of the reverse osmosis membrane.

逆浸透膜のファウリングに関与する供給水中の物質の候補としては、透明細胞外重合物質粒子(Transparent Exopolymer Particles;TEP)が挙げられる。   As a candidate for the substance in the feed water involved in the fouling of the reverse osmosis membrane, transparent extracellular polymer particles (TEP) can be mentioned.

非特許文献1には、逆浸透膜のファウリングは、TEPが膜面に付着することにより起こることを示している。TEPは有機物のうち、ファウリングを起こしやすい微生物代謝物由来の特定の画分を捉えた有機物指標であるため、TOCよりも逆浸透膜供給水を評価する指標として適切である可能性が高いと考えられる。   Non-Patent Document 1 shows that fouling of a reverse osmosis membrane occurs due to TEP adhering to the membrane surface. Since TEP is an organic matter index that captures a specific fraction derived from microbial metabolites that are prone to fouling among organic matter, it is more likely to be suitable as an index for evaluating reverse osmosis membrane feed water than TOC. Conceivable.

TEPは、非特許文献2に示すように、サンプルを所定の孔径(通常孔径0.4μm)のろ紙でろ過し、ろ紙上の残渣をpH2.5にてアルシアンブルー試薬で染色し、染色されたろ紙上の残渣を硫酸溶液により浸漬、振とうし、その後、溶液の特定波長の吸光度を測定することで測定される。   As shown in Non-Patent Document 2, TEP is dyed by filtering a sample with filter paper having a predetermined pore size (normal pore size 0.4 μm), and staining the residue on the filter paper with an alcian blue reagent at pH 2.5. The residue on the filter paper is immersed in a sulfuric acid solution, shaken, and then measured by measuring the absorbance of the solution at a specific wavelength.

また、特許文献1には、生物処理水である逆浸透膜供給水に対して励起光を照射し、発生する蛍光の蛍光強度に基づいて逆浸透膜供給水の水質を評価する方法を開示する。   Further, Patent Document 1 discloses a method of irradiating excitation light to reverse osmosis membrane feed water, which is biologically treated water, and evaluating the water quality of the reverse osmosis membrane feed water based on the fluorescence intensity of the generated fluorescence. .

特許文献1の水質評価方法は、逆浸透膜供給水が生物処理水である場合、逆浸透膜供給水から発せられる特定の波長領域内の溶存有機物が膜濾過流束の低下に顕著な影響を及ぼすという検討結果に基づいている。蛍光強度を用いる評価手法は、比較的簡便かつ迅速な評価指標であり、処理施設における常時モニタリング指標として利用しやすい。   In the water quality evaluation method of Patent Document 1, when the reverse osmosis membrane feed water is a biologically treated water, the dissolved organic matter in a specific wavelength region emitted from the reverse osmosis membrane feed water significantly affects the reduction of the membrane filtration flux. It is based on the results of the study that it has an effect. The evaluation method using fluorescence intensity is a relatively simple and quick evaluation index, and is easy to use as a constant monitoring index in a processing facility.

非特許文献3には、流出廃水や河川水中の溶存有機物の励起蛍光マトリックス(Excitation−Emission Matrix、以下、EEMともいう)が示されている。EEMとは、任意の励起波長ごとに計測された蛍光スペクトルの変化を励起波長、蛍光波長、蛍光強度の3つの直行軸からなる空間座標に示したものである。   Non-Patent Document 3 discloses an excitation-fluorescence matrix (Excitation-Emission Matrix, hereinafter also referred to as EEM) of dissolved organic matter in runoff wastewater and river water. The EEM is a change in the fluorescence spectrum measured for each arbitrary excitation wavelength, which is shown in spatial coordinates composed of three orthogonal axes of the excitation wavelength, the fluorescence wavelength, and the fluorescence intensity.

非特許文献3によれば、励起波長が250nm未満であって蛍光波長が350nm未満の領域には芳香族性のタンパク質が現れることが示され、励起波長が250〜350nmであって蛍光波長が280〜380nmの領域には溶解性微生物副生成物が現れることが示されている。すなわち、流出廃水や河川水中の溶存有機物のうち、特定の有機物が特定の波長領域に蛍光強度として現れることが示されている。   Non-Patent Document 3 shows that an aromatic protein appears in a region where the excitation wavelength is less than 250 nm and the fluorescence wavelength is less than 350 nm, and the excitation wavelength is 250 to 350 nm and the fluorescence wavelength is 280. It has been shown that soluble microbial byproducts appear in the ~ 380 nm region. That is, it has been shown that, of the dissolved organic matter in runoff wastewater or river water, a specific organic matter appears as fluorescence intensity in a specific wavelength region.

特許第4867413号公報Japanese Patent No. 4867413

Edo Bar−Zeevら、Environmental Science & Technology、2015年、49巻、p691−707Edo Bar-Zeev et al., Environmental Science & Technology, 2015, 49, p691-707. U. Passow.,Limnology and Oceanography、1995年、40巻7号、p1326−1355U. Passow. , Limology and Oceanography, 1995, Vol. 40, No. 7, p1326-1355. Wen Chenら、Environmental Science & Technology、2003年、37巻、p5701―5710Wen Chen et al., Environmental Science & Technology, 2003, 37, p5701-5710.

しかしながら、非特許文献1及び非特許文献2によれば、TEPは逆浸透膜供給水の膜閉塞性を評価する指標として適切である可能性があるものの、その分析は濾過操作や染色操作を伴う手分析であり、1検体の分析に数時間要するため、水処理施設における供給水の常時モニタリング指標としてはやや使い勝手が悪い。   However, according to Non-Patent Document 1 and Non-Patent Document 2, although TEP may be suitable as an index for evaluating the membrane blocking property of the reverse osmosis membrane feed water, its analysis involves filtration operation and dyeing operation. Since it is a manual analysis and it takes several hours to analyze one sample, it is rather inconvenient as an index for constant monitoring of supply water in a water treatment facility.

また、特許文献1によれば、蛍光強度を用いる評価手法は比較的簡便且つ迅速であって、水処理施設における常時モニタリング手法として利用しやすいものの、逆浸透膜のファウリング傾向を把握するための指標としてはいまだ改善の余地がある。   Further, according to Patent Document 1, although the evaluation method using the fluorescence intensity is relatively simple and quick and easy to use as a constant monitoring method in the water treatment facility, it is possible to grasp the fouling tendency of the reverse osmosis membrane. There is still room for improvement as an indicator.

すなわち、特許文献1の実施例によれば、3種類の生物処理水を逆浸透膜ろ過処理した際に、逆浸透膜の膜透過流速の低下が大きい順と蛍光強度の大きい順との一致から蛍光強度を指標化しているのみであり、複数の供給水間の膜ファウリングのしやすさを比較することは可能であるものの、蛍光強度を測定することでその供給水の膜閉塞性をただちに判断可能というわけではない。   That is, according to the example of Patent Document 1, when the three types of biologically treated water are subjected to reverse osmosis membrane filtration treatment, the order in which the decrease in the membrane permeation flow rate of the reverse osmosis membrane is large and the order in which the fluorescence intensity is large are Although only the fluorescence intensity is indexed, it is possible to compare the ease of membrane fouling between multiple feed waters, but by measuring the fluorescence intensity, the membrane clogging property of the feed water is immediately measured. It cannot be judged.

非特許文献3には、EEMを作成することで、流出廃水や河川水中の溶存有機物のち、特定の有機物を特定の波長領域に蛍光強度として現わすことができるものの、これら特定の波長領域に現れる特定の有機物が河川水等の膜閉塞性と関連を有するか否かについては何も述べられていない。   In Non-Patent Document 3, although it is possible to express a specific organic substance as a fluorescence intensity in a specific wavelength region among dissolved organic substances in runoff wastewater and river water by creating an EEM, it appears in these specific wavelength regions. Nothing is said about whether particular organic matter is associated with the membrane blockage of river water.

本発明は、上記課題に鑑みてなされたものであり、その目的は、逆浸透膜に供給される水の膜閉塞性を簡便且つ高精度に評価しうる逆浸透膜供給水の膜閉塞性評価方法、逆浸透膜供給水の膜閉塞性評価装置及びその膜閉塞性評価方法を用いた水処理装置の運転管理方法を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to evaluate the membrane clogging property of water supplied to a reverse osmosis membrane simply and with high accuracy. A method, a device for evaluating membrane clogging property of reverse osmosis membrane supply water, and an operation management method for a water treatment device using the method for evaluating membrane clogging property.

上記目的を達成するための請求項1に記載の発明は、逆浸透膜に供給される供給水の膜閉塞性を評価する前記供給水の膜閉塞性評価方法であって、前記供給水は、前記逆浸透膜に供給される前に膜閉塞性を低下させる前処理が施されており、前記前処理の条件が異なる複数の供給水を蛍光分光法により分析して蛍光強度を得るとともに、該供給水を前記逆浸透膜で膜ろ過してファウリング速度を測定する測定工程と、該測定工程で測定した前記複数の供給水のファウリング速度と蛍光強度との関係から両者の近似式を算出する近似式算出工程と、ファウリング速度未測定の供給水を蛍光分光法により分析して蛍光強度を得て、得られた蛍光強度を前記近似式に当てはめて前記ファウリング速度を決定するファウリング速度決定工程と、を有することを特徴とする。   The invention according to claim 1 for achieving the above object is a film clogging property evaluation method of the feed water, which evaluates the film clogging property of the supply water supplied to the reverse osmosis membrane, wherein the supply water is Before being supplied to the reverse osmosis membrane, a pretreatment for reducing the membrane occluding property is performed, and a plurality of feed water under different conditions of the pretreatment are analyzed by fluorescence spectroscopy to obtain fluorescence intensity, and A measurement step of measuring the fouling rate by performing membrane filtration of the feed water with the reverse osmosis membrane, and calculating an approximate expression of both from the relationship between the fouling rate and the fluorescence intensity of the plurality of feed water measured in the measuring step. Fouling for determining the fouling rate by applying the approximate fluorescence to the approximate expression to obtain the fluorescence intensity by analyzing the feed water whose fouling rate has not been measured by fluorescence spectroscopy. Speed determination process, and It is characterized in.

この構成によれば、逆浸透膜に供給される供給水のファウリング速度及び蛍光強度の値を、前処理条件を変更して複数回測定して得ることで、蛍光強度とファウリング速度との相関を示す近似式を算出することができる。   According to this configuration, the values of the fouling speed and the fluorescence intensity of the feed water supplied to the reverse osmosis membrane are obtained by measuring the pretreatment conditions a plurality of times to obtain the fluorescence intensity and the fouling speed. An approximate expression showing the correlation can be calculated.

これにより、ファウリング速度未測定の供給水の蛍光強度を測定し、測定して得られた値を近似式に当てはめるだけで、ファウリング速度未測定の供給水のファウリング速度、すなわち、膜閉塞性をより高精度に評価することが可能となる。   With this, it is possible to measure the fluorescence intensity of the feed water whose fouling speed has not been measured, and just apply the value obtained by the measurement to the approximate expression to calculate the fouling speed of the feed water whose fouling speed has not been measured, that is, membrane clogging. It is possible to evaluate the sex with higher accuracy.

また、供給水の蛍光強度は簡便且つ迅速に測定できることから、供給水の膜閉塞性の評価も迅速に行うことが可能となる。   Further, since the fluorescence intensity of the feed water can be easily and quickly measured, the film clogging property of the feed water can be quickly evaluated.

請求項2に記載の発明は、請求項1に記載の逆浸透膜供給水の膜閉塞性評価方法において、前記蛍光分光法による分析は、分析対象物に照射された励起光の波長、該分析対象物から発生する蛍光の波長及び該蛍光の強度から励起蛍光スペクトルを作成することにより行われ、前記蛍光強度は、前記励起蛍光スペクトルのうちの所定の励起波長範囲及び所定の蛍光波長範囲によって区画される領域内の蛍光強度の総和及び前記励起蛍光スペクトルのうちの所定の蛍光強度ピーク値から選択された少なくとも2以上の蛍光強度であり、前記近似式算出工程が、前記測定工程で得られたファウリング速度と蛍光強度との関係から両者の近似式を複数算出する近似式算出操作と、該近似式算出操作によって算出された複数の近似式のうち最もファウリング速度と蛍光強度の相関が高い一の近似式を選択する近似式選択操作を含み、前記ファウリング速度決定工程において得られた蛍光強度が、前記近似式算出工程における一の近似式の選択の際に採用された蛍光強度であり、前記ファウリング速度決定工程において蛍光強度の当てはめに用いられる近似式が、前記近似式算出工程で選択された一の近似式であることを特徴とする。   The invention according to claim 2 is the method for evaluating the membrane clogging property of the reverse osmosis membrane feed water according to claim 1, wherein the analysis by the fluorescence spectroscopy is the wavelength of the excitation light with which the analyte is irradiated, It is performed by creating an excitation fluorescence spectrum from the wavelength of fluorescence generated from the object and the intensity of the fluorescence, the fluorescence intensity is divided by a predetermined excitation wavelength range and a predetermined fluorescence wavelength range of the excitation fluorescence spectrum. Is at least two or more fluorescence intensities selected from a total of fluorescence intensities in a region to be detected and a predetermined fluorescence intensity peak value in the excitation fluorescence spectrum, and the approximate expression calculation step is obtained in the measurement step. An approximate formula calculation operation for calculating a plurality of approximate formulas of the two from the relationship between the fouling speed and the fluorescence intensity, and the most foul of the approximate formulas calculated by the approximate formula calculation operation. Including an approximate expression selection operation for selecting one approximate expression having a high correlation between the fluorescence rate and the fluorescence intensity, the fluorescence intensity obtained in the fouling speed determination step is the selection of one approximate expression in the approximate expression calculation step. The approximation formula used for fitting the fluorescence intensity in the fouling rate determination step is one approximation expression selected in the approximation expression calculation step.

逆浸透膜のファウリングにおいては、有機物のうちでも、特にファウリングを起こしやすい有機物が存在すると考えられた。本発明は、励起蛍光マトリックスにおける蛍光強度ピークの場所により有機物を区別できるのであれば、励起蛍光マトリックスのピーク強度、あるいは所定波長領域ごとの蛍光強度の総和がファウリング指標になりうると考えられたことからなされたものである。   In the fouling of the reverse osmosis membrane, it was considered that among the organic substances, the organic substances that are particularly prone to fouling exist. In the present invention, if organic substances can be distinguished by the location of the fluorescence intensity peak in the excitation fluorescence matrix, it was considered that the peak intensity of the excitation fluorescence matrix or the sum of fluorescence intensities for each predetermined wavelength region can be a fouling index. It was made from that.

すなわち、この構成によれば、蛍光強度として、作成された励起蛍光スペクトルのうちの所定の励起波長範囲及び所定の蛍光波長範囲によって区画される領域内の蛍光強度の総和及び励起蛍光スペクトルのうちの所定の蛍光強度ピーク値から選択された少なくとも2以上が選択され、この2以上の蛍光強度を用いて算出された複数の近似式のうち、最もファウリング速度と蛍光強度の相関が高い近似式が選択される。   That is, according to this configuration, as the fluorescence intensity, of the sum of the fluorescence intensities and the excitation fluorescence spectrum in the region defined by the predetermined excitation wavelength range and the predetermined fluorescence wavelength range of the created excitation fluorescence spectrum, At least two or more selected from the predetermined fluorescence intensity peak value are selected, and the approximation formula with the highest correlation between the fouling speed and the fluorescence intensity is selected from the plurality of approximation formulas calculated using the fluorescence intensity of two or more. To be selected.

したがって、選択された最も相関が高い近似式を用いてファウリング速度未測定の供給水のファウリング速度が決定されることから、供給水の膜閉塞性がより高精度で評価されることとなる。   Therefore, since the fouling speed of the feed water whose fouling speed is not measured is determined by using the selected approximate expression having the highest correlation, the film clogging property of the feed water can be evaluated with higher accuracy. .

請求項3に記載の発明は、請求項1に記載の逆浸透膜供給水の膜閉塞性評価方法において、前記蛍光分光法による分析は、分析対象物に照射された励起光の波長、該分析対象物から発生する蛍光の波長及び該蛍光の強度から励起蛍光スペクトルを作成することにより行われ、前記蛍光強度が、前記励起蛍光スペクトルのうちの励起波長250〜380nmの範囲及び蛍光波長250〜380nmの範囲によって区画される領域内の蛍光強度の総和であることを特徴とする。   The invention according to claim 3 is the method for evaluating the membrane clogging property of the reverse osmosis membrane feed water according to claim 1, wherein the analysis by the fluorescence spectroscopy is the wavelength of the excitation light with which the analyte is irradiated, It is performed by creating an excitation fluorescence spectrum from the wavelength of fluorescence generated from an object and the intensity of the fluorescence, and the fluorescence intensity is in the range of excitation wavelength 250 to 380 nm and fluorescence wavelength 250 to 380 nm of the excitation fluorescence spectrum. It is the sum of the fluorescence intensities in the region divided by the range of.

本発明は、励起蛍光スペクトルのうち励起波長250〜380nmの範囲及び蛍光波長250〜380nmの範囲によって区画される領域内の供給水の蛍光強度が特にファウリング速度と相関が高いことを見出したことによりなされたものである。   INDUSTRIAL APPLICABILITY The present invention has found that the fluorescence intensity of the supply water in the region defined by the excitation wavelength range of 250 to 380 nm and the fluorescence wavelength range of 250 to 380 nm in the excitation fluorescence spectrum has a particularly high correlation with the fouling rate. It was made by.

すなわち、この構成によれば、ファウリング速度未測定の供給水の上記所定の波長範囲内の蛍光強度の総和を測定し、当該蛍光強度の総和を近似式に当てはめることで、迅速且つ極めて高精度に供給水のファウリング速度、すなわち、膜閉塞性を評価することができる。   That is, according to this configuration, by measuring the total sum of the fluorescence intensity within the predetermined wavelength range of the fouling rate unmeasured feed water, by applying the total sum of the fluorescence intensity to the approximation formula, quickly and extremely highly accurate In addition, the fouling rate of the feed water, that is, the membrane clogging property can be evaluated.

請求項4に記載の水処理装置の運転管理方法は、請求項1〜3の何れか1項に記載の逆浸透膜供給水の膜閉塞性評価方法により前記供給水の膜閉塞性を評価し、該膜閉塞性の評価結果に基づき前記逆浸透膜を含む水処理装置の運転条件の調整を行うことを特徴とする。   The operation management method of the water treatment device according to claim 4 evaluates the membrane clogging property of the feed water by the membrane clogging property evaluation method of the reverse osmosis membrane feed water according to any one of claims 1 to 3. The operating condition of the water treatment device including the reverse osmosis membrane is adjusted based on the evaluation result of the membrane blocking property.

この構成によれば、供給水の膜閉塞性の評価結果に基づき逆浸透膜を含む水処理装置の運転条件の調整が行われる。したがって、供給水の膜閉塞性が高いと評価された場合にはファウリング速度を低下させる運転条件の調整を行うことができ、供給水の膜閉塞性が低いと評価された場合にはより水処理装置全体の処理効率を高める運転条件の調整を行うことができる。   According to this configuration, the operating conditions of the water treatment device including the reverse osmosis membrane are adjusted based on the evaluation result of the membrane blocking property of the supply water. Therefore, when the membrane clogging of the feed water is evaluated to be high, it is possible to adjust the operating conditions to reduce the fouling speed, and when the membrane clogging of the feed water is evaluated to be low, it is possible to adjust the water content to a higher level. The operating conditions can be adjusted to improve the processing efficiency of the entire processing apparatus.

請求項5に記載の発明は、逆浸透膜に供給される供給水の膜閉塞性を評価する前記供給水の膜閉塞性評価装置であって、前記逆浸透膜を含む水処理装置の運転に伴う前記逆浸透膜のファウリング速度を測定可能なファウリング速度測定手段と、前記逆浸透膜による膜ろ過前の供給水を蛍光分光法により分析する蛍光分光光度計と、原水を共通とするものの前記膜ろ過前の前処理条件が異なることにより膜閉塞性が異なる複数の前記供給水の、前記ファウリング速度測定手段により測定された各ファウリング速度及び前記蛍光分光光度計により分析して得られた各蛍光強度の値から近似式を算出する近似式算出手段と、前記算出された近似式に前記蛍光分光光度計により分析して得られた供給水の蛍光強度を当てはめて前記ファウリング速度を決定するファウリング速度決定手段と、を有することを特徴とする。   According to a fifth aspect of the present invention, there is provided a film clogging property evaluating device for evaluating the film clogging property of the feed water supplied to the reverse osmosis membrane, which is for operating a water treatment device including the reverse osmosis film. Accompanied by a fouling rate measuring means capable of measuring the fouling rate of the reverse osmosis membrane, a fluorescence spectrophotometer for analyzing the feed water before the membrane filtration by the reverse osmosis membrane by a fluorescence spectroscopy, and a common raw water The plurality of feed water having different membrane occluding properties due to different pretreatment conditions before the membrane filtration, each fouling rate measured by the fouling rate measuring means and the fluorescence spectrophotometer are obtained by analysis. Approximate expression calculating means for calculating an approximate expression from the value of each fluorescence intensity, applying the fluorescence intensity of the feed water obtained by analysis by the fluorescence spectrophotometer to the calculated approximate equation to calculate the fouling rate. And having a fouling rate determining means for constant, the.

この構成によれば、逆浸透膜に供給される供給水のファウリング速度及び蛍光強度の値を、前処理条件を変更してファウリング速度測定手段及び蛍光分光光度計により複数回測定して得ることができ、得られた各ファウリング速度及び各蛍光強度の値から近似式作成手段により蛍光強度とファウリング速度との相関を示す近似式を算出することができる。   According to this configuration, the values of the fouling rate and the fluorescence intensity of the feed water supplied to the reverse osmosis membrane are obtained by measuring the fouling rate measuring means and the fluorescence spectrophotometer a plurality of times by changing the pretreatment conditions. It is possible to calculate the approximate expression showing the correlation between the fluorescence intensity and the fouling speed by the approximate expression creating means from the obtained values of the fouling speed and the fluorescence intensity.

その後、ファウリング速度未測定の供給水の蛍光強度を蛍光分光光度計により測定し、測定して得られた蛍光強度をファウリング速度決定手段により算出された近似式に当てはめることで、ファウリング速度未測定の供給水のファウリング速度、すなわち、膜閉塞性をより高精度に評価することが可能となる。   After that, the fluorescence intensity of the feed water whose fouling speed has not been measured is measured by a fluorescence spectrophotometer, and the fluorescence intensity obtained by the measurement is applied to the approximate expression calculated by the fouling speed determination means to calculate the fouling speed. It becomes possible to evaluate the fouling rate of unmeasured feed water, that is, the membrane clogging property with higher accuracy.

また、供給水の蛍光強度は蛍光分光光度計によって簡便且つ迅速に測定できることから、供給水の膜閉塞性の評価も迅速に行うことが可能となる。   Further, since the fluorescence intensity of the feed water can be easily and quickly measured by a fluorescence spectrophotometer, the film clogging property of the feed water can be evaluated quickly.

本発明の逆浸透膜供給水の膜閉塞性評価方法及び膜閉塞性評価装置によれば、ファウリング速度未測定の供給水の蛍光強度を測定し、測定して得られた値を近似式に当てはめるだけで、ファウリング速度未測定の供給水のファウリング速度、すなわち、膜閉塞性をより高精度に評価することが可能となる。また、供給水の蛍光強度は簡便且つ迅速に測定できることから、供給水の膜閉塞性の評価も迅速に行うことが可能となる。   According to the membrane occlusivity evaluation method and the membrane occlusivity evaluation device of the reverse osmosis membrane feed water of the present invention, the fluorescence intensity of the feed water of which the fouling rate is not measured is measured, and the value obtained by the measurement is approximated to Only by applying the fouling rate, the fouling rate of the feed water whose fouling rate has not been measured, that is, the membrane clogging property can be evaluated with higher accuracy. Further, since the fluorescence intensity of the feed water can be easily and quickly measured, the film clogging property of the feed water can be quickly evaluated.

また、本発明の逆浸透膜供給水の膜閉塞性評価方法を用いた水処理装置の運転管理方法によれば、水処理装置を継続的に安定運転することができ、逆浸透膜の洗浄薬品費や膜交換費などの費用を削減することができる。   Further, according to the operation management method of the water treatment apparatus using the method for evaluating the membrane blocking property of the reverse osmosis membrane feed water of the present invention, the water treatment apparatus can be continuously and stably operated, and the reverse osmosis membrane cleaning chemicals can be used. Costs such as expenses and membrane replacement costs can be reduced.

逆浸透膜を含む水処理装置に設けられた本発明に係る逆浸透膜供給水の膜閉塞性評価装置を示す模式図である。It is a schematic diagram which shows the film | membrane blockage evaluation apparatus of the reverse osmosis membrane supply water based on this invention provided in the water treatment apparatus containing a reverse osmosis membrane. 本発明に係る逆浸透膜供給水の膜閉塞性評価装置を示すブロック図である。It is a block diagram showing the membrane occlusivity evaluation device for reverse osmosis membrane feed water according to the present invention. 本発明の逆浸透膜供給水の膜閉塞性評価方法を説明するための説明図である。It is explanatory drawing for demonstrating the membrane blockage evaluation method of reverse osmosis membrane supply water of this invention. ファウリング速度と蛍光強度との関係から作成した近似式を示す模式図である。It is a schematic diagram which shows the approximate expression created from the relationship between fouling speed and fluorescence intensity. 本発明に係る逆浸透膜供給水の膜閉塞性評価方法に用いることができる水質評価装置を示す模式図である。It is a schematic diagram which shows the water quality evaluation apparatus which can be used for the membrane occlusive property evaluation method of the reverse osmosis membrane supply water which concerns on this invention. 実施例1の、ファウリング速度と供給水の蛍光強度の総和(Ex=250〜380nm,Em=250〜380nm)との関係から算出した近似式を示す図である。It is a figure which shows the approximate expression calculated from the relationship of the fouling speed of Example 1, and the total of the fluorescence intensity of the supply water (Ex = 250-380 nm, Em = 250-380 nm). 実施例2の、ファウリング速度と供給水の蛍光強度ピーク値(Ex=260nm,Em=300nm)との関係から算出した近似式を示す図である。FIG. 6 is a diagram showing an approximate expression calculated from the relationship between the fouling rate and the fluorescence intensity peak value of the supplied water (Ex = 260 nm, Em = 300 nm) in Example 2. 比較例の、ファウリング速度と供給水の蛍光強度の総和(Ex=380〜600nm,Em=250〜600nm)との関係から算出した近似式を示す図である。It is a figure which shows the approximate formula calculated from the relationship of the fouling speed and the sum total of the fluorescence intensity of the supply water (Ex = 380-600 nm, Em = 250-600 nm) of a comparative example.

次に、本発明に係る逆浸透膜供給水の膜閉塞性評価方法について、図1〜図4に基づいて詳細に説明する。図1は逆浸透膜を含む水処理装置に設けられた本発明に係る逆浸透膜供給水の膜閉塞性評価装置を示す模式図、図2は本発明に係る逆浸透膜供給水の膜閉塞性評価装置を示すブロック図、図3は本発明の逆浸透膜供給水の膜閉塞性評価方法を説明するための説明図、及び図4はファウリング速度と蛍光強度との関係から作成した近似式を示す模式図である。   Next, the method for evaluating the membrane blocking property of the reverse osmosis membrane feed water according to the present invention will be described in detail with reference to FIGS. FIG. 1 is a schematic diagram showing a membrane clogging evaluation device for reverse osmosis membrane feed water according to the present invention provided in a water treatment apparatus including a reverse osmosis membrane, and FIG. 2 is a membrane clogging for reverse osmosis membrane feed water according to the present invention. FIG. 3 is a block diagram showing the property evaluation device, FIG. 3 is an explanatory view for explaining the method for evaluating the membrane clogging property of the reverse osmosis membrane feed water of the present invention, and FIG. 4 is an approximation created from the relationship between the fouling speed and the fluorescence intensity. It is a schematic diagram which shows a formula.

<逆浸透膜供給水の膜閉塞性評価装置>
図1に示すように、本発明の逆浸透膜供給水の膜閉塞性評価装置10は、被処理水となる原水1を水処理する水処理装置100に設けられている。
<Reverse osmosis membrane supply water membrane clogging evaluation device>
As shown in FIG. 1, the reverse osmosis membrane supply water film clogging property evaluation device 10 of the present invention is provided in a water treatment device 100 for treating raw water 1 to be treated water.

水処理装置100は、原水1を前処理する前処理手段102と、前処理手段102の下流に設けられて前処理後の逆浸透膜への供給水3を逆浸透膜により膜ろ過する逆浸透膜装置104と、を有する。一般には、供給水3としては前処理手段102によって前処理されたものが用いられる。   The water treatment device 100 includes a pretreatment unit 102 for pretreating the raw water 1, and a reverse osmosis unit provided downstream of the pretreatment unit 102 for performing membrane filtration of the feed water 3 to the reverse osmosis membrane after the pretreatment by the reverse osmosis membrane. And a membrane device 104. In general, as the feed water 3, water that has been pretreated by the pretreatment means 102 is used.

原水1は、逆浸透膜装置104を用いてろ過処理する水であれば特に限定されない。例えば、海水や汽水などの塩分を含む水、電子産業や飲料産業の用水のもととなる河川水や地下水、再生処理に供される下水等が挙げられる。   The raw water 1 is not particularly limited as long as it is water to be filtered using the reverse osmosis membrane device 104. For example, water containing salt such as seawater or brackish water, river water or groundwater which is a source of water for the electronic industry and the beverage industry, and sewage used for regeneration treatment can be cited.

前処理手段102は、原水1の膜閉塞性を低下させる処理が可能な手段であればどのような手段であってもよく、例えば、砂ろ過法、凝集砂ろ過法、凝集沈殿法、加圧浮上法、泡沫分離法、凝集泡沫分離法、精密膜ろ過(Microfiltration;MF)法、限外膜ろ過(Ultrafiltration;UF)法、凝集精密膜ろ過法、凝集限外膜ろ過法、活性炭吸着法、生物活性炭処理法などに用いる装置を挙げることができる。   The pretreatment means 102 may be any means as long as it can reduce the membrane blocking property of the raw water 1, and examples thereof include a sand filtration method, a coagulation sand filtration method, a coagulation sedimentation method, and pressurization. Flotation method, foam separation method, coagulation foam separation method, microfiltration (MF) method, ultrafiltration (UF) method, coagulation micromembrane filtration method, coagulation ultramembrane filtration method, activated carbon adsorption method, An apparatus used for the biological activated carbon treatment method and the like can be mentioned.

なお、前処理手段102は、水処理装置100から取り外し可能となっている。あるいは、図示しないが、前処理手段102を迂回して原水1を直接逆浸透膜装置104に導く迂回経路が設けられていてもよい。   The pretreatment unit 102 can be removed from the water treatment device 100. Alternatively, although not shown, a bypass path that bypasses the pretreatment unit 102 and directly guides the raw water 1 to the reverse osmosis membrane device 104 may be provided.

供給水3は、逆浸透膜装置104に供給される水のことをいい、前処理手段102により処理される場合には前処理水7であり、前処理手段102により処理されない場合には原水1が供給水3となる。   The feed water 3 refers to water supplied to the reverse osmosis membrane device 104, and is the pretreated water 7 when it is treated by the pretreatment means 102, and the raw water 1 when it is not treated by the pretreatment means 102. Becomes the supply water 3.

逆浸透膜装置104は、供給水3が流入する圧力容器及び圧力容器内に配設される逆浸透膜を含む。本発明において、逆浸透膜とは、ナノろ過膜(Nano filtration membrane)とRO膜(Reverse osmosis membrane)の両方を含んだ意味である。逆浸透膜の材質、逆浸透モジュールの構造に制限はない。逆浸透膜装置104によりろ過された処理水9は、飲料水、電子産業用水、再生処理水等として活用される。また、逆浸透膜によりろ過されなかった濃縮水8は、供給水3中へと循環する。   The reverse osmosis membrane device 104 includes a pressure vessel into which the feed water 3 flows and a reverse osmosis membrane arranged in the pressure vessel. In the present invention, the reverse osmosis membrane is meant to include both a nanofiltration membrane (Nano filtration membrane) and an RO membrane (Reverse osmosis membrane). There are no restrictions on the material of the reverse osmosis membrane and the structure of the reverse osmosis module. The treated water 9 filtered by the reverse osmosis membrane device 104 is utilized as drinking water, water for electronic industries, recycled treated water, or the like. Further, the concentrated water 8 that has not been filtered by the reverse osmosis membrane circulates into the feed water 3.

次に、水処理装置100に設けられた逆浸透膜供給水の膜閉塞性評価装置10について説明する。   Next, the membrane occlusiveness evaluation device 10 for reverse osmosis membrane feed water provided in the water treatment device 100 will be described.

逆浸透膜供給水の膜閉塞性評価装置10は、図1に示すように、ファウリング速度測定手段12と、水質評価装置としての蛍光分光光度計20と、制御部25と、出力手段30と、を有する。   As shown in FIG. 1, a membrane clogging property evaluation device 10 for reverse osmosis membrane supply water includes a fouling speed measurement means 12, a fluorescence spectrophotometer 20 as a water quality evaluation device, a control unit 25, and an output means 30. With.

図1において、ファウリング速度測定手段12は、逆浸透膜装置104に付設された手段であって、供給水3のファウリング速度を測定する手段である。なお、ファウリング速度については後述する。   In FIG. 1, the fouling speed measuring means 12 is a means attached to the reverse osmosis membrane device 104, and is a means for measuring the fouling speed of the feed water 3. The fouling speed will be described later.

蛍光分光光度計20は、光源部と、励起側分光部と、励起光が導入される測定室と、測定室から生じた蛍光を分光する蛍光側分光部と、検出部と、を有する周知の蛍光分光光度計を用いることができる。蛍光分光光度計では、励起波長を経時的に変化させながら、各励起波長ごとの蛍光波長スペクトルを連続的に取得することができる。   The fluorescence spectrophotometer 20 includes a light source unit, an excitation side spectroscopic unit, a measurement chamber into which excitation light is introduced, a fluorescence side spectroscopic unit that disperses fluorescence generated from the measurement chamber, and a detection unit. A fluorescence spectrophotometer can be used. The fluorescence spectrophotometer can continuously acquire the fluorescence wavelength spectrum for each excitation wavelength while changing the excitation wavelength with time.

これにより、蛍光分光光度計20は、照射した励起光の波長範囲、分光した蛍光の波長範囲及び蛍光強度から励起蛍光マトリックス(EEM)を作成することができる。蛍光分光光度計20によれば、供給水3中の物質のうち、蛍光性を持つ物質のみが検出される。また、物質の種類により、EEMのどの領域に蛍光強度のピークが存在するかが異なる。なお、蛍光分光光度計20は、流路106から供給水3を測定室に導くサンプリング手段を有する。   Thereby, the fluorescence spectrophotometer 20 can create an excitation fluorescence matrix (EEM) from the wavelength range of the irradiated excitation light, the wavelength range of the separated fluorescence, and the fluorescence intensity. According to the fluorescence spectrophotometer 20, of the substances in the feed water 3, only the substance having fluorescence is detected. Further, in which region of the EEM the peak of fluorescence intensity exists depends on the type of substance. The fluorescence spectrophotometer 20 has a sampling means for guiding the supply water 3 from the flow path 106 to the measurement chamber.

また、蛍光強度は、測定機器のホトマル電圧やスリット幅等の測定条件や、測定機器自体の違いにより、同じサンプルを測定した場合でも、結果の値が異なる。そのため、異なる測定機器の間で結果を比較する場合は、例えば、硫酸キニーネ溶液などの対照溶液を準備し、対照溶液のピークの蛍光強度に対する、目的の領域の蛍光強度あるいは蛍光強度の積分値の比率を水質評価指標として用いてもよい。   In addition, the fluorescence intensity has different values even when the same sample is measured due to the measurement conditions such as the photomal voltage and slit width of the measuring device and the difference of the measuring device itself. Therefore, when comparing the results between different measuring instruments, for example, prepare a control solution such as a quinine sulfate solution, and for the fluorescence intensity of the peak of the control solution, the fluorescence intensity of the target region or the integrated value of the fluorescence intensity. The ratio may be used as a water quality evaluation index.

例えば、供給水3に波長250〜380nmの励起光を照射することにより、供給水3より発生する波長250〜380nmの蛍光強度を測定し、励起波長250〜380nm、蛍光波長250nm〜380nmの領域の蛍光強度を積算し、前記領域内の蛍光強度の総和を算出し、また、別途100μg/Lの濃度の硫酸キニーネ溶液のピーク蛍光強度を測定し、前記ピーク蛍光強度に対する前記蛍光強度の総和の比率を求めると、異なる測定機器の間で比較可能な指標となる。   For example, by irradiating the supply water 3 with excitation light having a wavelength of 250 to 380 nm, the fluorescence intensity of the wavelength 250 to 380 nm generated from the supply water 3 is measured, and the excitation wavelength of 250 to 380 nm and the fluorescence wavelength of 250 nm to 380 nm are measured. The fluorescence intensities are integrated to calculate the sum of the fluorescence intensities in the region, and the peak fluorescence intensity of the quinine sulfate solution having a concentration of 100 μg / L is separately measured, and the ratio of the sum of the fluorescence intensities to the peak fluorescence intensities is calculated. Is an index that can be compared between different measuring devices.

制御部25は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備えたコンピュータである。制御部25は、ROMに記憶させたプログラムをRAM上に展開して対応する処理をCPUに実行させる。なお、上記プログラムはROMに記憶されている場合に限らず、NVRAM(Non−Volatile Randam Access Memory)に記憶されていればよい。   The control unit 25 is a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. The control unit 25 loads the program stored in the ROM on the RAM and causes the CPU to execute the corresponding process. The program is not limited to being stored in the ROM, and may be stored in NVRAM (Non-Volume Random Access Memory).

制御部25は、上記ROM等に記憶されたプログラムである近似式算出手段26、近似式選択手段27及びファウリング速度決定手段28を有する。   The control unit 25 has an approximate expression calculation means 26, an approximate expression selection means 27, and a fouling speed determination means 28, which are programs stored in the ROM or the like.

近似式算出手段26は、制御部25が受信した、ファウリング速度測定手段12により測定された複数の供給水3のファウリング速度の値及び蛍光分光光度計20により得られた蛍光強度の値に基づき、近似式を算出するプログラムである。   The approximate expression calculating means 26 uses the values of the fouling speed of the plurality of feed water 3 measured by the fouling speed measuring means 12 and the value of the fluorescence intensity obtained by the fluorescence spectrophotometer 20 received by the control unit 25. It is a program that calculates an approximate expression based on the above.

ここで、複数の供給水3とは、原水1を共通として前処理等の違いにより供給水3の膜閉塞性の程度を変更させたものが挙げられる。また、原水1及び前処理を共通とするものの、原水1の採取時期が異なるものも含まれる。これにより、前処理等の違いにより複数の供給水3間のファウリング速度及び蛍光強度が変化し、共通の原水1について近似式を算出可能となる。   Here, the plurality of feed waters 3 include those in which the raw water 1 is used in common and the degree of the membrane blocking property of the feed water 3 is changed due to a difference in pretreatment or the like. In addition, the raw water 1 and the pretreatment are common, but the raw water 1 is collected at a different time. As a result, the fouling speed and the fluorescence intensity among the plurality of supply waters 3 are changed due to the difference in the pretreatment, and the approximate expression can be calculated for the common raw water 1.

本発明において、蛍光強度は、励起蛍光スペクトルのうちの所定の励起波長範囲及び所定の蛍光波長範囲によって区画される領域内の蛍光強度の総和及び励起蛍光スペクトルのうちの所定の蛍光強度ピーク値から選択された少なくとも2以上の蛍光強度であり、したがって、この2以上の蛍光強度に基づき、複数の近似式が算出される。近似式は、例えば、最小二乗法による回帰直線として得ることができる。   In the present invention, the fluorescence intensity is from a predetermined fluorescence intensity peak value in the excitation fluorescence spectrum and a sum of fluorescence intensities in a region partitioned by a predetermined excitation wavelength range and a predetermined fluorescence wavelength range in the excitation fluorescence spectrum. The fluorescence intensity is at least two or more selected, and therefore, a plurality of approximate expressions are calculated based on the two or more fluorescence intensities. The approximate expression can be obtained, for example, as a regression line by the method of least squares.

近似式選択手段27は、近似式算出手段26によって算出された複数の近似式のうち最もファウリング速度と蛍光強度の相関が高い一の近似式を選択するプログラムである。   The approximate expression selecting means 27 is a program that selects one of the approximate expressions calculated by the approximate expression calculating means 26 that has the highest correlation between the fouling speed and the fluorescence intensity.

相関の高さについては、例えば、算出された各近似式のR二乗値を比較し、このR二乗値が1により近い方を相関が高い近似式と判断することができる。   Regarding the degree of correlation, for example, the calculated R-squared values of the respective approximation formulas are compared with each other, and the closer the R-squared value is to 1, it can be determined as the higher-correlation approximation formula.

ファウリング速度決定手段28は、近似式選択手段27によって選択された近似式に蛍光分光光度計20により分析して得られた供給水3の蛍光強度を当てはめて供給水3のファウリング速度を決定するプログラムである。   The fouling speed determining means 28 determines the fouling speed of the supply water 3 by applying the fluorescence intensity of the supply water 3 obtained by the analysis by the fluorescence spectrophotometer 20 to the approximate expression selected by the approximate expression selecting means 27. It is a program to do.

したがって、制御部25は、ファウリング速度測定手段12により測定された供給水3のファウリング速度及び蛍光分光光度計20により得られた蛍光強度からの複数の近似式の算出、複数の近似式からの最もファウリング速度と蛍光強度の相関が高い近似式の選択及び選択された近似式への蛍光強度の値の当てはめによるファウリング速度未測定の供給水3のファウリング速度の決定を制御する。   Therefore, the control unit 25 calculates a plurality of approximate expressions from the fouling speed of the feed water 3 measured by the fouling speed measuring means 12 and the fluorescence intensity obtained by the fluorescence spectrophotometer 20, and calculates a plurality of approximate expressions. The fouling speed of the feed water 3 whose fouling speed has not been measured is controlled by selecting the approximate expression having the highest correlation between the fouling speed and the fluorescence intensity and fitting the value of the fluorescence intensity to the selected approximate expression.

出力手段30は、ファウリング速度決定手段28により決定された供給水3のファウリング速度を出力する手段である。例えば、パーソナルコンピュータの表示装置、プリンタ、スピーカー等が挙げられる。   The output means 30 is means for outputting the fouling speed of the feed water 3 determined by the fouling speed determination means 28. For example, a display device of a personal computer, a printer, a speaker, etc. may be mentioned.

<逆浸透膜供給水の膜閉塞性評価方法>
次に、本発明の逆浸透膜供給水の膜閉塞性評価装置10を用いた逆浸透膜供給水の膜閉塞性評価方法について説明する。
<Method for evaluating membrane clogging property of reverse osmosis membrane feed water>
Next, a method for evaluating the membrane occluding property of the reverse osmosis membrane supply water using the membrane occluding property evaluation apparatus 10 of the reverse osmosis membrane supply water of the present invention will be described.

[測定工程]
測定工程に先立ち、原水1に対して前処理手段102による膜閉塞性を低下させる前処理が施される。この前処理は、原水1に対して複数の異なる条件で施されており、したがって、測定工程に供される供給水3は、前処理の条件が異なる複数の供給水3(前処理水7)である。なお、選択される前処理条件は、前処理後の複数の供給水3間において、徐々に前処理後の供給水3の膜閉塞性が改善するような条件へと変えていくことが好ましい。
[Measuring process]
Prior to the measurement step, the raw water 1 is subjected to a pretreatment by the pretreatment means 102 to reduce the membrane blocking property. This pretreatment is performed on the raw water 1 under a plurality of different conditions. Therefore, the feed water 3 used in the measurement process is a plurality of feed water 3 under different pretreatment conditions (pretreated water 7). Is. In addition, it is preferable to change the pretreatment conditions to be selected so as to gradually improve the membrane blocking property of the feedwater 3 after pretreatment among the plurality of feedwater 3 after pretreatment.

測定工程では、これら複数の供給水3を蛍光分光法により分析して蛍光強度を得る。蛍光分光法による分析は、分析対象物(ここでは、供給水3)に照射された励起光の波長、この分析対象物から発生する蛍光の波長及び蛍光の強度から励起蛍光スペクトル(EEM)を作成することにより行われる。   In the measuring step, the plurality of feed waters 3 are analyzed by fluorescence spectroscopy to obtain fluorescence intensity. In the analysis by fluorescence spectroscopy, an excitation fluorescence spectrum (EEM) is created from the wavelength of the excitation light with which the analyte (here, feed water 3) is irradiated, the wavelength of the fluorescence generated from this analyte and the intensity of the fluorescence. It is done by doing.

また、供給水3のファウリング速度がファウリング速度測定手段12によって測定される。ここで、ファウリング速度は、図3の「項目2.水透過係数のモニタリング」に示すように、X軸を逆浸透膜装置の経過運転時間、Y軸を逆浸透膜の水透過係数としたときの傾き(すなわち、水透過係数の経時的な低下割合)の絶対値として定義される。なお、水透過係数とは、逆浸透膜供給水の水温や浸透膜、入口圧力の変化を考慮して、運転条件が変化しても比較可能であるように補正(標準化)したフラックス(流束)をいう。具体的には以下の式(I)
水透過係数(m/(s・kPa) at 25℃)=フラックス(m/s)/有効圧力(kPa)×温度換算係数 (I)
[但し、有効圧力(kPa)=原水側平均圧力(kPa)−透過側圧力(kPa)−浸透圧差(kPa)である。]
により表される。
Further, the fouling speed of the supply water 3 is measured by the fouling speed measuring means 12. Here, as shown in “Item 2. Monitoring of Water Permeability Coefficient” in FIG. 3, the fouling rate is the elapsed operating time of the reverse osmosis membrane device on the X axis and the water permeability coefficient of the reverse osmosis membrane on the Y axis. Is defined as the absolute value of the slope (that is, the rate of decrease of the water permeation coefficient over time). The water permeability coefficient is a flux (flux) that has been corrected (standardized) so that it can be compared even if operating conditions change, taking into consideration changes in the water temperature of the reverse osmosis membrane supply water, osmosis membrane, and inlet pressure. ). Specifically, the following formula (I)
Water permeation coefficient (m / (s · kPa) at 25 ° C.) = Flux (m / s) / effective pressure (kPa) × temperature conversion coefficient (I)
[However, effective pressure (kPa) = raw water side average pressure (kPa) -permeation side pressure (kPa) -osmotic pressure difference (kPa). ]
Represented by

したがって、ファウリング速度決定手段12は、供給水3を逆浸透膜装置104で所定期間ろ過する間に逆浸透膜装置104の経過運転時間及び逆浸透膜のフラックス(流束)等からから逆浸透膜の水透過係数を測定し、これらの測定値からファウリング速度を測定している。測定された供給水3のファウリング速度及び蛍光強度は制御部25へと伝達される(以上、測定工程)。   Therefore, the fouling speed determination means 12 determines the reverse osmosis based on the elapsed operating time of the reverse osmosis membrane device 104, the flux (flux) of the reverse osmosis membrane, etc. while the feed water 3 is filtered by the reverse osmosis membrane device 104 for a predetermined period. The water permeability coefficient of the membrane is measured, and the fouling rate is measured from these measured values. The measured fouling speed and fluorescence intensity of the supply water 3 are transmitted to the control unit 25 (the above is the measurement step).

[近似式算出工程]
近似式算出工程では、測定工程で測定したファウリング速度と蛍光強度との関係から両者の近似式を複数算出する近似式算出操作が行われる。
[Approximate formula calculation process]
In the approximation formula calculation step, an approximation formula calculation operation is performed to calculate a plurality of approximation formulas for both based on the relationship between the fouling speed measured in the measurement process and the fluorescence intensity.

具体的に述べると、図3の項目4〜6では、前処理条件を変更しながらファウリング速度と蛍光強度指標との関係について9つのプロットを得て、近似式を得ている。   Specifically, in items 4 to 6 of FIG. 3, nine plots were obtained for the relationship between the fouling rate and the fluorescence intensity index while changing the pretreatment conditions, and the approximate expression was obtained.

この近似式は、図3の項目6に示すように、選択された蛍光強度指標(例えば、A領域の蛍光強度の総和、B領域の蛍光強度の総和等)の数だけ算出される。近似式は、ここでは近似式算出手段26によって算出されているが、手計算により算出されてもよい。   As shown in item 6 of FIG. 3, this approximate expression is calculated by the number of selected fluorescence intensity indexes (for example, the sum of the fluorescence intensity of the A region, the sum of the fluorescence intensity of the B region, etc.). The approximate expression is calculated here by the approximate expression calculating means 26, but may be calculated manually.

次に、近似式選択手段27により、近似式算出工程において作成された複数の近似式のうち最もファウリング速度と蛍光強度の相関が高い一の近似式が選択される近似式選択操作が行われる(以上、近似式作成工程)。   Next, the approximation formula selection means 27 performs an approximation formula selection operation of selecting one approximation formula having the highest correlation between the fouling speed and the fluorescence intensity from the plurality of approximation formulas created in the approximation formula calculation step. (The above is the approximate expression creating process).

[ファウリング速度決定工程]
ファウリング速度決定工程では、ファウリング速度未測定の供給水3を蛍光分光光度計20により分析して蛍光強度を得る。得られた蛍光強度は制御部25に伝達され、この蛍光強度をファウリング速度決定手段28が近似式に当てはめてファウリング速度未測定の供給水3のファウリング速度が決定される。
[Fouling speed determination process]
In the fouling rate determination step, the feed water 3 whose fouling rate has not been measured is analyzed by the fluorescence spectrophotometer 20 to obtain the fluorescence intensity. The obtained fluorescence intensity is transmitted to the control unit 25, and the fouling speed determination means 28 applies the fluorescence intensity to an approximate expression to determine the fouling speed of the feed water 3 whose fouling speed has not been measured.

本工程において、得られた蛍光強度は、近似式算出工程における一の近似式の選択の際に採用された蛍光強度であり、近似式は、近似式選択工程で選択された一の近似式である。   In this step, the obtained fluorescence intensity is the fluorescence intensity adopted at the time of selecting one approximate expression in the approximate expression calculation step, and the approximate expression is one approximate expression selected in the approximate expression selection step. is there.

また、ファウリング速度未測定の供給水3とは、例えば、近似式を作成する際に用いた原水1と採水地を同じくする供給水であって、前処理手段102による前処理等によって膜閉塞性が変化し、したがってファウリング速度が不明となったものが挙げられる。   Further, the feed water 3 for which the fouling speed has not been measured is, for example, feed water having the same sampled location as the raw water 1 used when the approximate expression is created, and the membrane is formed by pretreatment by the pretreatment means 102 or the like. These include those with altered obstruction and therefore unknown fouling rates.

ファウリング速度が不明となる要因は前処理のみに限られず、原水となる海水や河川水の栄養条件の変動等も挙げられる。原水性状が著しく異なる場合は、近似式を改めることが望ましいが、原水性状が近い場合は、採水地が異なっても近似式を改める必要はない(以上、ファウリング速度決定工程)。   Factors that make the fouling rate unknown are not limited to pretreatment, but include changes in the nutritional conditions of raw water such as seawater and river water. When the raw water condition is remarkably different, it is desirable to revise the approximation formula, but when the raw water condition is close, it is not necessary to revise the approximation formula even if the water sampling site is different (above, fouling speed determination step).

したがって、本発明の逆浸透膜の膜閉塞性評価方法及び膜閉塞性評価装置10によれば、逆浸透膜に供給される供給水3のファウリング速度及び蛍光強度の値を、前処理条件を変更してファウリング速度測定手段12及び蛍光分光光度計20により複数回測定して得ることができ、得られた各ファウリング速度及び各蛍光強度の値から近似式算出手段26により蛍光強度とファウリング速度との相関を示す近似式を算出することができる。   Therefore, according to the method for evaluating a membrane occluding property of a reverse osmosis membrane and the membrane occluding property evaluation apparatus 10 of the present invention, the values of the fouling rate and the fluorescence intensity of the feed water 3 supplied to the reverse osmosis membrane are determined by pretreatment conditions. It can be changed and obtained by measuring the fouling speed measurement means 12 and the fluorescence spectrophotometer 20 a plurality of times. From the obtained values of the fouling speeds and the fluorescence intensities, the fluorescence intensity and the fau An approximate expression showing the correlation with the ring speed can be calculated.

その後、ファウリング速度未測定の供給水3の蛍光強度を蛍光分光光度計20により測定し、測定して得られた蛍光強度をファウリング速度決定手段28により算出された近似式に当てはめることで、ファウリング速度未測定の供給水3のファウリング速度、すなわち、膜閉塞性をより高精度に評価することが可能となる。   After that, the fluorescence intensity of the feed water 3 of which the fouling rate is not measured is measured by the fluorescence spectrophotometer 20, and the fluorescence intensity obtained by the measurement is applied to the approximate expression calculated by the fouling rate determination means 28. Fouling speed It is possible to evaluate the fouling speed of the feed water 3 that has not been measured, that is, the membrane clogging property, with higher accuracy.

また、供給水3の蛍光強度は蛍光分光光度計20によって簡便且つ迅速に測定できることから、供給水3の膜閉塞性の評価も迅速に行うことが可能となる。   In addition, since the fluorescence intensity of the feed water 3 can be easily and quickly measured by the fluorescence spectrophotometer 20, it is possible to quickly evaluate the membrane clogging property of the feed water 3.

さらに、蛍光強度として、作成された励起蛍光スペクトルのうちの所定の励起波長範囲及び所定の蛍光波長範囲によって区画される領域内の蛍光強度の総和及び励起蛍光スペクトルのうちの所定の蛍光強度ピーク値から選択された少なくとも2以上が選択され、この2以上の蛍光強度を用いて算出された複数の近似式のうち、最もファウリング速度と蛍光強度の相関が高い近似式が近似式選択手段27により選択される。   Furthermore, as the fluorescence intensity, the sum of fluorescence intensities in a region defined by a predetermined excitation wavelength range and a predetermined fluorescence wavelength range in the created excitation fluorescence spectrum and a predetermined fluorescence intensity peak value in the excitation fluorescence spectrum At least two or more selected from among the plurality of approximate expressions calculated by using the two or more fluorescence intensities are selected by the approximate expression selecting means 27, and the approximate expression having the highest correlation between the fouling speed and the fluorescence intensity is selected. To be selected.

したがって、選択された最も相関が高い近似式を用いてファウリング速度未測定の供給水のファウリング速度が決定されることから、供給水の膜閉塞性がより高精度で評価されることとなる。   Therefore, since the fouling speed of the feed water whose fouling speed is not measured is determined by using the selected approximate expression having the highest correlation, the film clogging property of the feed water can be evaluated with higher accuracy. .

<逆浸透膜供給水の膜閉塞性評価方法を用いた水処理装置の運転管理方法>
次に、本発明の逆浸透膜供給水の膜閉塞性評価方法を用いた水処理装置の運転管理方法について、図1を参照して説明する。
<Operation management method of water treatment device using the method for evaluating the membrane clogging property of reverse osmosis membrane feed water>
Next, the operation management method of the water treatment device using the method for evaluating the membrane blocking property of the reverse osmosis membrane feed water of the present invention will be described with reference to FIG.

まず、逆浸透膜を含む水処理装置の運転管理方法の考え方について説明する。初めに、逆浸透膜の洗浄コストや交換コストを鑑みて、逆浸透膜を連続運転させたい合理的な時間を算出しておく。また、逆浸透膜の水透過係数が、逆浸透膜の運転初期(新品時)に比べて何%低下した場合に逆浸透膜を洗浄あるいは交換するか決めておく。一般的には水透過係数の20%低下を目安として、洗浄あるいは交換することが多い。以上の、コスト上合理的な運転継続時間と、洗浄あるいは交換が必要な水透過係数の低下割合から、水処理装置の合理的な運転のために要求されるファウリング速度が求まる。   First, the concept of the operation management method of the water treatment device including the reverse osmosis membrane will be described. First, in consideration of the cleaning cost and the replacement cost of the reverse osmosis membrane, a reasonable time to continuously operate the reverse osmosis membrane is calculated. In addition, it is determined whether the reverse osmosis membrane should be washed or replaced when the water permeability coefficient of the reverse osmosis membrane is reduced by what percentage compared to the initial stage of the reverse osmosis membrane (when it is new). Generally, washing or replacement is often performed with a water permeability coefficient of 20% as a guide. The fouling speed required for the rational operation of the water treatment device can be obtained from the above cost-reasonable operation duration and the rate of decrease in the water permeation coefficient that requires cleaning or replacement.

このファウリング速度と蛍光強度に関する水質評価指標の相関を示す近似式は、予め求められているため、水処理装置の運転管理における蛍光強度に関する水質指標の目標値を決定することが出来る。すなわち、この目標値以下になるように、水処理装置を運転管理すればよい。以下、詳細に述べる。   Since the approximate expression indicating the correlation between the fouling speed and the water quality evaluation index regarding the fluorescence intensity is obtained in advance, it is possible to determine the target value of the water quality index regarding the fluorescence intensity in the operation management of the water treatment device. That is, the operation of the water treatment device may be managed so that the water treatment device is below the target value. The details will be described below.

本発明の水処理装置の運転管理方法には、図1に示す水処理装置100をそのまま本発明の水処理装置として用いることができる。なお、前処理手段102については、水処理において通常必要であることから、水処理装置の運転の際には常に取り付けられている。   In the operation management method of the water treatment device of the present invention, the water treatment device 100 shown in FIG. 1 can be used as it is as the water treatment device of the present invention. Since the pretreatment means 102 is usually necessary for water treatment, it is always attached when the water treatment device is operated.

また、供給水3の膜閉塞性の評価についても、図1に記載された膜閉塞性評価装置10をそのまま用いている。   Further, for the evaluation of the membrane clogging property of the supply water 3, the membrane clogging property evaluation device 10 shown in FIG. 1 is used as it is.

以下、本発明の逆浸透膜供給水の膜閉塞評価方法を用いた水処理装置の運転管理方法について、水質指標として励起蛍光スペクトルのうちの励起波長250〜380nmの範囲及び蛍光波長250〜380nmの範囲によって区画される領域内の蛍光強度の総和を用いる場合を例に説明する。   Hereinafter, regarding the operation management method of the water treatment device using the membrane clogging evaluation method of the reverse osmosis membrane feed water of the present invention, the excitation wavelength range of 250 to 380 nm and the fluorescence wavelength of 250 to 380 nm of the excitation fluorescence spectrum as a water quality index. An example will be described in which the sum of the fluorescence intensities in the region divided by the range is used.

当該励起波長及び蛍光波長範囲の蛍光強度の総和は特にファウリング速度と相関が高いことが本発明において見出されたからである。なお、本発明の水処理装置の運転管理方法を実施するにあたり、すでにファウリング速度と蛍光強度との関係から近似式が作成されている。   This is because it was found in the present invention that the sum of the fluorescence intensities in the excitation wavelength and fluorescence wavelength ranges has a high correlation with the fouling rate. In implementing the operation management method of the water treatment device of the present invention, an approximate expression has already been created from the relationship between the fouling speed and the fluorescence intensity.

[前処理工程]
まず、前処理手段102により、近似式が作成された採水地の原水1の前処理を行う。前処理は、原水1の性状に合わせて適宜に選択することができる(以上、前処理工程)。
[Pretreatment process]
First, the pretreatment unit 102 pretreats the raw water 1 of the water sampling site for which the approximate expression has been created. The pretreatment can be appropriately selected according to the properties of the raw water 1 (the above is the pretreatment step).

[蛍光強度測定工程]
次に、蛍光分光光度計20により前処理後の供給水3(前処理水7)の蛍光強度を測定する(以上、蛍光強度測定工程)。
[Fluorescence intensity measurement step]
Next, the fluorescence intensity of the pre-treated feed water 3 (pre-treatment water 7) is measured by the fluorescence spectrophotometer 20 (the above is the fluorescence intensity measurement step).

[水処理装置の運転条件の調整工程]
水処理装置の運転条件の調整は、前処理手段102による処理後の供給水3の測定された上記所定波長の蛍光強度の総和の目標値が、例えば、12,000以下となるように行う。
[Process for adjusting operating conditions of water treatment device]
The operating conditions of the water treatment device are adjusted so that the target value of the total sum of the measured fluorescence intensities of the predetermined wavelength of the feed water 3 after the treatment by the pretreatment means 102 is, for example, 12,000 or less.

目標値の設定の基準の考え方を、図3の項目7.に示す。例えば、供給水3のファウリング速度が100(m/(s・kPa)at25℃/h)以下であれば水処理装置が安定的に運転可能であることが分かっている場合、このファウリング速度を同図の項目6.までで求めていた近似式に当てはめると、蛍光強度の総和は12,000となる。すなわち、この場合、蛍光強度の目標値を12,000と設定し、供給水3の蛍光強度を12,000以下に管理することで、ファウリング速度を100(m/(s・kPa)at25℃/h)以下の、水処理装置が安定的に運転可能となる範囲にすることができる。   The concept of the standard for setting the target value is described in item 7. Shown in. For example, when it is known that the water treatment device can be stably operated if the fouling speed of the feed water 3 is 100 (m / (s · kPa) at 25 ° C./h) or less, this fouling speed Item 6 in the figure. Applying the approximate equations obtained up to the above, the total fluorescence intensity is 12,000. That is, in this case, the target value of the fluorescence intensity is set to 12,000, and the fluorescence intensity of the supply water 3 is controlled to be 12,000 or less, so that the fouling speed is 100 (m / (s · kPa) at 25 ° C. / H) or less, which can be a range in which the water treatment device can be stably operated.

なお、供給水3のファウリング速度が100(m/(s・kPa)at25℃/h)以下であれば水処理装置が安定的に運転可能とは、供給水3の処理開始時の逆浸透膜装置104における水透過係数をXとし、2割低下した値を0.8Xとした場合に、処理開始からコスト上合理的な所定運転継続時間経過時点の水透過係数の値が0.8X以上とするためにはファウリング速度はY以下(ここでは、100(m/(s・kPa)at25℃/h以下)の値で管理されなければならないという考え方によるものである。   In addition, if the fouling speed of the supply water 3 is 100 (m / (s · kPa) at 25 ° C./h) or less, it means that the water treatment device can operate stably, and the reverse osmosis at the start of the treatment of the supply water 3 is performed. When the water permeability coefficient of the membrane device 104 is X and the value reduced by 20% is 0.8X, the value of the water permeability coefficient is 0.8X or more at the time when a predetermined operation duration time which is reasonable from the start of the treatment is reasonable. This is because the fouling speed must be controlled at a value of Y or less (here, 100 (m / (s · kPa) at 25 ° C./h or less)).

供給水3の測定された上記蛍光強度の総和が12,000以下である場合、そのまま供給水3の逆浸透膜装置104による膜ろ過を行う。なお、供給水3の蛍光強度については、適当な時間的あるいは流量的間隔でモニターすることが好ましい。   When the total sum of the measured fluorescence intensities of the feed water 3 is 12,000 or less, the reverse osmosis membrane device 104 membrane-filters the feed water 3 as it is. The fluorescence intensity of the feed water 3 is preferably monitored at an appropriate time interval or flow interval.

一方で、蛍光強度測定工程で測定された上記所定範囲の蛍光強度の総和が12,000超となる場合、供給水3の当該蛍光強度の総和が12,000以下となるように前処理条件の変更を行う。   On the other hand, when the sum of the fluorescence intensities in the above-mentioned predetermined range measured in the fluorescence intensity measuring step is more than 12,000, the total of the fluorescence intensities of the feed water 3 is set to 12,000 or less in the pretreatment condition. Make a change.

例えば、前処理が、砂ろ過法の場合は、砂ろ過の線速度を低下させる。または、凝集剤を用いる。   For example, when the pretreatment is a sand filtration method, the linear velocity of sand filtration is reduced. Alternatively, a flocculant is used.

前処理が、凝集砂ろ過法の場合は、砂ろ過の凝集剤の注入量を増加させる。または、通常用いている凝集剤の他に、高分子ポリマーや有機凝結剤などを追加で使用する。または、砂ろ過の線速度を低下させる。   When the pretreatment is the coagulation sand filtration method, the injection amount of the coagulant for sand filtration is increased. Alternatively, in addition to the commonly used coagulant, a high molecular polymer, an organic coagulant, or the like is additionally used. Alternatively, the linear velocity of sand filtration is reduced.

前処理が、凝集沈殿法の場合は、凝集剤の注入量を増加する。または、通常用いている凝集剤の他に、高分子ポリマーや有機凝結剤などを追加で使用する。または、沈殿に要する時間(前処理槽内の水理学的滞留時間)を増加させる。   When the pretreatment is the coagulation sedimentation method, the injection amount of the coagulant is increased. Alternatively, in addition to the commonly used coagulant, a high molecular polymer, an organic coagulant, or the like is additionally used. Alternatively, the time required for precipitation (the hydraulic retention time in the pretreatment tank) is increased.

前処理が、加圧浮上法の場合は、凝集剤の注入量を増加する。または、通常用いている凝集剤の他に、高分子ポリマーや有機凝結剤などを追加で使用する。または、加圧浮上に要する時間(前処理槽内の水理学的滞留時間)を増加させる。   When the pretreatment is the pressure floating method, the injection amount of the coagulant is increased. Alternatively, in addition to the commonly used coagulant, a high molecular polymer, an organic coagulant, or the like is additionally used. Alternatively, the time required for pressure floating (hydraulic retention time in the pretreatment tank) is increased.

前処理が、泡沫分離法の場合は、前処理槽内の気液比を増加させる。または、気泡径を小さくする、あるいは大きくする。または、前処理槽内の水理学的滞留時間を増加させる。または、凝集剤を用いる。   When the pretreatment is a foam separation method, the gas-liquid ratio in the pretreatment tank is increased. Alternatively, the bubble diameter is reduced or increased. Alternatively, the hydraulic residence time in the pretreatment tank is increased. Alternatively, a flocculant is used.

前処理が、凝集泡沫分離法の場合は、前処理槽内の気液比を増加させる。または、気泡径を小さくする、あるいは大きくする。または、前処理槽内の水理学的滞留時間を増加させる。または、凝集剤の注入量を増加する。   When the pretreatment is the coagulated foam separation method, the gas-liquid ratio in the pretreatment tank is increased. Alternatively, the bubble diameter is reduced or increased. Alternatively, the hydraulic residence time in the pretreatment tank is increased. Alternatively, the injection amount of the coagulant is increased.

前処理が、MF法、凝集MF法、UF法又は凝集UF法の場合は、逆洗頻度を増加させる、または、凝集剤を用いる。   When the pretreatment is the MF method, the coagulation MF method, the UF method or the coagulation UF method, the backwash frequency is increased or a coagulant is used.

前処理が、活性炭吸着法又は生物活性炭吸着法の場合は、線速度を低下させる(以上、水処理装置の運転条件の調整工程)。   When the pretreatment is the activated carbon adsorption method or the biological activated carbon adsorption method, the linear velocity is reduced (the above is the step of adjusting the operating conditions of the water treatment device).

したがって、本発明の逆浸透膜供給水の膜閉塞性評価方法を用いた水処理装置の運転方法によれば、供給水3の膜閉塞性の評価結果に基づき逆浸透膜を含む水処理装置100の運転条件の調整が行われる。これにより、供給水3の膜閉塞性が高いと評価された場合にはファウリング速度を低下させる運転条件の調整を行うことができ、供給水3の膜閉塞性が低いと評価された場合にはより膜処理効率を高める運転条件の調整を行うことができる。   Therefore, according to the method of operating the water treatment device using the method for evaluating the membrane clogging property of the reverse osmosis membrane feed water of the present invention, the water treatment device 100 including the reverse osmosis membrane based on the evaluation result of the membrane clogging property of the feed water 3. The operating conditions are adjusted. Accordingly, when the membrane clogging of the feed water 3 is evaluated to be high, it is possible to adjust the operating condition to reduce the fouling speed, and when the membrane clogging of the feed water 3 is evaluated to be low. Can adjust the operating conditions to further enhance the membrane treatment efficiency.

さらに、上記水処理装置の運転管理方法においては、前処理の条件を変更させることにより供給水3の水質を改善し、水処理装置の継続的な安定運転を担保しているが、前処理条件を変更させることに限らず、逆浸透膜装置104自体の運転条件を変更させてもよい。   Further, in the above-mentioned operation management method for the water treatment device, the water quality of the feed water 3 is improved by changing the conditions of the pretreatment to ensure continuous stable operation of the water treatment device. The operating conditions of the reverse osmosis membrane device 104 itself may be changed.

例えば、本発明の供給水3の上記所定波長範囲の蛍光強度の総和が12,000の目標値を超えた場合、逆浸透膜装置104の水回収率を小さくする、膜面流速を大きくする、入口圧力を低下させる、膜ファウリング防止用薬剤(スライムコントロール剤等)を添加する(又は添加量を増加させる)等により逆浸透膜装置104自体の運転条件の変更を行うことができる。かかる逆浸透膜装置104の運転条件の変更によっても、水処理装置の継続的な安定運転を担保することができる。   For example, when the sum of the fluorescence intensities of the above-mentioned predetermined wavelength range of the feed water 3 of the present invention exceeds the target value of 12,000, the water recovery rate of the reverse osmosis membrane device 104 is reduced and the membrane surface flow velocity is increased. The operating conditions of the reverse osmosis membrane device 104 itself can be changed by lowering the inlet pressure, adding a membrane fouling preventing agent (such as a slime control agent) (or increasing the amount added). Even by changing the operating conditions of the reverse osmosis membrane device 104, continuous stable operation of the water treatment device can be ensured.

なお、本発明は上述の内容に限定されることはなく、発明の趣旨を逸脱しない範囲で種々変更可能である。   The present invention is not limited to the above contents, and can be variously modified without departing from the spirit of the invention.

例えば、上記逆浸透膜供給水の膜閉塞性評価方法においては、複数の近似式を算出し、これら複数の近似式の中から最もファウリング速度と蛍光強度の相関の高いものを選択しているが、最初から一つの近似式を算出し、当該一つの近似式を用いてファウリング速度未測定の供給水のファウリング速度を決定することも可能である。   For example, in the method for evaluating the membrane clogging property of the reverse osmosis membrane feed water, a plurality of approximate expressions are calculated, and the one having the highest correlation between the fouling rate and the fluorescence intensity is selected from the plurality of approximate expressions. However, it is also possible to calculate one approximation formula from the beginning and use the one approximation formula to determine the fouling speed of the feed water whose fouling speed has not been measured.

具体的には、蛍光強度として、励起蛍光スペクトルのうちの励起波長250〜380nmの範囲及び蛍光波長250〜380nmの範囲によって区画される領域内の蛍光強度の総和を用いて近似式を算出してもよい。   Specifically, as the fluorescence intensity, an approximate expression is calculated using the sum of the fluorescence intensities in the region defined by the excitation wavelength range of 250 to 380 nm and the fluorescence wavelength range of 250 to 380 nm in the excitation fluorescence spectrum. Good.

これによれば、近似式算出工程において、図4に示すように、上記蛍光強度の総和をX軸とし、ファウリング速度をY軸とする一つの近似式が算出され、その後のファウリング速度決定工程において、測定された蛍光強度の値Pが近似式算出工程において算出された一つの近似式に当てはめられ、ファウリング速度Qが決定される。   According to this, in the approximate expression calculation step, as shown in FIG. 4, one approximate expression in which the sum of the fluorescence intensities is on the X axis and the fouling speed is on the Y axis is calculated, and then the fouling speed is determined. In the process, the measured fluorescence intensity value P is applied to one approximation formula calculated in the approximation formula calculation process to determine the fouling speed Q.

また、上記逆浸透膜供給水の膜閉塞性評価方法においては、図1に示す逆浸透膜供給水の膜閉塞性評価装置10を用いているが、この膜閉塞性評価装置10を用いることが必須というわけではない。   Further, in the above-mentioned method for evaluating the membrane clogging property of the reverse osmosis membrane feed water, the membrane clogging property evaluation device 10 shown in FIG. 1 is used, but the membrane clogging property evaluation device 10 may be used. It is not mandatory.

例えば、図5に示す水質評価装置112を用いることも可能である。水質評価装置112は、水処理装置110の前処理手段102と逆浸透膜装置104との間の流路106に設けられている。水処理装置110は、図1に示す水処理装置100と変わるところはない。   For example, it is also possible to use the water quality evaluation device 112 shown in FIG. The water quality evaluation device 112 is provided in the flow path 106 between the pretreatment means 102 of the water treatment device 110 and the reverse osmosis membrane device 104. The water treatment device 110 is no different from the water treatment device 100 shown in FIG.

水質評価装置112は、供給水3の蛍光強度を測定する公知の装置である蛍光分光光度計であって、励起蛍光マトリックスを作成可能なものを用いることができる。   The water quality evaluation device 112 can be a fluorescence spectrophotometer that is a known device that measures the fluorescence intensity of the supply water 3 and that can create an excitation fluorescence matrix.

また、ファウリング速度は、逆浸透膜の水透過係数及び膜処理装置104の運転経過時間を測定可能な機器(図示省略する)を水処理装置110に設けることにより測定することができる。   The fouling rate can be measured by providing the water treatment device 110 with a device (not shown) capable of measuring the water permeability coefficient of the reverse osmosis membrane and the elapsed operation time of the membrane treatment device 104.

さらに、本発明においては、蛍光強度の他にも、供給水3の水質指標を測定し、前述の蛍光強度と合わせて供給水3の水質評価を行ってもよい。   Further, in the present invention, in addition to the fluorescence intensity, the water quality index of the feed water 3 may be measured and the water quality of the feed water 3 may be evaluated in combination with the above-mentioned fluorescence intensity.

蛍光強度によれば蛍光性を持つ有機物が測定可能である一方、蛍光性を持たない有機物や、鉄やアルミニウムなどの逆浸透膜スケールを引き起こす無機物は測定不可能である。なお、蛍光性とは、励起光を照射した際に蛍光を発する性質の意である。   According to the fluorescence intensity, organic substances having fluorescence can be measured, while organic substances having no fluorescence and inorganic substances such as iron and aluminum that cause reverse osmosis membrane scale cannot be measured. The term "fluorescence" means the property of emitting fluorescence when irradiated with excitation light.

そこで、TOC、TEP、SDI、鉄、アルミニウムなども定期的に分析して、前述の蛍光強度と併せて、それぞれの値が規定値以下になるよう、水処理装置の運転条件を変更することにより、更に確実に、長期にわたって安定的に水処理装置を運転することができる。   Therefore, by periodically analyzing TOC, TEP, SDI, iron, aluminum, etc., and by changing the operating conditions of the water treatment device so that the respective values become equal to or less than the specified values together with the above-mentioned fluorescence intensity. Further, it is possible to operate the water treatment device more reliably and stably over a long period of time.

ここで、TEPは、1μm以上の画分のTEP濃度、又は0.4μm以上の画分のTEP濃度の割合を評価指標とすることが望ましい。   Here, it is desirable that the evaluation index of TEP is the TEP concentration of the fraction of 1 μm or more, or the ratio of the TEP concentration of the fraction of 0.4 μm or more.

以下、実施例により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples.

[実施例1]
1.前処理
原水として東京湾の海水を使用し、試験は東京湾岸に位置するパイロット規模の実験設備で行った。海水を、時期を変えながら5種類の異なる前処理条件で前処理した。
[Example 1]
1. Pretreatment Seawater from Tokyo Bay was used as raw water, and the test was conducted at a pilot-scale experimental facility located on the coast of Tokyo Bay. Seawater was pretreated under various different pretreatment conditions at different times.

前処理条件を、以下の表1に示す。   The pretreatment conditions are shown in Table 1 below.

Figure 0006679439
Figure 0006679439

試料3を除き、重力駆動2層砂ろ過器(水ing社製)を液体流速180mL/日で連続運転した。試料2、5〜8については、砂ろ過に先立ちインライン凝集処理を行った。凝集処理には、凝集剤として塩化鉄(FeCl)を用いた。塩化鉄(FeCl)の使用量は砂ろ過器からの流出液のSDI(SDI15)が4未満となるように調整した。なお、実際の塩化鉄(FeCl)の使用量は5〜15mg/L as FeClの範囲であった。 With the exception of Sample 3, a gravity driven two-layer sand filter (manufactured by Watering Co.) was continuously operated at a liquid flow rate of 180 mL / day. Samples 2 and 5-8 were subjected to in-line coagulation treatment prior to sand filtration. For the aggregating treatment, iron chloride (FeCl 3 ) was used as an aggregating agent. The amount of iron chloride (FeCl 3 ) used was adjusted so that the effluent from the sand filter had an SDI (SDI 15 ) of less than 4. The actual amount of iron chloride (FeCl 3 ) used was in the range of 5 to 15 mg / Las FeCl 3 .

砂ろ過に加えて、試料2〜4ではUF膜ろ過を前処理として実施した(なお、試料3はUF膜ろ過のみを行っている)。本試験で使用したUF膜はポリフッ化ビニリデン(PVDF)製であり、150kDaの公称分画分子量を有するもの(東レ株式会社製、HFU−2008)であった。UF膜は透明な圧力容器内に配置され、UF膜による膜ろ過はポンプにより外圧を加えることで実施した。UF膜ろ過への供給水は、砂ろ過流出液であった(試料3は海水(原水)である)。UF膜の使用の際、入口圧力が55kPaに達したときに逆洗を行った。   In addition to sand filtration, samples 2 to 4 were subjected to UF membrane filtration as a pretreatment (note that sample 3 only performs UF membrane filtration). The UF membrane used in this test was made of polyvinylidene fluoride (PVDF) and had a nominal molecular weight cutoff of 150 kDa (Toray Industries, Inc., HFU-2008). The UF membrane was placed in a transparent pressure vessel, and membrane filtration with the UF membrane was performed by applying an external pressure with a pump. The water supplied to the UF membrane filtration was sand filtration effluent (Sample 3 is seawater (raw water)). When using the UF membrane, backwash was performed when the inlet pressure reached 55 kPa.

2.RO膜ろ過
試料1〜8の供給水をパイロット規模の海水RO膜ろ過装置(水ing社製)で処理し、それらの供給水により生じる膜ファウリングを評価した。海水RO膜ろ過装置に設けられた圧力容器中に二つの渦巻き型のRO膜エレメントが連続して配置されている。各RO膜エレメントは、2.5インチの直径及びエレメントあたり2.37mの表面積を有し、したがって、圧力容器中の合計膜表面積は4.74mである。本試験では、RO膜エレメントとして日東電工株式会社製のポリアミド膜(SWC−2540)を用いた。供給水のpHは硫酸で6.7に調整した。
2. RO Membrane Filtration The feed water of Samples 1 to 8 was treated with a pilot-scale seawater RO membrane filtration device (manufactured by Watering Co.), and the membrane fouling caused by the feed water was evaluated. Two spiral RO membrane elements are continuously arranged in a pressure vessel provided in the seawater RO membrane filtration device. Each RO membrane element has a diameter of 2.5 inches and a surface area of 2.37 m 2 per element, thus the total membrane surface area in the pressure vessel is 4.74 m 2 . In this test, a polyamide membrane (SWC-2540) manufactured by Nitto Denko Corporation was used as the RO membrane element. The pH of the feed water was adjusted to 6.7 with sulfuric acid.

供給水は、次亜塩素酸への暴露によってRO膜の損傷を防ぐためRO膜エレメントへの導入に先立って脱塩素し、酸化還元電位(ORP)を200mV未満に下げるように亜硫酸水素ナトリウムを供給水中に添加した。   The feed water is dechlorinated prior to introduction into the RO membrane element to prevent damage to the RO membrane due to exposure to hypochlorous acid and feeds sodium bisulfite to reduce the redox potential (ORP) below 200 mV. Added in water.

その後、脱塩素した供給水を10μmの公称孔径を有するカートリッジフィルターに導入し、カートリッジフィルターを通過させた後、供給水を高圧ポンプ(米国ワーナーエンジニアリング社製、G10)によって膜エレメントに導入した。膜エレメントのクロスフロー速度は手動で所定の値に調節した。RO膜ろ過の間、フラックス(流束)を供給圧力の調節により固定値(0.28m/日)に維持した(すなわち、供給圧力はフラックスの低下に従って手動で増大した)。   Then, the dechlorinated feed water was introduced into a cartridge filter having a nominal pore size of 10 μm, and after passing through the cartridge filter, the feed water was introduced into the membrane element by a high-pressure pump (G10, manufactured by Warner Engineering Co., USA). The cross-flow velocity of the membrane element was manually adjusted to a predetermined value. During RO membrane filtration, the flux was maintained at a fixed value (0.28 m / day) by adjusting the feed pressure (ie the feed pressure was increased manually as the flux decreased).

2−1.ファウリング速度の算出
本試験において、RO膜の水透過性は、RODataXL(日東電工株式会社製)を用いて計算した水透過係数(m/(s・kPa) at 25℃)を用いて評価した。
2-1. Calculation of Fouling Rate In this test, the water permeability of the RO membrane was evaluated using the water permeability coefficient (m / (s · kPa) at 25 ° C) calculated using RODataXL (manufactured by Nitto Denko Corporation). .

フラックス(流束)を固定値で一定としているのであるから、各試料の水透過係数は時間の経過に伴う有効圧力の上昇につれて低下する。この低下割合の絶対値、すなわち、横軸を運転時間、縦軸を水透過係数としたときに生じる直線の傾きの絶対値がファウリング速度となる。   Since the flux is fixed and fixed, the water permeability coefficient of each sample decreases as the effective pressure increases with time. The fouling speed is the absolute value of the decrease rate, that is, the absolute value of the slope of the straight line generated when the horizontal axis represents the operating time and the vertical axis represents the water permeation coefficient.

なお、試料1〜5では、RO膜ユニットに導入した供給水を回収率25%となるように循環させた。これらの試料では、RO膜を透過しなかった有機物質の一部が再びROエレメントに導入されたため、膜表面上への実際の有機物質負荷がRO膜に導入された供給水に含まれた有機物質の濃度に基づいて計算された有機物質負荷よりも大きい。   In addition, in Samples 1 to 5, the feed water introduced into the RO membrane unit was circulated so that the recovery rate was 25%. In these samples, a part of the organic substance that did not permeate the RO membrane was introduced into the RO element again, so that the actual load of the organic substance on the membrane surface was the organic matter contained in the feed water introduced into the RO membrane. Greater than the organic matter load calculated based on the concentration of the substance.

膜表面上の有機物質負荷の上昇を、供給水及び循環水の流速の比、RO膜エレメントを通過した供給水及び濃縮液におけるそれぞれの有機画分の濃度比を考慮に入れることにより補正した。   The increase in organic matter loading on the membrane surface was corrected by taking into account the ratio of the feed water and circulating water flow rates, the concentration ratio of the respective organic fractions in the feed water and the concentrate passed through the RO membrane element.

試料6−8では供給水を循環させなかった。これにより膜表面上の有機物質負荷を供給水に含まれる有機物質の濃度によって直接算出することができた。これらの試料の回収率は13%であった。   In Samples 6-8, the feed water was not circulated. As a result, the load of organic substances on the surface of the membrane could be directly calculated from the concentration of organic substances contained in the feed water. The recovery of these samples was 13%.

3.蛍光強度の分析
(前処理を行っていない)海水、砂ろ過流出液、UF膜ろ過液及びRO膜ろ過濃縮液を、1週間に一度、朝9時に2L採取した。採取後、可能な限り速やかに励起蛍光スペクトルの分析を行った。
3. Analysis of fluorescence intensity Seawater (not pretreated), sand filtration effluent, UF membrane filtration and RO membrane filtration concentrate were collected once a week in an amount of 2 L at 9 am. After collection, the excitation fluorescence spectrum was analyzed as soon as possible.

励起蛍光マトリックス(EEM)は、150Wのオゾンフリーキセノンアークランプを有する蛍光分光光度計(株式会社堀場製作所製、Aqualog)を用いて作成した。蛍光スキャンは1cmの石英キュベットで取得した。励起及び蛍光波長の間隔は3nmであった。220nm及び880nmの間の励起及び蛍光波長を測定した。   The excitation fluorescence matrix (EEM) was created using a fluorescence spectrophotometer (Aqualog, manufactured by Horiba, Ltd.) having a 150 W ozone-free xenon arc lamp. Fluorescence scans were acquired with a 1 cm quartz cuvette. The spacing between the excitation and fluorescence wavelengths was 3 nm. Excitation and fluorescence wavelengths between 220 nm and 880 nm were measured.

本試験で用いた全てのEEMスペクトルは同じ分光光度計を用いて、同じ測定条件で得られたので、機器の違いによる補正(例えば、硫酸キニーネを用いた標準化)は行わなかった。半定量分析を実行するために、Environ. Sci. Technol.,2003年、37巻24号、5701〜5710頁においてチェンらに提案された蛍光EEMスペクトル分析の結果に基づくプロトコルを用いた蛍光領域の統合(FRI)を行った。   Since all EEM spectra used in this test were obtained under the same measurement conditions using the same spectrophotometer, no correction due to differences in instruments (for example, standardization using quinine sulfate) was not performed. To perform semi-quantitative analysis, Environ. Sci. Technol. , 2003, Vol. 37, No. 24, pp. 5701-5710, the fluorescence region integration (FRI) was performed using a protocol based on the results of the fluorescence EEM spectral analysis proposed by Chen et al.

試料4〜8の蛍光強度の総和、蛍光ピーク強度値およびファウリング速度を以下の表2に示す。   Table 2 below shows the sum of the fluorescence intensities of the samples 4 to 8, the fluorescence peak intensity value, and the fouling rate.

Figure 0006679439
Figure 0006679439

試料4〜8の各測定値のうち、励起波長250〜380nmの範囲及び蛍光波長250〜380nmの範囲によって区画される領域内の蛍光強度の総和をX軸の値とし、ファウリング速度をY軸の値としてプロットし、算出した近似式を図6に示す。   Of each measured value of Samples 4 to 8, the sum of fluorescence intensities in the region partitioned by the excitation wavelength range of 250 to 380 nm and the fluorescence wavelength range of 250 to 380 nm is taken as the value of the X axis, and the fouling speed is taken as the Y axis. FIG. 6 shows the approximate expression calculated by plotting as the value of.

図示のように、算出された近似式のR二乗値は0.8177と極めて高い値となっており、蛍光強度の総和(Ex=250〜380nm,Em=250〜380nm)とファウリング速度(すなわち、供給水の膜閉塞性)との間に高い相関があることが分かる。   As shown in the figure, the calculated R-squared value of the approximate expression is an extremely high value of 0.8177, and the sum of the fluorescence intensities (Ex = 250 to 380 nm, Em = 250 to 380 nm) and the fouling speed (ie, , And the membrane clogging of the feed water).

[実施例2]
試料4〜8の各測定値のうち、励起波長260nm及び蛍光波長300nmの蛍光強度値をX軸の蛍光強度ピーク値とし、ファウリング速度をY軸の値としてプロットし、算出した近似式を図7に示す。
[Example 2]
Of the measured values of Samples 4 to 8, the fluorescence intensity values at the excitation wavelength of 260 nm and the fluorescence wavelength of 300 nm were used as the fluorescence intensity peak value of the X axis, and the fouling rate was plotted as the value of the Y axis, and the calculated approximate expression is shown. 7 shows.

図示のように、算出された近似式のR二乗値は0.6858と高い値となっており、蛍光強度ピーク値(Ex=260nm,Em=300nm)とファウリング速度との間に高い相関があることが分かる。   As shown in the figure, the calculated R-squared value of the approximate expression is as high as 0.6858, and there is a high correlation between the fluorescence intensity peak value (Ex = 260 nm, Em = 300 nm) and the fouling speed. I know there is.

[比較例]
試料4〜8の各測定値のうち、励起波長380〜600nmの範囲及び蛍光波長250〜600nmの範囲によって区画される領域内の蛍光強度の総和をX軸の値とし、ファウリング速度をY軸の値としてプロットし、算出した近似式を図8に示す。
[Comparative example]
Of each measured value of Samples 4 to 8, the sum of fluorescence intensities in the region partitioned by the excitation wavelength range of 380 to 600 nm and the fluorescence wavelength range of 250 to 600 nm is the X axis value, and the fouling speed is the Y axis. FIG. 8 shows the approximate expression calculated by plotting as the value of.

図示のように、算出された近似式のR二乗値は0.0618と低く、蛍光強度の総和(Ex=380〜600nm,Em=250〜600nm)とファウリング速度との間に良好な相関があるとは言えなかった。   As shown in the figure, the calculated R-squared value of the approximate expression is as low as 0.0618, and there is a good correlation between the total fluorescence intensity (Ex = 380 to 600 nm, Em = 250 to 600 nm) and the fouling rate. I couldn't say that there was.

1 原水
3 供給水
7 前処理水
10 逆浸透膜供給水の膜閉塞性評価装置
12 ファウリング速度測定手段
20 蛍光分光光度計
26 近似式算出手段
27 近似式選択手段
28 ファウリング速度決定手段
100、110 水処理装置
DESCRIPTION OF SYMBOLS 1 Raw water 3 Supply water 7 Pretreatment water 10 Reverse osmosis membrane Supply water membrane clogging evaluation device 12 Fouling speed measuring means 20 Fluorescence spectrophotometer 26 Approximation formula calculation means 27 Approximation formula selection means 28 Fouling speed determination means 100 110 water treatment equipment

Claims (5)

逆浸透膜に供給される供給水の膜閉塞性を評価する前記供給水の膜閉塞性評価方法であって、
前記供給水は、前記逆浸透膜に供給される前に膜閉塞性を低下させる前処理が施されており、
前記前処理の条件が異なる複数の供給水を蛍光分光法により分析して蛍光強度を得るとともに、該供給水を前記逆浸透膜で膜ろ過してファウリング速度を測定する測定工程と、
該測定工程で測定した前記複数の供給水のファウリング速度と蛍光強度との関係から両者の近似式を算出する近似式算出工程と、
ファウリング速度未測定の供給水を蛍光分光法により分析して蛍光強度を得て、得られた蛍光強度を前記近似式に当てはめて前記ファウリング速度を決定するファウリング速度決定工程と、
を有することを特徴とする逆浸透膜供給水の膜閉塞性評価方法。
A method for assessing the membrane clogging of the feed water supplied to the reverse osmosis membrane,
The feed water is subjected to a pretreatment to reduce the membrane occluding property before being fed to the reverse osmosis membrane,
A measurement step of measuring the fouling rate by membrane filtration of the feed water with the reverse osmosis membrane while obtaining fluorescence intensity by analyzing a plurality of feed water with different pretreatment conditions by fluorescence spectroscopy.
An approximate expression calculating step of calculating an approximate expression of both from the relationship between the fouling rate and the fluorescence intensity of the plurality of feed water measured in the measuring step;
A fouling rate determination step of determining the fouling rate by applying the obtained fluorescence intensity to the approximate expression to obtain a fluorescence intensity by analyzing the feed water whose fouling rate is not measured by fluorescence spectroscopy.
A method for evaluating membrane clogging property of reverse osmosis membrane feed water, which comprises:
前記蛍光分光法による分析は、分析対象物に照射された励起光の波長、該分析対象物から発生する蛍光の波長及び該蛍光の強度から励起蛍光スペクトルを作成することにより行われ、
前記蛍光強度は、前記励起蛍光スペクトルのうちの所定の励起波長範囲及び所定の蛍光波長範囲によって区画される領域内の蛍光強度の総和及び前記励起蛍光スペクトルのうちの所定の蛍光強度ピーク値から選択された少なくとも2以上の蛍光強度であり、
前記近似式算出工程が、
前記測定工程で得られたファウリング速度と蛍光強度との関係から両者の近似式を複数算出する近似式算出操作と、
該近似式算出操作によって算出された複数の近似式のうち最もファウリング速度と蛍光強度の相関が高い一の近似式を選択する近似式選択操作を含み、
前記ファウリング速度決定工程において得られた蛍光強度が、前記近似式算出工程における一の近似式の選択の際に採用された蛍光強度であり、
前記ファウリング速度決定工程において蛍光強度の当てはめに用いられる近似式が、前記近似式算出工程で選択された一の近似式であることを特徴とする請求項1に記載の逆浸透膜供給水の膜閉塞性評価方法。
The analysis by the fluorescence spectroscopy is performed by creating an excitation fluorescence spectrum from the wavelength of the excitation light with which the analyte is irradiated, the wavelength of the fluorescence generated from the analyte and the intensity of the fluorescence,
The fluorescence intensity is selected from a predetermined fluorescence intensity peak value in the excitation fluorescence spectrum and a sum of fluorescence intensities in a region divided by a predetermined excitation wavelength range and a predetermined fluorescence wavelength range in the excitation fluorescence spectrum. The fluorescence intensity is at least 2 or more,
The approximate formula calculation step,
An approximate expression calculation operation for calculating a plurality of approximate expressions of both from the relationship between the fouling rate and the fluorescence intensity obtained in the measurement step,
Including an approximate expression selecting operation for selecting one approximate expression having the highest correlation between fouling speed and fluorescence intensity among a plurality of approximate expressions calculated by the approximate expression calculating operation,
Fluorescence intensity obtained in the fouling rate determination step is a fluorescence intensity adopted in the selection of one approximation formula in the approximation formula calculation step,
The reverse osmosis membrane feed water according to claim 1, wherein the approximate expression used for fitting the fluorescence intensity in the fouling rate determination step is one approximate expression selected in the approximate expression calculation step. Membrane blockage evaluation method.
前記蛍光分光法による分析は、分析対象物に照射された励起光の波長、該分析対象物から発生する蛍光の波長及び該蛍光の強度から励起蛍光スペクトルを作成することにより行われ、
前記蛍光強度が、前記励起蛍光スペクトルのうちの励起波長250〜380nmの範囲及び蛍光波長250〜380nmの範囲によって区画される領域内の蛍光強度の総和であることを特徴とする請求項1に記載の逆浸透膜供給水の膜閉塞性評価方法。
The analysis by the fluorescence spectroscopy is performed by creating an excitation fluorescence spectrum from the wavelength of the excitation light with which the analyte is irradiated, the wavelength of the fluorescence generated from the analyte and the intensity of the fluorescence,
The said fluorescence intensity is the sum total of the fluorescence intensity in the area | region divided by the range of 250-380 nm of excitation wavelengths, and the range of 250-380 nm of fluorescence wavelengths among the said excitation fluorescence spectra. Method for evaluating membrane clogging property of reverse osmosis membrane feed water.
請求項1〜3の何れか1項に記載の逆浸透膜供給水の膜閉塞性評価方法により前記供給水の膜閉塞性を評価し、該膜閉塞性の評価結果に基づき前記逆浸透膜を含む水処理装置の運転条件の調整を行うことを特徴とする水処理装置の運転管理方法。   The membrane occluding property of the reverse osmosis membrane supply water according to any one of claims 1 to 3 is evaluated, and the reverse osmosis membrane is evaluated based on the evaluation result of the membrane occluding property. An operation management method for a water treatment device, comprising adjusting the operating conditions of the water treatment device including the water treatment device. 逆浸透膜に供給される供給水の膜閉塞性を評価する前記供給水の膜閉塞性評価装置であって、
前記逆浸透膜を含む水処理装置の運転に伴う前記逆浸透膜のファウリング速度を測定可能なファウリング速度測定手段と、
前記逆浸透膜による膜ろ過前の供給水を蛍光分光法により分析する蛍光分光光度計と、
原水を共通とするものの前記膜ろ過前の前処理条件が異なることにより膜閉塞性が異なる複数の前記供給水の、前記ファウリング速度測定手段により測定された各ファウリング速度及び前記蛍光分光光度計により分析して得られた各蛍光強度の値から近似式を算出する近似式算出手段と、
前記算出された近似式に前記蛍光分光光度計により分析して得られた供給水の蛍光強度を当てはめて前記ファウリング速度を決定するファウリング速度決定手段と、
を有することを特徴とする逆浸透膜供給水の膜閉塞性評価装置。
A film occluding property evaluation device for evaluating the film occluding property of supply water supplied to a reverse osmosis membrane,
Fouling speed measuring means capable of measuring the fouling speed of the reverse osmosis membrane with the operation of the water treatment device including the reverse osmosis membrane,
A fluorescence spectrophotometer that analyzes the feed water before membrane filtration by the reverse osmosis membrane by fluorescence spectroscopy,
A plurality of feed waters having the same raw water but different pre-treatment conditions before the membrane filtration due to different membrane occluding properties, each fouling speed measured by the fouling speed measuring means and the fluorescence spectrophotometer With an approximate expression calculating means for calculating an approximate expression from the value of each fluorescence intensity obtained by analyzing,
Fouling rate determining means for determining the fouling rate by applying the fluorescence intensity of the feed water obtained by analysis by the fluorescence spectrophotometer to the calculated approximate expression,
An apparatus for evaluating a membrane clogging property of reverse osmosis membrane feed water, which comprises:
JP2016143061A 2016-07-21 2016-07-21 Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method Active JP6679439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016143061A JP6679439B2 (en) 2016-07-21 2016-07-21 Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016143061A JP6679439B2 (en) 2016-07-21 2016-07-21 Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method

Publications (2)

Publication Number Publication Date
JP2018012062A JP2018012062A (en) 2018-01-25
JP6679439B2 true JP6679439B2 (en) 2020-04-15

Family

ID=61019026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016143061A Active JP6679439B2 (en) 2016-07-21 2016-07-21 Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method

Country Status (1)

Country Link
JP (1) JP6679439B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2598267A (en) 2018-06-08 2022-03-02 Bp Exploration Operating Co Ltd Predictive tool for monitoring RO and NF membranes
WO2019244718A1 (en) * 2018-06-18 2019-12-26 三菱電機株式会社 Operation-assisting device and operation assistance method
EP3897929A1 (en) * 2018-12-21 2021-10-27 Ecolab USA Inc. Quick tracer injection for monitoring osmosis membrane integrity
CN109607685A (en) * 2019-01-21 2019-04-12 西安热工研究院有限公司 A kind of feed water by reverse osmosis feature pollution index measurement device and method
CN114112954B (en) * 2021-10-18 2024-04-19 中国工程物理研究院激光聚变研究中心 Process duration calculation method for cleaning organic pollutants by low-pressure oxygen plasma

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935395B2 (en) * 2007-02-08 2012-05-23 栗田工業株式会社 Membrane separator evaluation method, water treatment method, and water treatment apparatus
JP4867413B2 (en) * 2006-03-20 2012-02-01 栗田工業株式会社 Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP5587240B2 (en) * 2011-04-21 2014-09-10 株式会社日立製作所 Control device and control method for seawater desalination system
JP5677476B2 (en) * 2013-01-18 2015-02-25 株式会社東芝 Membrane fouling diagnosis / control device, membrane fouling diagnosis / control method, and membrane fouling diagnosis / control program

Also Published As

Publication number Publication date
JP2018012062A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6679439B2 (en) Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method
JP4867413B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP5618874B2 (en) Fouling generation prediction method and membrane filtration system
Henderson et al. Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques
Ayache et al. Impact of effluent organic matter on low-pressure membrane fouling in tertiary treatment
JP6567274B2 (en) Method for analyzing contamination state of separation membrane, and method for evaluating water quality of filtration target water using the method
JP6421461B2 (en) Ion exchanger supply water evaluation method and operation management method
DE102011114912B4 (en) Device for producing ultrapure water
Alhadidi et al. Using SDI, SDI+ and MFI to evaluate fouling in a UF/RO desalination pilot plant
JP6768889B2 (en) Contaminated state analysis method of separation membrane and water quality evaluation method of filtered water using the method
JP4793193B2 (en) Aggregation apparatus and aggregation method
Koo et al. Use and development of fouling index in predicting membrane fouling
Vera et al. Monitoring UF membrane performance treating surface-groundwater blends: limitations of FEEM-PARAFAC on the assessment of the organic matter role
Rachman et al. Assessment of silt density index (SDI) as fouling propensity parameter in reverse osmosis (RO) desalination systems
Lidén et al. Integrity breaches in a hollow fiber nanofilter–Effects on natural organic matter and virus-like particle removal
Yu et al. Understanding ultrafiltration membrane fouling by soluble microbial product and effluent organic matter using fluorescence excitation–emission matrix coupled with parallel factor analysis
Lidén et al. Uses of fluorescence excitation-emissions indices in predicting water treatment efficiency
Guo et al. Ultrafiltration performance of EfOM and NOM under different MWCO membranes: Comparison with fluorescence spectroscopy and gel filtration chromatography
JP7033841B2 (en) Membrane obstruction evaluation method of reverse osmosis membrane supply water and operation management method of water treatment equipment using the membrane obstruction evaluation method
Gasia-Bruch et al. Field experience with a 20,000 m3/d integrated membrane seawater desalination plant in Cyprus
Frick et al. Evaluation of pretreatments for a blowdown stream to feed a filtration system with discarded reverse osmosis membranes
JP2018008192A (en) Foulant quantification method
Zheng Major organic foulants in ultrafiltration of treated domestic wastewater and their removal by bio-filtration as pre-treatment
JP6530996B2 (en) Method of evaluating membrane blockage of treated water and method of operating membrane processing apparatus
WO2013129111A1 (en) Water production method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200318

R150 Certificate of patent or registration of utility model

Ref document number: 6679439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250