JP2012145203A - Mounting structure of rolling bearing device - Google Patents

Mounting structure of rolling bearing device Download PDF

Info

Publication number
JP2012145203A
JP2012145203A JP2011005989A JP2011005989A JP2012145203A JP 2012145203 A JP2012145203 A JP 2012145203A JP 2011005989 A JP2011005989 A JP 2011005989A JP 2011005989 A JP2011005989 A JP 2011005989A JP 2012145203 A JP2012145203 A JP 2012145203A
Authority
JP
Japan
Prior art keywords
annular member
bearing device
rolling bearing
mounting structure
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011005989A
Other languages
Japanese (ja)
Inventor
Yoshihito Nakajima
義仁 中島
Motoji Kawamura
基司 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011005989A priority Critical patent/JP2012145203A/en
Publication of JP2012145203A publication Critical patent/JP2012145203A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mounting structure of a rolling bearing device in which a pressurizing means for supporting a rotary shaft on a shaft box by applying a pressure in an axial direction applies the pressure by converting relative movement in an radial direction to movement in the axial direction using relative movement in the radial direction of two members with different linear expansion coefficients (thermal expansion coefficients).SOLUTION: The pressurizing means 20 is configured such that a first annular member 22 and a second annular member 24 having the different linear expansion coefficients are arranged lining in the axial direction, and both members relatively move in the radial direction by the thermal expansion, and has a mechanism changing the relative positional space in the axial direction of both members with the relative movement in the radial direction.

Description

この発明は、転がり軸受装置の取付構造に関する。詳しくは、外輪と、内輪と、複数の転動体とを備えた転がり軸受装置によって回転軸が該回転軸を内部に配置する軸箱に支承されており、該軸箱は前記回転軸よりも線膨張係数が大きい材質で形成されており、前記回転軸を軸方向の予圧を付して軸箱に支承する予圧付与手段が前記外輪の大端側面と該大端側面に対向形成された軸箱の支持面との間に配設されている転がり軸受装置の取付構造に関する。   The present invention relates to a mounting structure for a rolling bearing device. Specifically, a rotating shaft is supported on a shaft box in which the rotating shaft is disposed by a rolling bearing device including an outer ring, an inner ring, and a plurality of rolling elements, and the shaft box is more linear than the rotating shaft. A shaft box formed of a material having a large expansion coefficient, and a preload applying means for supporting the rotating shaft on the shaft box by applying a preload in the axial direction so as to face the large end side surface of the outer ring and the large end side surface The present invention relates to a mounting structure for a rolling bearing device disposed between the support surface and the support surface.

従来より、自動車等のトランスミッションやデファレンシャル装置等には、インプットシャフト、アウトプットシャフト、カウンタシャフト、デファレンシャルリングギヤ、ドライブピニオン等の回転軸を備えている。これらの回転軸は、この回転軸を内部に配置する軸箱内において転がり軸受装置を介して回転可能に支承されている。
この転がり軸受装置は、機械的特性として回転軸のラジアル荷重(径方向荷重)と、スラスト荷重(軸方向荷重)を同時に支持可能な構成とされている。そのような、機械的特性を有する転がり軸受装置として、円すいころ軸受装置、アンギュラ玉軸受装置等があげられる。
ここで、円すいころ軸受装置は、内周面が円すい面状に形成された外輪軌道面を有する外輪と、外輪の内周面の円すい面状に対向して、外周面が円すい面状に形成された内輪軌道面を有する内輪と、外輪と内輪の間で転動可能に構成される転動体として円すいころが複数配列されているものである。
また、アンギュラ玉軸受装置は、軸方向に非対称な軌道面を有する内輪及び外輪と、この内外輪間に転動可能に構成される転動体として玉が複数配列されているものである。これにより、玉と内輪・外輪とは接触角をもつ構成とされ、この接触角を有することで回転軸のラジアル荷重(径方向荷重)と、スラスト荷重(軸方向荷重)を同時に支持可能な構成とされている。
Conventionally, transmissions such as automobiles, differential devices, and the like have been provided with rotating shafts such as an input shaft, an output shaft, a counter shaft, a differential ring gear, and a drive pinion. These rotary shafts are rotatably supported via a rolling bearing device in a shaft box in which the rotary shafts are arranged.
This rolling bearing device is configured to be capable of simultaneously supporting radial load (radial load) and thrust load (axial load) of the rotating shaft as mechanical characteristics. Examples of such a rolling bearing device having mechanical characteristics include a tapered roller bearing device and an angular ball bearing device.
Here, the tapered roller bearing device is formed so that the outer peripheral surface of the outer ring has an outer ring raceway surface having an inner peripheral surface formed in the shape of a conical surface, and the outer peripheral surface is formed in a conical surface shape opposite to the conical surface shape of the inner peripheral surface of the outer ring. A plurality of tapered rollers are arranged as rolling elements configured to be able to roll between the inner ring having the inner ring raceway surface and the outer ring and the inner ring.
In addition, the angular ball bearing device includes an inner ring and an outer ring having a raceway surface that is asymmetric in the axial direction, and a plurality of balls arranged as rolling elements configured to roll between the inner and outer rings. As a result, the ball and the inner ring / outer ring have a contact angle configuration, and by having this contact angle, a configuration that can simultaneously support radial load (radial load) and thrust load (axial load) of the rotating shaft. It is said that.

ところで、転がり軸受装置が備える転動体(円すいころ、玉)の外周面は、内外輪の軌道面に対し面接触された状態で転動することが望ましい。これは、外輪及び内輪間において、余分な隙間が生じることにより転動体(円すいころ、玉)が内外輪の軌道面に対し片当りの状態で転動することとなると、転動体(円すいころ、玉)、外輪、内輪の軌道面が著しく損傷するおそれがあるためである。また、回転軸の剛性、転がり軸受装置の剛性の低下、回転軸に装着されるギヤの噛合い位置の変動に伴ってギヤの異音、損傷などを生じるおそれがある。そこで、転がり軸受装置内の隙間防止及び、回転軸の剛性、転がり軸受装置の剛性を得るべく、転がり軸受装置の軸方向に対し一定の予圧を付与することが一般的に行われている。その一例として、転がり軸受装置の外輪の大端側面と、この大端側面に対向形成された軸箱の支持面との間にシムを嵌め込んで負隙間設定とすることで予圧を付与し、外輪及び内輪間の余分な隙間を無くして転動体(円すいころ、玉)が内外輪の軌道面に対し片当りしない状態としている。   By the way, it is desirable that the outer peripheral surface of the rolling elements (tapered rollers, balls) included in the rolling bearing device roll in a state of surface contact with the raceway surfaces of the inner and outer rings. This is because when the rolling element (conical roller, ball) rolls in a single contact state with respect to the raceway surface of the inner and outer rings due to an extra gap between the outer ring and the inner ring, the rolling element (cone roller, This is because the raceway surfaces of the ball), outer ring, and inner ring may be significantly damaged. In addition, there is a risk that the noise of the gear, damage, etc. may occur due to a decrease in the rigidity of the rotating shaft, a decrease in the rigidity of the rolling bearing device, and a change in the meshing position of the gear mounted on the rotating shaft. Therefore, in order to prevent gaps in the rolling bearing device and to obtain the rigidity of the rotating shaft and the rigidity of the rolling bearing device, it is generally performed to apply a certain preload to the axial direction of the rolling bearing device. As an example, preload is applied by inserting a shim between the large end side surface of the outer ring of the rolling bearing device and the support surface of the axle box formed opposite to the large end side surface to set a negative gap, The extra space between the outer ring and the inner ring is eliminated, and the rolling elements (cone rollers, balls) do not come into contact with the raceway surfaces of the inner and outer rings.

ここで、回転軸は、強度の関係上、鉄鋼性金属で構成されているのに対し、軸箱は、軽量化の観点よりアルミニウム合金やマグネシウム合金等の軽金属で構成されている。そのため、軸箱を構成する軽金属は、回転軸を構成する鉄鋼性金属に比べて線膨張係数が大きい。そのため、軸箱内の温度上昇に伴って、この軸箱が回転軸に比して、より一層熱膨張することとなる。そうすると、転がり軸受装置の外輪の大端側面と、この大端側面に対向形成された軸箱の支持面との間の負隙間設定を超える隙間が生じてしまい予圧抜けが発生し転動体(円すいころ、玉)が内外輪の軌道面に対し片当りの状態で転動して損傷するおそれがある。   Here, the rotating shaft is made of a ferrous metal in terms of strength, whereas the axle box is made of a light metal such as an aluminum alloy or a magnesium alloy from the viewpoint of weight reduction. For this reason, the light metal constituting the axle box has a larger coefficient of linear expansion than the ferrous metal constituting the rotating shaft. For this reason, as the temperature inside the axle box rises, the axle box is further thermally expanded as compared with the rotating shaft. As a result, a gap exceeding the negative clearance setting between the large end side surface of the outer ring of the rolling bearing device and the support surface of the axle box formed opposite to the large end side surface is generated, causing preload loss and rolling elements (cone There is a risk that the rollers and balls) may roll and be damaged in contact with the raceway surfaces of the inner and outer rings.

このような予圧抜け現象の発生の防止策として、例えば、特許文献1のような技術開示がなされている。この特許文献1においては、図6に図示されるように、転がり軸受装置として円すいころ軸受装置が選択されている。この円すいころ軸受装置410の外輪412の大端側面412cと、この大端側面412cに対向形成された軸箱402の支持面402bとの間に熱膨張吸収用の間座440を介在させている。この間座440は、支持面402b側に開口した凹所442aを有する金属リング442と、その凹所442aに充填された熱膨張性材444とで構成されている。この熱膨張性材444の材質は、軸箱402を構成するアルミニウム合金と同じか、それ以上に大きい熱膨張係数を有する材質で構成されている。これにより、軸箱402内の温度上昇時に発生する隙間を金属リング442の凹所442aの熱膨張性材444が埋めることで予圧抜けの防止が図られている。   As a measure for preventing the occurrence of such a preload loss phenomenon, for example, a technical disclosure as in Patent Document 1 has been made. In Patent Document 1, as shown in FIG. 6, a tapered roller bearing device is selected as the rolling bearing device. A spacer 440 for absorbing thermal expansion is interposed between the large end side surface 412c of the outer ring 412 of the tapered roller bearing device 410 and the support surface 402b of the axle box 402 formed to face the large end side surface 412c. . The spacer 440 includes a metal ring 442 having a recess 442a opened on the support surface 402b side, and a thermally expandable material 444 filled in the recess 442a. The material of the thermally expansible material 444 is made of a material having a thermal expansion coefficient that is the same as or larger than that of the aluminum alloy that constitutes the axle box 402. As a result, the pre-load release is prevented by filling the gap generated when the temperature in the axle box 402 rises with the thermally expandable material 444 in the recess 442a of the metal ring 442.

実開平06−024230号公報Japanese Utility Model Publication No. 06-024230

しかしながら、特許文献1における金属リング442の凹所442aの熱膨張性材444は、環状に形成されているものであり、軸箱402内の温度上昇時において熱膨張が著しくなるのは、軸方向への膨張よりも径方向に著しく膨張する傾向にある。そのため、軸方向への膨張は、転がり軸受装置410と軸箱402間の隙間を埋めるまでには至らないこともあり、予圧抜けの防止対策には更なる改善の余地がある。   However, the thermally expansible material 444 in the recess 442a of the metal ring 442 in Patent Document 1 is formed in an annular shape, and the thermal expansion becomes significant when the temperature in the axle box 402 rises. There is a tendency to expand significantly in the radial direction rather than to expansion. Therefore, the expansion in the axial direction may not reach the gap between the rolling bearing device 410 and the axle box 402, and there is room for further improvement in measures for preventing the preload loss.

そこで、本発明者は鋭意検討の結果、転がり軸受装置の外輪の大端側面に配設される環状部材において、熱膨張する方向が著しいのは、軸方向への膨張よりも径方向の膨張が著しいことに着目した。すなわち、この環状部材の径方向への膨張を利用して、外輪に対し軸方向への予圧に変換することができれば、予圧抜け現象の発生の防止をすることができる。   Therefore, as a result of intensive studies, the present inventor has a significant thermal expansion direction in the annular member disposed on the large end side surface of the outer ring of the rolling bearing device. The expansion in the radial direction is greater than the expansion in the axial direction. Focused on remarkable things. That is, if the expansion of the annular member in the radial direction can be utilized to convert the outer ring into a preload in the axial direction, it is possible to prevent the occurrence of a preload loss phenomenon.

而して、本発明は、このような点に鑑みて創案されたものであり、本発明が解決しようとする課題は、回転軸を軸方向の予圧を付して軸箱に支承する予圧付与手段として、線膨張係数(熱膨張率)の異なる二つの部材の径方向への相対移動を利用して、この径方向の相対移動を軸方向の移動に変換して予圧を付与することにある。   Thus, the present invention was devised in view of the above points, and the problem to be solved by the present invention is to apply preload to the rotating shaft with axial preload applied to the shaft box. As a means, the relative movement in the radial direction of two members having different linear expansion coefficients (thermal expansion coefficients) is utilized, and the relative movement in the radial direction is converted into the movement in the axial direction to apply preload. .

上記課題を解決するために、本発明の転がり軸受装置の取付構造は次の手段をとる。
先ず、第1の発明に係る転がり軸受装置の取付構造は、外輪(12)と、内輪(14)と、複数の転動体(16)とを備えた転がり軸受装置(10)によって回転軸(4)が該回転軸(4)を内部に配置する軸箱(2)に支承されており、該軸箱(2)は前記回転軸(4)よりも線膨張係数が大きい材質で形成されており、前記回転軸(4)を軸方向の予圧を付して軸箱(2)に支承する予圧付与手段(20)が前記外輪(12)の大端側面(12c)と該大端側面(12c)に対向形成された軸箱(2)の支持面(2b)との間に配設されている転がり軸受装置(10)の取付構造であって、前記予圧付与手段(20)は、線膨張係数の異なる第1の部材(22)と第2の部材(24)が軸方向に並べられて配設されて該両部材は熱膨張により径方向に対して相対的移動をなす構成となっていると共に、該径方向の相対的移動に伴い該両部材の軸方向の相対位置間隔を変更する機構を備えた構成となっていることを特徴とする。
In order to solve the above problems, the rolling bearing device mounting structure of the present invention takes the following means.
First, the rolling bearing device mounting structure according to the first aspect of the present invention has a rotating shaft (4) by a rolling bearing device (10) including an outer ring (12), an inner ring (14), and a plurality of rolling elements (16). ) Is supported by a shaft box (2) in which the rotating shaft (4) is disposed, and the shaft box (2) is formed of a material having a larger linear expansion coefficient than the rotating shaft (4). The preload applying means (20) for supporting the rotating shaft (4) in the axial box (2) with axial preload is provided on the large end side surface (12c) of the outer ring (12) and the large end side surface (12c). ) Is a mounting structure of the rolling bearing device (10) disposed between the support surface (2b) of the axle box (2) formed opposite to the shaft box, and the preload applying means (20) is linearly expanded. A first member (22) and a second member (24) having different coefficients are arranged side by side in the axial direction. It is configured to make a relative movement with respect to the radial direction, and to have a mechanism for changing the relative position interval in the axial direction of the two members in accordance with the relative movement in the radial direction. It is characterized by.

この第1の発明によれば、予圧付与手段には、線膨張係数の異なる第1の部材と第2の部材が構成されており、外輪の大端側面と大端側面に対向形成された軸箱の支持面との間に軸方向に並べられて配設されている。この両部材は、熱膨張により径方向に対して相対的移動をなす構成となっていると共に、径方向の相対的移動に伴い両部材の軸方向の相対位置間隔を変更する機構を備えている。すなわち、径方向への膨張を利用して外輪に対し、軸方向への予圧に変換することができる予圧付与手段を備えることができる。また、予圧付与手段は両部材の線膨張係数の差を利用して温度変化時に予圧変化させる構成であるため、温度による予圧変動を小さくすることができる。また、初期予圧を小さくすることができるので、軸受の耐久性や低トルクに適した予圧付与手段とすることができる。   According to the first aspect of the present invention, the preload applying means includes the first member and the second member having different linear expansion coefficients, and the shaft is formed to face the large end side surface and the large end side surface of the outer ring. It is arranged in an axial direction between the support surface of the box. Both members are configured to move relative to the radial direction by thermal expansion, and include a mechanism that changes the relative position interval in the axial direction of both members in accordance with the relative movement in the radial direction. . That is, it is possible to provide a preload applying means that can convert the outer ring into a preload in the axial direction by utilizing the expansion in the radial direction. Further, since the preload applying means is configured to change the preload when the temperature changes using the difference between the linear expansion coefficients of both members, the preload fluctuation due to the temperature can be reduced. Further, since the initial preload can be reduced, it is possible to provide a preload applying means suitable for bearing durability and low torque.

次に、第2の発明に係る転がり軸受装置の取付構造は、上述した第1の発明において、前記予圧付与手段(20)の第1の部材(22)と第2の部材(24)は、前記軸箱(2)の支持面(2b)側に配設される第1の環状部材(22)と、前記外輪(12)の大端側面(12c)側に配設される第2の環状部材(24)で構成されており、該第1の環状部材(22)と第2の環状部材(24)は径方向に対して傾斜して対向配置される部位を備え、該傾斜部位の熱膨張による相対的移動により前記第1の環状部材(22)と第2の環状部材(24)の軸方向の相対位置間隔を変更することを特徴とする。   Next, the mounting structure of the rolling bearing device according to the second invention is the above-described first invention, wherein the first member (22) and the second member (24) of the preload applying means (20) are: A first annular member (22) disposed on the support surface (2b) side of the axle box (2), and a second annular member disposed on the large end side surface (12c) side of the outer ring (12). The first annular member (22) and the second annular member (24) are each provided with a portion that is inclined and opposed to the radial direction, and the heat of the inclined portion is formed. The relative position interval in the axial direction of the first annular member (22) and the second annular member (24) is changed by relative movement due to expansion.

この第2の発明によれば、第1の環状部材と第2の環状部材は径方向に対して傾斜して対向配置される部位を備え、傾斜部位の熱膨張による相対的移動により第1の環状部材と第2の環状部材の軸方向の相対位置間隔を変更する構成とされている。これにより、予圧付与手段は、第1の環状部材と第2の環状部材に径方向に対して傾斜した部位を備えることで達成しており、複雑な構造を有することがないため製造コストの面においても有効である。   According to the second aspect of the invention, the first annular member and the second annular member are provided with portions that are opposed to each other while being inclined with respect to the radial direction. It is set as the structure which changes the relative position space | interval of the axial direction of an annular member and a 2nd annular member. As a result, the preload applying means is achieved by providing the first annular member and the second annular member with portions that are inclined with respect to the radial direction. Is also effective.

次に、第3の発明に係る転がり軸受装置の取付構造は、上述した第2の発明において、前記第1の環状部材(22)と第2の環状部材(24)が径方向に対して傾斜して対向配置される部位間には、複数の玉(30)が挟持されて配列されていることを特徴とする。   Next, the mounting structure of the rolling bearing device according to the third invention is the above-described second invention, wherein the first annular member (22) and the second annular member (24) are inclined with respect to the radial direction. Thus, a plurality of balls (30) are sandwiched and arranged between the parts arranged opposite to each other.

この第3の発明によれば、第1の環状部材と第2の環状部材が径方向に対して傾斜して対向配置される部位間には、複数の玉が挟持されて配列されている。これにより、両環状部材の傾斜部位と玉が点接触となるため、摩擦抵抗の低減が図れると共に、熱膨張時にスムーズに圧力をかけることができる。   According to the third aspect of the invention, the plurality of balls are sandwiched and arranged between the portions where the first annular member and the second annular member are opposed to each other while being inclined with respect to the radial direction. Thereby, since the inclined part and ball | bowl of both annular members become a point contact, while reducing frictional resistance, a pressure can be applied smoothly at the time of thermal expansion.

次に、第4の発明に係る転がり軸受装置の取付構造は、上述した第2の発明または第3の発明において、前記第1の環状部材(22)は、第2の環状部材(24)よりも線膨張係数の大きい材質で形成されていることを特徴とする。   Next, the mounting structure of the rolling bearing device according to the fourth aspect of the present invention is the above-described second aspect or third aspect, wherein the first annular member (22) is more than the second annular member (24). Is formed of a material having a large linear expansion coefficient.

この第4の発明によれば、第1の環状部材は、第2の環状部材よりも線膨張係数の大きい材質で形成されている。この第1の環状部材は、軸箱の支持面側に配設されるものである。これにより、軸箱内の温度上昇時に伴う熱膨張に追随して第1の環状部材が熱膨張することで外輪の大端側面側に配設される第2の環状部材との軸方向の相対位置間隔を変更することで軸方向への予圧に変換することができる。   According to the fourth aspect of the invention, the first annular member is made of a material having a larger linear expansion coefficient than the second annular member. The first annular member is disposed on the support surface side of the axle box. As a result, the first annular member thermally expands following the thermal expansion associated with the temperature rise in the axle box, and thereby relative to the second annular member disposed on the large end side surface of the outer ring in the axial direction. It can be converted into a preload in the axial direction by changing the position interval.

次に、第5の発明に係る転がり軸受装置の取付構造は、上述した第2の発明から第4の発明のいずれかにおいて、前記第1の環状部材(22)は、前記軸箱(2)と同じ線膨張係数の材質によって形成されていることを特徴とする。   Next, the rolling bearing device mounting structure according to a fifth aspect of the present invention is any of the second to fourth aspects described above, wherein the first annular member (22) is the axle box (2). It is formed by the material of the same linear expansion coefficient.

この第5の発明によれば、軸箱の支持面側に配設される第1の環状部材は、前記軸箱と同じ線膨張係数の材質によって形成されていることが好ましい。これにより、第1の環状部材は、軸箱内の温度上昇時に伴う熱膨張に同調して熱膨張することができる。   According to the fifth invention, it is preferable that the first annular member disposed on the support surface side of the axle box is formed of a material having the same linear expansion coefficient as that of the axle box. Thereby, the 1st annular member can be thermally expanded in synchronization with the thermal expansion accompanying the temperature rise in the axle box.

本発明は上記手段とすることにより、本発明の予圧付与手段によれば第1の部材と第2の部材の二つの部材の径方向への膨張差を利用して、この膨張差を径方向の移動に変換して予圧を付与することができる。このため、温度変化に関わらず確実に予圧を付与することができる。   By adopting the above-mentioned means, the preload applying means of the present invention uses the differential expansion in the radial direction of the two members, the first member and the second member, and this expansion difference is converted into the radial direction. It is possible to apply a preload by converting to the movement of. For this reason, it is possible to reliably apply the preload regardless of the temperature change.

本発明の実施例1に係る転がり軸受装置の取付構造を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the attachment structure of the rolling bearing apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る転がり軸受装置の取付構造のうち予圧付与手段を示した一部拡大断面図である。(A)図は、軸箱内の温度が上昇する前であり、第1の環状部材及び第2の環状部材が熱膨張する前の状態を示した断面図である。(B)図は、軸箱内の温度上昇に伴って第1の環状部材が熱膨張した状態を示した断面図である。It is a partially expanded sectional view which showed the preload provision means among the attachment structures of the rolling bearing apparatus which concerns on Example 1 of this invention. FIG. 4A is a cross-sectional view showing a state before the temperature in the axle box rises and before the first annular member and the second annular member are thermally expanded. FIG. 5B is a cross-sectional view showing a state where the first annular member is thermally expanded as the temperature in the axle box rises. 本発明の実施例1に係る転がり軸受装置の取付構造の予圧付与手段の変形例1を示した一部拡大断面図である。(A)図は、軸箱内の温度が上昇する前であり、第1の環状部材及び第2の環状部材が熱膨張する前の状態を示した断面図である。(B)図は、軸箱内の温度上昇に伴って第1の環状部材が熱膨張した状態を示した断面図である。It is a partially expanded sectional view which showed the modification 1 of the preload provision means of the attachment structure of the rolling bearing apparatus which concerns on Example 1 of this invention. FIG. 4A is a cross-sectional view showing a state before the temperature in the axle box rises and before the first annular member and the second annular member are thermally expanded. FIG. 5B is a cross-sectional view showing a state where the first annular member is thermally expanded as the temperature in the axle box rises. 本発明の実施例1に係る転がり軸受装置の取付構造の予圧付与手段の変形例2を示した一部拡大断面図である。(A)図は、軸箱内の温度が上昇する前であり、第1の環状部材及び第2の環状部材が熱膨張する前の状態を示した断面図である。(B)図は、軸箱内の温度上昇に伴って第1の環状部材が熱膨張した状態を示した断面図である。It is the partially expanded sectional view which showed the modification 2 of the preload provision means of the attachment structure of the rolling bearing apparatus which concerns on Example 1 of this invention. FIG. 4A is a cross-sectional view showing a state before the temperature in the axle box rises and before the first annular member and the second annular member are thermally expanded. FIG. 5B is a cross-sectional view showing a state where the first annular member is thermally expanded as the temperature in the axle box rises. 本発明の実施例1に係る転がり軸受装置の取付構造の予圧付与手段の変形例3を示した一部拡大断面図である。(A)図は、軸箱内の温度が上昇する前であり、第1の環状部材及び第2の環状部材が熱膨張する前の状態を示した断面図である。(B)図は、軸箱内の温度上昇に伴って第1の環状部材が熱膨張した状態を示した断面図である。It is the partially expanded sectional view which showed the modification 3 of the preload provision means of the attachment structure of the rolling bearing apparatus which concerns on Example 1 of this invention. FIG. 4A is a cross-sectional view showing a state before the temperature in the axle box rises and before the first annular member and the second annular member are thermally expanded. FIG. 5B is a cross-sectional view showing a state where the first annular member is thermally expanded as the temperature in the axle box rises. 従来における転がり軸受装置の取付構造の予圧付与手段を示した一部拡大断面図である。It is the partially expanded sectional view which showed the preload provision means of the mounting structure of the conventional rolling bearing apparatus.

この発明を実施するための形態について実施例にしたがって説明する。   A mode for carrying out the present invention will be described in accordance with an embodiment.

この発明の実施例1を図1及び図2にしたがって説明する。
本発明の実施例1における転がり軸受装置の取付構造について説明する。
なお、本発明における転がり軸受装置は、機械的特性として回転軸のラジアル荷重(径方向荷重)と、スラスト荷重(軸方向荷重)を同時に支持可能な構成とされている。この機械的特性を有する転がり軸受装置としては、円すいころ軸受装置、アンギュラ玉軸受装置があげられる。本実施例においては、代表して、円すいころ軸受装置について説明するが、本発明の構成は、アンギュラ玉軸受装置においても適用可能である。
図1に図示されるように、本実施例として例示する自動車のトランスミッションは、回転軸4を備え、この回転軸4を内部に配置する軸箱2、2を備えている。この回転軸4は、軸箱2、2内に収容されて、円すいころ軸受装置10によって回転可能に支承されている(本実施例1においては、回転軸4の一部が円すい軸受装置10によって支承されている構成を図示)。
A first embodiment of the present invention will be described with reference to FIGS.
The mounting structure of the rolling bearing device in Embodiment 1 of the present invention will be described.
Note that the rolling bearing device according to the present invention is configured to be capable of simultaneously supporting a radial load (radial load) and a thrust load (axial load) of the rotating shaft as mechanical characteristics. Examples of the rolling bearing device having this mechanical characteristic include a tapered roller bearing device and an angular ball bearing device. In this embodiment, a tapered roller bearing device will be described as a representative, but the configuration of the present invention can also be applied to an angular ball bearing device.
As shown in FIG. 1, the automobile transmission illustrated as the present embodiment includes a rotating shaft 4 and shaft boxes 2 and 2 in which the rotating shaft 4 is disposed. The rotating shaft 4 is accommodated in the shaft boxes 2 and 2 and is rotatably supported by the tapered roller bearing device 10 (in the first embodiment, a part of the rotating shaft 4 is supported by the tapered bearing device 10. The supported configuration is shown in the figure).

この回転軸4には、ギヤ5が装着して回転する構成のものであり、強度の関係上、鉄鋼性金属で構成されている。これに対し、軸箱2、2は、内部に回転軸4を収容して、この回転軸4を回転可能に支承するために箱型形状に形成されたものであり、軽量化の観点よりアルミニウム合金等の軽金属で構成されている。これにより、軸箱2、2は回転軸4よりも線膨張係数が大きい関係で構成されている。   The rotating shaft 4 is configured to rotate with the gear 5 mounted thereon, and is composed of a ferrous metal in terms of strength. On the other hand, the axle boxes 2 and 2 are formed in a box shape in order to accommodate the rotating shaft 4 and rotatably support the rotating shaft 4, and aluminum is used from the viewpoint of weight reduction. It is composed of light metals such as alloys. Thus, the axle boxes 2 and 2 are configured so as to have a larger linear expansion coefficient than that of the rotating shaft 4.

円すいころ軸受装置10は、内周面が円すい面状に形成された外輪軌道面12aを備える外輪12と、この外輪軌道面12aに対向して、外周面が円すい面状に形成された内輪軌道面14aを備える内輪14と、外輪12と内輪14の間に複数配列された円すいころ16とを備えている。この円すいころ軸受装置10の外輪12、内輪14、円すいころ16は、鉄鋼製材料で形成されている(例えば軸受鋼等)。
この円すいころ軸受装置10の外輪12は、その外輪外周面12bが軸箱2、2の段部内周面2aに嵌合されている。また、内輪14は、その内輪内周面14bが回転軸4を嵌合し、内輪14の内輪大端側面14cが、回転軸4の肩部4aと接触して内輪14が保持されている。また、外輪12と内輪14との間には、複数個の円すいころ16が保持器18により回転自在に支持されている。これにより、回転軸4は、軸箱2、2内において、円すいころ軸受装置10によって回転可能に支承されている。また、この円すいころ軸受装置10は、機械的特性として回転軸4のラジアル荷重(径方向荷重)と、スラスト荷重(軸方向荷重)を同時に支持可能な構成とされている。
The tapered roller bearing device 10 includes an outer ring 12 having an outer ring raceway surface 12a having an inner peripheral surface formed in a conical shape, and an inner ring raceway having an outer peripheral surface formed in a conical shape facing the outer ring raceway surface 12a. An inner ring 14 having a surface 14 a and a plurality of tapered rollers 16 arranged between the outer ring 12 and the inner ring 14 are provided. The outer ring 12, the inner ring 14, and the tapered roller 16 of the tapered roller bearing device 10 are made of a steel material (for example, bearing steel).
The outer ring 12 of the tapered roller bearing device 10 has an outer ring outer peripheral surface 12 b fitted into the stepped inner peripheral surface 2 a of the axle boxes 2 and 2. Further, the inner ring 14 has the inner ring inner peripheral surface 14 b fitted into the rotating shaft 4, and the inner ring large end side surface 14 c of the inner ring 14 is in contact with the shoulder portion 4 a of the rotating shaft 4 to hold the inner ring 14. A plurality of tapered rollers 16 are rotatably supported by a cage 18 between the outer ring 12 and the inner ring 14. Thereby, the rotating shaft 4 is rotatably supported by the tapered roller bearing device 10 in the shaft boxes 2 and 2. Further, the tapered roller bearing device 10 is configured to be able to support a radial load (radial load) and a thrust load (axial load) of the rotating shaft 4 simultaneously as mechanical characteristics.

円すいころ軸受装置10の外輪12の外輪大端側面12c(大端側面)と、外輪大端側面12c(大端側面)に対向形成された軸箱2、2の支持面2bとの間には、回転軸4に対し軸方向の予圧を付して軸箱2、2に支承する予圧付与手段20が配設されている。この予圧付与手段20の予圧によって、円すいころ軸受装置10は、外輪12及び内輪14間の余分な隙間を無くし、円すいころ16が傾かない状態、換言すれば、円すいころ16が、外輪12の外輪軌道面12a、内輪14の内輪軌道面14aに対し片当りしない状態とされている。
予圧付与手段20は、大別して、軸箱2、2の支持面2b側に配設される第1の環状部材22(第1の部材)と、外輪12の外輪大端側面12c(大端側面)側に配設される第2の環状部材24(第2の部材)と、両環状部材に挟持されて配列される複数の玉30と、から構成され、外輪12の外輪大端側面12c(大端側面)と軸箱2、2の支持面2bとの間において軸方向に並べられて配設されている。
この第1の環状部材22(第1の部材)と第2の環状部材24(第2の部材)は、線膨張係数の異なる素材で形成されており、本実施例においては、第1の環状部材22(第1の部材)は、軸箱2、2と同じ線膨張係数を有するアルミニウム合金製で形成されており、第2の環状部材24(第2の部材)は、回転軸4と同じ線膨張係数を有する鉄鋼性金属で形成されている。すなわち、第1の環状部材22(第1の部材)は、第2の環状部材24(第2の部材)よりも線膨張係数の大きい材質で形成されている。また、複数の玉30は、鉄鋼製材料で形成されている。
Between the outer ring large end side surface 12c (large end side surface) of the outer ring 12 of the tapered roller bearing device 10 and the support surface 2b of the axle box 2, 2 formed opposite to the outer ring large end side surface 12c (large end side surface). A preload applying means 20 is provided for applying a preload in the axial direction to the rotating shaft 4 and supporting it on the axle boxes 2 and 2. By the preload of the preload applying means 20, the tapered roller bearing device 10 eliminates an extra gap between the outer ring 12 and the inner ring 14, and the tapered roller 16 is not tilted, in other words, the tapered roller 16 is connected to the outer ring 12. The raceway surface 12a and the inner ring 14 are not in contact with the inner ring raceway surface 14a.
The preload applying means 20 is roughly divided into a first annular member 22 (first member) disposed on the support surface 2b side of the axle boxes 2, 2, and an outer ring large end side surface 12c (large end side surface) of the outer ring 12. ) Side second annular member 24 (second member) and a plurality of balls 30 sandwiched and arranged between both annular members, and the outer ring large end side surface 12c ( Large side surfaces) and the support surfaces 2b of the axle boxes 2 and 2 are arranged in the axial direction.
The first annular member 22 (first member) and the second annular member 24 (second member) are formed of materials having different linear expansion coefficients. In this embodiment, the first annular member 22 The member 22 (first member) is made of an aluminum alloy having the same linear expansion coefficient as the axle boxes 2 and 2, and the second annular member 24 (second member) is the same as the rotating shaft 4. It is made of a ferrous metal having a linear expansion coefficient. That is, the first annular member 22 (first member) is formed of a material having a larger linear expansion coefficient than the second annular member 24 (second member). Further, the plurality of balls 30 are formed of a steel material.

上記した、この第1の環状部材22(第1の部材)と第2の環状部材24(第2の部材)と、複数の玉30の配置構成について説明する。
図2の(A)図に図示されるように、第1の環状部材22(第1の部材)は、その外周面22aが、軸箱2、2の段部内周面2aに嵌合される略同一の径によって形成されている。また、軸方向における、軸箱2、2の支持面2b側には、その支持面2bと面接触する軸箱接触面22bが形成されている。また第1の環状部材22(第1の部材)の軸方向において軸箱接触面22bの反対側は、第2の環状部材24(第2の部材)と対向して複数の玉30を挟持する第1傾斜面22cが形成されている。
第2の環状部材24(第2の部材)は、その外周面24aが、軸箱2、2の段部内周面2aに嵌合される略同一の径によって形成されている。また、軸方向における、外輪12側には、その外輪12の外輪大端側面12c(大端側面)と面接触する外輪接触面24bが形成されている。また第2の環状部材24(第2の部材)の軸方向において外輪接触面24bの反対側は、第1環状部材と対向して複数の玉30を挟持する第3傾斜面24cが形成されている。
第1の環状部材22(第1の部材)の第1傾斜面22cと、第2の環状部材24(第2の部材)の第3傾斜面24cは、両環状部材が対向した配置関係において、径方向に対して同一方向に傾斜した傾斜角による第1傾斜面22cと第3傾斜面24cとして形成されている。これにより、両環状部材の傾斜面同士は、軸線方向断面で視て平行した状態となっている。また、第1傾斜面22cは、第3傾斜面24cよりも軸方向内方側に配置される配置位置関係となっている。
また、本実施例における第1の環状部材22(第1の部材)は、軸線方向断面で視て、この第1傾斜面22cに隣接してこの第1傾斜面22cに直交する第2傾斜面22dが形成されることにより、略V字状の溝部22eが周方向に連続して形成されており、玉30が径方向へ離脱しないように保持した構成とされている。同様に、第2の環状部材24にも、第3傾斜面24cに直交する第4傾斜面24dが形成されることにより、略V字状の溝部24eが周方向に連続して形成されている。また、上記した両環状部材の第1傾斜面22cと第3傾斜面24cの間には、玉30が挟持されている。この玉30は、両環状部材の周方向において隙間なく配置構成されている。
The arrangement configuration of the first annular member 22 (first member), the second annular member 24 (second member), and the plurality of balls 30 will be described.
As shown in FIG. 2A, the outer peripheral surface 22 a of the first annular member 22 (first member) is fitted to the inner peripheral surface 2 a of the stepped portions of the axle boxes 2 and 2. They are formed with substantially the same diameter. In addition, a shaft box contact surface 22b that is in surface contact with the support surface 2b is formed on the support surface 2b side of the shaft boxes 2 and 2 in the axial direction. Further, the opposite side of the axle box contact surface 22b in the axial direction of the first annular member 22 (first member) faces the second annular member 24 (second member) and sandwiches the plurality of balls 30. A first inclined surface 22c is formed.
The outer peripheral surface 24a of the second annular member 24 (second member) is formed with substantially the same diameter that is fitted to the inner peripheral surface 2a of the step portion of the axle boxes 2 and 2. Further, an outer ring contact surface 24b is formed on the outer ring 12 side in the axial direction so as to be in surface contact with the outer ring large end side surface 12c (large end side surface) of the outer ring 12. Further, a third inclined surface 24c is formed on the opposite side of the outer ring contact surface 24b in the axial direction of the second annular member 24 (second member) so as to face the first annular member and sandwich the plurality of balls 30. Yes.
The first inclined surface 22c of the first annular member 22 (first member) and the third inclined surface 24c of the second annular member 24 (second member) are in an arrangement relationship in which both annular members face each other. The first inclined surface 22c and the third inclined surface 24c are formed with an inclination angle inclined in the same direction with respect to the radial direction. Thereby, the inclined surfaces of both annular members are in parallel with each other when viewed in the axial section. Further, the first inclined surface 22c has an arrangement positional relationship in which the first inclined surface 22c is arranged on the inner side in the axial direction from the third inclined surface 24c.
In addition, the first annular member 22 (first member) in the present embodiment is a second inclined surface that is adjacent to the first inclined surface 22c and orthogonal to the first inclined surface 22c when viewed in the axial cross section. By forming 22d, a substantially V-shaped groove 22e is formed continuously in the circumferential direction, and the ball 30 is held so as not to be detached in the radial direction. Similarly, a substantially V-shaped groove portion 24e is continuously formed in the circumferential direction by forming a fourth inclined surface 24d orthogonal to the third inclined surface 24c in the second annular member 24 as well. . Further, a ball 30 is sandwiched between the first inclined surface 22c and the third inclined surface 24c of both the annular members described above. This ball 30 is arranged and configured without a gap in the circumferential direction of both annular members.

上記構成からなる本実施例における円すいころ軸受装置10の取付構造における予圧付与手段20の作動は次の通りである。
図2の(A)図に図示されるように、予圧付与手段20は、線膨張係数の異なる第1の環状部材22(第1の部材)と第2の環状部材24(第2の部材)が軸方向に並べられて配設されて両環状部材は熱膨張により径方向に対して相対的移動をなす構成となっている。この径方向の相対的移動に伴いこの両部材の軸方向の相対位置間隔を変更する機構を備えた構成となっている。第1の環状部材22(第1の部材)は、軸箱2、2と同じ線膨張係数を有するアルミニウム合金製で形成されており、第2の環状部材24(第2の部材)は、回転軸4と同じ線膨張係数を有する鉄鋼性金属で形成されている。すなわち、第1の環状部材22(第1の部材)は、第2の環状部材24(第2の部材)よりも線膨張係数の大きい材質で形成されている。
図2の(B)図に図示されるように、軸箱2、2内の温度上昇すると、軸箱2、2の熱膨張と共に、第1の環状部材22(第1の部材)も熱膨張する。このとき第1の環状部材22(第1の部材)は、第2の環状部材24(第2の部材)より熱膨張する。そのため、第1の環状部材22(第1の部材)は、第2の環状部材24(第2の部材)より径が大きくなる。
そうすると、第1の環状部材22(第1の部材)の径方向の熱膨張による相対的移動に伴って、第1の環状部材22(第1の部材)の第1傾斜面22cが玉30を径方向外方に押し広げ、第2の環状部材24(第2の部材)の第3傾斜面24cが押圧される。第2の環状部材24(第2の部材)は、第1の環状部材22(第1の部材)に比べて熱膨張が小さいため、玉30の押圧力が軸方向に作用する。そのため、第2の環状部材24(第2の部材)が円すいころ軸受装置10側に押圧することとなる。これにより、第1の環状部材22(第1の部材)と、第2の環状部材24(第2の部材)との軸方向における相対位置間隔が変更されることとなる。
これは、軸箱2、2と回転軸4の熱膨張差によって、軸箱2、2の支持面2bと円すいころ軸受装置10の外輪12の外輪大端側面12c(大端側面)の隙間が大きくなるところ、上記のように、第1の環状部材22(第1の部材)と第2の環状部材24(第2の部材)との軸方向における相対位置間隔が変更されるため、この隙間を埋めるとともに、円すいころ軸受装置10の軸方向に予圧を付与することとなる。これにより、回転軸4に対し軸方向の予圧を付して軸箱2、2に支承することとなる。
The operation of the preload applying means 20 in the mounting structure of the tapered roller bearing device 10 in the present embodiment having the above-described configuration is as follows.
As shown in FIG. 2A, the preload applying means 20 includes a first annular member 22 (first member) and a second annular member 24 (second member) having different linear expansion coefficients. Are arranged side by side in the axial direction, and both annular members are configured to move relative to the radial direction by thermal expansion. A configuration is provided in which a relative position interval in the axial direction of both the members is changed with the relative movement in the radial direction. The first annular member 22 (first member) is made of an aluminum alloy having the same linear expansion coefficient as the axle boxes 2 and 2, and the second annular member 24 (second member) is rotated. It is made of a ferrous metal having the same linear expansion coefficient as that of the shaft 4. That is, the first annular member 22 (first member) is formed of a material having a larger linear expansion coefficient than the second annular member 24 (second member).
As shown in FIG. 2B, when the temperature in the axle boxes 2 and 2 rises, the first annular member 22 (first member) also thermally expands along with the thermal expansion of the axle boxes 2 and 2. To do. At this time, the first annular member 22 (first member) thermally expands more than the second annular member 24 (second member). Therefore, the diameter of the first annular member 22 (first member) is larger than that of the second annular member 24 (second member).
Then, with the relative movement due to the thermal expansion in the radial direction of the first annular member 22 (first member), the first inclined surface 22c of the first annular member 22 (first member) pushes the ball 30. The third inclined surface 24c of the second annular member 24 (second member) is pressed by spreading outward in the radial direction. Since the second annular member 24 (second member) has a smaller thermal expansion than the first annular member 22 (first member), the pressing force of the balls 30 acts in the axial direction. Therefore, the 2nd annular member 24 (2nd member) will press on the tapered roller bearing apparatus 10 side. Thereby, the relative position interval in the axial direction between the first annular member 22 (first member) and the second annular member 24 (second member) is changed.
This is because a gap between the support surface 2b of the axle boxes 2, 2 and the outer ring large end side surface 12c (large end side face) of the outer ring 12 of the tapered roller bearing device 10 is caused by a difference in thermal expansion between the axle boxes 2, 2 and the rotary shaft 4. Since the relative position interval in the axial direction between the first annular member 22 (first member) and the second annular member 24 (second member) is changed as described above, this gap is increased. And a preload is applied in the axial direction of the tapered roller bearing device 10. As a result, a preload in the axial direction is applied to the rotating shaft 4 and supported on the axle boxes 2 and 2.

このような構成の円すいころ軸受装置10の取付構造によれば、予圧付与手段20には、線膨張係数の異なる第1の環状部材22(第1の部材)と第2の環状部材24(第2の部材)が構成されており、外輪12の外輪大端側面12c(大端側面)と、外輪大端側面12cに対向形成された軸箱2、2の支持面2bとの間に軸方向に並べられて配設されている。この両環状部材は、熱膨張により径方向に対して相対的移動をなす構成となっていると共に、径方向の相対的移動に伴い両部材の軸方向の相対位置間隔を変更する機構を備えている。すなわち、径方向への膨張を利用して外輪12に対し、軸方向への予圧に変換することができる予圧付与手段20を備えることができる。また、予圧付与手段20は両環状部材の線膨張係数の差を利用して温度変化時に予圧変化させる構成であるため、温度による予圧変動を小さくすることができる。また、初期予圧を小さくすることができるので、軸受の耐久性や低トルクに適した予圧付与手段20とすることができる。   According to the mounting structure of the tapered roller bearing device 10 having such a configuration, the preload applying means 20 includes a first annular member 22 (first member) and a second annular member 24 (first member) having different linear expansion coefficients. 2), and the axial direction between the outer ring large end side surface 12c (large end side surface) of the outer ring 12 and the support surface 2b of the axle box 2, 2 formed to face the outer ring large end side surface 12c. Are arranged side by side. The two annular members are configured to move relative to the radial direction by thermal expansion, and include a mechanism that changes the relative position interval in the axial direction of both members in accordance with the relative movement in the radial direction. Yes. That is, it is possible to provide the preload applying means 20 that can convert the outer ring 12 into the preload in the axial direction by utilizing the expansion in the radial direction. Further, since the preload applying means 20 is configured to change the preload when the temperature changes using the difference between the linear expansion coefficients of the two annular members, the preload fluctuation due to the temperature can be reduced. Further, since the initial preload can be reduced, the preload applying means 20 suitable for the durability and low torque of the bearing can be obtained.

また、第1の環状部材22(第1の部材)と第2の環状部材24(第2の部材)は径方向に対して傾斜して対向配置される部位を備え、傾斜部位の熱膨張による相対的移動により第1の環状部材22(第1の部材)と第2の環状部材24(第2の部材)の軸方向の相対位置間隔を変更する構成とされている。これにより、予圧付与手段20は、第1の環状部材22(第1の部材)と第2の環状部材24(第2の部材)に径方向に対して傾斜した部位を備えることで達成しており、複雑な構造を有することがないため製造コストの面においても有効である。   In addition, the first annular member 22 (first member) and the second annular member 24 (second member) are provided with portions that are opposed to each other while being inclined with respect to the radial direction, and due to thermal expansion of the inclined portions. The relative position interval in the axial direction of the first annular member 22 (first member) and the second annular member 24 (second member) is changed by relative movement. Thus, the preload applying means 20 is achieved by providing the first annular member 22 (first member) and the second annular member 24 (second member) with portions inclined with respect to the radial direction. Therefore, since it does not have a complicated structure, it is effective in terms of manufacturing cost.

また、第1の環状部材22(第1の部材)と第2の環状部材24(第2の部材)が径方向に対して傾斜して対向配置される部位間には、複数の玉30が挟持されて配列されている。これにより、第1の環状部材22の第1傾斜面22cと、第2の環状部材24の第3傾斜面24cの間の玉30が点接触となるため、摩擦抵抗の低減が図れると共に、熱膨張時にスムーズに圧力をかけることができる。   In addition, a plurality of balls 30 are provided between portions where the first annular member 22 (first member) and the second annular member 24 (second member) are inclined and opposed to each other in the radial direction. It is sandwiched and arranged. Thereby, since the ball 30 between the first inclined surface 22c of the first annular member 22 and the third inclined surface 24c of the second annular member 24 is in point contact, the frictional resistance can be reduced and the heat can be reduced. Pressure can be applied smoothly during expansion.

また、第1の環状部材22(第1の部材)は、第2の環状部材24(第2の部材)よりも線膨張係数の大きい材質で形成されている。この第1の環状部材22(第1の部材)は、軸箱2、2の支持面2b側に配設されるものである。これにより、軸箱2、2内の温度上昇時に伴う熱膨張に追随して第1の環状部材22(第1の部材)が熱膨張することで外輪12の外輪大端側面12c(大端側面)側に配設される第2の環状部材24(第2の部材)との軸方向の相対位置間隔を変更することで軸方向への予圧に変換することができる。   The first annular member 22 (first member) is formed of a material having a larger linear expansion coefficient than the second annular member 24 (second member). The first annular member 22 (first member) is disposed on the support surface 2 b side of the axle boxes 2 and 2. Thereby, the outer ring large end side surface 12c (large end side surface) of the outer ring 12 is obtained by the thermal expansion of the first annular member 22 (first member) following the thermal expansion accompanying the temperature rise in the axle boxes 2 and 2. ) Can be converted into a preload in the axial direction by changing the relative position interval in the axial direction with the second annular member 24 (second member) arranged on the side.

また、軸箱2、2の支持面2b側に配設される第1の環状部材22(第1の部材)は、軸箱2、2と同じ線膨張係数の材質によって形成されている。これにより、第1の環状部材22(第1の部材)は、軸箱2、2内の温度上昇時に伴う熱膨張に同調して熱膨張することができる。   The first annular member 22 (first member) disposed on the support surface 2 b side of the axle boxes 2 and 2 is formed of a material having the same linear expansion coefficient as that of the axle boxes 2 and 2. Thereby, the 1st annular member 22 (1st member) can be thermally expanded in synchronization with the thermal expansion accompanying the temperature rise in the axle boxes 2 and 2.

以上、本発明の実施形態を実施例1において説明したが、本発明の転がり軸受装置の取付構造は、本実施の形態に限定されず、その他各種の形態で実施することができるものである。
例えば、上記した実施例1における円すいころ軸受装置10の取付構造は、自動車のトランスミッションにおける円すいころ軸受装置10の取付構造について例示した。しかしながら、これに限定されることなく、本発明における転がり軸受装置の取付構造は、自動車、モータ、工作機械などに備えられる回転軸が、軸箱内において転がり軸受装置を介して回転可能に支承される取付構造であって、温度上昇により、軸箱と回転軸に熱膨張差が生じるものであれば、種々適用ができるものである。
The embodiment of the present invention has been described in the first embodiment. However, the mounting structure of the rolling bearing device of the present invention is not limited to this embodiment, and can be implemented in various other forms.
For example, the mounting structure of the tapered roller bearing device 10 in the first embodiment described above is exemplified for the mounting structure of the tapered roller bearing device 10 in the transmission of an automobile. However, the present invention is not limited to this, and the rolling bearing device mounting structure according to the present invention is such that a rotating shaft provided in an automobile, a motor, a machine tool, or the like is rotatably supported in the shaft box via the rolling bearing device. Any mounting structure can be applied as long as the temperature rise causes a difference in thermal expansion between the axle box and the rotating shaft.

また、本実施例1においては、第1の環状部材22(第1の部材)の第1傾斜面22cと、第2の環状部材24(第2の部材)の第3傾斜面24cは、両環状部材が対向した配置関係において、径方向に対して同一方向に傾斜した傾斜角による傾斜面として形成されている。両環状部材の第1傾斜面22cと第3傾斜面24cは、軸線方向断面で視て平行した状態となっている。また、第1傾斜面22cは、第3傾斜面24cよりも軸方向内方側に配置される配置位置関係となっている。また、軸線方向断面で視て、この第1傾斜面22cに隣接してこの第1傾斜面22cに直交する第2傾斜面22dが形成されることにより、略V字状の溝部22eが周方向に連続して形成されている構成のものについて示した(同様に、同様に、第2の環状部材24にも、第3傾斜面24cに直交する第4傾斜面24dが形成されることにより、略V字状の溝部24eが周方向に連続して形成されている)。
しかしながら、これに限定されず、本発明における転がり軸受装置の取付構造は、第1の環状部材22の第1傾斜面22c、第2傾斜面22dで形成される溝部22e(第2の環状部材24においては第3傾斜面24cと第4傾斜面24dで形成される溝部24e)だけでなく、実施例1の変形例1として、図3(A)(B)図に図示されるように、軸線方向断面で視て、第1の環状部材122、第2の環状部材124には、曲面による溝部122e、124eが構成される予圧付与手段120であってもよい。
In the first embodiment, the first inclined surface 22c of the first annular member 22 (first member) and the third inclined surface 24c of the second annular member 24 (second member) are both In the arrangement relationship in which the annular members face each other, it is formed as an inclined surface with an inclination angle inclined in the same direction with respect to the radial direction. The first inclined surface 22c and the third inclined surface 24c of both annular members are in a parallel state as viewed in the axial cross section. Further, the first inclined surface 22c has an arrangement positional relationship in which the first inclined surface 22c is arranged on the inner side in the axial direction from the third inclined surface 24c. Further, when viewed in the axial cross section, the second inclined surface 22d perpendicular to the first inclined surface 22c is formed adjacent to the first inclined surface 22c, so that the substantially V-shaped groove portion 22e is formed in the circumferential direction. (Similarly, the second annular member 24 is similarly provided with the fourth inclined surface 24d orthogonal to the third inclined surface 24c, A substantially V-shaped groove 24e is formed continuously in the circumferential direction).
However, the present invention is not limited to this, and the mounting structure of the rolling bearing device in the present invention is a groove 22e (second annular member 24) formed by the first inclined surface 22c and the second inclined surface 22d of the first annular member 22. In FIG. 3A and FIG. 3B, as a modification 1 of the first embodiment, not only the groove 24e formed by the third inclined surface 24c and the fourth inclined surface 24d), but also the axis line The first annular member 122 and the second annular member 124 may be pre-load applying means 120 in which grooves 122e and 124e having curved surfaces are formed as viewed in the direction cross section.

また、第1の環状部材22の第1傾斜面22c、第2傾斜面22dで形成される溝部22e(第2の環状部材24においては第3傾斜面24cと第4傾斜面24dで形成される溝部24e)に限定されず、実施例1の変形例2として、図4(A)(B)図に図示されるように、軸線方向断面で視て、第1の環状部材222の第1傾斜面222cと、第2の環状部材224の第3傾斜面224cが対向配置される構成のみの予圧付与手段220であってもよい。   Further, a groove portion 22e formed by the first inclined surface 22c and the second inclined surface 22d of the first annular member 22 (in the second annular member 24, it is formed by the third inclined surface 24c and the fourth inclined surface 24d. As shown in FIGS. 4 (A) and 4 (B), the first inclination of the first annular member 222 is not limited to the groove portion 24e), as shown in FIGS. The preload applying means 220 may be configured only in a configuration in which the surface 222c and the third inclined surface 224c of the second annular member 224 are disposed to face each other.

また、第1の環状部材22の第1傾斜面22cと、第2の環状部材24の第3傾斜面24cの間には、玉30が挟持される構成のものについて示したが、実施例1の変形例3として、図5(A)(B)図に図示されるように、第1の環状部材322の第1傾斜面322cと、第2の環状部材324の第3傾斜面324cと間には、玉が構成されない予圧付与手段320であってもよい。   In addition, although the ball 30 is configured to be sandwiched between the first inclined surface 22c of the first annular member 22 and the third inclined surface 24c of the second annular member 24, Embodiment 1 is shown. As a third modification of FIG. 5, as illustrated in FIGS. 5A and 5B, the first inclined surface 322c of the first annular member 322 and the third inclined surface 324c of the second annular member 324 are provided. Alternatively, the preload applying means 320 in which no balls are configured may be used.

また、第1の環状部材22の溝部22eと、第2の環状部材24の溝部24eは、周方向に連続して形成されるものについて示した。しかしながらこれに限定されることなく、たとえば、円すい面状の傾斜面によって形成される凹部(換言すれば、すり鉢状の凹部)が周方向に複数箇所に形成され、第1の環状部材と第2の環状部材間で対抗配置されて、この間に玉が挟持される構成であってもよい。   Moreover, the groove part 22e of the 1st annular member 22 and the groove part 24e of the 2nd annular member 24 showed what was formed continuously in the circumferential direction. However, the present invention is not limited to this, and, for example, concave portions (in other words, mortar-shaped concave portions) formed by conical inclined surfaces are formed at a plurality of locations in the circumferential direction, and the first annular member and the second annular member are formed. A configuration may be adopted in which the balls are opposed to each other and the balls are sandwiched therebetween.

また、第1の環状部材22の第1傾斜面22cと、第2の環状部材24の第3傾斜面24cの間に挟持される部材は、玉に限定されず、周方向に連続形成された環状部材であってもよい。   Moreover, the member clamped between the 1st inclined surface 22c of the 1st annular member 22 and the 3rd inclined surface 24c of the 2nd annular member 24 is not limited to a ball, It was formed continuously in the circumferential direction. An annular member may be sufficient.

また、図1において、回転軸4の両端にそれぞれ予圧付与手段20が配置される構成について説明した。しかしながら、これに限定されず、本発明における転がり軸受装置の取付構造は、予圧付与手段が回転軸の両端に構成されるもののほか、回転軸のいずれかの一端側のみに構成されるものであってもよい。   In FIG. 1, the configuration in which the preload applying means 20 is disposed at both ends of the rotating shaft 4 has been described. However, the present invention is not limited to this, and the mounting structure of the rolling bearing device according to the present invention is such that the preload applying means is configured only at one end side of the rotating shaft, in addition to the structure provided at both ends of the rotating shaft. May be.

2 軸箱
2a 段部内周面
2b 支持面
4 回転軸
4a 肩部
5 ギヤ
10 円すいころ軸受装置
12 外輪
12a 外輪軌道面
12b 外輪外周面
12c 外輪大端側面
14 内輪
14a 内輪軌道面
14b 内輪内周面
14c 内輪大端側面
16 円すいころ
18 保持器
20 予圧付与手段
22 第1の環状部材(第1の部材)
22a 外周面
22b 軸箱接触面
22c 第1傾斜面
22d 第2傾斜面
22e 直線による凹部
24 第2の環状部材(第2の部材)
24a 外周面
24b 外輪接触面
24c 第3傾斜面
24d 第4傾斜面
24e 溝部
30 玉
2 Shaft box 2a Step inner peripheral surface 2b Support surface 4 Rotating shaft 4a Shoulder 5 Gear 10 Tapered roller bearing device 12 Outer ring 12a Outer ring raceway surface 12b Outer ring outer circumference surface 12c Outer ring large end side surface 14 Inner ring 14a Inner ring raceway surface 14b Inner ring inner circumference surface 14c Inner ring large end side surface 16 Tapered roller 18 Cage 20 Preload applying means 22 First annular member (first member)
22a Outer peripheral surface 22b Shaft box contact surface 22c First inclined surface 22d Second inclined surface 22e Concave portion 24 by a straight line Second annular member (second member)
24a Outer peripheral surface 24b Outer ring contact surface 24c Third inclined surface 24d Fourth inclined surface 24e Groove 30 Ball

Claims (5)

外輪と、内輪と、複数の転動体とを備えた転がり軸受装置によって回転軸が該回転軸を内部に配置する軸箱に支承されており、該軸箱は前記回転軸よりも線膨張係数が大きい材質で形成されており、前記回転軸を軸方向の予圧を付して軸箱に支承する予圧付与手段が前記外輪の大端側面と該大端側面に対向形成された軸箱の支持面との間に配設されている転がり軸受装置の取付構造であって、
前記予圧付与手段は、線膨張係数の異なる第1の部材と第2の部材が軸方向に並べられて配設されて該両部材は熱膨張により径方向に対して相対的移動をなす構成となっていると共に、該径方向の相対的移動に伴い該両部材の軸方向の相対位置間隔を変更する機構を備えた構成となっていることを特徴とする転がり軸受装置の取付構造。
A rotating shaft is supported on a shaft box in which the rotating shaft is disposed by a rolling bearing device including an outer ring, an inner ring, and a plurality of rolling elements, and the shaft box has a linear expansion coefficient higher than that of the rotating shaft. A supporting surface of the shaft box, which is formed of a large material, and in which a preload applying means for supporting the rotating shaft on the shaft box with axial preload is formed facing the large end side surface of the outer ring and the large end side surface. A rolling bearing device mounting structure disposed between and
The preload applying means has a configuration in which a first member and a second member having different linear expansion coefficients are arranged in an axial direction, and the two members move relative to each other in the radial direction by thermal expansion. And a mounting structure for a rolling bearing device, characterized in that the structure includes a mechanism for changing the relative positional distance in the axial direction of the two members in accordance with the relative movement in the radial direction.
請求項1に記載の転がり軸受装置の取付構造であって、
前記予圧付与手段の第1の部材と第2の部材は、前記軸箱の支持面側に配設される第1の環状部材と、前記外輪の大端側面側に配設される第2の環状部材で構成されており、
該第1の環状部材と第2の環状部材は径方向に対して傾斜して対向配置される部位を備え、該傾斜部位の熱膨張による相対的移動により前記第1の環状部材と第2の環状部材の軸方向の相対位置間隔を変更することを特徴とする転がり軸受装置の取付構造。
The rolling bearing device mounting structure according to claim 1,
The first member and the second member of the preload applying means are a first annular member disposed on the support surface side of the axle box, and a second member disposed on the large end side surface of the outer ring. It consists of an annular member,
The first annular member and the second annular member are provided with portions that are inclined and opposed to each other in the radial direction, and the first annular member and the second annular member are relatively moved by thermal expansion of the inclined portions. A mounting structure for a rolling bearing device, wherein an axial relative position interval of an annular member is changed.
請求項2に記載の転がり軸受装置の取付構造であって、
前記第1の環状部材と第2の環状部材が径方向に対して傾斜して対向配置される部位間には、複数の玉が挟持されて配列されていることを特徴とする転がり軸受装置の取付構造。
The rolling bearing device mounting structure according to claim 2,
A rolling bearing device characterized in that a plurality of balls are sandwiched and arranged between portions where the first annular member and the second annular member are opposed to each other while being inclined with respect to the radial direction. Mounting structure.
請求項2または請求項3に記載の転がり軸受装置の取付構造であって、
前記第1の環状部材は、第2の環状部材よりも線膨張係数の大きい材質で形成されていることを特徴とする転がり軸受装置の取付構造。
A rolling bearing device mounting structure according to claim 2 or claim 3,
The mounting structure for a rolling bearing device, wherein the first annular member is formed of a material having a linear expansion coefficient larger than that of the second annular member.
請求項2から請求項4のいずれかに記載の転がり軸受装置の取付構造であって、
前記第1の環状部材は、前記軸箱と同じ線膨張係数の材質によって形成されていることを特徴とする転がり軸受装置の取付構造。
A mounting structure for a rolling bearing device according to any one of claims 2 to 4,
The mounting structure for a rolling bearing device, wherein the first annular member is formed of a material having the same linear expansion coefficient as that of the axle box.
JP2011005989A 2011-01-14 2011-01-14 Mounting structure of rolling bearing device Pending JP2012145203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005989A JP2012145203A (en) 2011-01-14 2011-01-14 Mounting structure of rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005989A JP2012145203A (en) 2011-01-14 2011-01-14 Mounting structure of rolling bearing device

Publications (1)

Publication Number Publication Date
JP2012145203A true JP2012145203A (en) 2012-08-02

Family

ID=46788962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005989A Pending JP2012145203A (en) 2011-01-14 2011-01-14 Mounting structure of rolling bearing device

Country Status (1)

Country Link
JP (1) JP2012145203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040888A (en) * 2012-08-23 2014-03-06 Nsk Ltd Rolling bearing device
JP2015031301A (en) * 2013-07-31 2015-02-16 株式会社ジェイテクト Rolling bearing and assembling method of the rolling bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040888A (en) * 2012-08-23 2014-03-06 Nsk Ltd Rolling bearing device
JP2015031301A (en) * 2013-07-31 2015-02-16 株式会社ジェイテクト Rolling bearing and assembling method of the rolling bearing

Similar Documents

Publication Publication Date Title
JP4694520B2 (en) Friction transmission
US20190234496A1 (en) Toroidal continuously variable transmission
JP5819893B2 (en) Double row roller bearing
JP2012145203A (en) Mounting structure of rolling bearing device
DK2761194T3 (en) SHAFT WITH FLANGE ASSEMBLY
JP5607060B2 (en) Bearing arrangement for large marine transmission
JP2010038206A (en) Bearing device
JP2009079696A (en) Mechanism for applying preload to rolling bearing
JP5939086B2 (en) Rolling bearing device
JP2008196570A (en) Rolling bearing device
JP4918507B2 (en) Planetary roller type power transmission device
JP2008249019A (en) Rolling bearing device
JP2009002480A5 (en)
JP2006336720A (en) Bearing unit
JP2011226551A (en) Tapered roller bearing set
JP2005265093A (en) Double row obliquely contacting ball bearing and rotating shaft support structure
JP2014190352A (en) Taper roller bearing
JP2007146936A (en) Rolling bearing applied with pre-load
JP6310764B2 (en) Gear transmission
WO2015052950A1 (en) Single-cavity toroidal continuously variable transmission
JP2007100791A (en) Tapered roller bearing and bearing device
JP2005265094A (en) Double row obliquely contacting ball bearing and pinion shaft support bearing device
JP5902342B2 (en) Double row roller bearing
JP2003028154A (en) Double row rolling bearing device
JP2016070349A (en) Bearing structure of revolving shaft