JP2012144552A - 発現増強ポリペプチド - Google Patents

発現増強ポリペプチド Download PDF

Info

Publication number
JP2012144552A
JP2012144552A JP2012057380A JP2012057380A JP2012144552A JP 2012144552 A JP2012144552 A JP 2012144552A JP 2012057380 A JP2012057380 A JP 2012057380A JP 2012057380 A JP2012057380 A JP 2012057380A JP 2012144552 A JP2012144552 A JP 2012144552A
Authority
JP
Japan
Prior art keywords
polypeptide
cys2
cys1
gly
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012057380A
Other languages
English (en)
Other versions
JP2012144552A5 (ja
Inventor
Patrick Hoffmann
パトリック ホフマン
Silke Mittelstrass
ジルケ ミッテルストラース
Jens Hennecke
イェンス ヘンネック
Tobias Raum
トビアス ラウム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Research Munich GmbH
Original Assignee
Micromet GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micromet GmbH filed Critical Micromet GmbH
Publication of JP2012144552A publication Critical patent/JP2012144552A/ja
Publication of JP2012144552A5 publication Critical patent/JP2012144552A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4705Regulators; Modulating activity stimulating, promoting or activating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

【課題】所望のポリペプチドおよび発現増強ドメイン(「EED」)を含む複合体ポリペプチドの提供。
【解決手段】上記のEEDは第一および第二のシステインアミノ酸残基Cys1およびCys2をそれぞれ含み、Cys1は複合体ポリペプチド分子のN末端に対してCys2よりも近くに位置し、ここでCys1およびCys2はポリペプチドリンカーによって分離され、該リンカーは、システインおよびプロリンを含まず;Cys1およびCys2が分子内ジスルフィド結合で互いと結合する事を可能にするために十分な長さを定義し;かつ水溶液中で第二のポリペプチド構造を本質的に含まない、柔軟なポリペプチド高次構造を有し、ここで少なくとも1つのCys1およびCys2は、誘導体化部分によって誘導体化される複合体ポリペプチド。
【選択図】なし

Description

本発明は、その発現特性が向上するように修飾されたポリペプチド分子に関する。修飾されたポリペプチド分子はそれらの対応するパートナー、すなわち(核酸レベルで)修飾されていないポリペプチド分子よりも、より良好な/より高い収率で発現される。本発明は、このようなポリペプチドを含む組成物にさらに関する。最後に、本発明は上記の修飾されたポリペプチド分子を調製する方法を提供する。以下の説明を通して、(複合体)ポリペプチドへの言及は熟練した読者が理解するように、ポリペプチドそれ自体、および必要に応じて対応する核酸配列の両方を意味すると理解されるべきである。同じことは、(所望の)ポリペプチドおよび発現増強領域(EED)にも当てはまる。
菌宿主系における組換えポリペプチドの発現は、多量の所望のポリペプチドを製造する効率的な方法である。製造されるポリペプチドが診断用および/または治療用の薬剤としての使用を意図される場合、発現されるポリペプチドのさらなる修飾がしばしば必要である。例えば、診断薬剤として使用を意図されるポリペプチドは、固体支持体に結合することができるような修飾が必要であり得る。あるいは、ポリペプチドは、特定の画像化方法による視覚化を可能にする薬剤に結合させることが必要である可能性がある。治療法過程の一部として患者への投与を意図されるポリペプチドは、そのインビボ特性、例えばその薬物動態学的特性を調節するために修飾することが必要であり得る。
組換えにより製造されたポリペプチドの誘導体化は、多くの場合、化学物質(「誘導体化成分」)と、ポリペプチドに含まれる1つまたは複数のアミノ酸の反応性側基との間の化学反応によって達成される。結果はポリペプチドに対する誘導体化成分の共有結合的結合であり、このような結合の位置および結合価は、ポリペプチド中の、反応性アミノ酸の各位置および数によって必然的に決定される。これは、複数の反応性アミノ酸を有するポリペプチドでは、誘導体化成分とポリペプチドとの化学結合が、そのポリペプチドの全体にわたって、反応性アミノ酸に対応する位置で複数回生じる事を意味する。
いくつかの目的のためには、誘導体化成分の、このようなポリペプチドに対する多価性の部位非特異的結合が望ましくなり得る場合もあるものの、大抵の場合そうでない。例えば、診断手法において、ポリペプチド分子当たりの誘導体化の数を1に制限することが測定の正確な定量化にとっては重要であり得る。同様に、インビボにおいてポリペプチドをうまく治療に使用するには、しばしば、そのポリペプチドの生理活性を正確に予測し、制御する医師の能力にかかっている。このような状況において、使用したポリペプチドの無制御かつ部位非特異的誘導体化に起因する変動は、当然のことながら意図された治療過程と矛盾する可能性がある。さらに、治療的または診断的ポリペプチドと誘導体化成分との部位非特異的結合は、ポリペプチドの所望の活性の減損につながる可能性がある。これは例えば、抗原結合部位の抗原への結合が立体配置的におよび/または静電的に妨害されるか、またはその結合活性が減少するような部位非特異的様式で1本鎖抗体ポリペプチドが誘導体化される場合に起こり得る。このような場合、1本鎖抗体の所望の治療的または診断的効果は消滅するか、または少なくとも低下し得る。
したがって、ポリペプチド分子中の既定の複数の位置のみで、または既定の1つの位置のみで誘導体化が可能であるように組換えポリペプチドを操作する事が多くの場合望ましい。結合の給合価はポリペプチドの反応性アミノ酸の数を制御することによって調整することができ、所望のポリペプチド活性および/または化学的特性は、このような結合の位置を、ポリペプチドと環境中の他の分子との相互作用を物理的に損なわないように計画することによって調節され得る。
この点に関して有用であると判明した1つのアミノ酸は、システインである。ジスルフィド結合の形成を介してタンパク質構造を安定化する際のその重要性のため、システインは通常、ポリペプチドにおいて、規定された位置のみで生じる。1つのシステインを、所望のポリペプチド活性のために直接的には必要ではない、ポリペプチドにおける「無害な」領域に組み込むことによって、所望のポリペプチド活性への影響無しに、または所望のポリペプチド活性に著しく影響を及ぼさずに、システインの反応性スルフヒドリル側鎖を、所望の誘導体化のための適切なアンカーポイントとして利用することが可能となる(Volkel T., et al. (2004) Biochim Biophys Acta 1663, 158-66(非特許文献1))。
しかしながら、誘導体化のためのポリペプチドへのさらなるシステイン残基の組込みは、特定の不利益を伴う。多くの場合、所望のポリペプチドは、構造的な安定化のためにそのアミノ酸配列内にシステイン残基を既に有している。誘導体化成分によりポリペプチドを誘導体化するために組み込まれるさらなるシステインは、この場合、このような既に存在するシステインとの望ましくないジスルフィド結合に加わる可能性があり、所望の活性のために必要なポリペプチド構造を著しく攪乱させる。
所望のポリペプチドそれ自体がそのアミノ酸配列中にいかなるシステイン残基も含有しない場合であっても、1つのシステイン残基の組込みは、なお問題に繋がる可能性がある。宿主生物における発現の後、操作されたシステインアミノ酸残基を含有しているポリペプチドは、各ポリペプチドにおける2つのシステイン残基のチオール(すなわちスルフヒドリル)基間における分子間ジスルフィド結合を介して互いにポリペプチド二量体を形成する可能性がある(Albrecht H., et al. (2004) Bioconjug Chem 15, 16-26(非特許文献2); Olafsen T., et al. (2004) Protein Eng Des Sel 17, 21-7(非特許文献3))。本ポリペプチドを製造するために原核生物発現系を使用する場合、この危険性は特に大きい。その理由は、このような系において、タンパク質が、酸化的状態が優勢である微生物宿主の細胞膜周辺腔に段階的に輸送されるためである。このような酸化的状態が、新生ポリペプチド鎖における望ましい、構造を安定させるジスルフィド結合の形成にとって重要である一方で、それらは、2つの各ポリペプチドにおける、後の誘導体化位置として意図されるフリーのシステイン残基間における、望ましくない分子間ジスルフィド結合の形成をも促進する。
上記の問題は、原核生物における発現に限定されない。Luo et al. (1997) J Biochem 121, 831-4(非特許文献4)には、scFvポリペプチドがC末端システイン残基を1つ含むか2つ含むかによって決まる、酵母において発現された単量体のscFvポリペプチドおよび二量体の(すなわち分子間ジスルフィド結合を介して連結した)scFvポリペプチドの量を比較している実験が記載されている。1つのC末端システイン残基を有するscFvは二量体の形態で存在する可能性が高く、一方、2つのC末端システイン残基を有するscFvは単量体の形態で存在する可能性が高い事が判明している。本発表から、発現されたポリペプチドの総量は、アイソフォームの分布に関係なくほぼ同一のままである事もまた明らかである。さらに、2つのシステイン残基を有する構造物(分子内ジスルフィド結合を形成する傾向を呈する)が不良な結合活性のみを呈する事が明らかである。
特に治療的使用が意図されるポリペプチドを発現する場合、産物の均質性という理由から、二量体のアイソフォームよりもむしろ単量体のアイソフォームを製造する事が多くの場合重要である。Luoらの上述した発表により具体化される先行技術はしたがって、システインにおいて誘導体化可能な単量体ポリペプチドの発現に関心を有する研究者に本目的を達成するための特定のツールを提供する。しかしながら、この先行技術は、許容可能な量で、かつ許容可能な結合活性を有する(単量体の)アイソフォームの発現に適したツールを提供しない。したがって、許容可能な結合活性を呈する、対応するポリペプチドの高収率での発現を可能にするDNA構造物を開発することが本発明の目的であり、ここで、本ポリペプチドは主に単量体のポリペプチドとして得られる。
Volkel T., et al. (2004) Biochim Biophys Acta 1663, 158-66 Albrecht H., et al. (2004) Bioconjug Chem 15, 16-26 Olafsen T., et al. (2004) Protein Eng Des Sel 17, 21-7 Luo et al. (1997) J Biochem 121, 831-4
本発明者らは、請求項において定義される、本発明のいわゆる複合体ポリペプチドをコードする核酸を提供することによって本目的を解決した。適切に発現される場合、該核酸は複合体ポリペプチドを提供し、該複合体ポリペプチドは所望のポリペプチドおよび発現増強ドメイン(「EED」)を含み、該EEDは第一および第二のシステインアミノ酸残基Cys1およびCys2をそれぞれ含み、Cys1は組換えポリペプチド分子のN末端に対してCys2よりも近くに位置し、ここでCys1およびCys2はポリペプチドリンカーによって隔てられ、該リンカーは、
・システインおよびプロリンを含まず;
・Cys1およびCys2が分子内ジスルフィド結合で互いに結合する事を可能にするのに十分な長さを定義し;かつ
・水溶液中でポリペプチドの二次構造を本質的に含まない、柔軟なポリペプチド立体構造を有し、
ここでCys1およびCys2の少なくとも1つは、誘導体化成分によって誘導体化される。
Cys1とCys2との間の分子内ジスルフィド結合の形成を促進するために1つではなく2つのシステイン残基、Cys1およびCys2をEEDに組み込み、かつその間に配置されるポリペプチドリンカー配列の長さを調整し、かつ性質を特定することによって、このようなジスルフィド結合が形成され、Cys1およびCys2が上述のような不必要な分子間または分子内ジスルフィド架橋に関与することを不可能にする。ある意味では、各Cys1およびCys2は、それぞれ他方の保護基になる。分子内ジスルフィドループがCys1とCys2との間に形成される場合、Cys2は、Cys1の誘導体化成分とみなされてもよい。逆に、Cys1は、Cys2の誘導体化成分とみなされてもよい。
上記のように2つのシステイン残基を含有するよう核酸レベルで操作された複合体ポリペプチドは、それらが後(すなわち発現後および単離後)の誘導体化のための化学的なアンカーポイントを持つという利点を有する。同時に、不必要な分子間ジスルフィド結合形成の危険性が大幅に減少するという利点も有するが、その理由は、このような危険性が、この場合ポリペプチド構造の(望ましい)ジスルフィドの安定化のために所望のポリペプチドに存在する他のシステイン残基から主に生じるためである。このようなジスルフィド結合は、通常、新生ポリペプチドが徐々に伸長するにしたがって、翻訳中および/または翻訳後に酸化的環境において形成する。このように、ポリペプチド構造の安定化のために必要とされる、システインのフリーのスルフヒドリル基はいずれも、通常、比較的迅速にそのジスルフィドパートナーを見いだし、したがってさらなる不必要な反応からブロックされる。Cys1およびCys2が相互のジスルフィド結合を形成する事を可能にするように長さ、化学的特性、および立体的特性において最適化されたリンカーの組込みは、Cys1およびがCys2が互いのみに反応し、ポリペプチド構造の安定化のために必要とされるがその意図された対応するシステイン残基とまだ反応していない、ポリペプチド中の空間的に遠いシステイン残基には反応しない事を確実にする。要するにリンカーは、Cys1およびCys2が、ポリペプチド中の他の任意のシステイン残基に対してよりも、常に互いに対して近くにある事を確実にする。
一旦発現および単離したならば、Cys1とCys2との間にジスルフィド結合を呈しているこのような複合体ポリペプチドを、Cys1とCys2との間のジスルフィド結合(のみ)を開裂させるのに十分な還元条件に曝露してもよい。これに続いて、Cys1またはCys2のそれぞれの他方以外の誘導体化成分によるCys1および/またはCys2の誘導体化を実施してもよい。
誘導体化されたポリペプチド(単離後、脱誘導体化する事が可能)を上記の不利益を伴わずに得ることの利点に加えて、驚くべきことに、EEDを含むように操作されたポリペプチド(すなわち、本発明の意義の範囲内の複合体ポリペプチド)が、EEDを含まないポリペプチドと比較して、それらの対応する核酸から全体により高レベルで発現する事もまた見いだされた。本発明の複合体ポリペプチドはEEDを含まないポリペプチドよりも、生じる不要な二量体は少ないと予測されうるが、許容可能な結合活性を有する全ポリペプチドの全体的な発現が本発明のEEDの組込みによって増加する事は、先行技術(例えば、前述のLuo et al.の発表)における教示からは全く予想外であった。次いで、本発明の複合体ポリペプチドは、EEDを含まない所望のポリペプチドと比較して、全体的により高収率で生成する事が可能であり、ここで二量体の複合体ポリペプチドと比較した単量体の複合体ポリペプチドの比率は、EEDを欠いている所望のポリペプチドの生成において見られる比率と比較して増加している。本方法において、単量体のポリペプチドは二量体のポリペプチド以上に有利であるだけではなく、全体的により多量のポリペプチドは、さらに多くの(5倍を超える)、その後必要に応じて(脱)誘導体化可能な単量体ポリペプチドを生じる。
理論に束縛されることなく、本発明者らは、観察された全発現ポリペプチドにおけるこの驚くべき増加が、EED中のCys1およびCys2の、互いにジスルフィド結合を形成する性向に少なくとも一部起因すると考えている。何故そのように考えられるかを説明するには、上記に定義されるEEDを含まない2つの同一のポリペプチドの引き続いて起こる発現の間に何が起こるのかを考察することが有用である。前述の考察に関して、この同一のポリペプチドをPP1およびPP2として言及するとし、かつ、各々は、同じ所望のポリペプチドとシステイン残基を1つのみ有する部分C末端とを含むとする(すなわち、PP1もPP2も上記に定義されるEEDを含まない)。なお、記述語1および2は、異なるポリペプチドのアイデンティティを意味するものではなく、むしろ同一のポリペプチドが発現される際の、経時的順序を意味するものである。
ここで、PP1がPP2の前に発現されることを考慮すると、これ(PP1)は、酸化的な細胞環境にN末端-->C末端の方向で徐々に輸送され、これは、アミノ末端 - 所望のポリペプチドのアミノ末端 - が該酸化的な環境に現れる第一の端部であることを意味する。このような方向で出現すると、構造安定化ジスルフィド結合に関与する所望のポリペプチド中のシステイン残基は、所望のポリペプチドのよりC末端側に位置しているそのパートナーであるシステイン残基がジスルフィド結合を形成するために酸化的な環境に現れるのを待ってさえいればよい。本プロセスは、所望のポリペプチド中の、構造安定化のために必要な全てのジスルフィド結合が形成されるまで、所望のポリペプチドが途切れることなく出現するように続く。一旦PP1の所望のポリペプチド成分が完全に出現した(かつ適切に折り畳まれた)ならば、1つのみのシステイン残基を有するPP1のC末端部分が出現する。しかしながら、ここではこの1つのシステインが反応してジスルフィド結合を形成し得るパートナーとなるシステインが存在せず、したがって、この一つのシステイン残基は対を形成しないままである。一旦でき上がったPP1が放出されると、次いで、PP1の所望のポリペプチド部分が適切に折り畳まれてジスルフィドが安定化し、かつ、当該分子のC末端部分において、反応性スルフヒドリル基を有する1つのシステイン残基が生じる。
ここで、PP2が、完成したPP1が存在する同じ環境に発現され始めることを考慮すると、PP2のN末端が、まず最初に出現する。PP2の所望のポリペプチド部分中の第一のシステイン残基が出現するが、PP2の所望のポリペプチド部分中のそのシステイン反応パートナーがいまだ出現しないため、意図される構造安定化ジスルフィド結合は形成されない。しかしながら、単独の、PP2の所望のポリペプチド部分中にある対になってないシステイン残基は、単独の、既に完成したPP1のC末端部分中にある対になってないシステイン残基と反応し得る。この様にして、PP2の所望のポリペプチド部分中の第一のシステイン残基とPP1のC末端部分中の対になってないシステイン残基との間に不必要なジスルフィド結合が形成される。このようなモデルによって、PP2の所望のポリペプチド部分中の第二のシステイン残基はPP2のC末端部分中の対になっていないシステイン残基と、またはPP2の所望のポリペプチド部分中の他のシステイン残基と反応すると考えられる。いずれにしても、結果として生じるジスルフィド結合の配置は、所望のポリペプチドの生理活性を欠くか、または実質的に欠く、不適当に組み立てられたポリペプチド複合体を結果として生じる可能性が高い。
このような不適当に組み立てられたポリペプチドはそのようなものとして認識されて細胞内プロテイナーゼによって分解され、したがって、得られる全ポリペプチドの量は減少すると考えられる。このような不適当に組み立てられたポリペプチドがこの様式で能動的に分解されない場合には、このポリペプチドはおそらくこの種の他の奇形のポリペプチドと共に不溶性の凝集体として存在しており、標準的なポリペプチド単離手順の過程で、適切に組み立てられたポリペプチドから除去される。いずれにしても、この様式で不適当に組み立てられたポリペプチドは、標準的なポリペプチド単離手順によって、最終的に得られる適切に組み立てられたポリペプチドの量を低下させる傾向がある。
対照的に、本発明に記載の複合体ポリペプチドは、EED中の2つのシステイン残基(Cys1およびCys2)だけでなく、その間に配置されるリンカーも含み、該リンカーはCys1とCys2との間のジスルフィド結合形成を促進するために最適化されている。PP1およびPP2に関する上記の考察を考慮し、かつ、ここでPP1およびPP2が本発明に記載の複合体ポリペプチドであると仮定すると(すなわち、それらは各々EEDを含む)、各EED中のCys1およびCys2が互いとジスルフィド結合を形成することから、各EED中のCys1もCys2も対になった状態であることが明らかである。不適当に組み立てられたポリペプチドが生じることは防止され、よって産物が細胞内プロテイナーゼに分解されず、および/または、凝集体を形成しない効果が生じる。その結果、発現および単離される複合体ポリペプチドの量が際だって増加する。
したがって、要約すると本発明の複合体ポリペプチドの発現は、ポリペプチドの単量体:二量体比の増加をもたらす。同時に、得られる全体的なポリペプチドの量も - ポリペプチドのアイソフォームに関係なく - 上記のようなEEDを欠いているポリペプチドと比較して増加する。最終的な結果として、上記記載のEEDを欠いている所望のポリペプチドに対して観察されるものと比較して、上記のEEDを含む複合体ポリペプチドを用いると、得られる二量体および/または多量体ポリペプチドの収量はごく少量となるとともに、得られる単量体ポリペプチドの収量は非常に多量となる。
Cys1とCys2との間のリンカーの長さに依存する、抗原特異的ELISAを示す。 1つのC末端システイン残基、および4-グリシンリンカーにより隔てられた2つのC末端システイン残基を用いて得られた発現収量の目安としての、抗原特異的ELISAの結果を示す。 1つのC末端システイン残基、および4-グリシンリンカーにより隔てられた2つのC末端システイン残基を用いて得られた発現収量の目安としての、ウエスタンブロットの結果を示す。 本発明の複合体ポリペプチドからの溶出プロフィル、および1つのみのC末端システイン残基を有するポリペプチドからの溶出プロフィルを示す、ゲル濾過クロマトグラフィの結果を示す。 ゲル濾過クロマトグラフィによって得られた単量体および二量体のscFv種のSDS-PAGE;非還元(左)条件および還元(右)条件下でのゲルの結果を示す。 1つおよび2つのC末端システイン残基を有するscFvの、20kD PEG-マレイミドとの反応の前後でのSDS-PAGEを示す。
本発明の意味の範囲内において、「N末端」および「C末端」は、以下の生化学において確立された慣例に従って理解されるべきである:ポリペプチドのN末端はアミノ基で終わるポリペプチド鎖の端であり、一方、ポリペプチドのC末端はカルボキシル基で終わるポリペプチド鎖の端である。Cys1がN末端に対してCys2よりも近くに位置しているという事実は、Cys1およびCys2の互いに対するポリペプチド鎖中での位置づけを確立する。これにより、Cys1およびCys2が含まれるEEDの位置づけもまた確立される。
本発明の態様の意味の範囲内における「柔軟なポリペプチド立体構造」を有するポリペプチドリンカーとは、ポリペプチド鎖中の各共有結合で、ポリペプチドリンカーを三次元空間中で想定される立体構造において全体的にほとんど制限がないものとする、すなわちその長さのみに制限されるものとするのに十分な程度の回転自由度を有するポリペプチドリンカーである。このように、三次元空間中の想像上の位置で、一端で係留されるポリペプチドリンカーを想像し、この位置のまわりに完全に伸ばされたポリペプチドリンカーの長さに対応する半径を有する球体を定義すると、ポリペプチドリンカーが「柔軟なポリペプチド立体構造」を有する場合、このポリペプチドリンカーの遠位端(すなわち自由な、係留されていない端)は、該球体上または球体内に位置する三次元空間における任意の位置に、等しい容易性で達することが可能でなければならない。このモデルによれば、「柔軟なポリペプチド立体構造」を有するこのようなポリペプチドリンカーはまた、「ポリペプチドの二次構造を本質的に含まない」もの、例えばαヘリックスまたはβシートを本質的に含まないものであるはずであるという推論がもたらされる。ポリペプチドリンカーが、ポリペプチド二次構造のモチーフになろうとするいかなる傾向も、リンカーのフリーの末端が享受する空間的自由度の程度を必然的に制限し、それによって、上記に定義される球体中でこの末端がとどくことができる位置を制約する。この柔軟性は、リンカーの、それ自体を折り畳むことによってCys1およびCys2に分子内ジスルフィド結合を形成させる能力に寄与する。
望まれない二次構造には、(上記のαヘリックスおよびβシートの場合のように)配列される場合や、または、たとえばプロリン残基がリンカー配列中に存在する場合(プロリン中の拘束された環がポリペプチドバックボーンのねじれを生じさせることは公知である)に予想されるように、乱される場合がある。理論に束縛されることなく、本発明者らは、Cys1とCys2との間のリンカーのこの内因的な柔軟性がこれら2つのシステイン残基間のジスルフィド結合の形成を確実にする主な決定要因であり、効果的なジスルフィド結合形成は、全体的なポリペプチド発現の顕著な増進と関連があると考えている(上記に提示される理由を参照されたい)。この理由のため、所望のジスルフィド結合が形成されるようにCys1およびCys2が互いの近傍に移動することを可能にするのに必要なリンカーの自由な動きをプロリンなどの組込みが制限することから、リンカーの配列中にプロリンなどのアミノ酸が含有されることを回避することが重要である。本発明のリンカー中に存在することが可能なアミノ酸残基にはGly、Ala、Val、Leu、Ile、Ser、Thr、Met、Tyr、Asn、Glnが含まれるが、これらに限定されるわけではない。
本発明の意味の範囲内において、「誘導体化された」という用語はアミノ酸残基Cys1およびCys2の一方または両方が「誘導体化成分」との反応に加わっている状況を記載しているとして理解される。誘導体化成分は例えば、マレイミド基を含んでいる化合物、例えばマレイミド基を含んでいるPEG分子であってもよい。この特定の典型的、非限定的な場合において、結果として生じる誘導体化されたCys1および/またはCys2は、Cys1および/またはCys2中の硫黄原子によるマレイミド環中の不飽和炭素原子の1つへの求核攻撃から生じる共有結合形のS-C結合を介して、PEG分子によって誘導体化される。別の例として、「誘導体化成分」は、結果として生じる誘導体化されたCys1および/またはCys2が共有結合形のS-S、すなわちジスルフィド結合を介してこの分子によって誘導体化されるように、それ自身がスルフヒドリル基を含む分子であってもよい。Cys1および/またはCys2が同一のまたは他のポリペプチド鎖中の他のシステイン残基と反応可能であることは、「誘導体化された」の意味の範囲内である。具体的には、上記のようなCys1とCys2との間の所望の分子内ジスルフィド架橋の形成は、本発明において、「誘導体化された」の意味中に含まれるとして理解され;この場合、Cys1はCys2により誘導体化され、その逆も同様である。したがって、Cys1の観点から一般に、「誘導体化された」とは、Cys1がそれ自身以外の種(例えばCys2)との共有結合形の化学反応に関与している全てのモデルをその範囲に含む。同様に、「誘導体化された」はまた、Cys2がそれ自身以外の種(例えばCys1)との共有結合形の化学反応に関与した全てのモデルをその範囲に含む。
本発明の好ましい態様によると、リンカー中のアミノ酸残基の少なくとも75%は、Gly、Ala、Val、Leu、Ile、Ser、Thr、Met、Tyr、Asn、およびGlnから選択される。
最も好ましいものは、Gly、Ser、Ala、およびThrである。これらのアミノ酸は、荷電してないか、十分にもしくは比較的よく水に溶解性であるかのいずれか、または両方である。
本発明の好ましい態様によると、複合体ポリペプチドは1本鎖ポリペプチドであり、全てのアミノ酸が1本の、ペプチド結合したポリペプチド鎖で存在することを意味する。この態様は、適切な産物の立体構造が、必要な二次および三次のポリペプチド構造のみの確立によって決まり、発現された複合体ポリペプチドが1本鎖複合体ポリペプチドである場合、特定の三次構造を呈する別々のポリペプチドが分子間的に結びつく四次ポリペプチド構造を考慮する必要がないことから、所望の1本鎖ポリペプチド産物の産生が非常に効率的に達成され得るという利点を有する。
本発明のさらなる態様によれば、EEDは、複合体ポリペプチドのC末端またはN末端に位置し得る。各位置は、上記の意図された利点、特に発現された複合体ポリペプチドの総量の増加を伴う。C末端に位置するEEDは、最後、すなわち所望のポリペプチドの後に発現され、そのため、所望のポリペプチド中に必要なジスルフィド結合はいずれも、EEDの翻訳の前にタンパク質安定化のために必要な形で形成される時間を有する。これは、EEDが完全に翻訳された場合、EED中のCys1とCys2との間の所望のジスルフィド結合が、形成される最後のジスルフィド結合であり、所望のポリペプチドの構造が、任意の内部ジスルフィド結合によってすでに安定化されていることを意味する。複合体ポリペプチドのEED部分中のCys1またはCys2と、所望のポリペプチド中の他のシステイン残基との間の、不必要なジスルフィド結合形成の危険性は、従って最小限である。
複合体ポリペプチドのN末端へのEEDの配置は、EEDをコードしている核酸が、所望のポリペプチドをコードしている核酸の前に翻訳されるという効果を有する。これは、EED中のCys1とCys2との間のジスルフィド結合が、所望のポリペプチド中の他のいかなるシステイン残基も翻訳される前に形成される可能性が高いことを意味する。ここでもまた、複合体ポリペプチドのEED部分中のCys1またはCys2と、所望のポリペプチド中のシステイン残基との間の、不必要なジスルフィド結合形成の危険性は、最小限となる。
従って、EEDの位置を複合体ポリペプチドのN末端とするか、またはC末端とするかは、その位置ではEEDに結合する誘導体化成分が所望のポリペプチドの生理活性を攪乱する可能性が最も低いという考察によって決定され得る。このようにして、実験に基づいた高度な柔軟性が達成され;実験者は、EEDの存在下で得られる利点を犠牲にする必要なく、最終的な誘導体化複合体ポリペプチドにおける所望のポリペプチドの最も高い活性を可能にするEEDの位置を選択するという快適性を得、これらの利点は上記で説明されている
本発明の好ましい態様によれば、複合体ポリペプチドのEEDは以下の形態である:-Cys1-(Xaa)n-Cys2-(Pro)m、式中、nは、2〜20の任意の整数であり; mは、0(ゼロ)または1であり;かつ、式中Xaaは各位置で任意の天然のアミノ酸でもよく、好ましくは少なくとも75%、より望ましくは少なくとも80%または90%のXaa残基がGly、Ala、Val、Leu、Ile、Ser、Thr、Met、Tyr、Asn、およびGlnから選択される。好ましい態様において、全てのXaaはGly、Ser、Ala、またはThrである。変数nを2から20、好ましくは3から20に変動させることにより、Cys1とCys2との間のリンカーは、Cys1とCys2との間のジスルフィド結合の形成を促進するのに必要なだけ短く、さらに、上記ジスルフィド結合の形成を促進するためにリンカーがそれ自身を折り畳むことを可能にするのに必要なだけ長い状態を維持する。4〜5の長さのリンカーがCys1とCys2との間のジスルフィド結合を特に効率的に促進することが分かっており、4アミノ酸長のリンカーが本目的にとって特に好ましい。本段落中の上に列挙されるアミノ酸のうち、GlyおよびSerは、単独であっても混合されても、本目的に特に適用可能であることが見出されている。理論に束縛されることはないが、本発明者らは、これは、Glyが化学的に中性でかつ小さく、これにより、制約されない立体的柔軟性を最大の程度で保持する一方で、リンカーの、不必要な化学反応に関与する性向を減少させるという事実に起因すると考えている。アミノ酸Serはその水酸基によって十分な程度の親水性を付与し、過度に疎水性であるリンカーが、所望のポリペプチドの疎水性部分と不必要な疎水性相互作用を形成することを妨ぐことに役立っていると考えられている。この事象において、EEDが複合体ポリペプチドのN末端に位置し、mが0(ゼロ)であることが有利である可能性があることに留意する必要がある。
本発明の本態様はまた、Proの存在は必要ではないが(すなわち、変数mは、ゼロであることもできる)、Pro残基をCys2のC末端にペプチド結合させてもよい。Proの供給が、ある状況において複合体ポリペプチドの発現収率をさらに増加させることが見出された。理論に束縛されることはないが、本発明者らは、これが、Cys2のC末端からの、複合体ポリペプチドのプロテイナーゼによる分解を阻害するプロリンの能力に起因すると考えている。
本発明の特に好ましい態様において、n=4であり、および(Xaa)4は(Gly)4、(Gly)3Ser、(Gly)2SerGly、GlySer(Gly)2、またはGly(Ser)3である。本発明の他の特に好ましい態様において、n=5であり、および(Xaa)5は(Gly)5、(Gly)4Ser、(Gly)3SerGly、(Gly)2Ser(Gly)2、GlySer(Gly)3、またはSer(Gly)4である。EEDのリンカーにおいて、GlyおよびSerを、単独でおよび一緒に使用することの特別な利点は、上記において述べられている。上記のように、合計で4アミノ酸長のリンカーがCys1とCys2との間におけるジスルフィドペプチドループの最も効果的な形成を導くことが見出されている。
本発明のさらなる態様において、EEDは、(His)j-Cys1-(Xaa)n-Cys2-(Pro)mまたはCys1-(Xaa)n-Cys2-(His)j-(Pro)mの形態であり、式中、jは、2〜15の任意の整数であり、Xaa、n、およびmは上記記載の通りである。EEDへの、Cys1のN側に対する、またはCys2のC側に対するpoly-His配列(「His-タグ」)の組込みは、いくつかの利点を必然的に伴う。第一に、当技術分野において公知であるように(Porath, J., et al. (1975) Nature 258, 598-9; Sulkowski, E. (1985) Trends in Biotech 3, 1-12)、His-タグは、固定されたニッケルカラムを介した発現したポリペプチドの単離、およびその後のポリペプチドの検出において、非常に有益な手段である可能性がある。しかし、おそらく本発明の複合体ポリペプチドのためにより有利であるものは、Cys1とCys2との間のジスルフィド結合の所望の形成において、および、したがって発現で得られる複合体ポリペプチドの総量においてHis-タグが有する、特殊な効果である。本効果は、EEDが、Cys1のN末端にHis-タグを有し、かつ所望のポリペプチドのC末端に位置づけられた場合;またはEEDが、Cys2のC末端にHis-タグを有し、所望のポリペプチドのN末端に位置づけられた場合に特に顕著であり、いずれの場合においても、His-タグはEEDと所望のポリペプチドとの接合点にある。理論に束縛されることはないが、本発明者らは、この特殊効果は以下のように説明され得ると考えている:ヒスチジンは一般的に正電荷を帯び、したがって反復ヒスチジンモチーフ中の個々のヒスチジン残基は、静電的に互いに反発する傾向があり、これによりヒスチジン残基の領域中においてポリペプチド鎖の伸長がもたらされる。EED中に、所望のポリペプチドとEEDとの間の接合点で本ヒスチジンモチーフを配置することにより、複合体ポリペプチドのこれらの2つの成分が、His-タグの長さが許す限り互いから遠く離れて伸長される。これは、Cys1およびCys2を含む一方のEED部分ともう一方の所望のポリペプチドとの間の不必要な相互作用の可能性を減少させる効果を有する。同時に、物理的にEEDを所望のポリペプチドから隔てることによって、Cys1およびCys2が互いにジスルフィド結合を形成する可能性が増加する。この理由は、本モデル中では、Cys1およびCys2が、残りの新生複合体ポリペプチドから多かれ少なかれ物理的に隔てられて存在しており;ジスルフィド結合の形成についてCys1またはCys2と競合する他のスルフヒドリル基の非存在下では、ジスルフィド結合は、Cys1およびCys2上の各スルフヒドリル基間に所望の様式で形成される可能性が高いためである。
本発明の特に好ましい態様において、j = 6であり、すなわち、EEDは(His)6-Cys1-(Xaa)n-Cys2-(Pro)m、またはCys1-(Xaa)n-Cys2-(His)6-(Pro)mの形態であり、式中、Xaa、n、およびmは、上記記載の通りである。
本発明のさらなる態様によれば、誘導体化されたCys1および/またはCys2は、例えば、マレイミド基、スルフヒドリル基、またはピリジルジスルフィド基を含む誘導体化成分とCys1残基および/またはCys2残基との反応生成物である。全てのこれらの化学基は、スルフヒドリルと共有結合的に反応する。本発明の本態様の利点は、複合体ポリペプチドの誘導体化における使用のための関心対象である誘導体化成分の大多数が、上記の基の1つによって官能化された形態で利用可能であることである。このように、本発明の複合体ポリペプチドは、様々な治療的および/または診断的目的のために、多種多様な様々な試薬によって誘導体化することができる。前述の基の中では、マレイミド基が特に好ましい。マレイミド基は、複合体ポリペプチド中の所望のポリペプチドに損傷を与える可能性が低い穏やかな反応条件下でスルフヒドリルとほぼ完全に反応し、システインの硫黄原子とマレイミド基の環の中の2つの不飽和炭素原子の1つとの間に強い共有結合形の化学結合を生じさせる。
本発明の特に好ましい態様において、マレイミド基を含む誘導体化成分は、PEG-マレイミド(「PEG-MAL」)、マレイミド官能化蛍光マーカー、マレイミド官能化アッセイ検出マーカー、マレイミド官能化放射性トレーサー、マレイミド官能化タンパク質架橋剤、マレイミド官能化化学療法剤、または例えばマレイミド官能化抗毒素であるマレイミド官能化毒物から選択される。PEG-MALの適した例は、メトキシPEG-MAL 5kD;メトキシPEG-MAL 20kD;メトキシ(PEG)2-MAL 40kD;メトキシPEG(MAL)2 5kD;メトキシPEG(MAL)2 20kD;メトキシPEG(MAL)2 40kD;または任意のそれらの組み合わせである。これらの試薬はいずれも、本発明の複合体ポリペプチドの血清半減時間を増加させる、および免疫原性を減少させることを包含する、ペグ化の公知の利点を付与する誘導体化成分として用いられ得る。マレイミド官能化蛍光マーカーの適した例は、ビオチン-マレイミド、およびジゴキシゲニン-マレイミドである。マレイミド官能化放射性トレーサーの適した例は、DTPA-マレイミドである。マレイミド官能化架橋剤の適した例は、そのN-ヒドロキシスクシンイミジル部分を介して他の化学種のフリーのアミノ基と反応し結合する、およびそのマレイミド部分を介して本発明の複合体ポリペプチドのCys1およびCys2の少なくとも1つと反応し結合する、N-ヒドロキシスクシンイミジル-マレイミド架橋種である。本架橋種は、そのN-ヒドロキシスクシンイミジル部分を介して、本発明の複合体ポリペプチドの、例えばグリコシル化、シリル化(silylation)、またはペクチニル化(pectinylation)を生じさせるために、好都合に使用され得る。
本発明のさらなる態様によれば、Cys1および/またはCys2は、スルフヒドリル基を含む誘導体化成分によって誘導体化され、ここで特に該誘導体化成分は、ジスルフィド結合によりCys1に結合したCys2である。Cys1がCys2とジスルフィド結合を形成するモデルは、上記で検討されている。スルフヒドリル基を含む誘導体化成分によるCys1またはCys2の誘導体化のさらなる例は、誘導体化成分が、本発明の複合体ポリペプチドとは別のポリペプチドまたはタンパク質である場合であり、誘導体化は、片側を本発明の複合体ポリペプチドのCys1および/またはCys2とし、他方側を別のポリペプチドまたはタンパク質のCys残基としてジスルフィド結合を形成することによって達成される。スルフヒドリル基を含む誘導体化成分のさらなる可能性は、5-チオ-2-ニトロ安息香酸(「TNB-チオール」)基を含む誘導体化成分である。
本発明のさらなる態様によれば、Cys1およびCys2の両方が誘導体化成分によって誘導体化される。これは、発明の複合体ポリペプチド分子当たり2つの誘導体化成分をもたらす。このような誘導体化は、画像化試薬としての使用が意図される複合体ポリペプチドを誘導体化する場合に特に有利であり得る。なぜならば、複合体ポリペプチド毎の二重誘導体化は、分子当たり1つのみの誘導体化成分によって誘導体化される複合体ポリペプチドを使用して生じる強度の、二倍の強度の画像化シグナルをもたらすためである。複合体ポリペプチド当たりの二重誘導体化はまた、複合体ポリペプチドが治療薬剤としての使用に意図される特定の状況下で有利であると想定される。例えば、治療的投与前の複合ポリペプチドのペグ化が望まれ、かつ総分子量40kDのPEG化が望まれる場合、1つの40kD PEG-MAL分子によるCys1またはCys2のみでの誘導体化よりも、2つの20kD PEG-MAL各分子によるCys1およびCys2での複合体ポリペプチドの誘導体化がより有利であることが判明し得る。一般に、Cys1およびCys2それぞれでの誘導体化は、本発明の複合体ポリペプチドを、過剰のモル濃度の誘導体化成分と反応させることによって達成することができる。
さらなる態様によれば、Cys1またはCys2のいずれかが第一の誘導体化成分によって誘導体化され、一方、Cys2およびCys1のもう片方が、第二の誘導体化成分によって誘導体化され、ここで、この第二の誘導体化は、それが結合するCys残基の妨害/保護以外のいかなる機能性も示さない。上記のモデルと反対に、一度だけ本発明の複合体ポリペプチドを誘導体化することは、例えば、複合体ポリペプチド中の所望のポリペプチドの生物活性と測定されるシグナルとの間に1:1の相関が必要である状況において複合体ポリペプチドを診断試薬として使用する場合に、時に有利であるかまたは必要である可能性がある。同様のモデルが想定される可能性があり、ここでは、即ち本発明の複合体ポリペプチドを1つの位置のみでペグ化することが、望ましいかまたは必要である。そのような場合、Cys1とCys2との間に存在するジスルフィド結合を還元するのに十分だが、所望のポリペプチド構造の全体にわたって存在する、所望のポリペプチドの構造を安定化するための他のいかなるジスルフィド結合も還元しない穏やかな還元条件下で、複合体ポリペプチドを好都合にインキュベートすることができる。ポリペプチド構造の安定化に関与するジスルフィド結合は、通常本ポリペプチド構造中に隠されており、従って、溶液中の還元薬剤が十分に接触できず、一方、より曝露されるC末端EEDは、一般により接触可能であるため、穏やかな条件下でのこのような選択的還元が、一般的に可能である。EED中のジスルフィド結合の開裂後、次いで、本発明の複合体ポリペプチドを、本発明の複合体ポリペプチドのモル量と同じかまたはわずかに少ないモル量の所望の第一の誘導体化成分と反応させる。本比率の正確な化学量論的調整が、使用する第一の誘導体化成分に応じて必要である場合があるが、このような調整は十分に当業者の専門的知識の範囲内である。
Cys1またはCys2のいずれかと第一の誘導体化成分との反応の後、単独で誘導体化された複合体ポリペプチドを、標準的な技術により単離してもよく、および好都合には、第二の誘導体化成分とのさらなる反応に供してもよい。第二の誘導体化成分の機能は、EED中の非誘導体化システイン残基の残存するフリーのスルフヒドリル基を不活性化することである。第二の誘導体化成分との反応が効率的なものとなることを確実にするために、本反応は、複合体ポリペプチドに対して、第二の誘導体化成分のモル過剰状態で好都合に実施されるべきである。この意味において、第二の誘導体化成分は、EED中の残存するフリーのシステイン残基と共有結合する任意の成分であってもよく、かつ、第一の誘導体化成分の文脈において言及された任意の結合化学作用を用いてもよい。第二の誘導体化成分の機能は、単にEED中に残存するシステイン残基を永久に不活性にするだけであるため、第二の誘導体化成分は、所望のポリペプチド、または、EED中の他のシステイン残基に結合した第一の誘導体化成分の意図された活性を妨げるべきではない。この理由のため、第二の誘導体化成分は化学的および静電的に不活性であり、かつ可能な限り小さいものであるべきである。特に好ましい第二の誘導体化成分はエチルマレイミドである。この第二の誘導体化成分はEED中に残存するシステイン残基のフリーのスルフヒドリル基と反応し、すでに上述した物質中に共有結合形のC-S結合を形成する。
本発明のさらなる態様によれば、所望のポリペプチドは、十分な発現が望まれる任意のポリペプチドであってもよい。これは、等電点、一次アミノ酸配列、または例えばグリコシル化もしくはリン酸化などの所望の翻訳後修飾に関係なく様々な大きさ(すなわち分子量)の全てのタンパク質およびポリペプチド分子を含む。この所望のポリペプチドは、好都合には、受容体、リガンド、または結合分子であってもよい。これは、原核生物または真核生物において発現されてもよく、かつ、それ自身天然のまたは組換えによる起源であってもよい。
本発明の特に好ましい態様によれば、所望のポリペプチドはポリペプチド構造の安定化に必要な、偶数のシステイン残基を有する。これは通常、ポリペプチド構造安定化のために必要である各ジスルフィド結合が2つのシステイン残基の存在を必要とすることから、特に、所望のポリペプチドが1本鎖ポリペプチド(すなわち、発現後、他のいかなるポリペプチド鎖とも相互作用を行わず、その結果、多連鎖ポリペプチド産物を形成しない)である場合に当てはまる。
本発明の特に好ましい態様によれば、所望のポリペプチドは抗体の形状の結合分子である。本発明の本態様の範囲内の「抗体」の意味中に包含されるものは、1本鎖の単一特異性抗体および二重特異性抗体、ならびに免疫グロブリン分子などの複数のポリペプチド鎖を含む抗体(それぞれ自身のEEDを有する、構成要素のポリペプチド鎖を発現することが有利であり得る)、またはダイアボディ(diabody)(それぞれ自身のEEDを有する、2つのscFv分子が、線状に頭尾結合し、2つの異なる抗原に結合することが可能な分子種を形成する)である。このような免疫グロブリン分子は、単一特異性(すなわち免疫グロブリンの2本の結合アームのそれぞれが同じ抗原に結合する)でもよく、または二重特異性(すなわち免疫グロブリンの2本の結合アームのそれぞれが異なる抗原に対して結合する)であってもよく、例えばハイブリッド-ハイブリドーマから得られるような二重特異性の免疫グロブリンであってもよい。
本発明の特に好ましい態様において、所望のポリペプチドは単一特異性1本鎖抗体である。本発明の意味の範囲内において、「単一特異性1本鎖抗体」という用語は、少なくとも1つの抗体可変領域を含む1本のポリペプチド鎖として理解され得る。この少なくとも1つの抗体可変領域は、例えば天然起源の抗体ライブラリ中に天然に存在してもよく、または天然に見出されるかもしくは由来する要素を含むがこれらの要素が天然では存在しないような組合せで存在するという点で、合成的に存在してもよい。あるいは、単一特異性1本鎖抗体は、天然の、および合成的な要素を両方含んでもよい。具体的には、「単一特異性1本鎖抗体」という用語の意味に含まれるものは、単一ドメイン抗体、scFv分子、ならびにそのヒト化および/または脱免疫化された変種である。
本発明の特に好ましいさらなる態様によれば、所望のポリペプチドは二重特異性1本鎖抗体であってもよい。本発明の意味の範囲内において、「二重特異性1本鎖抗体」という用語は、1本のポリペプチド鎖上に存在し、かつ好ましくは適切なポリペプチドスペーサ配列により互いに隔てられた、上記の2つの単一特異性1本鎖抗体として理解され得る。このようなスペーサの例は、例えばEP 623679 B1およびUS 5,258,498において見出され得る。このように、本複合体ポリペプチドは、誘導体化された二重特異性抗体の好都合な代表例であってもよい。
本発明のさらなる態様によれば、二重特異性1本鎖抗体は、エフェクター抗原に特異的に結合する第一の単一特異性1本鎖抗体(第一の結合部分)、および標的抗原に特異的に結合する第二の単一特異性1本鎖抗体(第二の結合部分)を含む。この一般的な構築物は、所望のポリペプチドが、結合したエフェクター抗原が例えば活性化されるように、その第一の結合部分によってエフェクター抗原に特異的に結合することができるという利点を有する。本エフェクター抗原に誘発されるこの生物活性は次いで、例えば、二重特異性1本鎖抗体の第二の部分が特異的に結合する標的抗原を有している細胞に向けられ得る。本明細書において、「第一の」および「第二の」という用語がポリペプチドのN末端またはC末端に対する抗体部分の位置についての限定を意味しないことが理解されるべきである。従って、複合体ポリペプチドが所望のポリペプチドを含み、当該所望のポリペプチド中において、エフェクター抗原に特異的に結合する第一の結合部分は、所望のポリペプチドのN末端またはC末端に向かって位置してもよいことが、本発明の本態様の範囲に含まれる。
本発明の特に好ましい態様において、エフェクター抗原は、CD3抗原、CD64抗原、CD89抗原、およびNKG2D抗原から選択される。本発明の他の好ましい態様では、標的抗原は、EpCAM、CCR5、CD19、HER-2neu、HER-3、HER-4、EGFR、PSMA、CEA、MUC-1(ムチン)、MUC2、MUC3、MUC4、MUC5AC、MUC5B、MUC7、hCG、ルイス-Y、CD20、CD33、CD30、ガングリオシドGD3、9-O-アセチル-GD3、GM2、Globo H、フコシルGM1、Poly SA、GD2、カルボアンヒドラーゼIX(MN/CA IX)、CD44v6、ソニックヘッジホッグ(Shh)、Wue-1、形質細胞抗原、(膜結合型)IgE、黒色腫コンドロイチン硫酸プロテオグリカン(MCSP)、CCR8、TNF-α前駆体、STEAP、メソセリン(mesothelin)、A33抗原、前立腺幹細胞抗原(PSCA)、Ly-6;デスモグレイン4、Eカドヘリンネオエピトープ、胎児のアセチルコリン受容体、CD25、CA19-9マーカー、CA-125マーカー、およびミュラー阻害物質(MIS)受容体II型、sTn(シアル酸付加Tn抗原; TAG-72)、FAP(繊維芽細胞活性化抗原)、エンドシアリン(endosialin)、EGFRvIII、LG、SAS、およびCD63から選択される。本明細書において、全ての上記の抗原(エフェクターおよび標的抗原の両方)は、ヒト抗原であり得る。
本発明の極めて好ましい態様において、標的抗原はヒトCD19抗原であり、一方エフェクター抗原はヒトCD3抗原である。このように、本態様は、細胞障害性T細胞の細胞毒性潜在能力をCD19抗原を有するBリンパ球に対して向けることが可能な、誘導体化された複合体ポリペプチドを提供する。このような薬物は、B細胞悪性腫瘍の処置における、治療薬剤としての大きな潜在能力を有する。その結果、同時に複合体ポリペプチドの免疫原性を低下させる一方で血清半減時間を増加させるために、1つまたは複数のPEG分子によりそのEED中のこのような複合体ポリペプチドを誘導体化することは、大きな関心対象である。
本発明の他の極めて好ましい態様において、標的抗原はヒトEpCAM抗原であり、一方エフェクター抗原はヒトCD3抗原である。このように、本態様は、細胞障害性T細胞の細胞毒性潜在能力をEpCAM抗原を有する細胞に対して向けることが可能な、誘導体化された複合体ポリペプチドを提供する。EpCAM抗原は、多くのヒトの悪性細胞において発現され;従ってこのような誘導体化された複合体ポリペプチドは、幅広いヒト癌の処置において大きな潜在能力を有する。上記の抗CD3xanti-CD19複合体ポリペプチドと同様に、1つまたは複数のPEG分子によりそのEED中のこのような抗CD3xanti-EpCAM複合体ポリペプチドを誘導体化することもまた、大きな関心対象である。
本発明のさらなる局面は、上記の複合体ポリペプチドの任意のものおよび薬学的に許容される担体を含む組成物に関する。
さらなる局面において、本発明は、複合体ポリペプチドが所望のポリペプチドを含み、かつ、所望のポリペプチドよりもより高収率で発現する、複合体ポリペプチドを生成する方法を提供し、該方法は以下を含む。
(a)所望のポリペプチドをコードするヌクレオチド配列を提供する段階;
(b)所望のポリペプチドをコードするヌクレオチド配列のどちらかの端に、発現増強ドメイン(「EED」)をコードするヌクレオチド配列を組み込む段階であって、EEDをコードしている該ヌクレオチド配列が第一および第二のシステインアミノ酸残基であるCys1およびCys2のコドンをそれぞれ含み、Cys1のコドンが、ヌクレオチド配列の5'末端に対してCys2のコドンよりも近くに位置し、ここで、Cys1およびCys2のコドンはポリペプチドリンカーをコードするヌクレオチド配列によって隔てられ、該リンカーはシステインを含まず; かつCys1およびCys2が分子内ジスルフィド結合で互いに結合することを可能にするのに十分な長さを定義する、段階;
(c)段階(b)からのヌクレオチド配列を、宿主の発現系に適切なベクターでトランスフェクトする段階;
(d) 段階(b)からのヌクレオチド配列の発現を生じさせるのに適切な条件下で宿主の発現系をインキュベートする段階;
(e)段階(d)において発現したポリペプチドを単離して複合体ポリペプチドを得る段階。
本発明のこの局面の好ましい態様は、Cys1および/またはCys2で段階(e)において得られた複合体ポリペプチドを誘導体化する、さらなる段階を含む。このような誘導体化は上述のように、すなわちCys1とCys2との間の分子内ジスルフィド結合(この分子内ジスルフィド結合自体は、誘導体化として認められる)を還元条件下(例えば、ジチオトレイトール(DTT)を使用する)で還元すること、続いて、還元された産物を、Cys1およびCys2の少なくとも1つのフリーのチオール基と反応する化学基を有する他の誘導体化成分と反応させることにより、実施してもよい。
ここで、以下の非制限的な図および実施例により本発明をさらに詳細に説明する。
本発明はここで、以下の非限定的な実施例によりさらに詳細に説明される。
実施例
実施例1:C末端(His)6-Cys-(Gly)4-Cys-Proタグを有するscFv(すなわち上記のEEDを有するscFv)のクローニングおよび発現
scFv分子、すなわち重鎖抗体可変領域および軽鎖抗体可変領域とそれらの間に配置される(Gly4Ser)3ポリペプチドリンカーとを統合するポリペプチドを、本発明の構想を実証するためのモデル分子として使用した。本scFvは、所定の抗原に特異的に結合し、この所定の抗原を以降「抗原」と称する。C末端(His)6-Cys-(Gly)4-Cys-Proタグを有するscFvをVL特異的プライマーを用いるPCR反応により構築し、一方scFvヌクレオチド配列は、(His)6-Cys-(Gly)x-Cys-Proモチーフの各ヌクレオチド配列
Figure 2012144552
のそれぞれによって独立して伸長させた。これにより、それぞれが長さの異なるグリシンリンカーにより隔てられた2つのシステイン残基を有するC末端タグを有する、4つの別々のscFvをコードする4つのヌクレオチド配列が得られた。このHisタグは、後の検出および精製段階において使用した。結果として生じたVL断片は、制限酵素認識部位SalIおよびNotI(PCRにより導入)を介して、pelBリーダー配列の後に対応するVHを含むpBADpelB(InvitrogenのベクターpBADMycA-Hisに由来)に、ペリプラズム(periplasmic)発現のためにサブクローニングした。熱ショック適格性の大腸菌(E.coli)XL1Blueへの形質転換の後単一のクローンを選択培地(LB、50μg/mlのカルベニシリン)において培養し、プラスミドを標準的なプロトコールに従って調製した。挿入物を配列決定することにより、クローニングの成功が確認された(Sequiserve, Munich)。
大腸菌BL21DE3を、1つまたは2つのC末端Cys残基を有する各scFvをコードする発現プラスミドによって形質転換し、選択寒天培地上で増殖させた。1つのコロニーを、5mlのLB、50 g/mlのカルベニシリンに終夜37℃で播種するために使用した。産生培養のため、20mMのMgCl2および50μg/mlのカルベニシリンを含有する、2lのシェーカフラスコ中の500mlのSB増殖培地に終夜培養物の細菌懸濁液を播種し、さらに37℃でインキュベートして、光学濃度をOD600で0.6〜0.8とした。タンパク質産生を、L-アラビノースを添加して最終濃度を0.2%とすること、および30℃に温度を低下させることによって誘導した。30℃で4時間の産生期の後に細菌を回収し、40mlのPBS中に再懸濁した。4回の-70℃での凍結および37℃での解凍を通して温度ショックにより外膜を破壊し、scFv断片を含む溶解性のペリプラズムタンパク質を液体中に遊離させた。遠心分離による無傷の細胞および細胞片の除去後、上清をELISA解析に使用した。
ペリプラズム調製物のELISA解析は、ProteinL(PBS中に2μg/ml)でコーティングされたELISAプレート(Nunc MaxiSorp)を使用して行った。コーティングは、終夜4℃で実施した。PBS 0.05%ツイーンによる洗浄後、プレートを、3% BSAを含有する100μl PBSによって室温で1時間ブロックした。洗浄後、50μlペリプラズムを加え、1:3に連続的に希釈し、室温で1時間インキュベートした。さらなる洗浄段階の後、ProteinLに結合したscFvの検出を、特に、ストレプトアビジン-HRP(Dako、1%のBSAを含有するPBS中1μg/ml)により検出される50μlの抗原-ビオチン(1.5μg/ml、PBS 1% BSAを含有する)を使用して行った。シグナルを、100μl ABTS(2,2'-アジノ-ジ[3-エチルベンズチアゾリンスルホナート(6)]二アンモニウム塩)-基質溶液を15〜30分間加えることにより検出した。OD値は、ELISAリーダーにより405nmの波長で測定した。結果は図1に示され、図中、「HCP」、「CH2GlyCP」、「HC3GlyCP」、「HC4GlyCP」、および「HC5GlyCP」はそれぞれ、以下を含むC末端タグを有するscFv分子を指す。
Figure 2012144552
図1に見られるように、抗原に結合したscFvについての最も高い収量は、2つのC末端システイン間のリンカーとして4つのグリシンを有する構築物で観察された。
実施例2:(His)6-Cys-Proタグ(すなわち上記のEEDを含まない)を有するscFvと比較した、(His)6-Cys-(Gly)4-Cys-Proタグ(すなわち上記のEED)を有するscFvのより高いタンパク質収量の確認
(His)6-Cys-(Gly)4-Cys-Proタグと共に伸長させたscFv(すなわち上記のEEDを有するscFv。図2で「4Gly」と称される)、および(His)6-Cys-Pro C末端タグと共に伸長させたscFv(すなわち上記のEEDを含まないscFv、図2で「HCP」と称される)のタンパク質発現レベルを比較した。両方の構築物は、大腸菌株BL21DE3を使用して小規模で分析した。それぞれの場合において、10個の異なるコロニーを、5mlのSB / 20mMのMgCl2 / 50μg/mlのカルベニシリン中に、37℃で4時間、振とう培養器において播種した。0.2%のL-アラビノースを細胞培養物に添加し、かつ温度を30℃に減少することによって再びタンパク質産生を開始した。終夜の誘導期の後、細胞を回収し、1mlのPBS中に再懸濁し、ペリプラズム画分を凍結/解凍方法により単離し、および、実施例1に説明したように、抗原特異的ELISAで分析した。本分析の結果を図2に示す。ELISAの結果は、C末端(His)6-Cys-Proモチーフを含むが第二のシステイン残基を欠いているscFv種と比較した、粗製ペリプラズム中に存在する(His)6-Cys-(Gly)4-Cys-Proタグ(「4Gly」)を有するscFvの有意に増加した収量を、明らかに示す。従って、C末端タグ(すなわち上記のEED)中の2つのシステイン残基間で制御された分子内ジスルフィド結合を形成する能力は明らかに、産生収量の増大の達成にとって極めて重要である。
ペリプラズム画分を、標準的なプロトコールに従った非還元SDS-PAGEおよびその後のウェスタンブロット法によってさらに分析した。Hisタグ付scFvの検出は、抗ペンタヒスチジン抗体、Qiagen(0.1%のBSAを含有するPBS中1μg/ml)を使用し、抗ペンタヒスチジン抗体をアルカリホスファターゼ結合ヤギ抗マウス抗体、Sigma(0.1%のBSAを含有するPBS中1μg/ml)で検出することによって達成した。BCIP/NBT基質溶液(Sigma, B-1911)を加えることによって、タンパク質ブロットを現像した。結果を図3に示す。
図3に示されるウエスタンブロットのレーン1および2は、C末端に(His)6-Proを有するscFvのバンドを示す。ウエスタンブロットにおけるscFvバンドの強度 -したがって、発現されるポリペプチドの総量 - は、ポリペプチドのC末端に(His)6-Cys-Proを有するscFvに対応するレーン3および4において大幅に減少することが認められた。ポリペプチドのC末端に(His)6-Cys-(Gly)4-Cys-Proを有するscFvに対応するレーン5および6は、レーン1および2で見られる強度に再度匹敵するバンド強度を示す。これは、単一のシステイン残基をscFvポリペプチドのC末端に加えることで生じるタンパク質発現の低下(レーン3および4)が、第一のシステイン残基からポリペプチドリンカーにより隔てられ、それによって2つのシステイン残基間のジスルフィド結合形成が可能になる、第二のシステイン残基を加えることにより回復したこと(レーン5および6)を、明らかに実証する。
まとめると、ELISA(図2)およびウエスタンブロット(図3)解析の結果は、1つのみのC末端のシステインを有するscFv構造物と比較した、2つのC末端システイン残基を有するscFv構造物の、より高いタンパク質/scFvの収量を明らかに示す。
実施例3:(His)6-Cys-(Gly)4-Cys-Proタグ(すなわち上記のEED)を有するscFvの精製
大腸菌BL21DE3を発現プラスミドによって形質転換し、選択寒天培地上で増殖させた。単一のコロニーを、5mlのLB、50μg/mlのカルベニシリンに終夜37℃で播種するために使用した。産生培養のため、2lのシェーカフラスコ中の500mlのSB / 20mMのMgCl2 / 50μg/mlのカルベニシリンに終夜培養物の細菌懸濁液を播種し、37℃で増殖させて、光学濃度をOD600で0.6〜0.8とした。タンパク質産生を、L-アラビノースを添加して最終濃度を0.2%とすること、および30℃に温度を低下させることによって誘導した。30℃で終夜の産生期の後に細菌を回収し、40mlのPBS中に再懸濁した。外膜を温度ショックにより破壊し、scFv断片を含む溶解性のペリプラズムタンパク質を液体中に遊離させた。遠心分離による無傷の細胞および細胞片の除去後、上清をさらなる精製に使用した。
SCA分子は、C末端Hisタグと相互作用するIMACアフィニティーカラムによって最初に精製した。これは、Qiagen Ni-NTAスーパーフローカラムを使用し、製造者より提供されるプロトコールに従って実施した。カラムは20mMのリン酸ナトリウム、0.4MのNaCl、pH 7.2によって平衡させ、ペリプラズム調製物(40ml)を2ml/minの流速でカラムにアプライした。その後、カラムを0.025Mのイミダゾールを含有する5カラム体積の平衡緩衝液により洗浄し、結合していない試料を除去した。溶出は、0.5Mのイミダゾールを含有する5カラム体積の平衡緩衝液を使用して行った。溶出したタンパク画分は、さらなる精製段階のためにプールした。
分子量の分離、すなわち多量体画分、二量体画分、および単量体画分への分離を達成するために、ゲル濾過クロマトグラフィを、PBS(Gibco)によって平衡したsuperdex S75調製グレードカラムで実施した。280nmの光の吸収の連続的な測定(流速1ml/min)によりモニタリングした溶出タンパク質を、標準的なSDS-PAGEに供した。結果を図4に示す。図4は、2つの溶出プロフィル、AおよびBを示し、下方のプロフィル(プロファイルA)はC末端(His)6-Cys-Proモチーフを有するscFvの溶出プロフィルであり、上方のプロファイル(プロファイルB)はC末端(His)6-Cys-(Gly)4-Cys-Proモチーフを有するscFv(すなわち上記のEEDを有するscFv)の溶出プロフィルである。明らかに認められるように、ジスルフィドループ形成のために第一のシステイン残基から十分に隔てられた、scFvのC末端部分への第二のシステイン残基の組込みは、より高い単量体:二量体産物比につながるだけではなく、単量体または二量体のアイソフォームにかかわりなくより高い全体的なタンパク質収量にもつながる。
この明らかな光学的分析は、アイソフォーム濃度の算出により確証される。このタンパク質濃度は、AUC値(UNICORNソフトウェアに決定される)および配列特異的吸光係数を使用して算出した。得られた濃度値は、下記の表1においてまとめられている。
Figure 2012144552
上記の表から、以下のことを言うことができる。第一に、そのC末端部分に単一のシステイン残基を有するscFvの単量体:二量体比は、約1:2.25である。scFvのC末端部分への第二のシステインの追加、ならびに第一および第二のシステイン残基間への適切なリンカーの配置によって、分子内ジスルフィド結合が促進され、得られたscFvの単量体:二量体比は約5.5倍増加して1:0.4となる。ポリペプチドアイソフォームにかかわらず全体的なポリペプチド収量の観点から見ると、単一のシステイン残基を有するscFvの収量は276.6μgであるところから、2つのシステイン残基を有するscFvの収量は775.2μgまで収量が増加しており、全体的なタンパク質発現において、約280%、すなわち約3倍の増加を示している。
ゲル濾過した単量体および二量体の画分の、SDS-PAGEによる非還元条件および還元条件下での分析(図5)は、そのC末端部分中に単一のシステインを有するscFvの二量体画分の約80%がジスルフィド結合により架橋された二量体であり、(図5、非還元ゲル、レーン2)、一方、そのC末端部分中に2つのシステイン残基を有するscFvの二量体画分は主に単量体として存在し、これは2つのC末端システイン残基間にジスルフィドループが形成されているためである(図5、非還元ゲル、レーン4)ことを明らかに示した。この二量体の単量体への分解(図5、非還元ゲル、レーン4)が、タンパク質-タンパク質間相互作用のみによって、この凝集が生じているのであって、ジスルフィド架橋に起因するものではないことを示している。図5のレーン1および3(還元条件および非還元条件)は対応する単量体画分を示す。
同じ試料を、還元ゲルにおいても泳動させた(図5)。(His)6-Cys-(Gly)4-Cys-Proタグを有さないscFvについて、レーン2は、非還元ゲル中において現れたすべての二量体が、2つの各ポリペプチド分子中のシステイン残基間における望ましくないジスルフィド結合の形成にまさに起因していることを示す。(His)6-Cys-(Gly)4-Cys-Proタグを有するscFvの、残りの非常にわずかな量の二量体についても同じことが言える(レーン4)。還元ゲル中のこの還元条件は、これらのジスルフィド結合を開裂させるために十分であり、したがって、観察される唯一のバンドはscFvポリペプチドの単量体種であり、このscFv中のどのシステイン残基も、他のいかなるシステイン残基とジスルフィド結合を形成し得ない。
実施例4:C末端(His)6-Cys-(Gly)4-Cys-Proタグを有するscFvおよび有さないscFvの、部位特異的ペグ化(Side directed PEGylation)
フリーのシステインのペグ化は、安定した均質なscFv-PEG複合体を生じさせるはずである。C末端(His)6-Cys-(Gly)4-Cys-Proタグを有する精製scFvおよびC末端(His)6-Cys-Proタグを有する精製scFvをそれぞれ含有する2つのタンパク質溶液を、最終濃度2mMのDTTと共に1時間室温でインキュベートすることによって末端ジスルフィド架橋を還元し、2つのフリーのスルフヒドリル基を生じさせた。
次いで、残りのDTTを除去するために、別々に、各ポリペプチドのゲル濾過(Sephadex G25 M、Amersham)を、ランニング緩衝液としてPBSを用いて実施した。mPEG-マレイミドMW 20 kD(Shearwater、2D2M0P01)を、PEG分子の10倍のモル過剰で各ポリペプチド試料の第一の半分量に加えた。「mPEG」という用語は本明細書において公知の意味を有し、すなわち「メトキシポリエチレングリコール」である。各ポリペプチド試料のもう一方の半分量を、対照として、10倍のモル過剰のエチルマレイミド(Sigma、E-1271)と共にインキュベートした。
各反応を、2時間撹拌しながら室温で行わせた。全ての試料を、非還元条件下のSDS-PAGEにより分析し、標準的なプロトコールに従って銀で染色した(Invitrogen、カタログ番号LC6100)。結果を図6に示す。
図6のレーン1は、そのC末端に(His)6-Cys-Proを有するscFvを表す。本システイン残基は、エチルマレイミドを用いた反応によりブロックされている。図6のレーン2は、そのC末端に(His)6-Cys-(Gly)4-Cys-Proを有するscFvを示し、ここで、両方のシステイン残基は、エチルマレイミドを用いた反応によりブロックされている。レーン1および2におけるバンドの相対的な強度(レーン2のバンドは、レーン1の同じ位置のバンドよりも極めて強い)は、単一のC末端システイン残基を有するscFvの発現時に達成される発現効率と、2つのC末端システイン残基を有するscFvの発現時に達成される発現効率を比較した際の効率増大の目安となる。
図6のレーン3は、単一のC末端システイン残基を有するscFvと分子量20kDのPEG-マレイミドとの結合の結果を示す。レーン3の上部に見られるように、PEG結合scFvの極めて弱いバンドのみが得られ、このバンドの弱さは、その発現収量が乏しく、それ故に単一のC末端システイン残基のみを有するscFvを使用して得られるscFvの絶対量が比較的少なくなるということを示しているものと思われる。明らかに対照的に、4-グリシンリンカーにより互いに隔てられた2つのC末端システイン残基を有するscFvが20kDのPEGと反応している図6のレーン4では、2本の別個のバンドが示されている。1本のバンドは対応する未反応の種と同じ分子量であり、これは20kDのPEGとの反応が完了まで進まなかったことを示している。もう一方の、より上方にある、より大きい分子量のバンドは、単一のC末端システイン残基のみを有するscFvのペグ化産物よりも大きい分子量であることから、20kDのPEGがscFvのC末端部分中の2つのシステイン残基の両方と反応していることを示している。scFvのC末端部分に1つではなく2つのシステイン残基を、4-グリシンリンカーで互いから隔てて組み込むことによってのみ、その後のペグ化反応のために十分なシステイン含有出発材料を得ることが可能であったことが、強調されるべきである。

Claims (22)

  1. 所望のポリペプチドおよび発現増強ドメイン(「EED」)を含み、該EEDが第一および第二のシステインアミノ酸残基Cys1およびCys2をそれぞれ含み、Cys1が複合体ポリペプチド分子のN末端に対してCys2よりも近くに位置し、ここでCys1およびCys2がポリペプチドリンカーによって隔てられ、該リンカーが、
    ・システインおよびプロリンを含まず;
    ・Cys1およびCys2が分子内ジスルフィド結合で互いに結合する事を可能にするために十分な長さを定義し;かつ
    ・水溶液中でポリペプチドの二次構造を本質的に含まない、柔軟なポリペプチド立体構造を有し
    ここでCys1およびCys2の少なくとも1つは、誘導体化成分によって誘導体化される、
    複合体ポリペプチド。
  2. リンカー中のアミノ酸残基の少なくとも75%が、Gly、Ala、Val、Leu、Ile、Ser、Thr、Met、Tyr、Asn、およびGlnから選択される、請求項1記載の複合体ポリペプチド。
  3. 1本鎖ポリペプチドである、請求項1または2記載の複合体ポリペプチド。
  4. EEDが複合体ポリペプチドのC末端またはN末端に位置する、前記請求項のいずれか一項記載の複合体ポリペプチド。
  5. EEDが以下の形態である、前記請求項のいずれか一項記載の複合体ポリペプチド:
    -Cys1-(Xaa)n-Cys2-(Pro)m、
    式中、
    ・nは2から20の任意の整数であり;
    ・mは0(ゼロ)または1であり;かつ
    ・Xaaは、各位置でGly、Ala、Thr、またはSerでもよい。
  6. n=4であり、および(Xaa)4が(Gly)4、(Gly)3Ser、(Gly)2SerGly、GlySer(Gly)2、またはGly(Ser)3である、請求項5記載の複合体ポリペプチド。
  7. n=5であり、および(Xaa)5が(Gly)5、(Gly)4Ser、(Gly)3SerGly、(Gly)2Ser(Gly)2、GlySer(Gly)3、またはSer(Gly)4である、請求項5記載の複合体ポリペプチド。
  8. EEDが以下の形態である、請求項5〜7のいずれか一項記載の複合体ポリペプチド:
    -His-His-His-His-His-His-Cys1-(Xaa)n-Cys2-(Pro)m;または
    -Cys1-(Xaa)n-Cys2-His-His-His-His-His-His-(Pro)m。
  9. 誘導体化されたCys1および/またはCys2が、マレイミド基、スルフヒドリル基、またはピリジルジスルフィド基を含む誘導体化成分とCys1残基および/またはCys2残基との反応生成物である、前記請求項のいずれか一項記載の複合体ポリペプチド。
  10. マレイミド基を含む誘導体化成分が、PEG-マレイミド(「PEG-MAL」)、マレイミド官能化蛍光マーカー、マレイミド官能化アッセイ検出マーカー、マレイミド官能化放射性トレーサー、またはマレイミド官能化タンパク質架橋剤から選択される、請求項9記載の複合体ポリペプチド。
  11. PEG-MALが以下から選択される、請求項10記載の複合体ポリペプチド:
    ・メトキシPEG-MAL 5 kD;
    ・メトキシPEG-MAL 20 kD;
    ・メトキシ(PEG)2-MAL 40 kD;
    ・メトキシPEG(MAL)2 5 kD;
    ・メトキシPEG(MAL)2 20 kD;
    ・メトキシPEG(MAL)2 40 kD;または
    ・これらの任意の組み合わせ。
  12. Cys1またはCys2が、5-チオ-2-ニトロ安息香酸(「TNB-チオール」)基またはスルフヒドリル基を含む誘導体化成分によって誘導体化され、特に該誘導体化成分が、ジスルフィド結合によりCys1に結合したCys2である、請求項9記載の複合体ポリペプチド。
  13. Cys1およびCys2の両方が誘導体化成分によって誘導体化される、前記請求項のいずれか一項記載の複合体ポリペプチド。
  14. Cys1またはCys2のいずれかが第一の誘導体化成分によって誘導体化され、一方、それぞれの他のCys2またはCys1がそれぞれ第二の誘導体化成分によって誘導体化される、請求項1〜12のいずれか一項記載の複合体ポリペプチド。
  15. 第二の誘導体化成分がエチルマレイミドである、請求項14記載の複合体ポリペプチド。
  16. 所望のポリペプチドが単一特異性1本鎖抗体または二重特異性1本鎖抗体から選択される、前記請求項のいずれか一項記載の複合体ポリペプチド。
  17. 二重特異性1本鎖抗体が、エフェクター抗原に特異的に結合する第一の部分、および標的抗原に特異的に結合する第二の部分を含む、請求項16記載の複合体ポリペプチド。
  18. エフェクター抗原が、ヒトCD3抗原、ヒトCD64抗原、ヒトCD89抗原、およびヒトNKG2D抗原から選択される、請求項17記載の複合体ポリペプチド。
  19. 標的抗原が、EpCAM、CCR5、CD19、HER-2neu、HER-3、HER-4、EGFR、PSMA、CEA、MUC-1(ムチン)、MUC2、MUC3、MUC4、MUC5AC、MUC5B、MUC7、hCG、ルイス-Y、CD20、CD33、CD30、ガングリオシドGD3、9-O-アセチル-GD3、GM2、Globo H、フコシルGM1、Poly SA、GD2、カルボ・アンヒドラーゼIX(MN/CA IX)、CD44v6、ソニックヘッジホッグ(Shh)、Wue-1、形質細胞抗原、(膜結合型)IgE、黒色腫コンドロイチン硫酸プロテオグリカン(MCSP)、CCR8、TNF-α前駆体、STEAP、メソセリン(mesothelin)、A33抗原、前立腺幹細胞抗原(PSCA)、Ly-6;デスモグレイン4、Eカドヘリンネオエピトープ、胎児のアセチルコリン受容体、CD25、CA19-9マーカー、CA-125マーカー、およびミュラー阻害物質(MIS)受容体II型、sTn(シアル酸付加Tn抗原; TAG-72)、FAP(繊維芽細胞活性化抗原)、エンドシアリン(endosialin)、EGFRvIII、LG、SAS、およびCD63から選択され、かつ全ての該抗原がヒト抗原である、請求項17または18記載の複合体ポリペプチド。
  20. 前記請求項のいずれか一項記載の複合体ポリペプチドおよび薬学的に許容される担体を含む組成物。
  21. 所望のポリペプチドを含みかつ所望のポリペプチドよりもより高収率で発現する請求項1〜19のいずれか一項記載の複合体ポリペプチドを生成する方法であって、以下を含む方法:
    (a)所望のポリペプチドをコードするヌクレオチド配列を提供する段階;
    (b)所望のポリペプチドをコードするヌクレオチド配列のどちらかの端に、発現増強ドメイン(「EED」)をコードするヌクレオチド配列を組み込む段階であって、EEDをコードしている該ヌクレオチド配列が第一および第二のシステインアミノ酸残基であるCys1およびCys2のコドンをそれぞれ含み、Cys1のコドンが、ヌクレオチド配列の5'末端に対してCys2のコドンよりも近くに位置し、ここで、Cys1およびCys2のコドンはポリペプチドリンカーをコードするヌクレオチド配列によって隔てられ、該リンカーはシステインを含まず; かつCys1およびCys2が分子内ジスルフィド結合で互いに結合することを可能にするのに十分な長さを定義するものである段階;
    (c)段階(b)からのヌクレオチド配列を、適切なベクターで宿主の発現系にトランスフェクトする段階;
    (d)段階(b)からのヌクレオチド配列の発現を生じさせるのに適切な条件下で宿主の発現系をインキュベートする段階;
    (e)段階(d)において発現したポリペプチドを単離して複合体ポリペプチドを得る段階。
  22. 段階(e)において得られた複合体ポリペプチドをCys1および/またはCys2で誘導体化するさらなる段階を含む、請求項21記載の方法。
JP2012057380A 2004-07-16 2012-03-14 発現増強ポリペプチド Pending JP2012144552A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04016890.8 2004-07-16
EP04016890 2004-07-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007520779A Division JP5014988B2 (ja) 2004-07-16 2005-07-15 発現増強ポリペプチド

Publications (2)

Publication Number Publication Date
JP2012144552A true JP2012144552A (ja) 2012-08-02
JP2012144552A5 JP2012144552A5 (ja) 2013-05-02

Family

ID=35229693

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007520779A Active JP5014988B2 (ja) 2004-07-16 2005-07-15 発現増強ポリペプチド
JP2012057380A Pending JP2012144552A (ja) 2004-07-16 2012-03-14 発現増強ポリペプチド

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007520779A Active JP5014988B2 (ja) 2004-07-16 2005-07-15 発現増強ポリペプチド

Country Status (12)

Country Link
US (1) US8518403B2 (ja)
EP (1) EP1769000B1 (ja)
JP (2) JP5014988B2 (ja)
KR (1) KR20070042967A (ja)
CN (1) CN101018809B (ja)
AU (1) AU2005263555B2 (ja)
CA (1) CA2570990C (ja)
EA (1) EA010374B1 (ja)
MX (1) MX2007000387A (ja)
NZ (1) NZ552745A (ja)
WO (1) WO2006008096A1 (ja)
ZA (1) ZA200610478B (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136311A (en) 1996-05-06 2000-10-24 Cornell Research Foundation, Inc. Treatment and diagnosis of cancer
WO2007109321A2 (en) 2006-03-20 2007-09-27 The Regents Of The University Of California Engineered anti-prostate stem cell antigen (psca) antibodies for cancer targeting
CN101245110B (zh) * 2007-02-16 2010-09-15 鲁南制药集团股份有限公司 重组中性粒细胞抑制因子和水蛭原嵌合蛋白及其药物组合物
WO2009032949A2 (en) * 2007-09-04 2009-03-12 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (psca) antibodies for cancer targeting and detection
JP5951929B2 (ja) * 2007-10-03 2016-07-13 コーネル ユニヴァーシティー Psma抗体を用いる増殖性障害の治療
RU2582244C2 (ru) * 2008-06-30 2016-04-20 ИЭсБиЭйТЕК, ЭН АЛЬКОН БАЙОМЕДИКАЛ РИСЕРЧ ЮНИТ ЭлЭлСи Функционализированные полипептиды
US20100069616A1 (en) * 2008-08-06 2010-03-18 The Regents Of The University Of California Engineered antibody-nanoparticle conjugates
AU2009299791B2 (en) * 2008-10-01 2016-02-25 Amgen Research (Munich) Gmbh Cross-species-specific PSCAxCD3, CD19xCD3, C-METxCD3, EndosialinxCD3, EpCAMxC D3, IGF-1RxCD3 or FAPalpha xCD3 bispecific single chain antibody
CN102171248B (zh) * 2008-10-01 2015-07-15 安进研发(慕尼黑)股份有限公司 种间特异性PSMAxCD3双特异性单链抗体
EP2398504B1 (en) * 2009-02-17 2018-11-28 Cornell Research Foundation, Inc. Methods and kits for diagnosis of cancer and prediction of therapeutic value
JP2011026294A (ja) * 2009-06-26 2011-02-10 Canon Inc 化合物
SG176947A1 (en) * 2009-07-03 2012-01-30 Avipep Pty Ltd Immuno-conjugates and methods for producing them
US8993715B2 (en) * 2009-07-06 2015-03-31 Canon Kabushiki Kaisha Labeled protein and method for obtaining the same
WO2011069019A2 (en) 2009-12-02 2011-06-09 David Ho J591 minibodies and cys-diabodies for targeting human prostate specific membrane antigen (psma) and methods for their use
US9315581B2 (en) 2009-12-23 2016-04-19 A Vipep Pty Limited Immuno-conjugates and methods for producing them
UA118950C2 (uk) 2011-04-22 2019-04-10 Аптево Рісьорч Енд Девелопмент Ллс Поліпептид, який зв'язує специфічний мембранний антиген простати та комплекс т-клітинного рецептора
EP2825553B1 (en) * 2012-03-14 2018-07-25 Regeneron Pharmaceuticals, Inc. Multispecific antigen-binding molecules and uses thereof
JO3519B1 (ar) 2013-01-25 2020-07-05 Amgen Inc تركيبات أجسام مضادة لأجل cdh19 و cd3
US9212225B1 (en) 2014-07-01 2015-12-15 Amphivena Therapeutics, Inc. Bispecific CD33 and CD3 binding proteins
CN108289949B (zh) 2015-05-29 2022-04-12 安普希韦纳治疗公司 双特异性cd33和cd3结合蛋白质的使用方法
RU2765242C2 (ru) 2015-08-07 2022-01-27 Имаджинаб, Инк. Антигенсвязывающие конструкции против молекул-мишеней
AU2016326449A1 (en) 2015-09-21 2018-03-22 Aptevo Research And Development Llc CD3 binding polypeptides
EP3448891A1 (en) 2016-04-28 2019-03-06 Regeneron Pharmaceuticals, Inc. Methods of making multispecific antigen-binding molecules
AU2018219887A1 (en) 2017-02-08 2019-08-22 Dragonfly Therapeutics, Inc. Multi-specific binding proteins for activation of natural killer cells and therapeutic uses thereof to treat cancer
WO2018147960A1 (en) 2017-02-08 2018-08-16 Imaginab, Inc. Extension sequences for diabodies
BR112019017197A2 (pt) 2017-02-20 2020-04-14 Dragonfly Therapeutics Inc proteínas que se ligam a her2, nkg2d e cd16
JP2021512630A (ja) 2018-02-08 2021-05-20 ドラゴンフライ セラピューティクス, インコーポレイテッド Nkg2d受容体を標的とする抗体可変ドメイン
CN110668984B (zh) * 2019-12-03 2020-04-10 凯莱英医药集团(天津)股份有限公司 一种依特卡肽中间体及依特卡肽的合成方法
US11617767B2 (en) 2020-11-20 2023-04-04 Simcere Innovation, Inc. Armed dual CAR-T compositions and methods for cancer immunotherapy
CN117285647A (zh) * 2022-06-17 2023-12-26 南京北恒生物科技有限公司 靶向ccr8的嵌合抗原受体及其用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739277A (en) * 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
WO2001004135A2 (en) * 1999-07-13 2001-01-18 The Regents Of The University Of Michigan Crosslinked dna condensate compositions and gene delivery methods
US20030044423A1 (en) * 2001-03-07 2003-03-06 Lexigen Pharmaceuticals Corp. Expression technology for proteins containing a hybrid isotype antibody moiety

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013653A (en) * 1987-03-20 1991-05-07 Creative Biomolecules, Inc. Product and process for introduction of a hinge region into a fusion protein to facilitate cleavage
US5932448A (en) * 1991-11-29 1999-08-03 Protein Design Labs., Inc. Bispecific antibody heterodimers
NZ522847A (en) * 2000-05-16 2004-11-26 Bolder Biotechnology Inc Methods for refolding proteins containing free cysteine residues
AU6976201A (en) * 2000-06-09 2001-12-24 Us Health Pegylation of linkers improves antitumor activity and reduces toxicity of immunoconjugates
JP2004507231A (ja) * 2000-06-15 2004-03-11 アメリカ合衆国 免疫応答を向上させるための、gm−csfを発現する組換え非−複製性ウィルスおよびその使用
CN1195779C (zh) * 2001-05-24 2005-04-06 中国科学院遗传与发育生物学研究所 抗人卵巢癌抗人cd3双特异性抗体
EP1497634A4 (en) * 2001-11-08 2007-02-07 Applied Research Systems PROTEIN KNOT
CA2707443A1 (en) * 2007-11-30 2009-06-11 Bristol-Myers Squibb Company Conjugates of anti-rg-1 antibodies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739277A (en) * 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
WO2001004135A2 (en) * 1999-07-13 2001-01-18 The Regents Of The University Of Michigan Crosslinked dna condensate compositions and gene delivery methods
US20030044423A1 (en) * 2001-03-07 2003-03-06 Lexigen Pharmaceuticals Corp. Expression technology for proteins containing a hybrid isotype antibody moiety

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6011010977; 'Journal of Biochemistry' 1997, Vol.121, pp.831-834 *
JPN6011010978; 'Protein Expression and Purification' 2001, Vol.21, pp.156-164 *
JPN6011010979; 'Biochimica et Biophysica Acta' April 2004, Vol.1663, pp.158-166 *
JPN6011010981; 'The Journal of Immunology' 1997, Vol.158, pp.2242-2250 *
JPN6011010983; 'Protein Engineering' 2003, Vol.16, No.10, pp.761-770 *

Also Published As

Publication number Publication date
AU2005263555A1 (en) 2006-01-26
MX2007000387A (es) 2007-03-28
CN101018809B (zh) 2012-07-18
EP1769000A1 (en) 2007-04-04
EP1769000B1 (en) 2014-12-24
JP2008506659A (ja) 2008-03-06
AU2005263555B2 (en) 2011-01-27
ZA200610478B (en) 2008-04-30
US20090053223A1 (en) 2009-02-26
CA2570990C (en) 2014-01-21
JP5014988B2 (ja) 2012-08-29
EA200700292A1 (ru) 2007-06-29
EA010374B1 (ru) 2008-08-29
WO2006008096A1 (en) 2006-01-26
CA2570990A1 (en) 2006-01-26
KR20070042967A (ko) 2007-04-24
CN101018809A (zh) 2007-08-15
US8518403B2 (en) 2013-08-27
NZ552745A (en) 2009-01-31

Similar Documents

Publication Publication Date Title
JP5014988B2 (ja) 発現増強ポリペプチド
JP2008506659A5 (ja)
JP7076152B2 (ja) IgG結合ペプチドによる抗体の特異的修飾
JP7481852B2 (ja) 免疫リガンド/ペイロード複合体の生産方法
JP3280376B2 (ja) 多価抗原結合性蛋白質
Kipriyanov et al. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures
EP0938571B1 (en) Method for the oligomerisation of peptides
EP0338745B1 (en) Method for producing recombinant DNA proteins
CN105722855B (zh) 恒定链经修饰的双特异性五价和六价Ig-M抗体
US20070274985A1 (en) Antibody
AU2021215151B2 (en) SIRP-alpha variant constructs and uses thereof
WO2007044887A2 (en) Method for producing a population of homogenous tetravalent bispecific antibodies
Albrecht et al. Monospecific bivalent scFv-SH: effects of linker length and location of an engineered cysteine on production, antigen binding activity and free SH accessibility
JP4112859B2 (ja) 分子物質を結合させる方法
JP5735972B2 (ja) グリコシル化リピートモチーフ分子結合体
WO2017143839A1 (zh) 基于内含肽的药用重组蛋白的合成方法
WO2001094547A2 (en) Molecular delivery vehicle for delivery of selected compounds to targets
JP2561113B2 (ja) 細胞接着活性ポリペプチド
JP7440516B2 (ja) 切断多価多量体
KR20190114550A (ko) 단백질-단백질 결합체를 형성 매개 펩타이드 및 이를 이용한 단백질-단백질 결합체 형성 방법

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140806