JP2012177149A - Grain-oriented silicon steel sheet, and method for manufacturing the same - Google Patents

Grain-oriented silicon steel sheet, and method for manufacturing the same Download PDF

Info

Publication number
JP2012177149A
JP2012177149A JP2011040196A JP2011040196A JP2012177149A JP 2012177149 A JP2012177149 A JP 2012177149A JP 2011040196 A JP2011040196 A JP 2011040196A JP 2011040196 A JP2011040196 A JP 2011040196A JP 2012177149 A JP2012177149 A JP 2012177149A
Authority
JP
Japan
Prior art keywords
annealing
grain
steel sheet
oriented electrical
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011040196A
Other languages
Japanese (ja)
Other versions
JP5760504B2 (en
Inventor
Takeshi Omura
大村  健
Hirotaka Inoue
博貴 井上
重宏 ▲高▼城
Shigehiro Takagi
Hiroshi Yamaguchi
山口  広
Seiji Okabe
誠司 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011040196A priority Critical patent/JP5760504B2/en
Publication of JP2012177149A publication Critical patent/JP2012177149A/en
Application granted granted Critical
Publication of JP5760504B2 publication Critical patent/JP5760504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain-oriented silicon steel sheet obtaining excellent noise characteristics and core loss characteristics when the steel sheets are assembled to an actual transformer.SOLUTION: The average β angle of the secondary recrystallized particle is ≤2°. The average β angle variation range within the secondary recrystallized particle is ≥1° and ≤4°. Surface tension in the rolling direction is ≥10 MPa. Magnetostriction λp-p at the magnetic flux density of 1.7T and the frequency of 50 Hz is ≤1.0×10. Further, the plate thickness t and the core loss Wsatisfy following expression (1): W≤2.1×t +0.3, where t denotes the plate thickness (mm).

Description

本発明は、変圧器などの鉄心材料に用いる方向性電磁鋼板およびその製造方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet used for a core material such as a transformer and a method for manufacturing the grain-oriented electrical steel sheet.

方向性電磁鋼板は、主に変圧器の鉄心として利用され、その磁化特性が優れていること、特に鉄損が低いことが求められている。
そのためには、鋼板中の二次再結晶粒を、(110)[001]方位(いわゆる、ゴス方位)に高度に揃えることや、製品鋼板中の不純物を低減することが重要であるものの、結晶方位の制御や、不純物を低減することは、製造コストとの兼ね合い等で限界がある。そこで、鋼板の表面に対して電子ビームによって歪を導入し、磁区の幅を細分化して鉄損を低減する技術が特許文献1などに開示されている。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer, and is required to have excellent magnetization characteristics, particularly low iron loss.
To that end, it is important to align the secondary recrystallized grains in the steel plate with a high degree of (110) [001] orientation (so-called Goth orientation) and to reduce impurities in the product steel plate. There is a limit to the control of the orientation and the reduction of impurities in view of the manufacturing cost. In view of this, Japanese Patent Application Laid-Open No. H10-228561 discloses a technique for reducing the iron loss by introducing strain to the surface of the steel sheet with an electron beam and subdividing the width of the magnetic domain.

特公平06-072266号公報Japanese Patent Publication No. 06-072266

しかしながら、上述した磁区細分化処理によって、図1に示す領域内での良好な鉄損特性を得ようとした場合、必要な導入歪量が多くなるため、磁歪特性が劣化し、実機トランスの騒音が大きくなるという問題があり、鉄損と騒音の両立は困難であるという課題が残されている。   However, when an attempt is made to obtain a good iron loss characteristic in the region shown in FIG. 1 by the above-mentioned magnetic domain subdivision process, the required distortion amount increases, so that the magnetostriction characteristic deteriorates and the noise of the actual transformer is reduced. However, it is difficult to achieve both iron loss and noise.

本発明は、上記の現状に鑑み開発されたもので、実機トランスに組上げた場合に、優れた騒音特性および鉄損特性を得ることが可能な方向性電磁鋼板とその製造方法を提案することを目的とする。   The present invention has been developed in view of the above situation, and proposes a grain-oriented electrical steel sheet capable of obtaining excellent noise characteristics and iron loss characteristics when assembled in an actual transformer, and a method of manufacturing the same. Objective.

電子ビーム照射を用い、良好な鉄損特性とした材料を使用した実機トランスに発生する騒音の増加は、前述したように、歪導入による磁歪特性の劣化によるものである。ここに、この騒音特性の劣化を防止するためには、歪導入量を低減することが最も効果的であることが分かっている。そこで、発明者らは、少ない歪導入量で十分な磁区細分化効果を得る方策を検討した。
その結果、鋼板の二次再結晶粒の結晶方位(β角)・結晶粒内のβ角変動および圧延方向における表面張力の制御を行うことで、電子ビーム照射処理前の磁区幅を極力狭くすることができ、少ない歪導入量でも良好な鉄損特性が得られることが明らかになった。
本発明は上記知見に立脚するものである。
As described above, the increase in noise generated in an actual transformer using a material having an excellent iron loss characteristic using electron beam irradiation is due to the deterioration of the magnetostriction characteristic due to the introduction of strain. Here, in order to prevent the deterioration of the noise characteristics, it has been found that it is most effective to reduce the strain introduction amount. Therefore, the inventors examined a method for obtaining a sufficient magnetic domain refinement effect with a small amount of strain introduction.
As a result, the magnetic domain width before electron beam irradiation treatment is made as narrow as possible by controlling the crystal orientation (β angle) of the secondary recrystallized grains in the steel sheet, the β angle variation in the grains, and the surface tension in the rolling direction. It was revealed that good iron loss characteristics can be obtained even with a small amount of strain introduction.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.熱歪の導入による磁区細分化処理を施した方向性電磁鋼板であって、二次再結晶粒の平均β角が2°以下、該二次再結晶粒の粒内の平均β角変動幅が1°以上4°以下で、かつ圧延方向における表面張力が10MPa以上であり、磁束密度:1.7T、周波数:50Hzにおける磁歪λp-pの値が1.0×10-6以下で、さらに板厚tと鉄損W17/50とが下記式(1)を満足することを特徴とする変圧器特性に優れた方向性電磁鋼板。

17/50 ≦2.1×t + 0.3 ・・・(1)
t : 板厚(mm)
That is, the gist configuration of the present invention is as follows.
1. A grain-oriented electrical steel sheet subjected to magnetic domain refinement treatment by introducing thermal strain, wherein the average β angle of secondary recrystallized grains is 2 ° or less, and the average β angle fluctuation range in the grains of secondary recrystallized grains is 1 ° or more and 4 ° or less, surface tension in the rolling direction is 10 MPa or more, magnetic strain λp-p value is 1.0 × 10 −6 or less at magnetic flux density: 1.7 T, frequency: 50 Hz, and sheet thickness t A grain- oriented electrical steel sheet with excellent transformer characteristics, characterized in that the iron loss W 17/50 satisfies the following formula (1).
Record
W 17/50 ≦ 2.1 × t + 0.3 (1)
t: Thickness (mm)

2.前記熱歪の導入が、電子ビーム照射によるものであることを特徴とする前記1に記載の変圧器特性に優れた方向性電磁鋼板。   2. 2. The grain-oriented electrical steel sheet having excellent transformer characteristics as described in 1 above, wherein the introduction of the thermal strain is by electron beam irradiation.

3.方向性電磁鋼板用スラブを、熱間圧延し、熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げたのち、脱炭焼鈍を施し、ついで鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行った後、平坦化焼鈍を兼ねた張力コーティング処理を行い、該仕上げ焼鈍後または該張力コーティング処理後に、熱歪の導入による磁区細分化処理を行う、一連の工程になる方向性電磁鋼板の製造方法において、
(a) 上記熱延板焼鈍時の冷却過程において、750〜350℃の温度域における冷却速度を40℃/s以上とする、
(b) 上記最終仕上げ焼鈍をコイル状で行い、その際、コイル内径を500mm以上、外径を1500mm以下とする、
(c) 上記平坦化焼鈍時の800℃以上におけるライン張力を8〜12MPaとする、
(d) 上記熱歪の導入の際、導入歪量を調節することで、磁束密度:1.7T、周波数:50Hzにおける磁歪λp-pを1.0×10-6以下、かつ、板厚tと鉄損W17/50とを下記式(1)を満足するように制御する
ことを特徴とする変圧器特性に優れた方向性電磁鋼板の製造方法。

17/50 ≦2.1×t + 0.3 ・・・(1)
t : 板厚(mm)
3. The slab for grain-oriented electrical steel sheet is hot-rolled and subjected to hot-rolled sheet annealing, and then subjected to cold rolling twice or more with intermediate or intermediate annealing, and finished to the final sheet thickness, followed by decarburization. After annealing and then applying an annealing separator mainly composed of MgO to the steel sheet surface, after final finishing annealing, it is subjected to tension coating treatment that also serves as flattening annealing, and after this finishing annealing or the tension In the method for producing grain-oriented electrical steel sheets, which is a series of steps, after the coating treatment, the magnetic domain fragmentation treatment by introducing thermal strain.
(a) In the cooling process during the hot-rolled sheet annealing, the cooling rate in the temperature range of 750 to 350 ° C. is 40 ° C./s or more.
(b) The final finish annealing is performed in a coil shape, and the inner diameter of the coil is 500 mm or more and the outer diameter is 1500 mm or less.
(c) The line tension at 800 ° C. or higher during the flattening annealing is 8 to 12 MPa.
(d) When the thermal strain is introduced, by adjusting the amount of strain introduced, the magnetostriction λp-p at a magnetic flux density of 1.7 T and a frequency of 50 Hz is 1.0 × 10 −6 or less, and the thickness t and the iron loss A method for producing a grain- oriented electrical steel sheet having excellent transformer characteristics, wherein W 17/50 is controlled to satisfy the following formula (1).
Record
W 17/50 ≦ 2.1 × t + 0.3 (1)
t: Thickness (mm)

4.前記熱歪の導入を、電子ビーム照射で行うことを特徴とする前記3に記載の変圧器特性に優れた方向性電磁鋼板の製造方法。   4). 4. The method for producing a grain-oriented electrical steel sheet having excellent transformer characteristics as described in 3 above, wherein the introduction of the thermal strain is performed by electron beam irradiation.

本発明によれば、電子ビーム等により熱歪みを付与し、鉄損を低減した方向性電磁鋼板を積層した実機トランスにおいて、優れた鉄損特性と優れた騒音特性とを両立することが可能になった。   According to the present invention, it is possible to achieve both excellent iron loss characteristics and excellent noise characteristics in an actual transformer in which grain-oriented electrical steel sheets that have been subjected to thermal distortion by an electron beam or the like to reduce iron loss are laminated. became.

鋼板の板厚と鉄損値の関係を示したグラフである。It is the graph which showed the relationship between the plate | board thickness of a steel plate, and an iron loss value. 平均β角および粒内の平均β角変動の異なる方向性電磁鋼板の磁区細分化処理前の鉄損を測定した結果を示したグラフである。It is the graph which showed the result of having measured the iron loss before the magnetic domain refinement | purification process of the grain-oriented electrical steel sheet from which an average beta angle and the average beta angle fluctuation in a grain differ. 電子ビームを出力150Wで照射し、磁区細分化処理を施した後の鉄損評価結果を、β角度との関係で示したグラフである。It is the graph which showed the iron loss evaluation result after irradiating an electron beam with the output of 150W, and performing a magnetic domain subdivision process in relation to (beta) angle. 電子ビームの出力と鉄損の関係を調査した結果を示したグラフである。It is the graph which showed the result of having investigated the relationship between the output of an electron beam, and a core loss. レーザー照射の出力と鉄損の関係を調査した結果を示したグラフである。It is the graph which showed the result of having investigated the relationship between the output of a laser irradiation, and a core loss. 300kVAの実機トランスに組上げて、50Hz、1.7Tで騒音および鉄損を測定した結果を示したグラフである。It is a graph showing the results of measuring noise and iron loss at 50 Hz, 1.7 T, assembled in a 300 kVA real transformer.

以下、本発明について具体的に説明する。
まず、本発明を完成させるに至った実験結果について説明する。
二次再結晶粒(以下、単に二次粒ともいう)の平均β角および粒内の平均β角変動が異なる方向性電磁鋼板の、磁区細分化処理前の鉄損を測定した結果を図2に示す(平均β角:0.5°以下と平均β角:2.5〜3.5°のサンプルを評価した結果)。
なお、α角とは、二次粒方位の、圧延面法線方向(ND)軸に対する(110)<001>理想方位からのずれ角である。また、β角とは、二次粒方位の、圧延直角方向(TD)軸に対する(110)<001>理想方位からのずれ角である。
Hereinafter, the present invention will be specifically described.
First, the experimental results that led to the completion of the present invention will be described.
FIG. 2 shows the results of measuring the iron loss before magnetic domain refinement of grain-oriented electrical steel sheets having different average β angles of secondary recrystallized grains (hereinafter also simply referred to as secondary grains) and average β angle fluctuations within the grains. (Results of evaluating samples having an average β angle of 0.5 ° or less and an average β angle of 2.5 to 3.5 °).
The α angle is the deviation angle of the secondary grain orientation from the (110) <001> ideal orientation with respect to the rolling surface normal direction (ND) axis. Further, the β angle is a deviation angle of the secondary grain orientation from the (110) <001> ideal orientation with respect to the rolling perpendicular direction (TD) axis.

評価したサンプルは、全て平均α角が2.8〜3.2°の範囲内であり、α角はほぼ同レベルであった。
二次粒の粒内の平均β角変動の少ない場合は、β角2°以下で、鉄損が大幅に増加している。一方で、二次粒の粒内の平均β角変動の大きい場合は、β角2°以下での鉄損増加量が、平均β角変動が少ない場合に比べて少なかった。
上記の現象は、β角2°以下の鉄損劣化は、β角が小さくなることによって磁区幅が急激に増大したためであり、粒内の平均β角変動が大きい場合に鉄損増加量が少ないのは、粒内の一部に存在するβ角が大きい、すなわち磁区幅が小さい部分が、β角の小さい部分にも影響を及ぼし、磁区幅の増大が抑制されたためと考えられる。
All the samples evaluated had an average α angle in the range of 2.8 to 3.2 °, and the α angle was almost the same level.
When the average β angle variation in the secondary grains is small, the iron loss is greatly increased at a β angle of 2 ° or less. On the other hand, when the average β angle variation in the secondary grains was large, the amount of increase in iron loss at a β angle of 2 ° or less was smaller than when the average β angle variation was small.
The above phenomenon is because the deterioration of the iron loss with a β angle of 2 ° or less is due to a sudden increase in the magnetic domain width due to a decrease in the β angle. When the average β angle variation in the grains is large, the iron loss increase is small. This is considered to be because the part where the β angle existing in a part of the grain is large, that is, the part where the magnetic domain width is small also affects the part where the β angle is small, and the increase in the magnetic domain width is suppressed.

図3に、電子ビームを出力150Wで照射し、磁区細分化処理を施した後の鉄損評価結果を示すが、β角が2°以下で特に良好な鉄損特性を示した。このことから、鉄損を良好にするためには、β角を2°以下することが重要であると言える。次に、良好な鉄損特性を示したβ=1°のサンプルについて、電子ビームの出力と鉄損の関係を調査した結果を図4に示す。粒内のβ角変動が大きい場合、電子ビームが低出力でも良好な鉄損特性を示した。これは、上述したように、電子ビームの照射処理前の磁区幅が小さいことに起因した現象であると考えている。   FIG. 3 shows the iron loss evaluation result after irradiation with an electron beam at an output of 150 W and magnetic domain fragmentation treatment, and particularly good iron loss characteristics were exhibited when the β angle was 2 ° or less. From this, it can be said that it is important to make the β angle 2 ° or less in order to improve the iron loss. Next, FIG. 4 shows the results of investigating the relationship between the output of the electron beam and the iron loss for the β = 1 ° sample showing good iron loss characteristics. When the β angle variation in the grains was large, the iron loss characteristics were good even with a low output of the electron beam. As described above, this is considered to be a phenomenon caused by a small magnetic domain width before the electron beam irradiation treatment.

その後、引き続き、電子ビームの照射が低出力でも、磁区細分化効果が得られる条件を探索した。その結果、二次粒の粒内の平均β角変動が1°以上4°以下の範囲であることが重要であることが分かった。同様の実験を、レーザ照射で行った結果を図5に示す。レーザ照射材でもやや効果は低いものの、同じような傾向が認められた。   After that, we continued to search for conditions under which the magnetic domain fragmentation effect can be obtained even when the electron beam irradiation is low. As a result, it was found that it is important that the average β angle variation in the secondary grains is in the range of 1 ° to 4 °. FIG. 5 shows the result of a similar experiment performed by laser irradiation. The same tendency was observed with the laser irradiated material although the effect was somewhat low.

ここに、レーザと電子ビームでやや効果が異なったのは次のように考えている。電子ビームはレーザよりも鋼板内部への侵入能が高く、より効果的に歪が導入できる。この侵入能の差が、照射前の磁区幅が狭いという条件があることによって、異なった結果に導いたものと考えている。
従来、高出力条件では十分な歪が導入されるために、レーザと電子ビームとの間では差が出にくかった。また、低出力でも処理前の磁区幅が広い場合は、磁区幅が広い影響の方が大きく、侵入能に優れる電子ビームでも十分に鉄損が下がらず、電子ビームとレーザのと差が出にくかったと考えている。
以上の結果より、磁区細分化処理前の磁区幅をできる限り小さくすることが、電子ビームの照射を低出力の条件とした場合に、良好な鉄損を得るための重要な点であることが判明した。
Here, the reason why the effect is slightly different between the laser and the electron beam is considered as follows. The electron beam has a higher penetration ability into the steel plate than the laser and can introduce strain more effectively. It is thought that this difference in penetration ability led to different results due to the condition that the magnetic domain width before irradiation was narrow.
Conventionally, sufficient distortion is introduced under high output conditions, so that it is difficult to make a difference between a laser and an electron beam. In addition, when the magnetic domain width before processing is wide even at low output, the influence of the wide magnetic domain width is larger, and even with an electron beam with excellent penetration ability, the iron loss is not sufficiently reduced, and the difference between the electron beam and the laser is difficult to appear. I think.
From the above results, it is important to make the magnetic domain width as small as possible before the magnetic domain subdivision treatment is an important point for obtaining a good iron loss when the electron beam irradiation is performed under a low output condition. found.

次に、磁区幅に対して影響のある、圧延方向における表面張力(以下、単に張力ともいう)を調査した。その結果、表面張力が10MPa以上にならないと、上述したような現象は起こらないことが判明した。ここで、上記した実験のサンプルについて表面張力を測定したところ14MPaであった。なお、鋼板表面の張力は、以下に示す方法で求めた。   Next, the surface tension (hereinafter also simply referred to as tension) in the rolling direction, which has an influence on the magnetic domain width, was investigated. As a result, it was found that the above-described phenomenon does not occur unless the surface tension is 10 MPa or more. Here, the surface tension of the sample of the above experiment was measured and found to be 14 MPa. In addition, the tension | tensile_strength of the steel plate surface was calculated | required by the method shown below.

また、図4の各照射条件で電子ビームを照射し、磁区細分化処理を施したサンプルで、300kVAの実機トランスを組上げ、50Hz、1.7Tで騒音および鉄損を測定した結果を図6(a)および(b)に示す。本トランスの設計値は、鉄損:0.82W/kg 、騒音:46dBである。β角変動の大きい条件でのみトランス鉄損と騒音が良好になる条件が存在している。
そこで、騒音が良好な条件における素材磁歪を測定したところ、λp-pが1.0×10-6以下、騒音が大きいものは全て1.0×10-6超という結果であった。
従って、本発明における磁歪特性λp-pは、1.0×10-6以下とする。中でも、鉄損・騒音バランスが最もよい領域条件は、λp-pが0.8×10-6以下であったことから、好ましくは0.8×10-6以下とする。
In addition, with the sample irradiated with the electron beam under each irradiation condition in FIG. 4 and subjected to magnetic domain subdivision processing, a 300 kVA actual transformer was assembled, and the results of measuring noise and iron loss at 50 Hz and 1.7 T are shown in FIG. ) And (b). The design values of this transformer are iron loss: 0.82 W / kg and noise: 46 dB. There is a condition that transformer iron loss and noise are good only under the condition of large β angle fluctuation.
Therefore, the material magnetostriction under conditions with good noise was measured. As a result, λp-p was 1.0 × 10 −6 or less, and noisy noises were all over 1.0 × 10 −6 .
Therefore, the magnetostriction characteristic λp-p in the present invention is 1.0 × 10 −6 or less. Among them, the region condition with the best iron loss / noise balance is preferably 0.8 × 10 −6 or less because λp-p is 0.8 × 10 −6 or less.

以上より、トランスの鉄損特性および騒音特性を満足するためには、β角二次粒の平均β角を2°以下、粒内の平均β角変動を1°以上4°以下とし、かつ圧延方向に対する表面張力を10MPa以上とし、さらに磁束密度1.7T、周波数50Hzにおける磁歪のλp-pが1.0×10-6以下であっても、各板厚t(mm)における鉄損特性がW17/50 ≦ 2.1× t + 0.3を満足する条件で電子ビームの熱歪を導入することが必要であることが判明した。 From the above, in order to satisfy the iron loss characteristic and noise characteristic of the transformer, the average β angle of β angle secondary grains is 2 ° or less, the average β angle variation in the grains is 1 ° or more and 4 ° or less, and rolling Even if the surface tension with respect to the direction is 10 MPa or more, and the λp-p of magnetostriction at a magnetic flux density of 1.7 T and a frequency of 50 Hz is 1.0 × 10 −6 or less, the iron loss characteristic at each thickness t (mm) is W 17 / It has been found that it is necessary to introduce thermal distortion of the electron beam under conditions that satisfy 50 ≦ 2.1 × t + 0.3.

なお、本発明では、X線ラウエ法を用いて、測定間隔を1mmピッチとし、1つの粒内の全測定点での、二次粒の粒内の変動幅およびその結晶粒の平均結晶方位(α角、β角)を求めた。ここでは、結晶粒をランダムに50個分を測定し、その平均値をそのサンプル全体の結晶方位とした。   In the present invention, the X-ray Laue method is used, the measurement interval is set to 1 mm pitch, the fluctuation width in the secondary grain and the average crystal orientation of the crystal grain at all measurement points in one grain ( α angle and β angle) were obtained. Here, 50 crystal grains were randomly measured, and the average value was taken as the crystal orientation of the entire sample.

また、製品(張力コーティング塗布材)より、前述したような圧延方向の張力を測定する場合は、圧延直角方向:280mm×圧延方向:30mmのサンプルを切り出した後、片面のフォルステライト被膜と張力コーティングを除去し、その除去前後の鋼板反り量を測定して得られた反り量を、以下の換算式(2)にて張力換算する。
この方法で求めた張力は、フォルステライト被膜と張力コーティングを除去しなかった面に付与されている張力である。張力はサンプル両面に付与されているので、上記方法で片面毎の張力を求め、さらに同じ製品の別のサンプルを用いて反対面の張力を同様の方法で求め、本発明では、その平均値をサンプルに付与されている張力とした。

Figure 2012177149
When measuring the tension in the rolling direction as described above from the product (tension coating coating material), a sample with a perpendicular direction of rolling: 280 mm x rolling direction: 30 mm is cut out, and then a forsterite film and tension coating on one side are cut out. The amount of warpage obtained by measuring the amount of warpage of the steel sheet before and after the removal is converted into tension by the following conversion formula (2).
The tension obtained by this method is the tension applied to the surface from which the forsterite film and the tension coating have not been removed. Since the tension is applied to both sides of the sample, the tension for each side is obtained by the above method, and the tension on the opposite side is obtained by a similar method using another sample of the same product. The tension applied to the sample was used.

Figure 2012177149

次に、β角の制御方法について述べる。
β角の制御のポイントは、コイル焼鈍時における二次粒1個あたりの曲率を調整することで、本発明の最適範囲内に制御することが可能になる。ここで、二次粒1個あたりの曲率に最も大きな影響を与える因子は焼鈍時のコイル径である。すなわち、コイル径が大きいと曲率が減少し、粒内のβ角変動は小さくなる。一方、コイル径が小さいと曲率は増加し、粒内のβ角変動は大きくなる。
従って、コイル全長を本発明の目標範囲内に制御するためには、コイル内径を500mm以上、コイル外形を1500mm以下とする必要がある。
Next, a method for controlling the β angle will be described.
The point of control of the β angle can be controlled within the optimum range of the present invention by adjusting the curvature per secondary grain during coil annealing. Here, the factor that has the greatest influence on the curvature per secondary grain is the coil diameter during annealing. That is, when the coil diameter is large, the curvature decreases, and the β-angle variation in the grains becomes small. On the other hand, when the coil diameter is small, the curvature increases, and the β angle variation in the grains increases.
Therefore, in order to control the total coil length within the target range of the present invention, it is necessary to set the coil inner diameter to 500 mm or more and the coil outer shape to 1500 mm or less.

以下、β角を2°以下に制御する方法について述べる。
この制御については、熱延板焼鈍時の冷却速度を調整し、一次再結晶集合組織を改善することが極めて有効である。すなわち、熱延板焼鈍時の冷却速度を速くして、冷却時に析出する炭化物を微細に析出させることによって、圧延後に形成される一次再結晶集合組織を変化させる手段である。具体的には、熱延板焼鈍時の冷却過程において、750〜350℃の温度域を、40℃/s以上の速度で冷却することである。
Hereinafter, a method for controlling the β angle to 2 ° or less will be described.
For this control, it is extremely effective to improve the primary recrystallization texture by adjusting the cooling rate during hot-rolled sheet annealing. That is, it is a means for changing the primary recrystallization texture formed after rolling by increasing the cooling rate during hot-rolled sheet annealing and finely depositing carbides that precipitate during cooling. Specifically, in the cooling process during hot-rolled sheet annealing, the temperature range of 750 to 350 ° C. is cooled at a rate of 40 ° C./s or more.

以下、圧延方向における表面張力を10MPa以上にする方法について述べる。
圧延方向の張力は、フォルステライト被膜およびその上に塗布する張力コーティングによって付与される。張力コーティングによって張力をアップするためには、平坦化焼鈍を兼ねた張力コーティング処理において、特に800℃以上の温度域でライン張力をアップさせ、鋼板を伸ばすことが有効である。しかしながら、ライン張力が強すぎるとフォルステライト被膜が破壊され、フォルステライト被膜の張力が大幅に低下しするため、所望の表面張力が得られない。従って、フォルステライト被膜を破壊しないために、ライン張力は12MPa以下に限定する。一方、ライン張力が低い場合は、張力コーティングにより付加される張力が低い上に、平坦化効果が低減して形状不良を招くため、ライン張力の下限は8MPaとする。
Hereinafter, a method for setting the surface tension in the rolling direction to 10 MPa or more will be described.
The rolling direction tension is applied by the forsterite film and the tension coating applied thereon. In order to increase the tension by the tension coating, it is effective to increase the line tension and stretch the steel sheet particularly in the temperature range of 800 ° C. or higher in the tension coating process that also serves as flattening annealing. However, if the line tension is too high, the forsterite film is destroyed and the tension of the forsterite film is greatly reduced, so that the desired surface tension cannot be obtained. Therefore, in order not to destroy the forsterite film, the line tension is limited to 12 MPa or less. On the other hand, when the line tension is low, the tension applied by the tension coating is low, and the flattening effect is reduced to cause a shape defect. Therefore, the lower limit of the line tension is 8 MPa.

以下、熱歪導入法について述べる。
本発明での熱歪導入方法は、電子ビームやレーザといった、公知の熱歪導入方法を適用すればよいが、鋼板への侵入能が高く、効果がより高い電子ビームを使用することが好ましい。ここに、本発明の方向性電磁鋼板を得るために、導入歪量を変化させるパラメータとしては、ビーム出力・照射間隔・走査速度・真空度などが挙げられる。鋼板の鉄損特性および磁歪特性が本発明を満足するように、これらのパラメータを組み合わせればよい。制御するパラメータは特に限定しないが、ビーム出力・照射間隔の変更が比較的容易である。照射方向は圧延方向を横切る方向、好適には60°〜90°の方向、3〜15mm程度の間隔で照射を施すのが好適である。
Hereinafter, the thermal strain introduction method will be described.
As the thermal strain introduction method in the present invention, a known thermal strain introduction method such as an electron beam or a laser may be applied, but it is preferable to use an electron beam that has a high penetration ability into a steel plate and has a higher effect. Here, in order to obtain the grain-oriented electrical steel sheet of the present invention, parameters for changing the amount of strain introduced include beam output, irradiation interval, scanning speed, degree of vacuum, and the like. These parameters may be combined so that the iron loss characteristics and magnetostriction characteristics of the steel sheet satisfy the present invention. The parameters to be controlled are not particularly limited, but it is relatively easy to change the beam output and irradiation interval. The irradiation direction is a direction crossing the rolling direction, preferably 60 ° to 90 °, and preferably 3 to 15 mm apart.

その他の条件としては、電子ビームは、加速電圧:10〜200kV、ビーム電流:0.1〜100mA、ビーム径:0.01〜0.3mmとするのが好適である。レーザは、単位長さ当たりの熱量:5〜100J/m程度、スポット径:0.1〜0.5mm程度とすることが好ましい。   As other conditions, the electron beam preferably has an acceleration voltage of 10 to 200 kV, a beam current of 0.1 to 100 mA, and a beam diameter of 0.01 to 0.3 mm. The laser preferably has a heat amount per unit length of about 5 to 100 J / m and a spot diameter of about 0.1 to 0.5 mm.

上述した熱歪導入条件により、β角およびβ角変動を本発明の範囲内に制御したサンプルについては、磁束密度1.7T、周波数50Hzにおける磁歪のλp-pが1.0×10-6以下となり、かつ鋼板の鉄損特性が、以下の式(1)を満足することが可能になる。
17/50 ≦ 2.1×t + 0.3 ・・・(1)
一方、β角およびβ角変動を本発明の範囲内に制御しない場合には、熱歪導入条件を調整したとしても、所望の鉄損を狙えば磁歪が大きくなりすぎ、磁歪を適正化しようとすると鉄損が不十分となってしまうため、良好な鉄損特性と良好な磁歪特性を両立することは困難となる。
For samples in which the β angle and β angle fluctuation are controlled within the scope of the present invention under the above-described thermal strain introduction conditions, the magnetostriction λp-p at a magnetic flux density of 1.7 T and a frequency of 50 Hz is 1.0 × 10 −6 or less, and The iron loss characteristic of the steel sheet can satisfy the following formula (1).
W 17/50 ≦ 2.1 × t + 0.3 (1)
On the other hand, when the β angle and β angle fluctuation are not controlled within the scope of the present invention, even if the thermal strain introduction condition is adjusted, if the desired iron loss is aimed, the magnetostriction becomes too large, and an attempt is made to optimize the magnetostriction. Then, since the iron loss becomes insufficient, it becomes difficult to achieve both good iron loss characteristics and good magnetostriction characteristics.

また、磁区細分化処理前の磁区幅をできる限り小さくするためには、上記の条件に加えて、二次粒の粒径を小さくすることも有効である。前述したように、コイル径および表面張力を制御することで、本発明の効果を得ることが可能であるが、二次粒径の制御を追加することで安定性が向上するため、二次粒径を同時に制御することが好ましい。具体的には、二次粒径を15mm以下にすることが好ましく、その方法としては脱炭焼鈍時の昇温速度を50℃/s以上とすることにより、一次再結晶集合組織中のゴス粒の存在頻度を増加させることが極めて有効である。より好ましくは昇温速度を100℃/s以上とすることである。   In addition to the above conditions, it is also effective to reduce the particle size of the secondary grains in order to make the magnetic domain width before the magnetic domain refinement treatment as small as possible. As described above, it is possible to obtain the effect of the present invention by controlling the coil diameter and the surface tension. However, since the stability is improved by adding the control of the secondary particle size, the secondary particle It is preferable to control the diameter simultaneously. Specifically, the secondary particle size is preferably 15 mm or less, and the method is to increase the temperature rising rate during decarburization annealing to 50 ° C./s or more so that goth grains in the primary recrystallization texture It is extremely effective to increase the frequency of the presence of. More preferably, the rate of temperature rise is set to 100 ° C./s or more.

本発明において、方向性電磁鋼板用スラブの成分組成は、磁区細分化効果の大きい二次再結晶が生じる成分組成であればよい。
また、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、Al:0.01〜0.065質量%、N:0.005〜0.012質量%、S:0.005〜0.03質量%、Se:0.005〜0.03質量%である。
In the present invention, the component composition of the slab for grain-oriented electrical steel sheet may be any component composition that produces secondary recrystallization with a large magnetic domain refinement effect.
Further, when using an inhibitor, for example, when using an AlN-based inhibitor, Al and N, and when using an MnS / MnSe-based inhibitor, an appropriate amount of Mn and Se and / or S should be contained. Good. Of course, both inhibitors may be used in combination. The preferred contents of Al, N, S and Se in this case are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .

さらに、本発明は、Al、N、S、Seの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。
この場合には、Al、N、SおよびSe量はそれぞれ、Al:100 質量ppm以下、N:50 質量ppm以下、S:50 質量ppm以下、Se:50 質量ppm以下に抑制することが好ましい。
Furthermore, the present invention can also be applied to grain-oriented electrical steel sheets in which the contents of Al, N, S, and Se are limited and no inhibitor is used.
In this case, the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less.

本発明の方向性電磁鋼板用スラブの基本成分および任意添加成分について具体的に述べると次のとおりである。
C:0.08質量%以下
Cは、熱延板組織の改善のために添加をするが、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
The basic components and optional components of the slab for grain-oriented electrical steel sheets according to the present invention are specifically described as follows.
C: 0.08 mass% or less C is added to improve the hot-rolled sheet structure, but if it exceeds 0.08 mass%, it is difficult to reduce C to 50 mass ppm or less where no magnetic aging occurs during the manufacturing process. Therefore, the content is preferably 0.08% by mass or less. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.

Si:2.0〜8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できず、一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜8.0質量%の範囲とすることが好ましい。
Si: 2.0 to 8.0 mass%
Si is an element effective in increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0% by mass, a sufficient iron loss reduction effect cannot be achieved, while 8.0% by mass. If it exceeds 1, the workability is remarkably lowered and the magnetic flux density is also lowered. Therefore, the Si content is preferably in the range of 2.0 to 8.0% by mass.

Mn:0.005〜1.0質量%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下するため、Mn量は0.005〜1.0質量%の範囲とすることが好ましい。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability. However, if the content is less than 0.005% by mass, the effect of addition is poor, whereas if it exceeds 1.0% by mass, the magnetic flux density of the product plate decreases. The amount of Mn is preferably in the range of 0.005 to 1.0 mass%.

上記の基本成分以外に、磁気特性改善成分として公知である、次に述べる元素を適宜含有させることができる。
Ni:0.03〜1.50質量%、Sn:0.01〜1.50質量%、Sb:0.005〜1.50質量%、Cu:0.03〜3.0質量%、P:0.03〜0.50質量%、Mo:0.005〜0.10質量%およびCr:0.03〜1.50質量%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.5質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03〜1.5質量%の範囲とするのが好ましい。
In addition to the above basic components, the following elements known as magnetic property improving components can be appropriately contained.
Ni: 0.03-1.50% by mass, Sn: 0.01-1.50% by mass, Sb: 0.005-1.50% by mass, Cu: 0.03-3.0% by mass, P: 0.03-0.50% by mass, Mo: 0.005-0.10% by mass and Cr: At least one selected from 0.03 to 1.50 mass%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.03% by mass, the effect of improving the magnetic properties is small. On the other hand, if the content exceeds 1.5% by mass, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.5 mass%.

また、Sn、Sb、Cu、P、MoおよびCrはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量を超えると、二次粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
Sn, Sb, Cu, P, Mo and Cr are elements useful for improving the magnetic properties, respectively, but if any of them is less than the lower limit of each component described above, the effect of improving the magnetic properties is small, When the upper limit amount of each component described above is exceeded, the development of secondary grains is inhibited.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

次いで、上記した成分組成を有するスラブは、常法に従い加熱して熱間圧延に供するが、鋳造後、加熱せずに直ちに熱間圧延してもよい。薄鋳片の場合には熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進んでもよい。   Next, the slab having the above-described component composition is heated and subjected to hot rolling according to a conventional method, but may be immediately hot rolled after casting without being heated. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is.

さらに、必要に応じて熱延板焼鈍を施す。この時、ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度として800〜1100℃の範囲が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難になり、二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるために、整粒した一次再結晶組織の実現が極めて困難となる。
また、この熱延板焼鈍時の冷却速度を、少なくとも750〜350℃の温度域の平均で、40℃/s以上とする必要があることは、前述したとおりである。
Furthermore, hot-rolled sheet annealing is performed as necessary. At this time, in order to develop a goth structure at a high level in the product plate, a range of 800 to 1100 ° C. is preferable as the hot-rolled sheet annealing temperature. When the hot-rolled sheet annealing temperature is less than 800 ° C, the band structure in hot rolling remains, making it difficult to achieve a sized primary recrystallization structure and inhibiting the development of secondary recrystallization. . On the other hand, when the hot-rolled sheet annealing temperature exceeds 1100 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, so that it is very difficult to realize a sized primary recrystallized structure.
Further, as described above, the cooling rate during the hot-rolled sheet annealing needs to be 40 ° C./s or more in average in a temperature range of at least 750 to 350 ° C.

熱延板焼鈍後は、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げ、ついで脱炭焼鈍を施したのち、焼鈍分離剤を塗布する。焼鈍分離剤を塗布した後に、コイルに巻きとって二次再結晶およびフォルステライト被膜の形成を目的として最終仕上げ焼鈍を施す。
ここに、この脱炭焼鈍時の昇温速度を、前述したとおり、50℃/s以上とするのが好ましい、より好ましくは100℃/s以上である。
また、上記最終仕上げ焼鈍をコイル状で行い、その際、コイル内径を500mm以上、外径を1500mm以下とする必要があることは、前述したとおりである。
After hot-rolled sheet annealing, cold rolling is performed once or two or more times with intermediate annealing between them to finish the final sheet thickness, and after decarburization annealing, an annealing separator is applied. After applying the annealing separator, it is wound around a coil and subjected to final finish annealing for the purpose of secondary recrystallization and forsterite film formation.
Here, as described above, the rate of temperature increase during this decarburization annealing is preferably 50 ° C./s or more, more preferably 100 ° C./s or more.
Further, as described above, the final finish annealing is performed in a coil shape, and at that time, the inner diameter of the coil needs to be 500 mm or more and the outer diameter needs to be 1500 mm or less.

最終仕上げ焼鈍後には、平坦化焼鈍を行って形状を矯正することが有効である。なお、本発明では、平坦化焼鈍前または後に、鋼板表面に絶縁コーティングを施す。ここに、この絶縁コーティングは、本発明では、鉄損低減のために、鋼板に張力を付与できるコーティング(以下、張力コーティングという)を意味する。なお、張力コーティングとしては、シリカを含有する無機系コーティングや物理蒸着法、化学蒸着法等によるセラミックコーティング等が挙げられる。
ここに、上記平坦化焼鈍時の800℃以上におけるライン張力を8〜12MPaとする必要があることは、前述したとおりである。
After the final finish annealing, it is effective to correct the shape by performing flattening annealing. In the present invention, an insulating coating is applied to the steel sheet surface before or after planarization annealing. Here, in the present invention, this insulating coating means a coating (hereinafter referred to as tension coating) that can apply tension to a steel sheet in order to reduce iron loss. Examples of the tension coating include silica-containing inorganic coating, physical vapor deposition, and ceramic coating by chemical vapor deposition.
As described above, it is necessary to set the line tension at 800 ° C. or higher during the flattening annealing to 8 to 12 MPa.

ついで、本発明では、歪導入による磁区細分化処理を行う。なお、歪導入方法は電子ビームやレーザといった公知の方法であり、歪導入に関する各パラメータおよびその他の条件は、前述したとおりである。なお、その際、上記歪導入における導入歪量を調節し、磁歪λp-pを1.0×10-6以下に制御する必要があることは、前述したとおりである。 Next, in the present invention, magnetic domain subdivision processing is performed by introducing strain. The strain introduction method is a known method such as an electron beam or a laser, and each parameter and other conditions relating to strain introduction are as described above. In this case, as described above, it is necessary to control the magnetostriction λp-p to 1.0 × 10 −6 or less by adjusting the amount of strain introduced in the strain introduction.

本発明において、上述した工程や製造条件以外については、従来公知の熱歪を導入して磁区細分化処理を施す方向性電磁鋼板の製造方法を、適宜使用することができる。   In the present invention, except for the above-described steps and manufacturing conditions, a conventionally known method for manufacturing a grain-oriented electrical steel sheet that introduces thermal strain and performs magnetic domain refinement can be used as appropriate.

C:0.055質量%、Si:3.05質量%、Mn:0.08質量%、Ni:0.02質量%、Al:190質量ppm、N:65質量ppm、Se:150質量ppm、S:10質量ppmおよびO:15質量ppmを含有し、残部は、Feおよび不可避不純物からなる鋼スラブを、連続鋳造にて製造し、1450℃に加熱後、熱間圧延により板厚:2.4 mmの熱延板としたのち、1025℃で300秒の熱延板焼鈍を施した。このとき、熱延板焼鈍の冷却過程における350〜750℃温度域の冷却速度を20〜60℃/sの範囲で変化させた。ついで、冷間圧延により中間板厚:1.6mmとし、酸化度PH2O/PH2=0.42、温度:1075℃、時間:20秒の条件で中間焼鈍を実施した。その後、塩酸酸洗により表面のサブスケールを除去したのち、再度、冷間圧延を実施して、板厚:0.215mmの冷延板とした。 C: 0.055 mass%, Si: 3.05 mass%, Mn: 0.08 mass%, Ni: 0.02 mass%, Al: 190 mass ppm, N: 65 mass ppm, Se: 150 mass ppm, S: 10 mass ppm and O: A steel slab containing 15 ppm by mass, the balance being made of Fe and inevitable impurities, manufactured by continuous casting, heated to 1450 ° C, and hot rolled into a sheet thickness: 2.4 mm, Hot-rolled sheet annealing was performed at 1025 ° C. for 300 seconds. At this time, the cooling rate in the temperature range of 350 to 750 ° C. in the cooling process of hot-rolled sheet annealing was changed in the range of 20 to 60 ° C./s. Subsequently, intermediate annealing was performed by cold rolling to an intermediate plate thickness of 1.6 mm, an oxidation degree of PH 2 O / PH 2 = 0.42, a temperature of 1075 ° C., and a time of 20 seconds. Then, after removing the subscale on the surface by hydrochloric acid pickling, cold rolling was performed again to obtain a cold-rolled sheet having a sheet thickness of 0.215 mm.

ついで、酸化度PH2O/PH2=0.52、均熱温度825℃で300秒保持する脱炭焼鈍を施したのち、MgOを主成分とする焼鈍分離剤を塗布し、二次再結晶・フォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を1220℃、50hの条件で実施した。脱炭焼鈍時の昇温速度を20〜100℃/sと変更し、最終仕上げ焼鈍時の内径を300mm〜700mm、外径を1200〜1800mmとした。 Next, after decarburization annealing was performed at an oxidation degree of PH 2 O / PH 2 = 0.52 and a soaking temperature of 825 ° C. for 300 seconds, an annealing separator containing MgO as a main component was applied, and secondary recrystallization Final finish annealing for the purpose of stellite film formation and purification was performed at 1220 ° C. for 50 hours. The heating rate during decarburization annealing was changed to 20 to 100 ° C./s, the inner diameter during final finish annealing was set to 300 mm to 700 mm, and the outer diameter was set to 1200 to 1800 mm.

そして、60%のコロイダルシリカとリン酸アルミニウムからなる絶縁コートを塗布、850℃にて焼付けた。このコーティング塗布処理は、平坦化焼鈍も兼ねている。平坦化焼鈍時には800℃以上のライン張力を6〜14MPaの範囲で変化させた。その後、圧延方向と直角に電子ビームまたはレーザを照射する磁区細分化処理を片面に施した。
電子ビーム・レーザ照射条件は、照射間隔およびビーム出力を表1に示すように複数の条件で行った。
Then, an insulating coat composed of 60% colloidal silica and aluminum phosphate was applied and baked at 850 ° C. This coating application treatment also serves as flattening annealing. During flattening annealing, the line tension of 800 ° C. or more was changed in the range of 6 to 14 MPa. Thereafter, a magnetic domain fragmentation treatment in which an electron beam or a laser was irradiated at right angles to the rolling direction was performed on one side.
The electron beam / laser irradiation conditions were performed under a plurality of conditions as shown in Table 1 for the irradiation interval and beam output.

次いで、各製品を斜角せん断し、1000kVAの三相トランスを組み立て、60Hz、1.7Tで励磁した状態での鉄損および騒音を測定した。本トランスにおける鉄損および騒音の設計値は0.94W/kg および70dBである。別途、得られたコイルより500m間隔でサンプルを採取し、二次粒の径・平均β角・平均β角変動および圧延方向の表面張力を評価した。素材特性については、各コイル内サンプルの最大値を示す。
各評価結果を、表1に併記する。
Next, each product was sheared at an oblique angle, a 1000 kVA three-phase transformer was assembled, and iron loss and noise were measured in an excited state at 60 Hz and 1.7 T. The design values of iron loss and noise in this transformer are 0.94W / kg and 70dB. Separately, samples were taken at intervals of 500 m from the obtained coil, and the secondary grain diameter, average β angle, average β angle fluctuation, and surface tension in the rolling direction were evaluated. For the material characteristics, the maximum value of the sample in each coil is shown.
Each evaluation result is shown in Table 1.

Figure 2012177149
Figure 2012177149

同表に示したとおり、コイル全長にわたって、本発明の範囲を満足する方向性電磁鋼板を用いた場合、鋼板に導入する歪量が少ない条件(ビーム出力が低い、あるいは照射間隔が増加している)であっても、鉄損・騒音共に、設計値を満足する。
また、素材鋼板の鉄損は、上掲式(1)より、
17/50 ≦ 2.1×0.215 + 0.3 =0.7515
17/50 ≦ 0.7515 (W/kg)
より、鉄損W17/50 0.7515 (W/kg)以下を満足していることが分かる。
これに対し、本発明の範囲を逸脱した方向性電磁鋼板がコイルの一部分に存在する場合、そのコイルを鉄心素材として用いた実機トランスは、設計どおりの諸特性を得られていない。
As shown in the table, when a directional electrical steel sheet that satisfies the scope of the present invention is used over the entire length of the coil, the condition that the amount of strain introduced into the steel sheet is small (the beam output is low or the irradiation interval is increased). However, both the iron loss and noise satisfy the design values.
Also, the iron loss of the steel plate is from the above formula (1),
W 17/50 ≦ 2.1 × 0.215 + 0.3 = 0.7515
W 17/50 ≦ 0.7515 (W / kg)
From the iron loss W 17/50 It can be seen that 0.7515 (W / kg) or less is satisfied.
On the other hand, when the grain-oriented electrical steel sheet that deviates from the scope of the present invention is present in a part of the coil, an actual transformer using the coil as an iron core material cannot obtain various characteristics as designed.

Claims (4)

熱歪の導入による磁区細分化処理を施した方向性電磁鋼板であって、二次再結晶粒の平均β角が2°以下、該二次再結晶粒の粒内の平均β角変動幅が1°以上4°以下で、かつ圧延方向における表面張力が10MPa以上であり、磁束密度:1.7T、周波数:50Hzにおける磁歪λp-pの値が1.0×10-6以下で、さらに板厚tと鉄損W17/50とが下記式(1)を満足することを特徴とする変圧器特性に優れた方向性電磁鋼板。

17/50 ≦2.1×t + 0.3 ・・・(1)
t : 板厚(mm)
A grain-oriented electrical steel sheet subjected to magnetic domain refinement treatment by introducing thermal strain, wherein the average β angle of secondary recrystallized grains is 2 ° or less, and the average β angle fluctuation range in the grains of secondary recrystallized grains is 1 ° or more and 4 ° or less, surface tension in the rolling direction is 10 MPa or more, magnetic strain λp-p value is 1.0 × 10 −6 or less at magnetic flux density: 1.7 T, frequency: 50 Hz, and sheet thickness t A grain- oriented electrical steel sheet with excellent transformer characteristics, characterized in that the iron loss W 17/50 satisfies the following formula (1).
Record
W 17/50 ≦ 2.1 × t + 0.3 (1)
t: Thickness (mm)
前記熱歪の導入が、電子ビーム照射によるものであることを特徴とする請求項1に記載の変圧器特性に優れた方向性電磁鋼板。   The grain-oriented electrical steel sheet having excellent transformer characteristics according to claim 1, wherein the introduction of the thermal strain is caused by electron beam irradiation. 方向性電磁鋼板用スラブを、熱間圧延し、熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げたのち、脱炭焼鈍を施し、ついで鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行った後、平坦化焼鈍を兼ねた張力コーティング処理を行い、該仕上げ焼鈍後または該張力コーティング処理後に、熱歪の導入による磁区細分化処理を行う、一連の工程になる方向性電磁鋼板の製造方法において、
(a) 上記熱延板焼鈍時の冷却過程において、750〜350℃の温度域における冷却速度を40℃/s以上とする、
(b) 上記最終仕上げ焼鈍をコイル状で行い、その際、コイル内径を500mm以上、外径を1500mm以下とする、
(c) 上記平坦化焼鈍時の800℃以上におけるライン張力を8〜12MPaとする、
(d) 上記熱歪の導入の際、導入歪量を調節することで、磁束密度:1.7T、周波数:50Hzにおける磁歪λp-pを1.0×10-6以下、かつ、板厚tと鉄損W17/50とを下記式(1)を満足するように制御する
ことを特徴とする変圧器特性に優れた方向性電磁鋼板の製造方法。

17/50 ≦2.1×t + 0.3 ・・・(1)
t : 板厚(mm)
The slab for grain-oriented electrical steel sheet is hot-rolled and subjected to hot-rolled sheet annealing, and then subjected to cold rolling twice or more with intermediate or intermediate annealing, and finished to the final sheet thickness, followed by decarburization. After annealing and then applying an annealing separator mainly composed of MgO to the steel sheet surface, after final finishing annealing, it is subjected to tension coating treatment that also serves as flattening annealing, and after this finishing annealing or the tension In the method for producing grain-oriented electrical steel sheets, which is a series of steps, after the coating treatment, the magnetic domain fragmentation treatment by introducing thermal strain.
(a) In the cooling process during the hot-rolled sheet annealing, the cooling rate in the temperature range of 750 to 350 ° C. is 40 ° C./s or more.
(b) The final finish annealing is performed in a coil shape, and the inner diameter of the coil is 500 mm or more and the outer diameter is 1500 mm or less.
(c) The line tension at 800 ° C. or higher during the flattening annealing is 8 to 12 MPa.
(d) When the thermal strain is introduced, by adjusting the amount of strain introduced, the magnetostriction λp-p at a magnetic flux density of 1.7 T and a frequency of 50 Hz is 1.0 × 10 −6 or less, and the thickness t and the iron loss A method for producing a grain- oriented electrical steel sheet having excellent transformer characteristics, wherein W 17/50 is controlled to satisfy the following formula (1).
Record
W 17/50 ≦ 2.1 × t + 0.3 (1)
t: Thickness (mm)
前記熱歪の導入を、電子ビーム照射で行うことを特徴とする請求項3に記載の変圧器特性に優れた方向性電磁鋼板の製造方法。   4. The method for producing a grain-oriented electrical steel sheet having excellent transformer characteristics according to claim 3, wherein the introduction of the thermal strain is performed by electron beam irradiation.
JP2011040196A 2011-02-25 2011-02-25 Oriented electrical steel sheet and manufacturing method thereof Active JP5760504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040196A JP5760504B2 (en) 2011-02-25 2011-02-25 Oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040196A JP5760504B2 (en) 2011-02-25 2011-02-25 Oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012177149A true JP2012177149A (en) 2012-09-13
JP5760504B2 JP5760504B2 (en) 2015-08-12

Family

ID=46979183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040196A Active JP5760504B2 (en) 2011-02-25 2011-02-25 Oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5760504B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077380A (en) * 2010-09-10 2012-04-19 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, and method for manufacturing the same
WO2014068963A1 (en) * 2012-10-30 2014-05-08 Jfeスチール株式会社 Production method for oriented magnetic steel sheet exhibiting low iron loss
JP2014167147A (en) * 2013-02-28 2014-09-11 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheets
JP2014194073A (en) * 2013-02-28 2014-10-09 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel sheet
WO2015174361A1 (en) * 2014-05-12 2015-11-19 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
WO2016056501A1 (en) * 2014-10-06 2016-04-14 Jfeスチール株式会社 Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
JP2017122247A (en) * 2016-01-05 2017-07-13 Jfeスチール株式会社 Production method of grain oriented magnetic steel sheet
JP2017133086A (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
WO2017159507A1 (en) 2016-03-15 2017-09-21 Jfeスチール株式会社 Method of producing oriented magnetic steel sheet and production equipment line
WO2018181831A1 (en) 2017-03-30 2018-10-04 Jfeスチール株式会社 Transformer iron core
WO2019182154A1 (en) * 2018-03-22 2019-09-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
WO2019189859A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Iron core for transformer
WO2019189857A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Iron core for transformer
WO2020027215A1 (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020027219A1 (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020027218A1 (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
KR20200125706A (en) 2018-03-30 2020-11-04 제이에프이 스틸 가부시키가이샤 Iron core for transformer
KR20200125705A (en) 2018-03-30 2020-11-04 제이에프이 스틸 가부시키가이샤 Iron core for transformer
JP2021123752A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123753A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123754A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
CN115052999A (en) * 2020-02-05 2022-09-13 日本制铁株式会社 Grain-oriented electromagnetic steel sheet
JP7492112B2 (en) 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet
EP4265747A4 (en) * 2020-12-21 2024-06-26 Posco Co Ltd Grain-oriented electrical steel sheet, and manufacturing method therefor

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077380A (en) * 2010-09-10 2012-04-19 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, and method for manufacturing the same
CN104736728A (en) * 2012-10-30 2015-06-24 杰富意钢铁株式会社 Production method for oriented magnetic steel sheet exhibiting low iron loss
US10889871B2 (en) 2012-10-30 2021-01-12 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss
JP5594440B1 (en) * 2012-10-30 2014-09-24 Jfeスチール株式会社 Manufacturing method of low iron loss grain oriented electrical steel sheet
WO2014068963A1 (en) * 2012-10-30 2014-05-08 Jfeスチール株式会社 Production method for oriented magnetic steel sheet exhibiting low iron loss
KR20150055072A (en) * 2012-10-30 2015-05-20 제이에프이 스틸 가부시키가이샤 Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss
KR101673828B1 (en) 2012-10-30 2016-11-07 제이에프이 스틸 가부시키가이샤 Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss
CN104736728B (en) * 2012-10-30 2016-08-24 杰富意钢铁株式会社 The manufacture method of low iron loss orientation electromagnetic steel plate
JP2014167147A (en) * 2013-02-28 2014-09-11 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheets
JP2014194073A (en) * 2013-02-28 2014-10-09 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel sheet
WO2015174361A1 (en) * 2014-05-12 2015-11-19 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
EP3144400A4 (en) * 2014-05-12 2017-05-17 JFE Steel Corporation Method for producing oriented electromagnetic steel sheet
JP6057108B2 (en) * 2014-05-12 2017-01-11 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JPWO2015174361A1 (en) * 2014-05-12 2017-04-20 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
US10294543B2 (en) 2014-05-12 2019-05-21 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
JPWO2016056501A1 (en) * 2014-10-06 2017-04-27 Jfeスチール株式会社 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
CN107109552B (en) * 2014-10-06 2018-12-28 杰富意钢铁株式会社 Low iron loss orientation electromagnetic steel plate and its manufacturing method
WO2016056501A1 (en) * 2014-10-06 2016-04-14 Jfeスチール株式会社 Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
CN107109552A (en) * 2014-10-06 2017-08-29 杰富意钢铁株式会社 Low iron loss orientation electromagnetic steel plate and its manufacture method
EP3205738A4 (en) * 2014-10-06 2017-08-30 JFE Steel Corporation Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
KR20170043658A (en) * 2014-10-06 2017-04-21 제이에프이 스틸 가부시키가이샤 Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
US20170298467A1 (en) * 2014-10-06 2017-10-19 Jfe Steel Corporation Low iron loss grain oriented electrical steel sheet and method for manufacturing the same
KR101959646B1 (en) * 2014-10-06 2019-03-18 제이에프이 스틸 가부시키가이샤 Low iron loss grain oriented electrical steel sheet and method for manufacturing the same
RU2674502C2 (en) * 2014-10-06 2018-12-11 ДжФЕ СТИЛ КОРПОРЕЙШН Textured electrotechnical steel sheet with low iron losses and method of its manufacture
JP2017122247A (en) * 2016-01-05 2017-07-13 Jfeスチール株式会社 Production method of grain oriented magnetic steel sheet
JP2017133086A (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
KR20180112819A (en) 2016-03-15 2018-10-12 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING ORGANIC ELECTRON SHEET
US11767571B2 (en) 2016-03-15 2023-09-26 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet and production line therefor
WO2017159507A1 (en) 2016-03-15 2017-09-21 Jfeスチール株式会社 Method of producing oriented magnetic steel sheet and production equipment line
WO2018181831A1 (en) 2017-03-30 2018-10-04 Jfeスチール株式会社 Transformer iron core
RU2724649C1 (en) * 2017-03-30 2020-06-25 ДжФЕ СТИЛ КОРПОРЕЙШН Transformer core
US11430599B2 (en) 2017-03-30 2022-08-30 Jfe Steel Corporation Transformer iron core
KR20190110129A (en) 2017-03-30 2019-09-27 제이에프이 스틸 가부시키가이샤 Transformer iron core
JPWO2018181831A1 (en) * 2017-03-30 2019-06-27 Jfeスチール株式会社 Transformer core
RU2746949C1 (en) * 2018-03-22 2021-04-22 Ниппон Стил Корпорейшн Electrical steel sheet with oriented grain structure and method for its production
WO2019182154A1 (en) * 2018-03-22 2019-09-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
KR20200121873A (en) * 2018-03-22 2020-10-26 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
JPWO2019182154A1 (en) * 2018-03-22 2021-03-18 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP7248917B2 (en) 2018-03-22 2023-03-30 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
KR102477847B1 (en) 2018-03-22 2022-12-16 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet
US11961659B2 (en) 2018-03-30 2024-04-16 Jfe Steel Corporation Iron core for transformer
KR20200125706A (en) 2018-03-30 2020-11-04 제이에프이 스틸 가부시키가이샤 Iron core for transformer
KR20200125705A (en) 2018-03-30 2020-11-04 제이에프이 스틸 가부시키가이샤 Iron core for transformer
US11961647B2 (en) 2018-03-30 2024-04-16 Jfe Steel Corporation Iron core for transformer
WO2019189857A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Iron core for transformer
WO2019189859A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Iron core for transformer
WO2020027219A1 (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JPWO2020027219A1 (en) * 2018-07-31 2021-08-10 日本製鉄株式会社 Directional electrical steel sheet
WO2020027215A1 (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP7028326B2 (en) 2018-07-31 2022-03-02 日本製鉄株式会社 Directional electrical steel sheet
JP7028325B2 (en) 2018-07-31 2022-03-02 日本製鉄株式会社 Directional electrical steel sheet
JP7028327B2 (en) 2018-07-31 2022-03-02 日本製鉄株式会社 Directional electrical steel sheet
EP3831976A4 (en) * 2018-07-31 2022-05-04 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet
EP3831974A4 (en) * 2018-07-31 2022-05-04 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet
WO2020027218A1 (en) * 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
US11939641B2 (en) 2018-07-31 2024-03-26 Nippon Steel Corporation Grain oriented electrical steel sheet
JPWO2020027215A1 (en) * 2018-07-31 2021-08-12 日本製鉄株式会社 Directional electrical steel sheet
US11851726B2 (en) 2018-07-31 2023-12-26 Nippon Steel Corporation Grain oriented electrical steel sheet
US11753691B2 (en) 2018-07-31 2023-09-12 Nippon Steel Corporation Grain oriented electrical steel sheet
JPWO2020027218A1 (en) * 2018-07-31 2021-08-02 日本製鉄株式会社 Directional electrical steel sheet
JP2021123753A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
CN115052999A (en) * 2020-02-05 2022-09-13 日本制铁株式会社 Grain-oriented electromagnetic steel sheet
JP2021123752A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123754A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
CN115052999B (en) * 2020-02-05 2024-04-16 日本制铁株式会社 Grain oriented electromagnetic steel sheet
JP7492111B2 (en) 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet
JP7492110B2 (en) 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet
JP7492109B2 (en) 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet
JP7492112B2 (en) 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet
EP4265747A4 (en) * 2020-12-21 2024-06-26 Posco Co Ltd Grain-oriented electrical steel sheet, and manufacturing method therefor

Also Published As

Publication number Publication date
JP5760504B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5927804B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5593942B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5240334B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5927754B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5115641B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2017006955A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
RU2610204C1 (en) Method of making plate of textured electrical steel
KR20130025965A (en) Oriented electromagnetic steel plate
JP2017222898A (en) Production method of grain oriented magnetic steel sheet
JP2006274405A (en) Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density
JP6160649B2 (en) Method for producing grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP7350069B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2012177162A (en) Method for manufacturing grain-oriented magnetic steel sheet
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP3928275B2 (en) Electrical steel sheet
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP2015190022A (en) Method for estimating primary recrystallization texture and method for manufacturing grain oriented electrical steel sheet
JP6116793B2 (en) Method for producing grain-oriented electrical steel sheet
JP5691265B2 (en) Method for producing grain-oriented electrical steel sheet
WO2024111613A1 (en) Wound core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R150 Certificate of patent or registration of utility model

Ref document number: 5760504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250