JP2012127541A - Plate type heat exchanger - Google Patents

Plate type heat exchanger Download PDF

Info

Publication number
JP2012127541A
JP2012127541A JP2010277415A JP2010277415A JP2012127541A JP 2012127541 A JP2012127541 A JP 2012127541A JP 2010277415 A JP2010277415 A JP 2010277415A JP 2010277415 A JP2010277415 A JP 2010277415A JP 2012127541 A JP2012127541 A JP 2012127541A
Authority
JP
Japan
Prior art keywords
heat transfer
portions
heat
plate
exchange fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010277415A
Other languages
Japanese (ja)
Other versions
JP5085723B2 (en
Inventor
Nobuo Tanaka
信雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP2010277415A priority Critical patent/JP5085723B2/en
Publication of JP2012127541A publication Critical patent/JP2012127541A/en
Application granted granted Critical
Publication of JP5085723B2 publication Critical patent/JP5085723B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plate type heat exchanger which can block the circulation of fluid in a gap formed along a connection part where a heat transfer part of a heat transfer plate and a sealing part are connected to each other without increasing the amount used of brazing material for brazing the heat transfer plates to each other.SOLUTION: The plate type heat exchanger is configured such that a first flow path for circulating heat exchange fluid which is partitioned by respective heat transfer parts while a plurality of heat transfer plates provided with the heat transfer part formed of a plurality of recessed stripes and protruded stripes on both surfaces thereof and the sealing part of an endless ring-shape extended from the whole circumference of outer circumference of the heat transfer part in the direction surface-crossing to the heat transfer part, and a second flow path for circulating fluid to be thermally exchanged are alternately formed, wherein each heat transfer plate is brazed such that a straight line-shaped or a flat surface-shaped contact part which is straightly extended between the heat transfer part and the sealing part is formed on at least one place of the connection part between the heat transfer part adjacent to the area where the heat transfer parts are brought into contact with each other and the sealing part, and the heat transfer parts are brought into surface-contact with each other and the contact parts of the heat transfer plates are superimposed on each other and are brazed.

Description

本発明は、熱交換流体と被熱交換流体とを熱交換させるプレート式熱交換器に関する。   The present invention relates to a plate heat exchanger that exchanges heat between a heat exchange fluid and a heat exchange fluid.

従来から、熱交換器には、種々タイプのものがあり、その一つとして、図13及び図14(a)に示す如く、複数枚の伝熱プレート1’…,2’…を備え、該複数枚の伝熱プレート1’…,2’…が積層された状態で互いにロウ付けされることで、各伝熱プレート1’…,2’…を境にして熱交換流体CM’を流通させる第一流路R1’と被熱交換流体W’を流通させる第二流路R2’とが交互に形成されたプレート式熱交換器A’が周知である(例えば、特許文献1参照)。   Conventionally, there are various types of heat exchangers, and as one of them, as shown in FIGS. 13 and 14 (a), a plurality of heat transfer plates 1 ′, 2 ′,. A plurality of heat transfer plates 1 '..., 2' ... are brazed together so that the heat exchange fluid CM 'flows through the heat transfer plates 1' ..., 2 '... as a boundary. A plate heat exchanger A ′ in which a first flow path R1 ′ and a second flow path R2 ′ through which a heat exchange fluid W ′ is circulated is alternately formed is well known (see, for example, Patent Document 1).

この種のプレート式熱交換器A’は、各伝熱プレート1’,2’が金属プレートをプレス成形して形成されており、隣り合う伝熱プレート1’,2’同士が嵌合した状態になっている。   In this type of plate heat exchanger A ′, each heat transfer plate 1 ′, 2 ′ is formed by press-molding a metal plate, and adjacent heat transfer plates 1 ′, 2 ′ are fitted together. It has become.

より具体的に説明すると、各伝熱プレート1’,2’は、図13に示す如く、少なくとも四つの開口(採番しない)が形成されるとともに両面に複数の凹条及び凸条(採番しない)が形成された伝熱部10’,20’と、該伝熱部10’,20’に対して面交差する方向に伝熱部10’,20’の外周全周から延出した無端環状の封止部11’,21’とを備えている。   More specifically, each of the heat transfer plates 1 ′ and 2 ′ has at least four openings (not numbered) as shown in FIG. 13 and a plurality of concave and convex lines (numbered) on both sides. And endlessly extending from the entire outer periphery of the heat transfer portions 10 'and 20' in a direction intersecting the heat transfer portions 10 'and 20'. Annular sealing portions 11 'and 21' are provided.

これにより、上記構成の伝熱プレート1’,2’は、複数枚積層された状態で隣り合う伝熱プレート1’,2’が伝熱部10’,20’同士を対向させつつ封止部11’,21’同士が嵌合した状態になるように構成されている。また、上記構成の伝熱プレート1’,2’は、複数枚積層された状態で隣り合う伝熱プレート1’,2’の伝熱部10’,20’の互いに対向する一方の面同士が両端のそれぞれにある少なくとも一つの開口周辺で面接触する(図14(b)参照)とともに、隣り合う伝熱プレート1’,2’の伝熱部10’,20’の互いに対向する他方の面同士が両端のそれぞれにある残りの開口周辺で面接触するように形成されている。   As a result, the heat transfer plates 1 'and 2' having the above-described configuration are sealed while the heat transfer plates 1 'and 2' adjacent to each other in a stacked state are opposed to each other. 11 'and 21' are comprised so that it may be in the state fitted. In addition, the heat transfer plates 1 ′ and 2 ′ having the above-described configuration are configured such that one surface of the heat transfer portions 10 ′ and 20 ′ of the heat transfer plates 1 ′ and 2 ′ adjacent to each other in a stacked state is opposed to each other. The other surfaces of the heat transfer portions 10 ′ and 20 ′ of the adjacent heat transfer plates 1 ′ and 2 ′ that face each other at the periphery of at least one opening at each end (see FIG. 14B). They are formed so as to be in surface contact with each other around the remaining openings at both ends.

そして、この種のプレート式熱交換器A’は、積層された複数枚の伝熱プレート1’…,2’…の封止部11’,12’同士がロウ付けされることで、各伝熱部10’,20’を境にして前記第一流路R1’と前記第二流路R2’とが交互に形成されている。また、該プレート式熱交換器Aは、隣り合う伝熱プレート1’,2’の伝熱部10’,20’の開口回りで面接触した部分がロウ付けされることで、第一流路R1’に対して熱交換流体CM’を流出入させる熱交換流体流入路31a’及び熱交換流体流出路31b’が形成されるとともに、第二流路R2’に対して被熱交換流体W’を流出入させる被熱交換流体流入路32a’及び被熱交換流体流出路32b’が形成されている。   And this kind of plate-type heat exchanger A ′ has a plurality of laminated heat transfer plates 1 ′, 2 ′,... The first flow path R1 ′ and the second flow path R2 ′ are alternately formed with the thermal sections 10 ′ and 20 ′ as a boundary. In addition, the plate heat exchanger A has a first flow path R1 by brazing a portion in surface contact around the openings of the heat transfer portions 10 ′ and 20 ′ of the adjacent heat transfer plates 1 ′ and 2 ′. A heat exchange fluid inflow passage 31a ′ and a heat exchange fluid outflow passage 31b ′ for flowing in and out of the heat exchange fluid CM ′ are formed, and a heat exchange fluid W ′ is supplied to the second flow path R2 ′. A heat exchange fluid inflow passage 32a ′ and a heat exchange fluid outflow passage 32b ′ are formed to flow in and out.

特許第4554025号公報Japanese Patent No. 4554025

ところで、上記構成のプレート式熱交換器A’は、伝熱部10’,20’に形成された開口が当該伝熱部10’,20’の端縁近傍に配置されることがある。この場合、図14(b)に示す如く、熱交換流体流入路31a’等の流路を形成した状態で、隣り合う伝熱プレート1’2’は、開口から伝熱部10’,20’の端縁まで密着した状態になるが、伝熱プレート1’,2’が金属プレートをプレス成形して形成されることで伝熱部10’,20’と封止部11’,21’との接続部分(以下、接続部という)12’,22’が円弧状に形成されるため、伝熱部10’,20’同士を密接させた領域の周囲にある接続部12’,22’間に隙間G’が形成されてしまう。   By the way, in the plate heat exchanger A ′ having the above-described configuration, the openings formed in the heat transfer portions 10 ′ and 20 ′ may be arranged near the edges of the heat transfer portions 10 ′ and 20 ′. In this case, as shown in FIG. 14 (b), the heat transfer plates 1'2 'adjacent to each other in the state in which the flow path such as the heat exchange fluid inflow passage 31a' is formed are opened from the opening to the heat transfer portions 10 ', 20'. The heat transfer plates 1 'and 2' are formed by press-molding a metal plate so that the heat transfer portions 10 'and 20' and the sealing portions 11 'and 21' Since the connecting portions (hereinafter referred to as connecting portions) 12 'and 22' are formed in an arc shape, between the connecting portions 12 'and 22' around the area where the heat transfer portions 10 'and 20' are in close contact with each other A gap G ′ is formed in the gap.

すなわち、各伝熱プレート1’,2’は、円弧状に形成された接続部12’,22’の内側の曲率半径と外側の曲率半径とが相違するため、複数枚積層した状態で伝熱プレート1’,2’の伝熱部10’,20’同士が密接した領域に隣接する接続部12’,22’間に該接続部12’,22’に沿った隙間G’が形成されてしまう。特に、伝熱部10’,20’に対する封止部11’,12’の延出角度が直角に近い場合には前記接続部12’,22’の曲率半径が小さくなるため、隣り合う伝熱プレート1’,2’の接続部12’,22’同士の間隔(隙間G’)が大きくなってしまう。   That is, each of the heat transfer plates 1 ′ and 2 ′ has a heat transfer in a state where a plurality of the heat transfer plates 1 ′ and 2 ′ are laminated because the inner and outer radii of the connecting portions 12 ′ and 22 ′ formed in an arc shape are different. A gap G ′ along the connection portions 12 ′ and 22 ′ is formed between the connection portions 12 ′ and 22 ′ adjacent to the region where the heat transfer portions 10 ′ and 20 ′ of the plates 1 ′ and 2 ′ are in close contact with each other. End up. In particular, when the extension angles of the sealing portions 11 ′ and 12 ′ with respect to the heat transfer portions 10 ′ and 20 ′ are close to a right angle, the curvature radii of the connection portions 12 ′ and 22 ′ become small, so that adjacent heat transfer The space | interval (gap G ') between connection part 12', 22 'of plate 1', 2 'will become large.

そうすると、この種のプレート式熱交換器A’は、図14(a)に示す如く、接続部12’,22’間に形成された隙間G’が隣り合う伝熱部10’20’同士の密接していない領域(図14(a)では第二流路R2’)と連通した状態になり、熱交換流体又は被熱交換流体が前記隙間G’に流れ込んでしまう。   Then, as shown in FIG. 14A, this type of plate heat exchanger A ′ has a gap G ′ formed between the connecting portions 12 ′ and 22 ′ between the adjacent heat transfer portions 10′20 ′. It will be in the state connected with the area | region (2nd flow path R2 'in Fig.14 (a)) which is not closely_contact | adhering, and a heat exchange fluid or a heat exchange fluid will flow into the said clearance gap G'.

その結果、この種のプレート式熱交換器A’は、前記隙間G’内に入り込んだ流体(熱交換流体又は被熱交換流体の何れか一方)が相手方の流体(熱交換流体又は被熱交換流体の何れか他方)の熱影響を受けることになり、運転と停止とを切り換えると、隙間G’内の流体に温度変化に伴う体積変化(膨張及び収縮)が生じ、伝熱プレート1’,2’の接続部12’,22’(伝熱部10’,20’と封止部11’,21’との境界部分)を破損させてしまうことがある。特に、この種のプレート式熱交換器A’を蒸発器として使用した場合(熱交換流体CM’に冷媒を採用した場合)、前記隙間G’に流れ込んだ被熱交換流体W’が冷媒CM’による熱影響で凍結することがある。そのため、この種のプレート式熱交換器Aを蒸発器として使用した場合、運転と停止との切り換えに伴う被熱交換流体W’の体積変化が顕著になり、伝熱プレート1’,2’の接続部12’,22’が破損する可能性が高くなる。   As a result, in this type of plate heat exchanger A ′, the fluid (either the heat exchange fluid or the heat exchange fluid) that has entered the gap G ′ is the other fluid (heat exchange fluid or heat exchange fluid). If one of the fluids is affected by the heat and switching between operation and stop, the fluid in the gap G ′ undergoes a volume change (expansion and contraction) due to a temperature change, and the heat transfer plate 1 ′, 2 'connection parts 12' and 22 '(boundary part of heat-transfer parts 10' and 20 'and sealing parts 11' and 21 ') may be damaged. In particular, when this type of plate heat exchanger A ′ is used as an evaporator (when a refrigerant is employed as the heat exchange fluid CM ′), the heat exchange fluid W ′ flowing into the gap G ′ is the refrigerant CM ′. May freeze due to heat effects. Therefore, when this type of plate heat exchanger A is used as an evaporator, the volume change of the heat exchange fluid W ′ accompanying switching between operation and stop becomes significant, and the heat transfer plates 1 ′ and 2 ′ There is a high possibility that the connecting portions 12 'and 22' will be damaged.

また、この種のプレート式熱交換器A’には、隣り合う伝熱プレート1’,2’の伝熱部10’,20’同士を密接させて伝熱部10’,20’の端縁から該端縁と交差する方向に延びる仕切りを形成して伝熱部10’,20’間の空間を複数の領域に区切ったものもあるが、この場合においても、複数枚の伝熱プレート1’,2’を積層した状態で伝熱プレート1’,2’の伝熱部10’,20’同士が密接した領域(仕切りを形成する領域)に隣接する接続部12’,22’間に隙間G’が形成されてしまう。そのため、この種のプレート式熱交換器は、仕切りで区画した領域が隙間G’を介して連通し、熱交換流体や被熱交換流体等の流体が隙間G’を通って隣の領域に流れこんでしまう虞がある。   Further, in this type of plate heat exchanger A ′, the heat transfer portions 10 ′ and 20 ′ of the adjacent heat transfer plates 1 ′ and 2 ′ are brought into close contact with each other, and the edges of the heat transfer portions 10 ′ and 20 ′. In some cases, a space extending between the heat transfer portions 10 'and 20' is divided into a plurality of regions by forming a partition extending in a direction intersecting with the end edge. In this case as well, a plurality of heat transfer plates 1 are used. Between the connection portions 12 'and 22' adjacent to the region (region forming the partition) where the heat transfer portions 10 'and 20' of the heat transfer plates 1 'and 2' are in close contact with each other in a state where 'and 2' are stacked. A gap G ′ is formed. Therefore, in this type of plate heat exchanger, the region partitioned by the partition communicates through the gap G ′, and the fluid such as the heat exchange fluid and the heat exchange fluid flows to the adjacent region through the gap G ′. There is a risk of it falling.

このように接続部12’,22’間に形成される隙間G’に熱交換流体や被熱交換流体等の流体を流入させない方法としては、例えば、伝熱プレート1’2’同士をロウ付けするに当たって大量のロウ材を使用して前記隙間G’を埋めることも考えられるが、このようにロウ材で隙間G’を埋めるとプレート式熱交換器A’が重くなるうえに、材料コストを高騰させてしまうといった問題がある。   As a method for preventing the fluid such as the heat exchange fluid and the heat exchange fluid from flowing into the gap G ′ formed between the connecting portions 12 ′ and 22 ′ as described above, for example, the heat transfer plates 1′2 ′ are brazed together. In doing so, it is conceivable to use a large amount of brazing material to fill the gap G ', but if the gap G' is filled with brazing material in this way, the plate heat exchanger A 'becomes heavy and the material cost is reduced. There is a problem of making it soar.

そこで、本発明は、斯かる実情に鑑み、伝熱プレート同士をロウ付けするためのロウ材の使用量を増加させることなく、伝熱プレートの伝熱部と封止部とを接続する接続部分に沿って形成される隙間での流体の流通を阻止することのできるプレート式熱交換器を提供することを課題とする。   Therefore, in view of such circumstances, the present invention is a connection portion that connects the heat transfer portion and the sealing portion of the heat transfer plate without increasing the amount of brazing material used for brazing the heat transfer plates. It is an object of the present invention to provide a plate heat exchanger that can prevent the fluid from flowing through a gap formed along the plate.

本発明に係るプレート式熱交換器は、金属プレートをプレス成形した複数枚の伝熱プレートを備え、各伝熱プレートは、両面に複数の凹条及び凸条の形成された伝熱部と、該伝熱部に対して面交差する方向に伝熱部の外周全周から延出した無端環状の封止部とを備え、前記封止部同士が嵌合するように複数枚の伝熱プレートが重ね合わされた状態で少なくとも隣り合う伝熱プレートの封止部同士、及び伝熱部に形成された開口回り同士がロウ付けされることで、各伝熱部を境にして熱交換流体を流通させる第一流路と被熱交換流体を流通させる第二流路とが交互に形成され、且つ前記開口が積層方向に連なって第一流路に対して熱交換流体を流出入させる熱交換流体流入路及び熱交換流体流出路が形成されるとともに、第二流路に対して被熱交換流体を流出入させる被熱交換流体流入路及び被熱交換流体が形成されたプレート式熱交換器において、各伝熱プレートは、伝熱部同士が面接触する領域に隣接した伝熱部と封止部との接続部分の少なくとも一カ所に、伝熱部と封止部との間で真っ直ぐに延びる直線状又は平面状の接触部が形成され、伝熱部同士を面接触させて隣り合う伝熱プレートの前記接触部同士が重なり合ってロウ付けされていることを特徴とする。   The plate heat exchanger according to the present invention includes a plurality of heat transfer plates obtained by press-molding a metal plate, and each heat transfer plate includes a heat transfer portion in which a plurality of concave and convex strips are formed on both sides, An endless annular sealing portion extending from the entire outer periphery of the heat transfer portion in a direction intersecting the surface of the heat transfer portion, and a plurality of heat transfer plates so that the sealing portions are fitted to each other The heat exchange fluid flows through each heat transfer section as a boundary by brazing at least the sealing parts of adjacent heat transfer plates and the openings around the heat transfer parts in a state where the heat transfer plates are stacked. Heat exchange fluid inflow passages in which the first flow passage and the second flow passage through which the heat exchange fluid flows are alternately formed, and the opening is continuous in the stacking direction and allows the heat exchange fluid to flow into and out of the first flow passage. And a heat exchange fluid outflow path is formed, and heat is applied to the second flow path. In the plate heat exchanger in which the heat exchange fluid inflow passage for allowing the exchange fluid to flow in and out and the heat exchange fluid are formed, each heat transfer plate includes a heat transfer portion adjacent to a region where the heat transfer portions are in surface contact with each other. A linear or planar contact portion that extends straight between the heat transfer portion and the sealing portion is formed in at least one of the connection portions with the sealing portion, and the heat transfer portions are adjacent to each other in surface contact. The contact portions of the heat transfer plate overlap each other and are brazed.

上記構成のプレート式熱交換器によれば、各伝熱プレートは、伝熱部と封止部との接続部分の少なくとも一カ所に伝熱部と封止部との間で真っ直ぐに伸びる直線状又は平面状の接触部が形成され、第二流路を形成すべく隣り合う伝熱プレートの前記接触部同士が重なり合ってロウ付けされているため、複数枚の伝熱プレートを積層した状態で伝熱プレートの接続部分に沿って形成される隙間が閉じられた状態になる。   According to the plate heat exchanger configured as described above, each heat transfer plate has a linear shape that extends straight between the heat transfer section and the sealing section at least at one of the connection portions between the heat transfer section and the sealing section. Alternatively, a planar contact portion is formed, and the contact portions of adjacent heat transfer plates are overlapped and brazed so as to form the second flow path, so that a plurality of heat transfer plates are stacked. The gap formed along the connecting portion of the heat plate is closed.

すなわち、上記構成のプレート式熱交換器は、各伝熱プレートが金属プレートをプレス成形したものであるため、伝熱部と封止部との接続部分の大部分が湾曲した状態で形成される。そのため、重ね合わされた伝熱プレートの伝熱部と封止部との接続部分間に隙間が形成されることになるが、伝熱部と封止部との接続部分の少なくとも一カ所に伝熱部と封止部との間で真っ直ぐに伸びる直線状又は平面状の接触部が形成され、伝熱部同士を面接触させて隣り合う伝熱プレートの前記接触部同士が重なり合ってロウ付けされているため、ロウ付けされた接触部同士が隙間を仕切ることになり、伝熱プレートの伝熱部と封止部とを接続する接続部分に沿って形成される隙間における流体の流通を阻止することができる。   That is, the plate-type heat exchanger having the above configuration is formed in a state in which most of the connection portion between the heat transfer portion and the sealing portion is curved because each heat transfer plate is formed by press-molding a metal plate. . Therefore, a gap is formed between the connection portions of the heat transfer plate and the sealing portion of the stacked heat transfer plates, but the heat transfer is performed in at least one of the connection portions of the heat transfer portion and the sealing portion. A linear or flat contact portion extending straight between the sealing portion and the sealing portion is formed, and the heat transfer portions are brought into surface contact with each other and the contact portions of the adjacent heat transfer plates are overlapped and brazed. Therefore, the brazed contact portions separate the gap, and the fluid flow in the gap formed along the connection portion connecting the heat transfer portion and the sealing portion of the heat transfer plate is prevented. Can do.

なお、この場合、伝熱プレートが金属プレートをプレス成形して形成されることで、伝熱部と封止部との接続部分は、接触部の両側(接触部と伝熱部との接続部分及び接触部と封止部との接続部分)が湾曲した態様になるが、接触部が伝熱部と封着部との間で真っ直ぐに形成されることで当該接触部が伝熱部及び封着部に対して鈍角で傾斜した態様となる結果、当該接触部の両側の湾曲部分(円弧状をなす部分)の曲率半径が大きくなる。これにより、隣り合う伝熱プレートの前記接続部分において、接触部の両側での隙間が極めて小さくなる。従って、接触部同士をロウ付けするのに必要なロウ材が接触部の両側に流れることで隙間が埋め尽くされ、当該部分においても流体の流通は阻止されることになる。   In this case, the heat transfer plate is formed by press-molding a metal plate, so that the connection part between the heat transfer part and the sealing part is on both sides of the contact part (the connection part between the contact part and the heat transfer part). And the connecting portion between the contact portion and the sealing portion) are curved. However, the contact portion is formed straight between the heat transfer portion and the sealing portion, so that the contact portion becomes the heat transfer portion and the sealing portion. As a result of being inclined at an obtuse angle with respect to the wearing portion, the radius of curvature of the curved portions (arc-shaped portions) on both sides of the contact portion is increased. Thereby, in the said connection part of an adjacent heat exchanger plate, the clearance gap in the both sides of a contact part becomes very small. Therefore, the brazing material necessary for brazing the contact portions flows to both sides of the contact portions, so that the gap is filled up and the fluid is prevented from flowing in the portions.

本発明の一態様として、各伝熱プレートの前記接続部分は、前記接触部と、該接触部と伝熱部とを接続する第一湾曲部と、前記接触部と封止部とを接続する第二湾曲部とで構成され、隣り合う二つの伝熱プレートのうちの一方の伝熱プレートの第一湾曲部及び第二湾曲部の外側の曲率半径と、封止部を前記一方の伝熱プレートの封止部に外嵌させる他方の伝熱プレートの第一湾曲部及び第二湾曲部の内側の曲率半径とが同一に設定されていることが好ましい。このようにすれば、隣り合う伝熱プレートにおける伝熱部と封止部との接続部分において、接触部に加えて第一湾曲部同士及び第二湾曲部同士が確実に密接した状態になり、接続部分に沿って形成される隙間を確実に遮断することができる。   As one aspect of the present invention, the connection portion of each heat transfer plate connects the contact portion, a first bending portion that connects the contact portion and the heat transfer portion, and the contact portion and the sealing portion. The first curved portion of one of the two adjacent heat transfer plates and the radius of curvature outside the second curved portion, and the sealing portion as the one heat transfer. It is preferable that the curvature radius inside the 1st curved part and the 2nd curved part of the other heat-transfer plate fitted on the sealing part of a plate is set identically. In this way, in the connection part between the heat transfer part and the sealing part in the adjacent heat transfer plate, in addition to the contact part, the first curved parts and the second curved parts are surely in close contact with each other, A gap formed along the connecting portion can be reliably blocked.

以上のように、本発明のプレート式熱交換器によれば、伝熱プレート同士をロウ付けするためのロウ材の使用量を増加させることなく、伝熱プレートの伝熱部と封止部とを接続する接続部分に沿って形成される隙間での流体の流通を阻止することができるといった優れた効果を奏し得る。   As described above, according to the plate heat exchanger of the present invention, without increasing the amount of brazing material used to braze the heat transfer plates, the heat transfer portion and the sealing portion of the heat transfer plate The fluid can be prevented from flowing in the gap formed along the connecting portion connecting the two.

本発明の一実施形態に係るプレート式熱交換器の概略斜視図であって、(a)は、プレート式熱交換器の正面側から見た概略斜視図を示し、(b)は、プレート式熱交換器の背面側から見た概略斜視図を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic perspective view of the plate type heat exchanger which concerns on one Embodiment of this invention, Comprising: (a) shows the schematic perspective view seen from the front side of the plate type heat exchanger, (b) is plate type The schematic perspective view seen from the back side of the heat exchanger is shown. 同実施形態に係るプレート式熱交換器の中間位置にある伝熱プレートを省略した状態の概略分解斜視図を示す。The general | schematic disassembled perspective view of the state which abbreviate | omitted the heat-transfer plate in the intermediate position of the plate type heat exchanger which concerns on the same embodiment is shown. 同実施形態に係るプレート式熱交換器に採用される一方の伝熱プレートの説明図であって、(a)は、伝熱部の一方の面側から見た正面図を示し、(b)は、伝熱部の他方の面側から見た背面図を示す。It is explanatory drawing of one heat-transfer plate employ | adopted as the plate type heat exchanger which concerns on the same embodiment, Comprising: (a) shows the front view seen from the one surface side of the heat-transfer part, (b) These show the rear view seen from the other surface side of a heat-transfer part. 同実施形態に係るプレート式熱交換器に採用される他方の伝熱プレートの説明図であって、(a)は、伝熱部の他方の面側から見た正面図を示し、(b)は、伝熱部の一方の面側から見た背面図を示す。It is explanatory drawing of the other heat-transfer plate employ | adopted as the plate type heat exchanger which concerns on the same embodiment, Comprising: (a) shows the front view seen from the other surface side of the heat-transfer part, (b) These show the rear view seen from the one surface side of a heat-transfer part. 同実施形態に係るプレート式熱交換器の伝熱プレートにおける接続部を含む部分拡大断面図であって、(a)は、一方の伝熱プレートの仕切用凸部の形成領域と対応する領域での部分拡大断面図を示し、(b)は、他方の伝熱プレートの仕切用凸部の形成領域と対応する領域での部分拡大断面図を示す。It is a partial expanded sectional view including the connection part in the heat exchanger plate of the plate type heat exchanger which concerns on the embodiment, Comprising: (a) is an area | region corresponding to the formation area of the convex part for a partition of one heat exchanger plate. (B) shows the partial expanded sectional view in the area | region corresponding to the formation area of the convex part for a partition of the other heat-transfer plate. (a)は、同実施形態に係るプレート式熱交換器の仕切部近傍の部分拡大断面図を示し、(b)は、同実施形態に係るプレート式熱交換器を構成する伝熱プレート同士の接合部分の部分拡大図であって、開口(第一開口、第二開口、第三開口、第四開口、第五開口、第六開口)回りに設けられた環状凸部同士(第一環状凸部同士、第二環状凸部同士、第三環状凸部同士、第四環状凸部同士、第六環状凸部同士)を接合させた部分の概略図を示す。(A) shows the partial expanded sectional view of the partition part vicinity of the plate-type heat exchanger which concerns on the same embodiment, (b) is between the heat-transfer plates which comprise the plate-type heat exchanger which concerns on the same embodiment. It is the elements on larger scale of a joined part, Comprising: The cyclic | annular convex parts (1st cyclic | annular convex) provided around the opening (1st opening, 2nd opening, 3rd opening, 4th opening, 5th opening, 6th opening) The schematic of the part which joined parts, 2nd annular convex parts, 3rd annular convex parts, 4th annular convex parts, 6th annular convex parts) is shown. 同実施形態に係るプレート式熱交換器の部分拡大断面図であって、(a)は、接触部のない部分での仕切部を含む部分横断面図を示し、(b)は、接触部のある部分での仕切部を含む部分横断面図を示す。It is a partial expanded sectional view of the plate type heat exchanger concerning the embodiment, (a) shows a partial transverse sectional view including a partition part in a part without a contact part, (b) shows a contact part. The partial cross-sectional view containing the partition part in a certain part is shown. 同実施形態に係るプレート式熱交換器の部分拡大斜視図であって、接触部、第一湾曲部、及び第二湾曲部の形成された接続部を含む部分拡大斜視図を示す。It is a partial expansion perspective view of the plate-type heat exchanger which concerns on the same embodiment, Comprising: The partial expansion perspective view containing the connection part in which the contact part, the 1st bending part, and the 2nd bending part were formed is shown. 同実施形態に係るプレート式熱交換器の縦断面図に冷媒、被熱交換流体、及び加熱流体の流れを付記した図であって、(a)は、第一パス領域及び第二パス領域における第一流路での断面図を示し、(b)は、第一パス領域における第二流路内での断面図を示し、(c)は、第二パス領域における第二流路内での断面図を示す。It is the figure which added the flow of the refrigerant | coolant, the heat exchange fluid, and the heating fluid to the longitudinal cross-sectional view of the plate type heat exchanger which concerns on the embodiment, Comprising: (a) is in a 1st path | pass area | region and a 2nd path | pass area | region. A cross-sectional view in the first flow path is shown, (b) shows a cross-sectional view in the second flow path in the first pass region, (c) is a cross-section in the second flow path in the second pass region The figure is shown. 本発明の他実施形態に係るプレート式熱交換器の全体斜視図を示す。The whole perspective view of the plate type heat exchanger concerning other embodiments of the present invention is shown. 図10に示すプレート式熱交換器の部分分解斜視図を示す。The partial exploded perspective view of the plate type heat exchanger shown in FIG. 10 is shown. 図10に示すプレート式熱交換器の部分拡大断面図であって、接触部の形成された部位の接続部を含む部分拡大断面図を示す。It is a partial expanded sectional view of the plate type heat exchanger shown in FIG. 10, Comprising: The partial expanded sectional view containing the connection part of the site | part in which the contact part was formed is shown. 従来のプレート式熱交換器の部分分解斜視図を示す。The partial exploded perspective view of the conventional plate type heat exchanger is shown. 従来のプレート式熱交換器の部分拡大断面図であって、(a)は、伝熱プレート間に流路の形成された部位の部分断面図を示し、(b)は、伝熱プレートの伝熱部同士が密接した領域とその領域と隣接する接続部を含む部分拡大断面図を示す。It is the partial expanded sectional view of the conventional plate type heat exchanger, Comprising: (a) shows the fragmentary sectional view of the site | part in which the flow path was formed between heat exchanger plates, (b) is the heat transfer of a heat exchanger plate. The partial expanded sectional view containing the connection part which adjoins the area | region which heat parts closely_contact | adhered to the area | region is shown.

以下、本発明の一実施形態に係るプレート式熱交換器について、添付図面を参照しつつ説明する。   Hereinafter, a plate heat exchanger according to an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施形態に係るプレート式熱交換器は、空調機や冷凍機等に搭載される冷凍システムの蒸発器として採用されるもので、図1及び図2に示す如く、複数の伝熱プレート1…,2…を備え、該複数の伝熱プレート1…,2…が積層されることで形成されている。   The plate heat exchanger according to the present embodiment is employed as an evaporator of a refrigeration system mounted on an air conditioner, a refrigerator or the like, and as shown in FIGS. 1 and 2, a plurality of heat transfer plates 1. , 2... And the plurality of heat transfer plates 1, 2.

各伝熱プレート1,2は、図3及び図4に示す如く、平面視略四角形状(本実施形態においては平面視略長方形状)の伝熱部10,20と、該伝熱部10,20と面交差する方向に該伝熱部10,20の外周から延出した環状の封止部11,21とを備えている。より具体的に説明すると、本実施形態に係る伝熱プレート1,2は、金属プレート(本実施形態においてはステンレス合金製のプレート)をプレス成形することで形成されたもので、図5(a)及び図5(b)に示す如く、伝熱部10,20と封止部11,21との接続部分(以下、接続部12,22という)が円弧状に形成されている。すなわち、伝熱プレート1,2は、伝熱部10,20と、該伝熱部10,20の外周全周に接続された接続部12,22と、該接続部12,22の全周から延出した封止部11,21とで構成されている。そして、各伝熱プレート1,2は、隣り合う伝熱プレート1,2の封止部11,21同士を嵌合させた状態で伝熱部10,20同士が対向するようになっている(図2参照)。   As shown in FIGS. 3 and 4, each of the heat transfer plates 1 and 2 includes a heat transfer section 10 or 20 having a substantially rectangular shape in plan view (in the present embodiment, a substantially rectangular shape in plan view), 20 are provided with annular sealing portions 11, 21 extending from the outer periphery of the heat transfer portions 10, 20 in a direction crossing the surface 20. More specifically, the heat transfer plates 1 and 2 according to the present embodiment are formed by press-molding a metal plate (a plate made of a stainless alloy in the present embodiment). ) And FIG. 5 (b), connecting portions (hereinafter referred to as connecting portions 12, 22) between the heat transfer portions 10, 20 and the sealing portions 11, 21 are formed in an arc shape. That is, the heat transfer plates 1 and 2 are connected to the heat transfer portions 10 and 20, the connection portions 12 and 22 connected to the entire outer periphery of the heat transfer portions 10 and 20, and the entire periphery of the connection portions 12 and 22. It is comprised by the extended sealing parts 11 and 21. FIG. And each heat-transfer plate 1 and 2 are the heat-transfer parts 10 and 20 facing each other in the state which fitted the sealing parts 11 and 21 of the adjacent heat-transfer plates 1 and 2 ( (See FIG. 2).

各伝熱プレート1,2は、図3(a)及び図4(b)に示す如く、伝熱部10,20を一方向で二つの領域に区画するように、該伝熱部10,20の一方の面上に一方向と直交する他方向に延びる仕切用凸部100,200が形成されている。なお、図3、図4、及び図7において、平面視で伝熱部10,20から突出した部分(仕切用凸部100,200や後述する第一乃至第六環状凸部101〜106等)にハッチングを付している。   As shown in FIGS. 3 (a) and 4 (b), each of the heat transfer plates 1 and 2 has the heat transfer portions 10 and 20 so as to partition the heat transfer portions 10 and 20 into two regions in one direction. On one surface, partitioning convex portions 100 and 200 extending in the other direction orthogonal to the one direction are formed. 3, 4, and 7, portions protruding from the heat transfer portions 10 and 20 in plan view (partitioning convex portions 100 and 200, first to sixth annular convex portions 101 to 106 described later, and the like). Are hatched.

本実施形態に係る仕切用凸部100,200は、伝熱プレート1,2を積層した状態で互いに対向する伝熱部10,20の一方の面上に該伝熱部10,20の長手方向と直交する方向(以下、短手方向という)に延びるように形成されている。該仕切用凸部100,200は、伝熱部10,20の一方の面に対して短手方向の全長に亘って形成されている。すなわち、仕切用凸部100,200は、伝熱部10,20の短手方向の一端から同方向の他端にまで形成されている。本実施形態に係る仕切用凸部100,200は、短手方向の両端部が伝熱部10,20の端縁に向けて拡大するように形成されている。なお、各伝熱プレート1,2は、上述の如く、金属プレートをプレス成形することで形成されているため、伝熱部10,20の他方の面(一方の面の裏面)には、仕切用凸部100,200と対応して短手方向に延びる凹部(溝)が形成されている(図3(b)及び図4(a)参照)。   The partitioning convex portions 100 and 200 according to the present embodiment are arranged in the longitudinal direction of the heat transfer portions 10 and 20 on one surface of the heat transfer portions 10 and 20 facing each other in a state where the heat transfer plates 1 and 2 are stacked. It is formed so as to extend in a direction orthogonal to the direction (hereinafter referred to as a short direction). The partition convex portions 100 and 200 are formed over the entire length in the short direction with respect to one surface of the heat transfer portions 10 and 20. That is, the partitioning convex portions 100 and 200 are formed from one end in the short direction of the heat transfer portions 10 and 20 to the other end in the same direction. The partitioning convex portions 100 and 200 according to the present embodiment are formed such that both end portions in the short direction expand toward the end edges of the heat transfer portions 10 and 20. Since each of the heat transfer plates 1 and 2 is formed by press-molding a metal plate as described above, the other surface (the back surface of one surface) of the heat transfer portions 10 and 20 has a partition. A concave portion (groove) extending in the short direction is formed corresponding to the convex portions 100, 200 for use (see FIGS. 3B and 4A).

これにより、各伝熱プレート1,2の伝熱部10,20は、仕切用凸部100,200(及びその裏面側に形成された凹部)を境にして長手方向で二つの領域A1,A2に区画されている。   Accordingly, the heat transfer portions 10 and 20 of the heat transfer plates 1 and 2 are divided into two regions A1 and A2 in the longitudinal direction with the partitioning convex portions 100 and 200 (and the concave portions formed on the back side thereof) as a boundary. It is divided into.

本実施形態に係る仕切用凸部100,200は、図6(a)に示す如く、頂部が平面状に形成されており、隣り合う伝熱プレート1,2の仕切用凸部100,200の頂部(平面)同士が面接触するようになっている。該仕切用凸部100,200は、伝熱プレート1,2の一方の面間(空間)を、温度の異なる流体を流通させる二つの流路(後述する第二流路R2及び第三流路R3)に区切る仕切部30を形成するためのものである。   As shown in FIG. 6A, the partitioning convex portions 100 and 200 according to the present embodiment have a flat top portion, and the partitioning convex portions 100 and 200 of the adjacent heat transfer plates 1 and 2 are formed. The tops (planes) are in surface contact with each other. The partitioning convex portions 100 and 200 include two flow paths (a second flow path R2 and a third flow path, which will be described later) through which fluids having different temperatures flow between one surface (space) of the heat transfer plates 1 and 2. R3) is used to form a partition 30.

図3(a)及び図4(b)に戻り、前記仕切用凸部100,200は、伝熱プレート1,2(伝熱部10,20)の長手方向(一方向)における一端側に偏った位置に設けられている。すなわち、仕切用凸部100,200は、伝熱部10,20の長手方向の中央よりも一端側に設けられている。これにより、伝熱部10,20は、仕切用凸部100,200によって区画された二つの領域のうち、長手方向の一端側の領域(以下、第一領域という)A1よりも他端側の領域(以下、第二領域という)A2が広くなっている。第二領域A2の長手方向の長さは、水等の被熱交換流体Wを流通させるのに必要な流路長(熱交換流体CMと被熱交換流体Wを熱交換させるのに必要な流路長)以上に設定される。   Returning to FIG. 3A and FIG. 4B, the partitioning convex portions 100 and 200 are biased toward one end side in the longitudinal direction (one direction) of the heat transfer plates 1 and 2 (heat transfer portions 10 and 20). It is provided at the position. That is, the partitioning convex portions 100 and 200 are provided on one end side of the center in the longitudinal direction of the heat transfer portions 10 and 20. Thereby, the heat-transfer parts 10 and 20 are the other area | region side rather than the area | region (henceforth 1st area | region) A1 of the one end side of a longitudinal direction among the two area | regions divided by the convex parts 100 and 200 for a partition. A region (hereinafter referred to as a second region) A2 is widened. The length in the longitudinal direction of the second region A2 is the flow path length necessary for circulating the heat exchange fluid W such as water (the flow necessary for heat exchange between the heat exchange fluid CM and the heat exchange fluid W). Road length) or more.

本実施形態に係るプレート式熱交換器Aは、上述の如く、各伝熱プレート1,2が伝熱部10,20と面交差する方向に該伝熱部10,20の外周から延出した封止部11,21を備えているため、互いに隣り合う伝熱プレート1,2のうち、一方の伝熱プレート1は、図3(a)に示す如く、仕切用凸部100が封止部11の延出側とは反対側に突出するように形成され、他方の伝熱プレート2は、図4(b)に示す如く、仕切用凸部200が封止部21と同方向に突出するように形成されている。すなわち、本実施形態に係るプレート式熱交換器Aは、図3及び図4に示す如く、仕切用凸部100,200及び後述する開口(第一開口H1、第二開口H2、第三開口H3、第四開口H4、第五開口H5、第六開口H6)回りの環状凸部(第一環状凸部101,201、第二環状凸部102,202、第三環状凸部103,203、第四環状凸部104,204、第五環状凸部105,205、第六環状凸部106,206)の突出方向を異にする二種類の伝熱プレート1,2を交互に積層することで形成されている(図2参照)。   In the plate heat exchanger A according to the present embodiment, as described above, the heat transfer plates 1 and 2 extend from the outer periphery of the heat transfer portions 10 and 20 in a direction intersecting the heat transfer portions 10 and 20. Since the sealing portions 11 and 21 are provided, of the heat transfer plates 1 and 2 adjacent to each other, one of the heat transfer plates 1 has a partition convex portion 100 as the sealing portion as shown in FIG. 11 is formed so as to protrude to the side opposite to the extending side, and the other heat transfer plate 2 has a partitioning protruding portion 200 protruding in the same direction as the sealing portion 21 as shown in FIG. It is formed as follows. That is, the plate-type heat exchanger A according to the present embodiment includes partition projections 100 and 200 and openings described later (first opening H1, second opening H2, third opening H3, as shown in FIGS. , Fourth opening H4, fifth opening H5, sixth opening H6) around the annular projections (first annular projections 101, 201, second annular projections 102, 202, third annular projections 103, 203, Formed by alternately stacking two types of heat transfer plates 1 and 2 with different projecting directions of the four annular convex portions 104 and 204, the fifth annular convex portions 105 and 205, and the sixth annular convex portions 106 and 206). (See FIG. 2).

各伝熱プレート1,2は、伝熱部10,20に複数の開口が形成されている。より具体的に説明すると、各伝熱プレート1,2は、第一領域A1に大口径の開口が一つ設けられるとともに、該大口径の開口よりも小口径の開口が二つ設けられている。また、各伝熱プレート1,2は、第二領域A2に大口径の開口が伝熱部10,20の長手方向に間隔をあけて三つ設けられている。   Each of the heat transfer plates 1 and 2 has a plurality of openings formed in the heat transfer portions 10 and 20. More specifically, each of the heat transfer plates 1 and 2 is provided with one large-diameter opening in the first region A1 and two smaller-diameter openings than the large-diameter opening. . Each of the heat transfer plates 1 and 2 is provided with three large-diameter openings in the second region A2 at intervals in the longitudinal direction of the heat transfer portions 10 and 20.

第一領域A1及び第二領域A2に設けられた大口径の開口は、伝熱プレート1,2(伝熱部10,20)の短手方向の中央部上で伝熱プレート1,2(伝熱部10,20)の長手方向で一列をなすように配置されている。なお、以下の説明において、伝熱プレート1,2の長手方向に一列で整列する四つの開口(第一領域A1及び第二領域A2に設けられた大口径の開口)を伝熱部10,20の一端側から他端側に向けて順に第一開口H1、第二開口H2、第三開口H3、第四開口H4といい、第一領域A1にある小口径の開口を第五開口H5及び第六開口H6ということとする。   The large-diameter openings provided in the first area A1 and the second area A2 are arranged on the heat transfer plates 1 and 2 (heat transfer plates 1 and 2 (heat transfer sections 10 and 20) on the center in the short direction of the heat transfer plates 1 and 2 (heat transfer sections 10 and 20). They are arranged in a row in the longitudinal direction of the heat parts 10, 20). In the following description, four openings (large-diameter openings provided in the first area A1 and the second area A2) aligned in a line in the longitudinal direction of the heat transfer plates 1 and 2 are defined as the heat transfer sections 10 and 20. The first opening H1, the second opening H2, the third opening H3, and the fourth opening H4 are sequentially called from one end side to the other end side, and the small-diameter opening in the first region A1 is the fifth opening H5 and the fourth opening H4. Let it be a six-opening H6.

前記第一開口H1は、第一領域A1内の伝熱部10,20の長手方向の一端側に偏った位置に配置されている。第二領域A2にある第二開口H2、第三開口H3、第四開口H4のうち、第二開口H2は、第二領域A2内の伝熱部10,20の長手方向の一端側に配置され、第三開口H3及び第四開口H4は、第二領域A2内の伝熱部10,20の長手方向の他端側に配置されている。   Said 1st opening H1 is arrange | positioned in the position biased to the one end side of the longitudinal direction of the heat-transfer parts 10 and 20 in 1st area | region A1. Of the second opening H2, the third opening H3, and the fourth opening H4 in the second region A2, the second opening H2 is disposed on one end side in the longitudinal direction of the heat transfer sections 10 and 20 in the second region A2. The third opening H3 and the fourth opening H4 are arranged on the other end side in the longitudinal direction of the heat transfer parts 10 and 20 in the second region A2.

そして、第五開口H5及び第六開口H6は、第一領域A1で第一開口H1の両側に配置されている。本実施形態において、第五開口H5及び第六開口H6は、伝熱部10,20の短手方向に一列をなすように配置されている。   The fifth opening H5 and the sixth opening H6 are arranged on both sides of the first opening H1 in the first region A1. In the present embodiment, the fifth opening H5 and the sixth opening H6 are arranged in a line in the short direction of the heat transfer units 10 and 20.

そして、第一開口H1、第三開口H3、第四開口H4、第五開口H5、及び第六開口H6は、それぞれ略真円状に形成される一方、第二開口H2は、伝熱プレート1,2の長手方向に長軸が設定された楕円形状に形成されている。   The first opening H1, the third opening H3, the fourth opening H4, the fifth opening H5, and the sixth opening H6 are each formed in a substantially circular shape, while the second opening H2 is the heat transfer plate 1. , 2 are formed in an elliptical shape with a major axis set in the longitudinal direction.

各伝熱プレート1,2の伝熱部10,20には、第一開口H1、第二開口H2、第三開口H3、第四開口H4、第五開口H5、第六開口H6のそれぞれを独立して包囲する環状凸部101,102,103,104,105,106,201,202,203,204,205,206が形成されている。なお、以下において、各環状凸部101,102,103,104,105,106,201,202,203,204,205,206を第一開口H1乃至第六開口H6のそれぞれに対応させて第一環状凸部101,201、第二環状凸部102,202、第三環状凸部103,203、第四環状凸部104,204、第五環状凸部105,205、第六環状凸部106,206ということとする。   In the heat transfer portions 10 and 20 of the heat transfer plates 1 and 2, the first opening H1, the second opening H2, the third opening H3, the fourth opening H4, the fifth opening H5, and the sixth opening H6 are independent. Thus, annular convex portions 101, 102, 103, 104, 105, 106, 201, 202, 203, 204, 205, 206 are formed. In the following description, each annular protrusion 101, 102, 103, 104, 105, 106, 201, 202, 203, 204, 205, 206 is associated with each of the first opening H1 to the sixth opening H6. Annular projections 101, 201, second annular projections 102, 202, third annular projections 103, 203, fourth annular projections 104, 204, fifth annular projections 105, 205, sixth annular projection 106, 206.

各伝熱プレート1,2は、図3(a)及び図4(b)に示す如く、第一環状凸部101,201及び第三環状凸部103,203が伝熱部10,20の一方の面(仕切用凸部100,200の形成された面)に凸設され、図3(b)及び図4(a)に示す如く、第二環状凸部102,202、第四環状凸部104,204、第五環状凸部105,205及び第六環状凸部106,206が伝熱部10,20の他方の面に凸設されている。   As shown in FIG. 3A and FIG. 4B, each of the heat transfer plates 1 and 2 includes the first annular protrusions 101 and 201 and the third annular protrusions 103 and 203 as one of the heat transfer parts 10 and 20. 4 (surface on which the partitioning convex portions 100 and 200 are formed), and as shown in FIGS. 3B and 4A, the second annular convex portions 102 and 202, the fourth annular convex portion. 104, 204, fifth annular protrusions 105, 205 and sixth annular protrusions 106, 206 are provided on the other surface of the heat transfer parts 10, 20.

図3及び図4に示す如く、本実施形態において、第一開口H1、第三開口H3、第四開口H4、第五開口H5、及び第六開口H6は、それぞれ略真円状に形成されているため、第一環状凸部101,201、第三環状凸部103,203、第四環状凸部104,204、第五環状凸部105,205、及び第六環状凸部106,206のそれぞれは、対応する開口H1,H2,H3,H4に即して円環状に形成されている。これに対し、第二環状凸部102,202は、第二開口H2が楕円形状に形成されているため、伝熱プレート1,2の長手方向に長軸が設定された楕円環状をなしている。   As shown in FIGS. 3 and 4, in the present embodiment, the first opening H1, the third opening H3, the fourth opening H4, the fifth opening H5, and the sixth opening H6 are each formed in a substantially circular shape. Therefore, the first annular convex portions 101 and 201, the third annular convex portions 103 and 203, the fourth annular convex portions 104 and 204, the fifth annular convex portions 105 and 205, and the sixth annular convex portions 106 and 206, respectively. Are formed in an annular shape corresponding to the corresponding openings H1, H2, H3, H4. On the other hand, since the 2nd cyclic | annular convex parts 102 and 202 have the 2nd opening H2 formed in the elliptical shape, they have comprised the elliptical cyclic | annular form by which the long axis was set to the longitudinal direction of the heat exchanger plates 1 and 2. .

そして、各伝熱プレート1,2は、図6(b)に示す如く、積層した状態で、隣り合う伝熱プレート1,2の互いに対向する一方の面側において、対応する環状凸部同士(第一環状凸部101,201同士、第三環状凸部103,203同士)がそれぞれ全周に亘って接触し、互いに対向する他方の面側においても対応する環状凸部同士(第二環状凸部102,202同士、第四環状凸部104,204同士、第五環状凸部105,205同士、第六環状凸部106,206同士)がそれぞれ全周に亘って接触するようになっている。これにより、各伝熱プレート1,2は、対応関係にある開口(第一開口H1…同士、第二開口H2…同士、第三開口H3…同士、第四開口H4…同士、第五開口H5…同士、第六開口H6…同士)が連なるようになっている。   And as shown in FIG.6 (b), each heat-transfer plate 1 and 2 is the state which laminated | stacked, on the one surface side which mutually adjoins the heat-transfer plates 1 and 2, corresponding annular convex parts ( The first annular projections 101 and 201 and the third annular projections 103 and 203 are in contact with each other over the entire circumference, and the corresponding annular projections (second annular projections) are also provided on the other surface facing each other. Portions 102 and 202, fourth annular convex portions 104 and 204, fifth annular convex portions 105 and 205, and sixth annular convex portions 106 and 206) are in contact with each other over the entire circumference. . As a result, the heat transfer plates 1 and 2 have corresponding openings (first openings H1..., Second openings H2..., Third openings H3..., Fourth openings H4. ..., the sixth openings H6 ...) are connected to each other.

また、図3(a)及び図4(b)に示す如く、各伝熱プレート1,2の一方の面には、第二開口H2の外周の前記長手方向の他端側の一部に沿った案内用凸部107,207が形成されている。かかる案内用凸部107,207は、第二環状凸部102,202の外側で平面視円弧状に形成されており、第二開口H2の開口中心(第二環状凸部102,202の曲率中心)と両端とを結ぶ二本の仮想線のなす角度θが60°〜120°(好ましくは、80°〜90°)になる範囲で形成されている。   Further, as shown in FIGS. 3 (a) and 4 (b), one surface of each heat transfer plate 1, 2 is along a part of the other end side in the longitudinal direction of the outer periphery of the second opening H2. Guide convex portions 107 and 207 are formed. The guide convex portions 107 and 207 are formed in an arc shape in plan view outside the second annular convex portions 102 and 202, and the opening center of the second opening H2 (the center of curvature of the second annular convex portions 102 and 202). ) And two imaginary lines connecting the two ends are formed in a range where the angle θ is 60 ° to 120 ° (preferably 80 ° to 90 °).

そして、図3(b)及び図4(a)に示す如く、各伝熱プレート1,2の他方の面には、第三開口H3の少なくとも前記長手方向の一端側を部分的に包囲するガイド用凸部108,208が設けられている。本実施形態に係るガイド用凸部108,208は、第三開口H3の開口中心に対して長手方向の他端側に偏った位置に曲率中心が設定された円弧状に形成されており、周方向の両端が第四開口H4の周囲(第四環状凸部104,204)と間隔をあけて長手方向の他端側で開放するように形成されている。   As shown in FIGS. 3B and 4A, the other surface of each of the heat transfer plates 1 and 2 is a guide that partially surrounds at least one end in the longitudinal direction of the third opening H3. Protrusion portions 108 and 208 are provided. The guide convex portions 108 and 208 according to the present embodiment are formed in an arc shape in which the center of curvature is set at a position offset toward the other end side in the longitudinal direction with respect to the opening center of the third opening H3. Both ends in the direction are formed so as to open at the other end side in the longitudinal direction with a space from the periphery of the fourth opening H4 (fourth annular convex portions 104, 204).

そして、本実施形態においては、前記ガイド用凸部108,208の両端から第四開口H4の両側に延出した一対のサイドガイド用凸部109,209が形成されている。該一対のサイドガイド用凸部109,209は、伝熱部10,20の長手方向の他端にまで到達しないように形成されており、長手方向の他端側に向かうにつれて互いの間隔が拡大するように形成されている。   In this embodiment, a pair of side guide convex portions 109 and 209 extending from both ends of the guide convex portions 108 and 208 to both sides of the fourth opening H4 is formed. The pair of side guide convex portions 109 and 209 are formed so as not to reach the other end in the longitudinal direction of the heat transfer portions 10 and 20, and the distance between them increases toward the other end in the longitudinal direction. It is formed to do.

各伝熱プレート1,2は、伝熱部10,20の第一領域A1及び第二領域A2に複数の凹条と凸条(図示しない)とが交互に形成されている。各伝熱プレート1,2は、積層した状態で、隣り合う伝熱プレート1,2の伝熱部10,20の凸条同士が交差衝合し、積層された伝熱プレート1,2間に流体が流通可能な空間が形成されるようになっている。すなわち、プレート式熱交換器Aは、隣り合う伝熱プレート1,2の凸条同士が交差衝合して対向する凹条間に流体が流通可能な空間が形成されている。   Each of the heat transfer plates 1 and 2 has a plurality of recesses and protrusions (not shown) alternately formed in the first region A1 and the second region A2 of the heat transfer parts 10 and 20. In the state where each heat transfer plate 1 and 2 is laminated, the protrusions of the heat transfer portions 10 and 20 of the adjacent heat transfer plates 1 and 2 intersect each other, and between the laminated heat transfer plates 1 and 2. A space through which fluid can flow is formed. That is, in the plate heat exchanger A, a space in which fluid can flow is formed between the opposing ridges where the ridges of the adjacent heat transfer plates 1 and 2 cross each other.

前記接続部12,22は、上述の如く、伝熱部10,20の外周全周に亘って接続されているため、伝熱部10,20を包囲するように形成されている。そして、本実施形態に係る接続部12,22は、図5(a)及び図5(b)に示す如く、周方向の一部(後述する接触部120a,220aの形成される部分)を除いて伝熱部10,20と封止部11,21との間で外向きに凸をなした断面円弧状に形成されている。すなわち、伝熱プレート1,2は、金属プレートをプレス成形したものであるため、接続部12,22は、プレス成形時の金型の抜き等を考慮して略全周に亘って断面円弧状に形成されている。   Since the connection parts 12 and 22 are connected over the entire outer periphery of the heat transfer parts 10 and 20 as described above, the connection parts 12 and 22 are formed so as to surround the heat transfer parts 10 and 20. And the connection parts 12 and 22 which concern on this embodiment remove | exclude a part (part in which the contact parts 120a and 220a mentioned later are formed) of the circumferential direction, as shown to Fig.5 (a) and FIG.5 (b). Thus, the heat transfer parts 10 and 20 and the sealing parts 11 and 21 are formed in a circular arc shape that protrudes outward. That is, since the heat transfer plates 1 and 2 are formed by press-molding a metal plate, the connecting portions 12 and 22 have a circular arc shape over substantially the entire circumference in consideration of the removal of a die during press molding. Is formed.

そして、本実施形態に係る伝熱プレート1,2は、積層された状態(プレート式熱交換器Aになった状態)で、伝熱部10,20同士が密接する領域(図7(a)及び図7(b)参照)に隣接した接続部12,22の少なくとも一部(一カ所)に伝熱部10,20と封止部11,21との間で真っ直ぐに延びる直線状又は平面状(本実施形態においては平面状)の接触部120a,220aが形成されている。   And the heat-transfer plates 1 and 2 which concern on this embodiment are the state (state which became the plate type heat exchanger A) in the laminated | stacked state (area | region (FIG.7 (a)) where heat-transfer parts 10 and 20 closely_contact | adhere. And at least a part (one place) of the connecting portions 12 and 22 adjacent to each other in a straight line or a planar shape extending straight between the heat transfer portions 10 and 20 and the sealing portions 11 and 21. Contact portions 120a and 220a (planar in this embodiment) are formed.

本実施形態に係る伝熱プレート1,2’は、上述の如く、仕切用凸部100,200が伝熱部10,20の短手方向の全長に亘って形成され、隣り合う伝熱プレート1,2の仕切用凸部100,200の頂部(平面)同士が面接触するようになっているため、前記接触部120a,220aは、図3及び図4に示す如く、仕切用凸部100,200の両端部の形成領域に対応して設けられている。すなわち、接触部120a,220aは、仕切用凸部100,200の形成領域と対応して伝熱部10,20の短手方向の両側に一つずつ設けられている。   As described above, the heat transfer plates 1, 2 ′ according to the present embodiment have partitioning convex portions 100, 200 formed over the entire length of the heat transfer portions 10, 20 in the short direction, and adjacent heat transfer plates 1. , 2 are arranged such that the top portions (planes) of the partitioning convex portions 100, 200 are in surface contact with each other, so that the contact portions 120a, 220a are formed as shown in FIGS. It is provided corresponding to the formation region of both end portions of 200. That is, the contact portions 120a and 220a are provided one on each side in the short direction of the heat transfer portions 10 and 20 corresponding to the formation regions of the partitioning convex portions 100 and 200.

前記接触部120a,220aは、コイニング加工することで形成されている。すなわち、金属プレートをプレス成形して伝熱部10,20、断面円弧状の接続部12,22、及び封止部11,21を成型した上で、円弧状をなす接続部12,22を部分的にプレスすることで形成されている。   The contact parts 120a and 220a are formed by coining. That is, the metal plate is press-molded to form the heat transfer parts 10 and 20, the arc-shaped connection parts 12 and 22, and the sealing parts 11 and 21, and the arc-shaped connection parts 12 and 22 are partially formed. It is formed by pressing automatically.

これに伴い、本実施形態に係る接触部120a,220aは、図8に示す如く、断面円弧状をなす接続部12,22が部分的にプレスされることで形成される凹部(封止部11,21の延出する側に窪んだ凹部)の奥部で構成されている。そのため、前記接触部120a,220aは、周辺の接続部12,22よりも奥まった位置に形成されている。そして、本実施形態に係るプレート式熱交換器Aは、伝熱プレート1,2を積層した状態で隣り合う伝熱プレート1,2の接触部120a,220a同士が面接触した状態になるように構成されている。なお、本実施形態において、上述の如く、断面円弧状の接続部12,22をコイニング加工(部分的にプレス)して凹部を形成することで互いに面接触する接触部120a,220aを形成するようにしているため、他方の伝熱プレート2に対するプレス領域(凹部の形成領域)よりも、一方の伝熱プレート1に対するプレス領域(凹部の形成領域)が大きく設定される。すなわち、他方の伝熱プレート2の接触部220aは、コイニング加工されることで内側(封止部11,21の延出する側)に突出した凸部の先端で構成されるため、一方の伝熱プレート1の接触部120aは、接続部12,22に形成された他方の伝熱プレート2の凸部を嵌合可能なサイズの凹部の奥部で構成される。   Accordingly, the contact portions 120a and 220a according to the present embodiment have recesses (sealing portions 11) formed by partially pressing the connection portions 12 and 22 having a circular arc cross section as shown in FIG. , 21 is formed at the back of the recess recessed on the extending side. Therefore, the contact portions 120a and 220a are formed at positions deeper than the peripheral connection portions 12 and 22. And plate type heat exchanger A concerning this embodiment is in the state where contact parts 120a and 220a of adjacent heat transfer plates 1 and 2 are in surface contact in the state where heat transfer plates 1 and 2 were laminated. It is configured. In the present embodiment, as described above, the contact portions 120a and 220a that are in surface contact with each other are formed by coining (partially pressing) the connection portions 12 and 22 having an arcuate cross section to form recesses. Therefore, the press area (recessed area) for one heat transfer plate 1 is set larger than the press area (recessed area) for the other heat transfer plate 2. That is, the contact portion 220a of the other heat transfer plate 2 is constituted by the tip of a convex portion that protrudes inward (the side on which the sealing portions 11 and 21 extend) by coining, so The contact portion 120a of the heat plate 1 is configured by a back portion of a recess having a size that allows the protrusion of the other heat transfer plate 2 formed in the connection portions 12 and 22 to be fitted.

そして、本実施形態に係る伝熱プレート1,2は、上述の如く、金属プレートをプレス成形して形成されたものであるため、伝熱部10,20と封止部11,21とを接続する接続部12,22は、図5(a)及び図5(b)に示す如く、接触部120a,220aの両側(伝熱部10,20と接触部120a,220aとを接続する接続部分及び封止部11,21と接触部120a,220aとを接続する接続部分)が湾曲した態様になっている。すなわち、前記接続部12,22は、前記接触部120a,220aと、該接触部120a,220aと伝熱部10,20とを接続する第一湾曲部120b,220bと、前記接触部120a,220aと封止部11,21とを接続する第二湾曲部120c,220cとで構成されている。本実施形態に係る接続部12,22は、接触部120a,220aが伝熱部10,20と封止部11,21との間で真っ直ぐ延びているため、当該接触部120a,220aは、伝熱部10,20及び封止部11,21に対して鈍角をなして傾斜した状態になっている。   And since the heat-transfer plates 1 and 2 which concern on this embodiment are formed by press-molding a metal plate as mentioned above, the heat-transfer parts 10 and 20 and the sealing parts 11 and 21 are connected. As shown in FIG. 5 (a) and FIG. 5 (b), the connecting portions 12 and 22 are connected to both sides of the contact portions 120a and 220a (connection portions for connecting the heat transfer portions 10 and 20 and the contact portions 120a and 220a and The connecting portions connecting the sealing portions 11 and 21 and the contact portions 120a and 220a) are curved. That is, the connection parts 12 and 22 include the contact parts 120a and 220a, the first curved parts 120b and 220b that connect the contact parts 120a and 220a and the heat transfer parts 10 and 20, and the contact parts 120a and 220a. And the second bending portions 120c and 220c that connect the sealing portions 11 and 21. In the connection parts 12 and 22 according to the present embodiment, since the contact parts 120a and 220a extend straight between the heat transfer parts 10 and 20 and the sealing parts 11 and 21, the contact parts 120a and 220a The heat parts 10 and 20 and the sealing parts 11 and 21 are inclined at an obtuse angle.

これに伴い、前記第一湾曲部120b,220b及び第二湾曲部120c,220cは、断面円弧状をなす他の部分の接続部12,22の曲率半径よりも大きな曲率半径で湾曲している。そして、本実施形態において、積層されたときに互いに隣り合う伝熱プレート1,2を対象に、一方の伝熱プレート1の第一湾曲部120b及び第二湾曲部120cの外側の曲率半径と、封止部21を前記一方の伝熱プレート1の封止部11に外嵌させる他方の伝熱プレート2の第一湾曲部220b及び第二湾曲部220cの内側の曲率半径とが同一に設定されている。   Accordingly, the first curved portions 120b and 220b and the second curved portions 120c and 220c are curved with a radius of curvature larger than the radius of curvature of the connecting portions 12 and 22 in other portions having an arcuate cross section. And in this embodiment, for the heat transfer plates 1 and 2 that are adjacent to each other when stacked, the curvature radii on the outside of the first curved portion 120b and the second curved portion 120c of one heat transfer plate 1, The curvature radius inside the 1st curved part 220b and the 2nd curved part 220c of the other heat-transfer plate 2 which externally fits the sealing part 21 to the sealing part 11 of said one heat-transfer plate 1 is set identically. ing.

本実施形態において、互いに隣り合う伝熱プレート1,2のうち、一方の伝熱プレート1の仕切用凸部100が封止部11の延出側とは反対側に突出するように形成され、他方の伝熱プレート2の仕切用凸部200が封止部21と同方向に突出するように形成されているため、一方の伝熱プレート1の第一湾曲部120b及び第二湾曲部120cの外側の曲率半径と、他方の伝熱プレート2の第一湾曲部220b及び第二湾曲部220cの内側の曲率半径とが同一に設定されている。   In the present embodiment, of the heat transfer plates 1 and 2 adjacent to each other, the partition convex portion 100 of one heat transfer plate 1 is formed so as to protrude on the opposite side to the extending side of the sealing portion 11, Since the partition convex portion 200 of the other heat transfer plate 2 is formed so as to protrude in the same direction as the sealing portion 21, the first curved portion 120 b and the second curved portion 120 c of the one heat transfer plate 1 are formed. The outer curvature radius and the inner curvature radii of the first curved portion 220b and the second curved portion 220c of the other heat transfer plate 2 are set to be the same.

これにより、本実施形態に係るプレート式熱交換器Aは、図7に示す如く、伝熱プレート1,2を積層した状態で隣り合う伝熱プレート1,2の接触部120a,220a同士が面接触した状態になるとともに、第一湾曲部120b,220b同士及び第二湾曲部120c,220c同士も面接触した状態になるように構成されている。   Thereby, as shown in FIG. 7, the plate-type heat exchanger A according to the present embodiment has the contact portions 120a and 220a of the adjacent heat transfer plates 1 and 2 in a state where the heat transfer plates 1 and 2 are stacked. While being in contact, the first bending portions 120b and 220b and the second bending portions 120c and 220c are also in surface contact with each other.

そして、本実施形態に係るプレート式熱交換器Aは、隣り合う伝熱プレート1,2同士がロウ付けによって永久接合される。すなわち、本実施形態に係るプレート式熱交換器Aは、図6に示す如く、隣り合う伝熱プレート1,2の接触部分(仕切用凸部100,200同士、封止部11,21同士、第一環状凸部101,201同士、第二環状凸部102,202同士、第三環状凸部103,203同士、第四環状凸部104,204同士、第五環状凸部105,205同士、第六環状凸部106,206同士、案内用凸部107,207同士、ガイド用凸部108,208同士、サイドガイド用凸部109,209同士、接続部12,22の接触部120a,220a同士、第一湾曲部120b,220b同士、第二湾曲部120c,220c同士、凸条が接触する接触点同士)がロウ付けされ、開口H1,H2,H3,H4,H5,H6回り及び伝熱部10,20の外周が封着されている。なお、本実施形態を含め、隣り合う伝熱プレート1,2の接続部12,22同士を密接させる場合、当該密接する一方の接続部12,22に小さな開口(例えば、小径な穴やスリット)を設けておけば、接続部12,22の密接部分に流入すべきロウ材が不足したとしても他の部分で余剰となったロウ材が開口を介して接続部12,22間に流れ込むことになり、接続部12,22同士の封着が確実になされる。   In the plate heat exchanger A according to this embodiment, the adjacent heat transfer plates 1 and 2 are permanently joined by brazing. That is, as shown in FIG. 6, the plate heat exchanger A according to the present embodiment has a contact portion between adjacent heat transfer plates 1 and 2 (partition convex portions 100 and 200, sealing portions 11 and 21, The first annular convex portions 101, 201, the second annular convex portions 102, 202, the third annular convex portions 103, 203, the fourth annular convex portions 104, 204, the fifth annular convex portions 105, 205, Sixth annular convex portions 106, 206, guiding convex portions 107, 207, guiding convex portions 108, 208, side guiding convex portions 109, 209, contact portions 120a, 220a of connecting portions 12, 22 , The first bending portions 120b and 220b, the second bending portions 120c and 220c, and the contact points where the ridges contact each other) are brazed, and the openings H1, H2, H3, H4, H5, H6 and the heat transfer portion 10, 2 The outer periphery of the have been sealed. In addition, when connecting the connection parts 12 and 22 of the adjacent heat transfer plates 1 and 2 including this embodiment, a small opening (for example, a small-diameter hole or a slit) is formed in the one connection part 12 or 22 in close contact. If the brazing material that should flow into the contact portions 12 and 22 is insufficient, the surplus brazing material in the other portions flows between the connection portions 12 and 22 through the openings. Thus, the connection parts 12 and 22 are securely sealed.

これにより、前記プレート式熱交換器Aは、図2及び図9に示す如く、各伝熱プレート1,2のそれぞれを境にして冷媒CMを流通させる第一流路R1と被熱交換流体Wを流通させる第二流路R2とが交互に形成されている。   As a result, the plate heat exchanger A has the first flow path R1 through which the refrigerant CM flows and the heat exchange fluid W through the heat transfer plates 1 and 2, respectively, as shown in FIGS. The second flow paths R2 to be circulated are alternately formed.

本実施形態に係るプレート式熱交換器Aは、隣り合う伝熱部10,20の一方の面上にある仕切用凸部100,200同士が接続(ロウ付け)されることで、伝熱部10,20の一方の面間を長手方向(一方向)で二つに区画する仕切部30が短手方向(一方向と直交する他方向)に延びるように形成される。そして、該プレート式熱交換器Aは、図9(a)に示す如く、伝熱部10,20の他方の面間に長手方向の全長(第一領域A1と第二領域A2と併せた全領域と対応する領域)に亘って熱交換流体(本実施形態においては冷媒)を流通させる第一流路R1が形成され、図9(b)及び図9(c)に示す如く、前記仕切部30を境にして伝熱部10,20の一方の面間の長手方向の他端側(第二領域A2と対応する領域)に被熱交換流体(本実施形態においては水)Wを流通させる第二流路R2が形成されるとともに長手方向の一端側(第一領域A1と対応する領域)に、被熱交換流体(水)Wよりも温度の高い加熱流体WMを流通させる第三流路R3が形成されている。   In the plate heat exchanger A according to the present embodiment, the partitioning convex portions 100 and 200 on one surface of the adjacent heat transfer portions 10 and 20 are connected (brazed), whereby the heat transfer portion. The partition part 30 which divides the space between one of the surfaces 10 and 20 into two in the longitudinal direction (one direction) is formed to extend in the short direction (the other direction orthogonal to the one direction). And, as shown in FIG. 9 (a), the plate heat exchanger A has an overall length in the longitudinal direction between the other surfaces of the heat transfer sections 10 and 20 (the entire area including the first area A1 and the second area A2). A first flow path R1 through which a heat exchange fluid (a refrigerant in the present embodiment) flows is formed over a region corresponding to the region), and as shown in FIGS. 9B and 9C, the partition portion 30 is formed. The first heat exchange fluid (water in this embodiment) W is circulated to the other end side in the longitudinal direction between the one surfaces of the heat transfer portions 10 and 20 (region corresponding to the second region A2). A third flow path R3 is formed in which the two flow paths R2 are formed and the heating fluid WM having a temperature higher than that of the heat exchange fluid (water) W is circulated to one end side in the longitudinal direction (area corresponding to the first area A1). Is formed.

また、本実施形態に係るプレート式熱交換器Aは、図9に示す如く、各伝熱プレート1,2の第一開口H1が連なるとともに第三開口H3が連なることで、第一流路R1に対して冷媒CMを流出入させる熱交換流体流入路31a及び熱交換流体流出路31bが形成され、各伝熱プレート1,2の第二開口H2が連なるとともに第四開口H4が連なることで、第二流路R2に対して被熱交換流体Wを流出入させる被熱交換流体流入路32a及び被熱交換流体流出路32bが形成されている。   Moreover, as shown in FIG. 9, the plate-type heat exchanger A according to the present embodiment has the first opening H1 of each of the heat transfer plates 1 and 2 connected and the third opening H3 connected to the first flow path R1. On the other hand, the heat exchange fluid inflow passage 31a and the heat exchange fluid outflow passage 31b through which the refrigerant CM flows in and out are formed, the second openings H2 of the heat transfer plates 1 and 2 are connected, and the fourth opening H4 is connected. A heat exchange fluid inflow passage 32a and a heat exchange fluid outflow passage 32b through which the heat exchange fluid W flows in and out of the two flow paths R2 are formed.

すなわち、本実施形態に係るプレート式熱交換器Aは、第一開口H1及び第三開口H3の配置に対応して、熱交換流体流入路31a及び熱交換流体流出路31bが第一流路R1の形成される領域を通るように伝熱部10,20の長手方向に間隔をあけて形成されるとともに、第二開口H2及び第三開口H3の配置に対応して、被熱交換流体流入路32a及び被熱交換流体流出路32bが第二流路R2の形成される領域を通るように伝熱部10,20の長手方向に所定間隔をあけて形成されている。   That is, in the plate heat exchanger A according to the present embodiment, the heat exchange fluid inflow passage 31a and the heat exchange fluid outflow passage 31b correspond to the arrangement of the first opening H1 and the third opening H3. The heat transfer portions 10 and 20 are formed at intervals in the longitudinal direction so as to pass through the formed region, and correspond to the arrangement of the second opening H2 and the third opening H3, and the heat exchange fluid inflow passage 32a. The heat exchange fluid outflow passage 32b is formed at a predetermined interval in the longitudinal direction of the heat transfer sections 10 and 20 so as to pass through the region where the second flow path R2 is formed.

第一開口H1、第二開口H2、第三開口H3、及び第四開口H4は、上述の如く、伝熱部10,20の短手方向の中央で長手方向に整列配置されているため、熱交換流体流入路31a、熱交換流体流出路31b、被熱交換流体流入路32a及び被熱交換流体流出路32bについても、伝熱部10,20の短手方向の中央で長手方向に一列で整列配置されている。   As described above, the first opening H1, the second opening H2, the third opening H3, and the fourth opening H4 are aligned in the longitudinal direction at the center in the short direction of the heat transfer portions 10 and 20, and therefore The exchange fluid inflow passage 31a, the heat exchange fluid outflow passage 31b, the heat exchange fluid inflow passage 32a, and the heat exchange fluid outflow passage 32b are also aligned in a line in the longitudinal direction at the center in the short direction of the heat transfer sections 10 and 20. Is arranged.

本実施形態に係るプレート式熱交換器Aは、冷凍システムの一構成である蒸発器として使用されるため、熱交換流体CMとして単一成分冷媒、共沸混合冷媒、又は疑似共沸混合冷媒が採用される。これに伴い、本実施形態に係るプレート式熱交換器Aは、第一流路R1内で流通する熱交換流体CMと第二流路R2で流通する被熱交換流体Wとの流れ方向が同方向になる(熱交換流体CMと被熱交換流体Wとが並行流になる)ように、第三開口H3が連なって熱交換流体流入路31aが形成されるとともに、第一開口H1が連なって熱交換流体流出路31bが形成されている。また、前記プレート式熱交換器Aは、各伝熱プレート1,2の第四開口H4が連なって被熱交換流体流入路32aが形成されるとともに、第二開口H2が連なって被熱交換流体流出路32bが形成されている。   Since the plate heat exchanger A according to the present embodiment is used as an evaporator which is one component of the refrigeration system, a single component refrigerant, an azeotropic mixed refrigerant, or a pseudo azeotropic mixed refrigerant is used as the heat exchange fluid CM. Adopted. Accordingly, in the plate heat exchanger A according to the present embodiment, the heat exchange fluid CM flowing in the first flow path R1 and the heat exchange fluid W flowing in the second flow path R2 have the same flow direction. So that the heat exchange fluid CM and the heat exchange fluid W are in parallel flow, the third opening H3 is connected to form the heat exchange fluid inflow passage 31a, and the first opening H1 is connected to heat. An exchange fluid outflow passage 31b is formed. In the plate heat exchanger A, the fourth openings H4 of the heat transfer plates 1 and 2 are connected to form the heat exchange fluid inflow passage 32a, and the second opening H2 is connected to the heat exchange fluid. An outflow path 32b is formed.

そして、本実施形態に係るプレート式熱交換器Aは、各伝熱プレート1,2の第五開口H5が連なるとともに第六開口H6が連なることで加熱流体流入路33a及び加熱流体流出路33bが形成されている。本実施形態において、第五開口H5及び第六開口H6は、伝熱部10,20の短手方向に一列をなすように設けられているため、前記加熱流体流入路33a及び加熱流体流出路33bについても伝熱部10,20の短手方向で一列をなして熱交換流体流出路31bの両側に配置されている。   In the plate heat exchanger A according to this embodiment, the heating fluid inflow passage 33a and the heating fluid outflow passage 33b are formed by connecting the fifth opening H5 of the heat transfer plates 1 and 2 and the sixth opening H6. Is formed. In the present embodiment, the fifth opening H5 and the sixth opening H6 are provided so as to form a line in the short direction of the heat transfer sections 10 and 20, and thus the heating fluid inflow path 33a and the heating fluid outflow path 33b. Are also arranged on both sides of the heat exchange fluid outflow passage 31b in a row in the short direction of the heat transfer sections 10 and 20.

そして、本実施形態に係るプレート式熱交換器Aは、積層される伝熱プレート1,2間に箔状のロウ材(例えば、銅箔)を介装した状態で加熱処理することで、上述の如くロウ付けされており、隣り合う伝熱プレート1,2の接触部120a,220a同士もロウ付けされた状態になっている。   And plate type heat exchanger A concerning this embodiment is the above-mentioned by heat-treating in the state where foil-like brazing material (for example, copper foil) was interposed between heat-transfer plates 1 and 2 laminated. The contact parts 120a and 220a of the adjacent heat transfer plates 1 and 2 are also brazed.

本実施形態に係るプレート式熱交換器Aは、図7(a)に示す如く、隣り合う伝熱プレート1,2の伝熱部10,20の密接する領域(本実施形態においては、仕切用凸部100,200同士がロウ付けされて形成される仕切部30)と隣接する接続部12,22間に隙間G(接続部12,22に沿う隙間G)が形成されているが、図7(b)に示す如く、接続部12,22のうちコイニング加工された部分(接触部120aの形成された部位)については、隣り合う伝熱プレート1,2の接触部120a,220a同士、第一湾曲部120b,220b同士、及び第二湾曲部120c,220c同士がロウ付けされて前記隙間Gが閉じられた状態になっている。   As shown in FIG. 7A, the plate heat exchanger A according to the present embodiment is a region where the heat transfer portions 10 and 20 of the adjacent heat transfer plates 1 and 2 are in close contact with each other (in this embodiment, for partitioning). A gap G (gap G along the connecting portions 12 and 22) is formed between the connecting portions 12 and 22 adjacent to the partition portion 30) formed by brazing the convex portions 100 and 200, but FIG. As shown in (b), the contact portions 120a and 220a of the adjacent heat transfer plates 1 and 2 are connected to each other for the coined portion of the connection portions 12 and 22 (the portion where the contact portion 120a is formed). The bending portions 120b and 220b and the second bending portions 120c and 220c are brazed, and the gap G is closed.

すなわち、前記プレート式熱交換器Aは、各伝熱プレート1,2が金属プレートをプレス成形したものであるため、図7(a)に示す如く、伝熱部10,20と封止部11,21とを接続する接続部12,22の大部分が湾曲した状態で形成され、重ね合わされた伝熱プレート1,2の接続部12,22間に隙間Gが形成されることになるが、図7(b)に示す如く、伝熱部10,20同士が密接する領域と隣接する接続部12,22の少なくとも一カ所に伝熱部10,20と封止部11,21との間で真っ直ぐに伸びる接触部120a,220aを形成し、隣り合う伝熱プレート1,2の伝熱部10,20(仕切用凸部100,200)同士を面接触させつつ接触部120a,220a同士も面接触させてロウ付けすることで、一体化した接触部120a,220a同士が隙間Gを部分的に仕切った状態になっている。   That is, in the plate heat exchanger A, each of the heat transfer plates 1 and 2 is formed by press-molding a metal plate, and therefore, as shown in FIG. , 21 is formed in a state where most of the connecting portions 12 and 22 are curved, and a gap G is formed between the connecting portions 12 and 22 of the heat transfer plates 1 and 2 superimposed. As shown in FIG.7 (b), between the heat-transfer parts 10 and 20 and the sealing parts 11 and 21 in the connection part 12 and 22 adjacent to the area | region where heat-transfer parts 10 and 20 closely contact, and adjacent. The contact portions 120a and 220a that extend straight are formed, and the contact portions 120a and 220a are also in contact with each other while the heat transfer portions 10 and 20 (partition convex portions 100 and 200) of the adjacent heat transfer plates 1 and 2 are in surface contact with each other. Integrated by bringing them into contact and brazing Contact portion 120a, the 220a to each other in a state in which partition the gap G partially.

また、伝熱部10,20と封止部11,21とを接続する接続部12,22は、接触部120a,220aの両側(第一湾曲部120b,220b及び第二湾曲部120c,220c)が他の接続部12,22(接触部120a,220aの形成されていない接続部12,22)の曲率半径に比して大きくな曲率半径で湾曲した態様になるため、当該部分での隙間は極めて小さくなり、接触部120a,220a同士をロウ付けするのに必要なロウ材が接触部120a,220aの両側に流れることで隙間が埋め尽くされる。   Moreover, the connection parts 12 and 22 which connect the heat-transfer parts 10 and 20 and the sealing parts 11 and 21 are both sides of the contact parts 120a and 220a (the first bending parts 120b and 220b and the second bending parts 120c and 220c). Is curved with a radius of curvature larger than the radius of curvature of the other connecting portions 12, 22 (the connecting portions 12, 22 where the contact portions 120a, 220a are not formed). It becomes extremely small, and the gap is filled by the brazing material necessary for brazing the contact portions 120a and 220a flowing on both sides of the contact portions 120a and 220a.

本実施形態においては、一方の伝熱プレート1の第一湾曲部120b及び第二湾曲部120cの外側の曲率半径と、封止部21を前記一方の伝熱プレート1の封止部11に外嵌させる他方の伝熱プレート2の第一湾曲部220b及び第二湾曲部220cの内側の曲率半径とが同一に設定されているため、接触部120a,220aに加えて第一湾曲部120b,220b同士及び第二湾曲部120c,220c同士が確実に密接した状態になって隙間Gが確実に遮断されている。   In the present embodiment, the outer radius of curvature of the first curved portion 120b and the second curved portion 120c of one heat transfer plate 1 and the sealing portion 21 are attached to the sealing portion 11 of the one heat transfer plate 1. Since the curvature radius inside the first curved portion 220b and the second curved portion 220c of the other heat transfer plate 2 to be fitted is set to be the same, the first curved portions 120b and 220b in addition to the contact portions 120a and 220a. The gaps G are reliably blocked by the two and the second bending portions 120c and 220c being in close contact with each other.

これにより、本実施形態に係るプレート式熱交換器Aは、伝熱プレート1,2の伝熱部10,20と封止部11,21とを接続する接続部12,22に沿って形成される隙間Gにおける流体の流通が阻止されている。   Thereby, plate type heat exchanger A concerning this embodiment is formed along connection parts 12 and 22 which connect heat transfer parts 10 and 20 of heat transfer plates 1 and 2 and sealing parts 11 and 21. The fluid in the gap G is blocked.

本実施形態に係るプレート式熱交換器Aは、上述の如く、接触部120a,220aが仕切用凸部100,200の両端に対応するように二カ所に設けられているため、仕切部30の両側に形成される隙間Gが長手方向の一端側の領域(加熱流体WMを流通させる第三流路R3)と他端側の領域(被熱交換流体Wを流通させる第二流路R2)との間で遮断された状態になっている。これにより、本実施形態に係るプレート式熱交換器Aは、第二流路R2を流通する被熱交換流体Wが隙間Gを通って第三流路R3に流出したり、第三流路R3を流通する加熱流体WMが隙間Gを通って第二流路R2に流出したりすることが完全に阻止されている。   As described above, the plate heat exchanger A according to the present embodiment is provided at two locations so that the contact portions 120a and 220a correspond to both ends of the partition convex portions 100 and 200. The gap G formed on both sides is a region on one end side in the longitudinal direction (third flow path R3 for circulating the heating fluid WM) and a region on the other end side (second flow path R2 for circulating the heat exchange fluid W). It is in a state of being blocked between. Thereby, in the plate heat exchanger A according to the present embodiment, the heat exchange fluid W flowing through the second flow path R2 flows out to the third flow path R3 through the gap G, or the third flow path R3. It is completely prevented that the heating fluid WM flowing through the second fluid passage R2 flows out through the gap G.

本実施形態に係るプレート式熱交換器Aは、図1及び図2に示す如く、積層された複数の伝熱プレート1,2が二枚のフレームプレート3,4で挟み込まれている。そして、一方のフレームプレート3には、図2に示す如く、熱交換流体流入路31a及び熱交換流体流出路31bと対応する第一開口H1及び第三開口H3が形成されるとともに一方の小口径の開口(加熱流体流出路33bになる開口)である第五開口H5が設けられ、他方のフレームプレート4には、被熱交換流体流入路32a及び被熱交換流体流出路32bと対応する第二開口H2及び第四開口H4が形成されるとともに一方の小口径の開口(加熱流体流入路33aになる開口)である第五開口H5が設けられている。これにより、本実施形態に係るプレート式熱交換器Aは、一方のフレームプレート3側から熱交換流体CMを流出入可能に構成されるとともに他方のフレームプレート4側から被熱交換流体Wを流出可能に構成されている。また、該プレート式熱交換器Aは、前記他方のフレームプレート4側から加熱流体WMを流入させて前記一方のフレームプレート3側から加熱流体WMを排出させるようになっている。   In the plate heat exchanger A according to this embodiment, as shown in FIGS. 1 and 2, a plurality of laminated heat transfer plates 1 and 2 are sandwiched between two frame plates 3 and 4. Then, as shown in FIG. 2, the first opening H1 and the third opening H3 corresponding to the heat exchange fluid inflow path 31a and the heat exchange fluid outflow path 31b are formed in one frame plate 3, and one small diameter is formed. A fifth opening H5, which is an opening (which becomes the heating fluid outflow passage 33b), is provided, and the other frame plate 4 has a second corresponding to the heat exchange fluid inflow passage 32a and the heat exchange fluid outflow passage 32b. An opening H2 and a fourth opening H4 are formed, and a fifth opening H5 which is one small-diameter opening (an opening serving as the heating fluid inflow passage 33a) is provided. Accordingly, the plate heat exchanger A according to the present embodiment is configured so that the heat exchange fluid CM can flow in and out from one frame plate 3 side, and the heat exchange fluid W flows out from the other frame plate 4 side. It is configured to be possible. The plate heat exchanger A is configured to allow the heating fluid WM to flow from the other frame plate 4 side and to discharge the heating fluid WM from the one frame plate 3 side.

本実施形態において、一方のフレームプレート3から所定位置(所定枚数になる位置)にある一枚の伝熱プレート2は、小口径の開口として第六開口H6のみが設けられており、加熱流体流入路33aと加熱流体流出路33bとが途中位置で逆転するようになっている。すなわち、本実施形態に係るプレート式熱交換器Aは、図2、図6(b)及び図6(c)に示す如く、一方のフレームプレート3と該一方のフレームプレート3から所定位置(所定枚数になる位置)にある伝熱プレート2との間(第一パス領域Pa1という)では、第六開口H6が連なって加熱流体流入路33aが形成されるとともに第五開口H5が連なって加熱流体流出路33bが形成され、他方のフレームプレート4と前記所定位置にある伝熱プレート2との間(第二パス領域Pa2とう)では、第五開口H5が連なって加熱流体流入路33aが形成されるとともに第六開口H6が連なって加熱流体流出路33bが形成されている。これにより、本実施形態に係るプレート式熱交換器Aは、所定位置にある伝熱プレート2の第六開口H6を介して第一パス領域Pa1の加熱流体流入路33aと第二パス領域Pa2の加熱流体流出路33bとが連続した状態になっている。   In the present embodiment, the single heat transfer plate 2 located at a predetermined position (a position where the predetermined number of sheets are located) from one frame plate 3 is provided with only the sixth opening H6 as a small-diameter opening, and the heating fluid inflow The path 33a and the heated fluid outflow path 33b are reversed at a midway position. That is, the plate-type heat exchanger A according to the present embodiment has a predetermined position (predetermined) from one frame plate 3 and the one frame plate 3 as shown in FIG. 2, FIG. 6 (b) and FIG. 6 (c). The sixth opening H6 is connected to form the heating fluid inflow passage 33a and the fifth opening H5 is connected to the heating fluid. An outflow passage 33b is formed, and between the other frame plate 4 and the heat transfer plate 2 at the predetermined position (second pass region Pa2), the fifth opening H5 is connected to form a heating fluid inflow passage 33a. And the sixth opening H6 is connected to form a heating fluid outflow passage 33b. Thereby, the plate-type heat exchanger A according to the present embodiment allows the heating fluid inflow path 33a of the first pass region Pa1 and the second pass region Pa2 to pass through the sixth opening H6 of the heat transfer plate 2 at a predetermined position. The heating fluid outflow path 33b is in a continuous state.

本実施形態に係るプレート式熱交換器Aは、第二開口H2が長手方向に長軸が設定された楕円形状に形成されているため、第三流路R3側に配置された被熱交換流体流出路32bは、断面形状が伝熱プレート1,2の長手方向に長軸を有する楕円形状に形成されている。そして、第二開口H2を包囲する第二環状凸部102,202は、長手方向に長軸が設定された楕円環状をなしているため、第一流路R1内に存在する封止部分(第二環状凸部102,202同士を封着した部分)は、伝熱部10,20の長手方向よりも短手方向が幅狭に形成されている。   In the plate heat exchanger A according to the present embodiment, the second opening H2 is formed in an elliptical shape in which the long axis is set in the longitudinal direction, so that the heat exchange fluid disposed on the third flow path R3 side. The outflow path 32 b is formed in an elliptical shape having a long axis in the longitudinal direction of the heat transfer plates 1 and 2. And since the 2nd cyclic | annular convex parts 102 and 202 surrounding the 2nd opening H2 have comprised the elliptical cyclic | annular form by which the long axis was set to the longitudinal direction, the sealing part (2nd 2nd) which exists in 1st flow path R1. The portion where the annular convex portions 102 and 202 are sealed is formed so that the short direction is narrower than the longitudinal direction of the heat transfer portions 10 and 20.

本実施形態に係るプレート式熱交換器Aは、上述の如く、互いに対向する伝熱部10,20の案内用凸部107,207同士が接続されることで、図9(b)及び図9(c)に示す如く、伝熱プレート1,2の一方の面間には前記被熱交換流体流出路32bの周囲を長手方向の他端側で部分的の包囲する流体案内部34が形成されている。   In the plate heat exchanger A according to the present embodiment, as described above, the guide convex portions 107 and 207 of the heat transfer portions 10 and 20 facing each other are connected to each other, so that FIG. 9B and FIG. As shown in (c), a fluid guide portion 34 is formed between one surface of the heat transfer plates 1 and 2 to partially surround the periphery of the heat exchange fluid outflow passage 32b on the other end side in the longitudinal direction. ing.

また、該プレート式熱交換器Aは、ガイド用凸部108,208同士が接続されることで、図9(a)に示す如く、伝熱プレート1,2の他方の面間には、熱交換流体流入路31aの少なくとも前記伝熱プレート1,2の長手方向の一端側を部分的に包囲するガイド部35が形成されている。   Further, the plate heat exchanger A is connected to the guide projections 108 and 208, so that the heat transfer plates 1 and 2 are heated between the other surfaces as shown in FIG. A guide portion 35 that partially surrounds at least one end side of the heat transfer plates 1 and 2 in the longitudinal direction of the exchange fluid inflow passage 31a is formed.

本実施形態において、各伝熱プレート1,2の他方の面にガイド用凸部108,208の両端から延出した一対のサイドガイド用凸部109,209が設けられているため、互いに対向する伝熱部10,20の他方の面上にあるサイドガイド用凸部109,209同士が接続(ロウ付け)されることで、前記伝熱プレート1,2の他方の面間には、前記ガイド部35の両端から被熱交換流体流入路32aの両側に延出した一対のサイドガイド部36a,36bが形成されている。   In the present embodiment, a pair of side guide convex portions 109 and 209 extending from both ends of the guide convex portions 108 and 208 are provided on the other surface of each of the heat transfer plates 1 and 2 so as to face each other. The side guide convex portions 109 and 209 on the other surface of the heat transfer portions 10 and 20 are connected (brazed), so that the guide is interposed between the other surfaces of the heat transfer plates 1 and 2. A pair of side guide portions 36a and 36b extending from both ends of the portion 35 to both sides of the heat exchange fluid inflow passage 32a are formed.

本実施形態に係るプレート式熱交換器Aは、以上の通りであり、空調機や冷凍機等に搭載される冷凍システムの蒸発器として採用される。かかるプレート式熱交換器Aは、第一流路R1で流通する熱交換流体CMと第二流路R2で流通する被熱交換流体Wとが熱交換を行う。このように熱交換流体(冷媒)CMと被熱交換流体Wとが熱交換すると、被熱交換流体Wが冷却され、第一流路R1内の熱交換流体CMは、第二流路R2内で流通する被熱交換流体Wとの熱交換により、下流側に流れるにつれて蒸発して気体成分を多く含む気液混合状態になる。   The plate heat exchanger A according to the present embodiment is as described above, and is adopted as an evaporator of a refrigeration system mounted on an air conditioner, a refrigerator, or the like. In the plate heat exchanger A, the heat exchange fluid CM flowing in the first flow path R1 and the heat exchange fluid W flowing in the second flow path R2 exchange heat. When the heat exchange fluid (refrigerant) CM and the heat exchange fluid W exchange heat in this way, the heat exchange fluid W is cooled, and the heat exchange fluid CM in the first flow path R1 is in the second flow path R2. By heat exchange with the circulating heat exchange fluid W, it evaporates as it flows downstream and enters a gas-liquid mixed state containing a large amount of gas components.

本実施形態に係るプレート式熱交換器Aにおいては、熱交換流体CMが第一流路R1内の第二流路R2と対応する全領域を通過する状態で液体成分を十分に含む気液混合状態になるように熱交換流体CMを流通させることで、第二流路R2内で流通する被熱交換流体W全体を冷却するようになっている。すなわち、熱交換流体CMが第一流路R1内の第二流路R2と対応する領域を通過する状態で液体成分を十分に含む気液混合状態であると、伝熱部10,20の第二流路R2と対応する領域が濡れ状態となるため、第一流路R1を流通する熱交換流体CMが第二流路R2の全域において被熱交換流体Wの熱を活発に奪い取ることになり、被熱交換流体Wが効率的に冷却されることになる。   In the plate heat exchanger A according to the present embodiment, a gas-liquid mixed state in which the heat exchange fluid CM sufficiently contains liquid components in a state where the heat exchange fluid CM passes through the entire area corresponding to the second flow path R2 in the first flow path R1. The heat exchange fluid CM is circulated so that the entire heat exchange fluid W flowing in the second flow path R2 is cooled. That is, when the heat exchange fluid CM is in a gas-liquid mixed state that sufficiently contains a liquid component in a state of passing through a region corresponding to the second flow path R2 in the first flow path R1, the second heat transfer units 10 and 20 have a second state. Since the region corresponding to the flow path R2 is in a wet state, the heat exchange fluid CM flowing through the first flow path R1 actively takes the heat of the heat exchange fluid W over the entire area of the second flow path R2. The heat exchange fluid W is efficiently cooled.

このように第一流路R1における第二流路R2と対応する領域で液体成分を十分に含む気液混合状態の熱交換流体CMを流通させると、第一流路R1で流通する熱交換流体CMは、第二流路R2と対応する領域から第三流路R3と対応する領域に進入したときにも気液混合状態であるが、第三流路R3に被熱交換流体Wよりも温度の高い加熱流体WMを流通させておくことで、第一流路R1を流通する熱交換流体CMと第三流路R3を流通する加熱流体WMとの間の熱移動で第一流路R1の最下流域にある熱交換流体CMが急速に蒸発する結果、完全にガス化した熱交換流体CMが熱交換流体流出路31bから排出されることになる。   As described above, when the gas-liquid mixed heat exchange fluid CM sufficiently containing the liquid component is circulated in the region corresponding to the second channel R2 in the first channel R1, the heat exchange fluid CM circulated in the first channel R1 is The gas-liquid mixed state is also entered when entering the area corresponding to the third flow path R3 from the area corresponding to the second flow path R2, but the temperature in the third flow path R3 is higher than that of the heat exchange fluid W. By allowing the heating fluid WM to flow, the heat transfer between the heat exchange fluid CM flowing through the first flow path R1 and the heating fluid WM flowing through the third flow path R3 moves to the most downstream area of the first flow path R1. As a result of rapid evaporation of a certain heat exchange fluid CM, the completely gasified heat exchange fluid CM is discharged from the heat exchange fluid outflow passage 31b.

以上のように、本実施形態に係るプレート式熱交換器Aは、金属プレートをプレス成形した複数枚の伝熱プレート1,2を備え、各伝熱プレート1,2は、両面に複数の凹条及び凸条の形成された伝熱部10,20と、該伝熱部10,20に対して面交差する方向に伝熱部10,20の外周全周から延出した無端環状の封止部11,21とを備え、前記封止部11,21同士が嵌合するように複数枚の伝熱プレート1,2が重ね合わされた状態で少なくとも隣り合う伝熱プレート1,2の封止部11,21同士、及び伝熱部10,20に形成された開口H1,H2,H3,H4回り同士がロウ付けされ、各伝熱部10,20を境にして熱交換流体CMを流通させる第一流路R1と被熱交換流体Wを流通させる第二流路R2とが交互に形成され、且つ前記開口H1,H2,H3,H4が積層方向に連なって第一流路R1に対して熱交換流体CMを流出入させる熱交換流体流入路31a及び熱交換流体流出路31bが形成されるとともに、第二流路R2に被熱交換流体Wを流出入させる被熱交換流体流入路32a及び被熱交換流体流出路32bが形成されたプレート式熱交換器Aにおいて、各伝熱プレート1,2は、伝熱部10,20同士が面接触する領域に隣接した伝熱部10,20と封止部11,21とを接続する接続部12,22の少なくとも一カ所に、伝熱部10,20と封止部11,21との間で真っ直ぐに延びる直線状又は平面状の接触部120a,220aが形成され、伝熱部10,20同士を面接触させて隣り合う伝熱プレート1,2の前記接触部120a,220a同士が重なり合ってロウ付けされているため、複数枚の伝熱プレート1,2を積層した状態で伝熱プレート1,2の接続部12,22に沿って形成される隙間Gが遮断された状態になる。   As described above, the plate heat exchanger A according to this embodiment includes a plurality of heat transfer plates 1 and 2 obtained by press-molding metal plates, and each heat transfer plate 1 and 2 has a plurality of concave portions on both sides. The heat transfer portions 10 and 20 formed with strips and ridges, and an endless annular seal extending from the entire outer periphery of the heat transfer portions 10 and 20 in a direction crossing the heat transfer portions 10 and 20 Sealing portions of the heat transfer plates 1 and 2 adjacent to each other in a state where a plurality of heat transfer plates 1 and 2 are overlapped so that the sealing portions 11 and 21 are fitted to each other. 11 and 21 and the openings H1, H2, H3 and H4 formed in the heat transfer portions 10 and 20 are brazed, and the heat exchange fluid CM is circulated with the heat transfer portions 10 and 20 as a boundary. One flow path R1 and a second flow path R2 for circulating the heat exchange fluid W are alternately formed. The openings H1, H2, H3, and H4 are connected in the stacking direction to form a heat exchange fluid inflow passage 31a and a heat exchange fluid outflow passage 31b through which the heat exchange fluid CM flows in and out of the first flow path R1. In the plate heat exchanger A in which the heat exchange fluid inflow passage 32a and the heat exchange fluid outflow passage 32b through which the heat exchange fluid W flows into and out of the second flow path R2 are formed, each of the heat transfer plates 1 and 2 is The heat transfer sections 10 and 20 are connected to at least one of the connection sections 12 and 22 that connect the heat transfer sections 10 and 20 adjacent to the area where the heat transfer sections 10 and 20 are in surface contact with each other. And linear contact portions 120a and 220a extending straight between the sealing portions 11 and 21 are formed, and the heat transfer plates 1 and 2 are adjacent to each other by bringing the heat transfer portions 10 and 20 into surface contact with each other. The contact portions 120a and 220a In the state where a plurality of heat transfer plates 1 and 2 are stacked, the gap G formed along the connection portions 12 and 22 of the heat transfer plates 1 and 2 is blocked because the heaters are overlapped and brazed. become.

すなわち、本実施形態に係るプレート式熱交換器Aは、従来のものと同様に、各伝熱プレート1,2が金属プレートをプレス成形したものであるため、伝熱部10,20と封止部11,21とを接続する接続部12,22の大部分が湾曲した状態で形成され、伝熱部10,20同士が面接触する領域に隣接した接続部12,22間に隙間Gが形成されることになるが、接続部12,22の少なくとも一カ所に伝熱部10,20と封止部11,21との間で真っ直ぐに伸びる直線状又は平面状の接触部120a,220aが形成され、伝熱部10,20同士を面接触させて隣り合う伝熱プレート1,2の前記接触部120a,220a同士が重なり合ってロウ付けされているため、ロウ付けされた接触部120a,220a同士が隙間Gを仕切ることになる。   That is, the plate heat exchanger A according to the present embodiment is sealed with the heat transfer portions 10 and 20 because the heat transfer plates 1 and 2 are formed by press-molding metal plates as in the conventional case. Most of the connection parts 12 and 22 that connect the parts 11 and 21 are formed in a curved state, and a gap G is formed between the connection parts 12 and 22 adjacent to the area where the heat transfer parts 10 and 20 are in surface contact with each other. However, linear or planar contact portions 120a and 220a that extend straight between the heat transfer portions 10 and 20 and the sealing portions 11 and 21 are formed in at least one of the connection portions 12 and 22. Since the contact portions 120a, 220a of the adjacent heat transfer plates 1, 2 are overlapped and brazed by bringing the heat transfer portions 10, 20 into surface contact with each other, the brazed contact portions 120a, 220a are Partition gap G It will be.

また、伝熱プレート1,2が金属プレートをプレス成形して形成されることで、伝熱部10,20と封止部11,21との接続部12,22は、接触部の両側(接触部と伝熱部10,20との接続部12,22及び接触部と封止部11,21との接続部12,22)が湾曲した態様になるが、当該部分の曲率半径が他の接続部12,22(接触部120a,220aの形成されていない接続部12,22)の曲率半径に比して大きくなるため、当該部分での隙間は極めて小さくなり、接触部120a,220a同士をロウ付けするのに必要なロウ材が接触部の両側に流れることで隙間が埋め尽くされる。これにより、本実施形態に係るプレート式熱交換器Aは、接続部12,22に沿って形成される隙間Gが閉じられた状態になり、当該隙間Gでの流体の流通を遮断することができる。   Further, since the heat transfer plates 1 and 2 are formed by press-molding a metal plate, the connection portions 12 and 22 between the heat transfer portions 10 and 20 and the sealing portions 11 and 21 are on both sides of the contact portion (contact The connection parts 12 and 22 between the heat transfer parts 10 and 20 and the connection parts 12 and 22 between the contact parts and the sealing parts 11 and 21 are curved, but the curvature radius of the part is another connection. Since it becomes larger than the curvature radius of the parts 12 and 22 (the connection parts 12 and 22 where the contact parts 120a and 220a are not formed), the gap in the part becomes extremely small, and the contact parts 120a and 220a are brazed to each other. The gaps are filled by the brazing material necessary for the attachment flowing on both sides of the contact portion. Thereby, the plate-type heat exchanger A according to the present embodiment is in a state in which the gap G formed along the connecting portions 12 and 22 is closed, and can block the fluid flow in the gap G. it can.

このように本実施形態に係るプレート式熱交換器Aは、伝熱プレート1,2同士をロウ付けするためのロウ材の使用量を増加させることなく、伝熱プレート1,2の伝熱部10,20と封止部11,21とを接続する接続部12,22に沿って形成される隙間Gにおける流体の流通を阻止することができるといった優れた効果を奏し得る。   Thus, the plate-type heat exchanger A according to the present embodiment has a heat transfer portion of the heat transfer plates 1 and 2 without increasing the amount of brazing material used to braze the heat transfer plates 1 and 2 together. 10 and 20 and the sealing parts 11 and 21 can have the outstanding effect that the distribution | circulation of the fluid in the clearance gap G formed along the connection parts 12 and 22 can be blocked | prevented.

また、各伝熱プレート1,2の前記接続部12,22は、前記接触部120a,220aと、該接触部120a,220aと伝熱部10,20とを接続する第一湾曲部120b,220bと、前記接触部120a,220aと封止部11,21とを接続する第二湾曲部120c,220cとで構成され、隣り合う二つの伝熱プレート1,2のうちの一方の伝熱プレート1,2の第一湾曲部120b及び第二湾曲部120cの外側の曲率半径と、封止部21を前記一方の伝熱プレート1の封止部11に外嵌させる他方の伝熱プレート2の第一湾曲部220b及び第二湾曲部220cの内側の曲率半径とが同一に設定されているため、隣り合う伝熱プレート1,2における伝熱部10,20と封止部11,21とを接続する接続部12,22において、接触部120a,220aに加えて第一湾曲部120b,220b同士及び第二湾曲部120c,220c同士が確実に密接した状態になり、接続部12,22に沿って形成される隙間Gを確実に遮断することができる。   Further, the connecting portions 12 and 22 of the heat transfer plates 1 and 2 include the contact portions 120a and 220a, and first curved portions 120b and 220b that connect the contact portions 120a and 220a and the heat transfer portions 10 and 20, respectively. And the second curved portions 120c and 220c connecting the contact portions 120a and 220a and the sealing portions 11 and 21, and one heat transfer plate 1 of the two adjacent heat transfer plates 1 and 2. , 2 of the first curved portion 120b and the second curved portion 120c, and the second heat transfer plate 2 of the other heat transfer plate 2 for fitting the sealing portion 21 to the sealing portion 11 of the one heat transfer plate 1. Since the curvature radii inside the first curved portion 220b and the second curved portion 220c are set to be the same, the heat transfer portions 10 and 20 and the sealing portions 11 and 21 in the adjacent heat transfer plates 1 and 2 are connected. To connecting parts 12 and 22 Thus, in addition to the contact portions 120a and 220a, the first bending portions 120b and 220b and the second bending portions 120c and 220c are surely in close contact with each other, and a gap G formed along the connection portions 12 and 22 is formed. It can be reliably shut off.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更し得ることは勿論のことである。   In addition, this invention is not limited to the said embodiment, Of course, it can change suitably in the range which does not deviate from the summary of this invention.

上記実施形態において、プレート式熱交換器Aを蒸発器として使用することを前提に、圧力が一定の場合、蒸発の進行によっても殆ど温度上昇を伴わない熱交換流体CM(単一成分熱交換流体や、共沸混合熱交換流体、疑似共沸混合熱交換流体)を採用し、第二領域A2の長手方向の他端側にある第四開口H4で被熱交換流体流入路32aを構成する一方、第二領域A2の長手方向の一端側にある第二開口H2で被熱交換流体流出路32bを構成し、第一流路R1内で流通する熱交換流体CMと第二流路R2で流通する被熱交換流体W(水)とを同方向に流通させる(並行流にする)ようにしたが、これに限定されるものではなく、圧力が一定の場合でも、蒸発の進行により温度上昇する熱交換流体CM(非共沸混合熱交換流体)を採用する場合、第二領域A2の長手方向の他端側にある第四開口H4で被熱交換流体流出路32bを構成する一方、第二領域A2の長手方向の一端側にある第二開口H2で被熱交換流体流入路32aを構成し、第一流路R1内で流通する熱交換流体CMと第二流路R2で流通する被熱交換流体W(水)とを逆方向に流通させる(対向流にする)ようにしてもよい。   In the above embodiment, on the premise that the plate heat exchanger A is used as an evaporator, when the pressure is constant, the heat exchange fluid CM (single component heat exchange fluid that hardly increases in temperature due to the progress of evaporation. Or an azeotropic mixed heat exchange fluid or a pseudo-azeotropic mixed heat exchange fluid), and the fourth opening H4 on the other end side in the longitudinal direction of the second region A2 constitutes the heat exchange fluid inflow passage 32a. The second opening H2 on one end side in the longitudinal direction of the second region A2 constitutes the heat exchange fluid outflow passage 32b, and the heat exchange fluid CM that circulates in the first flow path R1 and the second flow path R2. Although the heat exchange fluid W (water) is circulated in the same direction (parallel flow), it is not limited to this, and even when the pressure is constant, heat that rises in temperature due to the progress of evaporation Uses exchange fluid CM (non-azeotropic mixed heat exchange fluid) In this case, the fourth opening H4 on the other end side in the longitudinal direction of the second region A2 constitutes the heat exchange fluid outflow path 32b, while the second opening H2 on the one end side in the longitudinal direction of the second region A2 The heat exchange fluid inflow passage 32a is configured, and the heat exchange fluid CM flowing in the first flow path R1 and the heat exchange fluid W (water) flowing in the second flow path R2 are circulated in opposite directions (in the opposite flow). You may do it.

上記実施形態において、プレート式熱交換器Aを蒸発器として使用することを前提に、伝熱プレート1,2間に仕切部30を設けて第二流路R2及び第三流路R3を形成したものについて説明したが、プレート式熱交換器Aはこのタイプのものに限定されるものではなく、例えば、図10及び図11に示す如く、第一流路R1及び第二流路R2のみを形成することを前提に、伝熱プレート1,2を境にして第一流路R1と第二流路R2とを交互に形成したものであってもよい。この場合、背景技術で説明した通り、上記構成のプレート式熱交換器Aは、伝熱部10,20に形成された開口が当該伝熱部10,20の端縁近傍に配置された場合、熱交換流体流入路31a等の流路を形成するために隣り合う伝熱プレートの開口回り同士が封着されると開口から伝熱部10,20の端縁まで密着した状態になり、伝熱部10,20同士を密接させた領域の周囲にある伝熱部10,20と封止部11,21とを接続する接続部12,22間に隙間Gが形成されてしまうため、この隙間Gの形成される領域の両端部に接触部120a,220aを設ければよい。このようにすれば、図12に示す如く、開口(熱交換流体流入路31a等)の周辺に形成される隙間Gが接触部120a,220a、第一湾曲部120b,220b、及び第二湾曲部120c,220cによって閉じられるため、当該隙間Gへの流体の流入を阻止することができ、流体の膨張と収縮に伴う接続部12,22の破損を防止することができる。   In the above embodiment, on the premise that the plate heat exchanger A is used as an evaporator, the partition 30 is provided between the heat transfer plates 1 and 2 to form the second flow path R2 and the third flow path R3. However, the plate heat exchanger A is not limited to this type. For example, as shown in FIGS. 10 and 11, only the first flow path R1 and the second flow path R2 are formed. As a premise, the first flow path R1 and the second flow path R2 may be alternately formed with the heat transfer plates 1 and 2 as a boundary. In this case, as described in the background art, the plate-type heat exchanger A having the above-described configuration is configured such that the opening formed in the heat transfer units 10 and 20 is disposed in the vicinity of the edge of the heat transfer units 10 and 20. When the openings around adjacent heat transfer plates are sealed to form a flow path such as the heat exchange fluid inflow path 31a, the heat transfer fluid is brought into close contact from the openings to the edges of the heat transfer portions 10 and 20, and heat transfer. Since the gap G is formed between the connection parts 12 and 22 that connect the heat transfer parts 10 and 20 and the sealing parts 11 and 21 around the area where the parts 10 and 20 are in close contact with each other, the gap G The contact portions 120a and 220a may be provided at both ends of the region where the film is formed. In this way, as shown in FIG. 12, the gap G formed around the opening (the heat exchange fluid inflow passage 31a, etc.) becomes the contact portions 120a, 220a, the first bending portions 120b, 220b, and the second bending portion. Since it is closed by 120c and 220c, the inflow of the fluid to the said clearance gap G can be blocked | prevented, and the damage of the connection parts 12 and 22 accompanying expansion and contraction of the fluid can be prevented.

上記実施形態において、プレート式熱交換器Aを蒸発器として使用することを前提に説明したが、これに限定されるものではなく、熱交換流体と被熱交換流体との熱交換を行う目的であれば種々の分野で適用可能である。   In the said embodiment, although demonstrated on the assumption that the plate type heat exchanger A was used as an evaporator, it is not limited to this, In order to perform heat exchange with a heat exchange fluid and a to-be-heated fluid. If applicable, it can be applied in various fields.

上記実施形態において、接続部12,22の接触部120a,220aを平坦(平面)状に形成したが、これに限定されるものではなく、例えば、接触部120a,220aを直線状に形成してもよい。このようにしても、隣り合う伝熱プレート1,2の接触部120a,220a同士が接触して隙間Gを遮断することができる。   In the above embodiment, the contact portions 120a and 220a of the connection portions 12 and 22 are formed in a flat (planar) shape. However, the present invention is not limited to this. For example, the contact portions 120a and 220a are formed in a linear shape. Also good. Even if it does in this way, contact part 120a, 220a of the adjacent heat-transfer plates 1 and 2 can contact, and the clearance gap G can be interrupted | blocked.

また、上記実施形態において、各伝熱プレート1,2に対して二つの接触部120a,220aを設けたが、これに限定されるものではなく、接触部120a,220aは、流体の流通を遮断する必要箇所に設ければよい。従って、接触部120a,220aは、プレート式熱交換器Aの形態に応じて少なくとも一つ設けられればよい。   Moreover, in the said embodiment, although the two contact parts 120a and 220a were provided with respect to each heat-transfer plate 1 and 2, it is not limited to this, Contact parts 120a and 220a interrupt | block the distribution | circulation of a fluid. What is necessary is just to provide in the required part. Therefore, at least one contact part 120a, 220a may be provided according to the form of the plate heat exchanger A.

1,2…伝熱プレート、3,4…フレームプレート、10,20…伝熱部、11,21…封止部、12,22…接続部、30…仕切部、31a…熱交換流体流入路、31b…熱交換流体流出路、32a…被熱交換流体流入路、32b…被熱交換流体流出路、33a…加熱流体流入路、33b…加熱流体流出路、34…流体案内部、35…ガイド部、36a,36b…サイドガイド部、100,200…仕切用凸部、101,201…第一環状凸部(環状凸部)、102,202…第二環状凸部(環状凸部)、103,203…第三環状凸部(環状凸部)、104,204…第四環状凸部(環状凸部)、105,205…第五環状凸部(環状凸部)、106,206…第六環状凸部(環状凸部)、107,207…案内用凸部、108,208…ガイド用凸部、109,209…サイドガイド用凸部、120a,220a…接触部、120b,220b…第一湾曲部、120c,220c…第二湾曲部、A…プレート式熱交換器、A1…第一領域、A2…第二領域、CM…熱交換流体(冷媒)、G…隙間、H1…第一開口(開口)、H2…第二開口(開口)、H3…第三開口(開口)、H4…第四開口(開口)、H5…第五開口(開口)、H6…第六開口(開口)、Pa1…第一パス領域、Pa2…第二パス領域、R1…第一流路、R2…第二流路、R3…第三流路、W…被熱交換流体、WM…加熱流体、θ…角度   1, 2 ... Heat transfer plate, 3, 4 ... Frame plate, 10, 20 ... Heat transfer part, 11, 21 ... Sealing part, 12, 22 ... Connection part, 30 ... Partition part, 31a ... Heat exchange fluid inflow path 31b ... Heat exchange fluid outflow passage, 32a ... Heat exchange fluid inflow passage, 32b ... Heat exchange fluid outflow passage, 33a ... Heating fluid inflow passage, 33b ... Heating fluid outflow passage, 34 ... Fluid guide section, 35 ... Guide 36a, 36b ... side guide part, 100, 200 ... partitioning convex part, 101, 201 ... first annular convex part (annular convex part), 102, 202 ... second annular convex part (annular convex part), 103 , 203 ... third annular protrusion (annular protrusion), 104, 204 ... fourth annular protrusion (annular protrusion), 105, 205 ... fifth annular protrusion (annular protrusion), 106, 206 ... sixth Annular convex part (annular convex part), 107, 207... Guiding convex part, 108, 208 Guide convex portions, 109, 209 ... Side guide convex portions, 120a, 220a ... Contact portions, 120b, 220b ... First curved portion, 120c, 220c ... Second curved portion, A ... Plate heat exchanger, A1 ... 1st area | region, A2 ... 2nd area | region, CM ... Heat exchange fluid (refrigerant), G ... Gap, H1 ... 1st opening (opening), H2 ... 2nd opening (opening), H3 ... 3rd opening (opening), H4 ... fourth opening (opening), H5 ... fifth opening (opening), H6 ... sixth opening (opening), Pa1 ... first pass region, Pa2 ... second pass region, R1 ... first flow path, R2 ... first Two channels, R3 ... third channel, W ... heat exchange fluid, WM ... heating fluid, θ ... angle

Claims (2)

金属プレートをプレス成形した複数枚の伝熱プレートを備え、各伝熱プレートは、両面に複数の凹条及び凸条の形成された伝熱部と、該伝熱部に対して面交差する方向に伝熱部の外周全周から延出した無端環状の封止部とを備え、前記封止部同士が嵌合するように複数枚の伝熱プレートが重ね合わされた状態で少なくとも隣り合う伝熱プレートの封止部同士、及び伝熱部に形成された開口回り同士がロウ付けされ、各伝熱部を境にして熱交換流体を流通させる第一流路と被熱交換流体を流通させる第二流路とが交互に形成され、且つ前記開口が積層方向に連なって第一流路に対して熱交換流体を流出入させる熱交換流体流入路及び熱交換流体流出路が形成されるとともに、第二流路に対して被熱交換流体を流出入させる被熱交換流体流入路及び被熱交換流体が形成されたプレート式熱交換器において、各伝熱プレートは、伝熱部同士が面接触する領域に隣接した伝熱部と封止部との接続部分の少なくとも一カ所に、伝熱部と封止部との間で真っ直ぐに延びる直線状又は平面状の接触部が形成され、伝熱部同士を面接触させて隣り合う伝熱プレートの前記接触部同士が重なり合ってロウ付けされていることを特徴とするプレート式熱交換器。   A plurality of heat transfer plates formed by press-molding metal plates, each heat transfer plate having a plurality of concave and convex stripes formed on both sides, and a direction intersecting the heat transfer portion And an endless annular sealing portion extending from the entire outer periphery of the heat transfer portion, and at least adjacent heat transfer in a state where a plurality of heat transfer plates are overlapped so that the sealing portions are fitted to each other The sealing portions of the plates and the openings around the heat transfer portions are brazed, and the first flow path for circulating the heat exchange fluid and the second heat flow fluid for flowing through each heat transfer portion The heat exchange fluid inflow passage and the heat exchange fluid outflow passage are formed so that the flow passages are alternately formed, and the openings are continuous in the stacking direction to allow the heat exchange fluid to flow in and out of the first flow passage. Heat exchange fluid inflow path for allowing the heat exchange fluid to flow into and out of the flow path In the plate-type heat exchanger in which the heat exchange fluid is formed, each heat transfer plate has at least one connection part between the heat transfer part and the sealing part adjacent to the area where the heat transfer parts are in surface contact with each other. A linear or flat contact portion extending straight between the heat transfer portion and the sealing portion is formed, and the heat transfer portions are brought into surface contact with each other so that the contact portions of adjacent heat transfer plates overlap and braze. A plate-type heat exchanger characterized by being made. 各伝熱プレートの前記接続部分は、前記接触部と、該接触部と伝熱部とを接続する第一湾曲部と、前記接触部と封止部とを接続する第二湾曲部とで構成され、隣り合う二つの伝熱プレートのうちの一方の伝熱プレートの第一湾曲部及び第二湾曲部の外側の曲率半径と、封止部を前記一方の伝熱プレート1の封止部に外嵌させる他方の伝熱プレートの第一湾曲部及び第二湾曲部の内側の曲率半径とが同一に設定されている請求項1に記載のプレート式熱交換器。   The connection portion of each heat transfer plate includes the contact portion, a first bending portion that connects the contact portion and the heat transfer portion, and a second bending portion that connects the contact portion and the sealing portion. The curvature radius outside the first curved portion and the second curved portion of one of the two adjacent heat transfer plates and the sealing portion are used as the sealing portion of the one heat transfer plate 1. 2. The plate heat exchanger according to claim 1, wherein a curvature radius inside the first curved portion and the second curved portion of the other heat transfer plate to be externally fitted is set to be the same.
JP2010277415A 2010-12-13 2010-12-13 Plate heat exchanger Expired - Fee Related JP5085723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010277415A JP5085723B2 (en) 2010-12-13 2010-12-13 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010277415A JP5085723B2 (en) 2010-12-13 2010-12-13 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JP2012127541A true JP2012127541A (en) 2012-07-05
JP5085723B2 JP5085723B2 (en) 2012-11-28

Family

ID=46644791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010277415A Expired - Fee Related JP5085723B2 (en) 2010-12-13 2010-12-13 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP5085723B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066411A (en) * 2012-09-25 2014-04-17 Hisaka Works Ltd Plate type heat exchanger
KR20170140338A (en) * 2015-04-27 2017-12-20 발레오 시스템므 떼르미끄 Heat exchanger with stacked plates
CN110670799A (en) * 2019-10-10 2020-01-10 李居强 Structural plate with cavity and manufacturing method thereof
WO2023054353A1 (en) * 2021-09-30 2023-04-06 ダイキン工業株式会社 Heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207216A (en) * 1963-02-27 1965-09-21 Borg Warner Heat exchanger
JPH10185462A (en) * 1996-12-20 1998-07-14 Tennex:Kk Housingless type oil cooler
JP2000274989A (en) * 1999-03-23 2000-10-06 Daikin Ind Ltd Plate heat exchanger
JP2001099588A (en) * 1999-09-29 2001-04-13 Hisaka Works Ltd Plate type heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207216A (en) * 1963-02-27 1965-09-21 Borg Warner Heat exchanger
JPH10185462A (en) * 1996-12-20 1998-07-14 Tennex:Kk Housingless type oil cooler
JP2000274989A (en) * 1999-03-23 2000-10-06 Daikin Ind Ltd Plate heat exchanger
JP2001099588A (en) * 1999-09-29 2001-04-13 Hisaka Works Ltd Plate type heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066411A (en) * 2012-09-25 2014-04-17 Hisaka Works Ltd Plate type heat exchanger
KR20170140338A (en) * 2015-04-27 2017-12-20 발레오 시스템므 떼르미끄 Heat exchanger with stacked plates
JP2018514741A (en) * 2015-04-27 2018-06-07 ヴァレオ システム テルミク Heat exchanger having a plurality of stacked plates
KR102038213B1 (en) * 2015-04-27 2019-10-29 발레오 시스템므 떼르미끄 Heat exchanger with laminated plate
CN110670799A (en) * 2019-10-10 2020-01-10 李居强 Structural plate with cavity and manufacturing method thereof
WO2023054353A1 (en) * 2021-09-30 2023-04-06 ダイキン工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP5085723B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP6641544B1 (en) Plate heat exchanger and heat pump device provided with the same
CN108700387B (en) Battery cooling plate heat exchanger and plate assembly
CN111819415B (en) Plate heat exchanger, heat pump device provided with same, and heat pump type cooling/heating/water heating system provided with heat pump device
JP5882179B2 (en) Internal heat exchanger with external manifold
JP6594598B1 (en) Plate type heat exchanger, heat pump device provided with plate type heat exchanger, and heat pump type heating hot water supply system provided with heat pump device
JP5722528B2 (en) Heat exchanger plate
JP5085723B2 (en) Plate heat exchanger
JP2016522384A (en) Tube with phase change material container for heat exchange bundles, especially for evaporators of vehicle air conditioning systems
JP2008008574A (en) Heat exchanger
JP2007205634A (en) Plate type heat exchanger
JP5025783B2 (en) Evaporator and refrigeration system provided with the evaporator
EP3404350A1 (en) Plate heat exchanger
JP5498809B2 (en) Plate heat exchanger
JPWO2018216165A1 (en) Plate heat exchanger
EP3627087B1 (en) Plate type heat exchanger
JP2008106969A (en) Plate type heat exchanger
JP2006064281A (en) Plate type heat exchanger
JP6862773B2 (en) Heat exchanger
JP2007278637A (en) Heat exchanger
JP5244162B2 (en) Plate heat exchanger
JP2000266495A (en) Plate type heat exchanger
JP5933605B2 (en) Plate heat exchanger
JP7433422B2 (en) Plate heat exchanger, heat pump system, and method for manufacturing heat transfer plates
JP6207724B2 (en) Header distributor, heat exchanger, air conditioner, and header distributor manufacturing method
JP5557893B2 (en) Plate heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R150 Certificate of patent or registration of utility model

Ref document number: 5085723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees