JP2012123877A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2012123877A
JP2012123877A JP2010274940A JP2010274940A JP2012123877A JP 2012123877 A JP2012123877 A JP 2012123877A JP 2010274940 A JP2010274940 A JP 2010274940A JP 2010274940 A JP2010274940 A JP 2010274940A JP 2012123877 A JP2012123877 A JP 2012123877A
Authority
JP
Japan
Prior art keywords
logic gate
gate circuit
circuit
logic
logic state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010274940A
Other languages
English (en)
Inventor
Takeshi Midorikawa
剛 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010274940A priority Critical patent/JP2012123877A/ja
Priority to US13/206,679 priority patent/US8649231B2/en
Publication of JP2012123877A publication Critical patent/JP2012123877A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/08Control thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/227Timing of memory operations based on dummy memory elements or replica circuits

Landscapes

  • Static Random-Access Memory (AREA)

Abstract

【課題】電源電圧が低下した場合にも、データの読み出しを高速且つ正確に実行することを可能にした半導体記憶を提供する。
【解決手段】メモリセルは、ワード線とビット線の交差部に設けられ、ダミーセルは、ダミーワード線とダミービット線の交差部に設けられる。遅延回路は、ダミービット線に読み出された信号を遅延させてセンスアンプ活性化信号を生じさせる。センスアンプ回路は、センスアンプ活性化信号の変化に従い動作を開始しメモリセルからビット線に読み出された信号を検知・増幅する。遅延回路は、第1論理ゲート回路と第2論理ゲート回路とを交互に縦列接続して構成される。第1論理ゲート回路の出力信号が第1の論理状態から第2の論理状態に切り替わるのに要する第1の遅延時間よりも、第2論理ゲート回路の出力信号が第1の論理状態から第2の論理状態に切り替わるのに要する第2の遅延時間の方が長い。
【選択図】図1

Description

本明細書に記載の実施の形態は、半導体記憶装置に関する。
一般的な半導体記憶装置において、データ読み出しは、メモリセルの保持するデータに応じてビット線に現れた信号を、所定のタイミングでセンスアンプ回路で検知・増幅することにより行われている。従って、半導体記憶装置の動作速度を速くするには、メモリセルの選択からセンスアンプ活性化までの時間を短縮することが望まれる。
しかし、センスアンプ回路を早く活性化させ過ぎると、ビット線対に十分な電位差が現れる前にセンスアンプ回路の検知・増幅動作が開始されてしまい、誤読み出しが行われる可能性が高くなる。従って、誤読み出しが生じず、且つ動作速度を早めることができる最適なタイミングを設定することが必要である。
そこで、センスアンプの活性化信号を適正なタイミングで生成するための技術として、ダミーセルから読み出した信号を遅延回路で遅延させ、この遅延信号をセンスアンプ活性化信号としてセンスアンプに供給する半導体記憶装置が知られている。この装置は、所定のデータを固定的に保持しメモリセルアレイと同一又は類似の構造を有するダミーセルを有している。そして、このダミーセルに接続されたダミーワード線に対しロウアドレス信号を入力し、ダミーセルからダミービット線に読み出された信号を遅延回路にて遅延させてセンスアンプ活性化信号を生成し、このセンスアンプ活性化信号をセンスアンプに入力させるものである。
ところで、メモリセルの微細化の進展に伴い、半導体記憶装置の電源電圧も低下する傾向にある。電源電圧が低下すると、センスアンプ回路の感度は低下する一方で、読み出し動作時のビット線対の電圧の変化速度は小さくなる。このため、電源電圧が低下した場合、高速且つ正確にメモリセルの保持データを判定することが徐々に困難になる。
特開2006−73161号公報
本発明は、電源電圧が低下した場合にも、データの読み出しを高速且つ正確に実行することを可能にした半導体記憶を提供することを目的とする。
本発明の一態様に係る半導体記憶装置は、ワード線とビット線の交差部に設けられたメモリセルを配列してなるメモリセルアレイと、所定のデータを固定的に保持しダミーワード線とダミービット線の交差部に設けられたダミーセルとを備える。遅延回路は、前記ダミービット線に読み出された信号を遅延させてセンスアンプ活性化信号を生じさせる。センスアンプ回路は、前記センスアンプ活性化信号の変化に従い動作を開始し前記メモリセルから前記ビット線に読み出された信号を検知・増幅する。遅延回路は、第1論理ゲート回路と第2論理ゲート回路とを縦列接続して構成される。前記第1論理ゲート回路及び前記第2論理ゲート回路は、前記第1論理ゲート回路の出力信号が第1の論理状態から第2の論理状態に切り替わるのに要する第1の遅延時間よりも、前記第2論理ゲート回路の出力信号が第1の論理状態から第2の論理状態に切り替わるのに要する第2の遅延時間の方が長くなるように構成されている。
本発明の第1の実施の形態に係る半導体記憶装置の全体構成を示す回路図である。 図1の遅延回路16の具体的な構成例を示す回路図である。 比較例に係る遅延回路の回路図である。 第1の実施の形態に係る半導体記憶装置の動作を示すグラフである。 第1の実施の形態に係る半導体記憶装置の効果を説明するグラフである。 第2の実施の形態に係る半導体記憶装置における遅延回路16の具体的な構成例を示す回路図である。
次に、本発明の実施の形態を、図面を参照して詳細に説明する。以下の実施の形態では、本発明をスタティック・ランダム・アクセス・メモリ(SRAM)に適用した場合を例にとって説明する。しかし、本発明はこれに限定されるものではなく、ダミーセルを配列してなるダミー回路を利用可能な他の半導体記憶装置にも適用可能であることはいうまでもない。
まず、本発明の実施の形態に係る半導体記憶装置の全体構成を図1を参照して説明する。図1に示すように、本実施の形態の半導体記憶装置は、メモリセルアレイ11、ロウデコーダ12、センスアンプ回路13、制御回路14、ダミーセルアレイ15、遅延回路16から大略構成されている。
メモリセルアレイ11は、ビット線対BL、/BL、及びワード線WLの交差部に複数のメモリセルMCをマトリクス状に配列して構成される。メモリセルMCは、例えば一対のインバータINVt、INVcを逆並列接続すると共に、その接続ノードとビット線対BL、/BLとの間に選択トランジスタST1、ST2を備えたものとすることができる。
また、複数のワード線WLのいずれかに選択的に選択信号を与えてメモリセルMCを選択するための構成として、ロウデコーダ12が設けられている。また、選択されたメモリセルMCからビット線対BL、/BLに読み出された信号を検知・増幅するためにセンスアンプ回路13が設けられている。制御回路14は、センスアンプ回路13を含む装置全体の制御を担当する。
ダミーメモリセルアレイ15は、ダミービット線DBLとダミーワード線DWLの交差部に複数のダミーセルDMCを配置して構成される。ダミーセルDMCは、所定のデータを固定的に保持しており、また、メモリセルMCと同一又は類似の構造を有している。ダミーワード線DWLが選択されると、ダミービット線DBLに保持データに応じた信号が現れる。遅延回路16は、このダミービット線DBLの信号を遅延させ、このダミービット線DBLの信号の立ち下がりよりも所定期間遅れて立ち上がる遅延信号(センスアンプ活性化信号SAE)を出力する。センスアンプ回路13は、このセンスアンプ活性化信号SAEの論理の変化に基づいて活性化され動作を開始し、メモリセルMCからビット線BLに読み出された信号を検知・増幅する。
次に、この遅延回路16の具体的な構成の一例を、図2を参照して説明する。図2に示すように、遅延回路16は、複数の論理ゲート回路L〜L2n+1を縦列接続して構成される(nは整数)。なお、これら論理ゲート回路と並列に、遅延回路DとNANDゲートNDpも接続されている。この遅延回路DとNANDゲートNDpは、センスアンプ活性化信号SAEを所定期間だけ立ち上がるパルス波形とするために設けられている。
奇数段目の論理ゲート回路L、L、・・・L2n−3、L2n−1、L2n+1は、いずれもインバータINV(INV、INV、・・・INV2n−3、INV2n−1、INV2n+1)である。一方、偶数段目の論理ゲート回路L、L、・・・L2n−2、L2nは、いずれもNANDゲートND(ND、ND、・・・ND2n−2、ND2n)である。この図1の半導体記憶装置では、読み出し動作時において、ダミービット線DBLの信号がまず”H”レベルから”L”レベルに立ち下がる。このとき、遅延回路16内の奇数段目の論理ゲート回路では、その出力信号が逆に”L”レベルから”H”レベルに上昇する一方、遅延回路16内の偶数段目の論理ゲート回路では、その出力信号が”H”レベルから”L”レベルに下降する。本実施の形態では、遅延回路16への入力信号であるダミービット線DBLの信号が”H”から”L”レベルに下がるのに合わせて、その出力信号が”H”から”L”レベルに下がる論理ゲート回路(ここでは、遅延回路16の偶数段目の論理ゲート回路)を、NANDゲートNDにより構成している。奇数段目の論理ゲート回路L、L、・・・L2n−3、L2n−1、L2n+1の出力信号が”H”から”L”に切り替わるのに要する時間T1よりも、偶数段目の論理ゲート回路L、L、・・・L2n−2、L2nの出力信号が”H”から”L”に切り替わるのに要する時間T2の方が長くなるよう、論理ゲート回路Lが構成されている。その一例として、上記のように、奇数段目の論理ゲート回路L、L、・・・L2n−3、L2n−1、L2n+1はインバータINVとされ、偶数段目の論理ゲート回路L、L、・・・L2n−2、L2nはNANDゲートとされている。
NANDゲートNDは、図2に示すように、電源電圧端子と出力端子(f)との間に並列接続されるPMOSトランジスタMP1、MP2と、出力端子(f)と接地端子との間に直列接続されるNMOSトランジスタMN1、MN2を備えている。入力端子AはPMOSトランジスタMP2とNMOSトランジスタMN1のゲートに入力され、入力端子Bは、PMOSトランジスタMP1とNMOSトランジスタMN2のゲートに入力される。一方、インバータINVは、1つのPMOSトランジスタMP1’と、1つのNMOSトランジスタMN1’とを直列接続させて構成される(NMOSトランジスタMN1’は、出力端子と接地端子との間に接続されている)。すなわち、インバータINVは、その出力信号が”L”である場合に導通状態となるNMOSトランジスタの数が1個である一方、NANDゲートNDは、その出力信号が”L”である場合に導通状態となるNMOSトランジスタの数が2個(第2の数)であり、インバータINVのNMOSトランジスタの数(1個:第1の数)より多くされている。このため、NANDゲートNDは、その出力信号が”H”から”L”に切り替わるのに要する時間T2が、インバータINVの場合の時間T1に比べて長くなる。
NANDゲートNDの一の入力端子は、前段のインバータINVの出力端子と接続され、他方の入力端子は例えば電源電圧Vddを固定的に与えられている。このため、NANDゲートNDはインバータとして機能する。
このように、第1の実施の形態では、インバータINVと、NANDゲートNDとを交互に縦列接続して遅延回路16を構成している。前者が奇数段目にあり、後者が偶数段目とされている理由は、図1の遅延回路16に入力されるダミービット線DBLの信号が、ダミーセルDMCの読み出し動作開始後に”H”から”L”に下がる信号であるためである(詳しくは後述する)。これとは逆に、遅延回路16に入力される信号が”L”から”H”に切り替わる信号である場合には、後者を奇数段目として、前者を偶数段目とすればよい。
次に、本実施の形態の比較例の遅延回路16の具体的構成を図3を参照して説明する。この比較例では、図2と同様に、複数の論理ゲート回路L’〜L’2n+1が縦列接続されている。ただし、それら複数の論理ゲート回路L’は、1つを除き全てインバータINVで構成されている。
図2の遅延回路16は、図3の比較例の遅延回路16に比べ、電源電圧が低くなった場合でも、センスアンプ活性化信号SAEを適切なタイミングで立ち上げることができセンスアンプ回路13を適切なタイミングで活性化させることができる。
図4を参照して、本実施の形態の半導体記憶装置の動作を説明する。メモリセルMCからデータを読み出す場合、ビット線対BL、/BLを例えば電源電圧Vddまで充電した後、時刻t1において選択メモリセルMCに接続されたワード線WLの電位を”L”から”H”に立ち上げる。すると、選択メモリセルMCの保持データがビット線BL、/BLに読み出され、ビット線対BL、/BL間の電位差が徐々に大きくなる。
一方、図示は省略しているが、ダミーワード線DWLの電位も、ワード線WLの電位が”L”から”H”に上昇したのと略同一のタイミングにて、”L”から”H”に切り替わる。これにより、ダミービット線DBLの信号も”H”から”L”に切り替わり、この信号が遅延回路16に供給される。遅延回路16は、この信号を遅延させ、例えば時刻t2においてセンスアンプ活性化信号SAEを”L”から”H”に立ち上げ、センスアンプ回路13の動作を開始させる。遅延回路16における遅延量Td(t2−t1)は、ある電源電圧が与えられている場合に想定されるビット線対BL、/BL間の電位差Vdiffを考慮して設定される。
ビット線対BL、/BL間の電位差がセンスアンプ回路13で増幅が可能な大きさまで増加した時刻t2において、センスアンプ活性化信号SAEを”L”から”H”に立ち上げる。これにより、選択メモリセルMCの保持データが読み出される。
ところで、ビット線対BL、/BLの電位の変化の速さ(傾き)は、電源電圧Vddが小さくなるに従って小さくなる。一方、遅延回路16が出力するセンスアンプ活性化信号SAEの立ち上がりの時刻t2も、電源電圧Vddが低下するに従って遅くなる。しかし、全体としては、センスアンプ活性化信号SAEが”L”から”H”に立ち上がる時刻t2におけるビット線対BL、/BL間の電位差Vdiffは、電源電圧Vddが低下するに従い低下する(図5参照)。この電位差Vdiffが、センスアンプ回路13で検知増幅動作を行うのに必要な最低限の電圧Vdiff_SPECに近付くと、読み出しマージンが小さくなり、これを下回るとデータ読み出し動作が不可能になる。
比較例(図3)の遅延回路では、センスアンプ活性化信号SAEが”L”から”H”に立ち上がる時刻t2におけるビット線対BL、/BL間の電位差Vdiff’は、電源電圧Vddが小さくなるほど低下し、その低下の割合が大きい。一方、本実施の形態(図2)の遅延回路16でも、センスアンプ活性化信号SAEが”L”から”H”に立ち上がる時刻t2におけるビット線対BL、/BL間の電位差Vdiffは、電源電圧Vddが小さくなるほど低下するが、その低下の割合は、図3における電位差Vdiff’に比べ大幅に抑制されている。このため、図2の遅延回路16によれば、相対的に低い電源電圧Vddまで正確且つ高速な検知動作が可能になっている。
ここで、図2の遅延回路16を用いた第1の実施の形態において、電位差Vdiffの電源電圧Vddに対する依存性が小さく、図3の遅延回路16を用いた比較例において、電位差Vdiffの依存性が大きい理由を説明する。
図2の遅延回路では、ダミービット線DBLが”H”から”L”に切り替わると、奇数段目のインバータINV(INV、INV、・・・INV2n−3、INV2n−1、INV2n+1)は、その内部のPMOSトランジスタが導通状態となり、NMOSトランジスタは非導通状態となる。一方、偶数段目のNANDゲートND(ND、ND、・・・ND2n−2、ND2n)は、その内部に直列接続された2つのNMOSトランジスタMN1、MN2(図2)が導通状態とされて出力端子(f)の電圧を”H”(Vdd)から”L”(接地電位Vss)に切り換える一方、2つのPMOSトランジスタMP1、MP2が非導通状態になる。2つの直列接続されたNMOSトランジスタにより出力ノードが放電されるという意味において、メモリセルMCにおける放電動作と同様である(メモリセルMCでは、インバータINVp又はINVc内の1つのNMOSトランジスタと、選択トランジスタSTの2つのトランジスタにより、ビット線BL又は/BLが放電される)。このように、図2の遅延回路16では、偶数段目のNANDゲートNDにおいて、メモリセルMCにおけるビット線BLの放電動作と同様に、2つの直列接続されたNMOSトランジスタMN1、MN2により、出力端子(f)の放電動作が実行される。
一方、図3の遅延回路では、偶数段目のインバータINV,INV、・・・での放電動作において、インバータINV・・・中の1つのNMOSトランジスタのみが、そのインバータの出力端子の放電動作に関与する。これは、メモリセルMCにおいては直列接続された2つのNMOSトランジスタから放電動作がなされるのと異なっている。このような違いのため、電源電圧Vddの低下の影響の度合も、メモリセルMCと遅延回路16とで異なってしまう。
このように、メモリセルMCにおいて放電動作に関与するNMOSトランジスタの数と、遅延回路16において放電動作に関与するNMOSトランジスタの数とを合わせることにより(第1の実施の形態では、いずれも2個)、電源電圧Vddの低下に対する影響度の差を、メモリセルMCと遅延回路16とで小さくすることができる。図3の遅延回路16では、両者の数が一致していないため、電源電圧Vddの低下により電位差Vdiffが大きく低下し、低い電源電圧での高速且つ正確な読み出し動作が困難になる。
なお、遅延回路16中のNMOSトランジスタ、特にNANDゲートND中のNMOSトランジスタMN1、MN2へのチャネルインプランテーションは、メモリセルMC中のNMOSトランジスタへのチャネルインプランテーションと一括で実行するのが好ましい。一括のチャネルインプランテーションを実行することで、両者のNMOSトランジスタの特性を揃えることができるからである。
[第2の実施の形態]
次に、本発明の第2の実施の形態を、図6を参照して説明する。装置の全体構成は、第1の実施の形態と同様であり、遅延回路16の構成のみが第1の実施の形態と異なっている。この実施の形態では、遅延回路16は図6に示すような構造を有している。
第1の実施の形態(図2)との違いは、偶数段目の論理ゲート回路L、L、・・・l2n−2、L2nもインバータであることである。ただし、そのインバータは、PMOSトランジスタの数よりもNMOSトランジスタの数が多いNMOS多段インバータINVN,INVN・・・である。このため、第1の実施の形態と同様の効果を奏することができる。
以上、本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。例えば、上記の実施の形態においては、論理ゲート回路L中で出力端子と接地端子との間に接続されるNMOSトランジスタの数を偶数段目と奇数段目とで異ならせることにより、各論理ゲート回路の出力信号が”H”から”L”に切り替わる遅延時間を調整している。しかし、本発明はこれに限定されるものではなく、例えばNMOSトランジスタの数は同じとしつつ、NMOSトランジスタのゲート長やゲート幅を変化させるようにしても同様の効果を奏することができる。
11・・・メモリセルアレイ、 12・・・ロウデコーダ、 13・・・センスアンプ回路、 14・・・制御回路、 15・・・ダミーセル、 16・・・遅延回路、 MC・・・メモリセル、 DMC・・・ダミーセル。

Claims (7)

  1. ワード線とビット線の交差部に設けられたメモリセルを配列してなるメモリセルアレイと、
    所定のデータを固定的に保持しダミーワード線とダミービット線の交差部に設けられたダミーセルと、
    前記ダミービット線に読み出された信号を遅延させてセンスアンプ活性化信号を生じさせる遅延回路と、
    前記センスアンプ活性化信号の変化に従い動作を開始し前記メモリセルから前記ビット線に読み出された信号を検知・増幅するセンスアンプ回路と
    を備え、
    前記遅延回路は、第1論理ゲート回路と第2論理ゲート回路とを縦列接続して構成され、
    前記第1論理ゲート回路及び前記第2論理ゲート回路は、前記第1論理ゲート回路の出力信号が第1の論理状態から第2の論理状態に切り替わるのに要する第1の遅延時間よりも、前記第2論理ゲート回路の出力信号が第1の論理状態から第2の論理状態に切り替わるのに要する第2の遅延時間の方が長くなるように構成されている
    ことを特徴とする半導体記憶装置。
  2. 前記第1論理ゲート回路は、その出力信号が前記第2の論理状態である場合に導通状態となるNMOSトランジスタの数が第1の数であり、
    前記第2論理ゲート回路は、その出力信号が第前記2の論理状態である場合に導通状態となるNMOSトランジスタの数が前記第1の数よりも大きい第2の数である
    ことを特徴とする請求項1記載の半導体記憶装置。
  3. 前記第1論理ゲート回路は、その出力端子と接地端子との間に接続される前記第1の数のNMOSトランジスタとを備えたインバータであり、
    前記第2論理ゲート回路は、その出力端子と接地端子との間に接続される前記第2の数のNMOSトランジスタとを含む論理ゲート回路であることを特徴とする請求項2記載の半導体記憶装置。
  4. 前記第1論理ゲート回路は、その出力端子と接地端子との間に接続される前記第1の数のNMOSトランジスタを備えた第1のインバータであり、
    前記第2論理ゲート回路は、その出力端子と接地端子との間に直列接続される前記第2の数のNMOSトランジスタを含む第2のインバータである
    ことを特徴とする請求項2記載の半導体記憶装置。
  5. 前記メモリセルを構成するトランジスタ、及び前記論理ゲート回路を構成するトランジスタは、いずれもチャネル部に同一のイオン注入を施されている請求項1に記載の半導体記憶装置。
  6. 前記第1論理ゲート回路は、前記遅延回路への入力信号が前記第1の論理状態から前記第2の論理状態に切り替わるタイミングにおいて、その出力信号を前記第2論理状態から前記第1論理状態に切り替える回路であり、
    前記第2論理ゲート回路は、前記遅延回路への入力信号が前記第1の論理状態から前記第2の論理状態に切り替わるタイミングにおいて、その出力信号を前記第1論理状態から前記第2論理状態に切り替える回路である
    ことを特徴とする請求項1記載の半導体記憶装置。
  7. 前記遅延回路は、その入力端子と出力端子との間に前記第1論理ゲート回路と前記第2の論理ゲート回路とを交互に縦列接続して構成される請求項1記載の半導体記憶装置。
JP2010274940A 2010-12-09 2010-12-09 半導体記憶装置 Pending JP2012123877A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010274940A JP2012123877A (ja) 2010-12-09 2010-12-09 半導体記憶装置
US13/206,679 US8649231B2 (en) 2010-12-09 2011-08-10 Semiconductor memory device with delay circuit and sense amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274940A JP2012123877A (ja) 2010-12-09 2010-12-09 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2012123877A true JP2012123877A (ja) 2012-06-28

Family

ID=46199263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274940A Pending JP2012123877A (ja) 2010-12-09 2010-12-09 半導体記憶装置

Country Status (2)

Country Link
US (1) US8649231B2 (ja)
JP (1) JP2012123877A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089790A (ja) * 2012-10-31 2014-05-15 Renesas Electronics Corp 半導体装置
CN109690952A (zh) * 2016-11-07 2019-04-26 索尼公司 半导体集成电路及控制半导体集成电路的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234178B2 (ja) * 2020-03-19 2023-03-07 株式会社東芝 記憶装置
WO2023287744A1 (en) * 2021-07-13 2023-01-19 Edward Stoneham Delay-adjusted digital-unit interface
TWI819567B (zh) * 2022-04-13 2023-10-21 円星科技股份有限公司 可改良感測放大時序適應性的記憶模組

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625292A (en) * 1979-08-08 1981-03-11 Mitsubishi Electric Corp Memory circuit
JP2002216481A (ja) * 2001-01-19 2002-08-02 Hitachi Ltd 半導体集積回路装置
JP4517786B2 (ja) 2004-09-06 2010-08-04 富士通セミコンダクター株式会社 半導体記憶装置及びセンスアンプの活性化信号の生成方法
JP4805698B2 (ja) * 2006-03-13 2011-11-02 株式会社東芝 半導体記憶装置
US7613055B2 (en) * 2007-08-09 2009-11-03 Altera Corporation Programmable control block for dual port SRAM application
US8279693B2 (en) * 2010-04-09 2012-10-02 Qualcomm Incorporated Programmable tracking circuit for tracking semiconductor memory read current

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089790A (ja) * 2012-10-31 2014-05-15 Renesas Electronics Corp 半導体装置
CN109690952A (zh) * 2016-11-07 2019-04-26 索尼公司 半导体集成电路及控制半导体集成电路的方法
CN109690952B (zh) * 2016-11-07 2022-10-18 索尼公司 半导体集成电路及控制半导体集成电路的方法

Also Published As

Publication number Publication date
US8649231B2 (en) 2014-02-11
US20120147683A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
US9728246B2 (en) Semiconductor device suppressing BTI deterioration
US10665271B2 (en) Driving circuit, semiconductor device including the same, and control method of the driving circuit
US9508419B2 (en) Semiconductor storage device and test method thereof using a common bit line
TW201727634A (zh) 非揮發性記憶體
KR102212814B1 (ko) 가변 지연 워드 라인 인에이블
US8854901B2 (en) Read self timing circuitry for self-timed memory
US6999367B2 (en) Semiconductor memory device
JP2019169846A (ja) 半導体装置
US10211832B1 (en) Input buffer circuit
JP2012123877A (ja) 半導体記憶装置
JP5677205B2 (ja) 半導体記憶装置
US7660176B2 (en) Semiconductor memory device and method for driving the same
US6704238B2 (en) Semiconductor memory device including data bus pairs respectively dedicated to data writing and data reading
US8942049B2 (en) Channel hot carrier tolerant tracking circuit for signal development on a memory SRAM
JP5404584B2 (ja) 半導体記憶装置
US8854902B2 (en) Write self timing circuitry for self-timed memory
JP2012160218A (ja) 半導体記憶装置
JP2009070418A (ja) 半導体記憶装置
KR102239755B1 (ko) 리페어 정보 저장 회로 및 이를 포함하는 반도체 장치
US10734060B2 (en) Input buffer circuit
JP2013114727A (ja) 半導体記憶装置
JP2010102790A (ja) 半導体装置
US8400856B2 (en) Memory device with data prediction based access time acceleration
JP2013196729A (ja) 半導体記憶装置
JP2013020675A (ja) 半導体装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130221