JP2012100117A - 音響処理装置及び方法 - Google Patents

音響処理装置及び方法 Download PDF

Info

Publication number
JP2012100117A
JP2012100117A JP2010246746A JP2010246746A JP2012100117A JP 2012100117 A JP2012100117 A JP 2012100117A JP 2010246746 A JP2010246746 A JP 2010246746A JP 2010246746 A JP2010246746 A JP 2010246746A JP 2012100117 A JP2012100117 A JP 2012100117A
Authority
JP
Japan
Prior art keywords
level
fundamental
harmonic
acoustic
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010246746A
Other languages
English (en)
Inventor
Kyohei Kitazawa
恭平 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010246746A priority Critical patent/JP2012100117A/ja
Publication of JP2012100117A publication Critical patent/JP2012100117A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)

Abstract

【課題】 特定の聴取位置において基音と高調波の逆転によって生じる耳障りを抑制することが可能であり、特定の聴取位置以外の点においても適用したフィルタによって耳障り音が新たに発生することがない音響処理装置を提供する。
【解決手段】 音響処理装置は、入力再生信号から基音周波数f(n)と高調波周波数f(n)を検出する。そして、入力再生信号と、入力音響特性の畳み込み信号について、基音レベルL(n)と高調波レベルL(n)を算出する。算出した基音振幅レベルL(n)と高調波振幅レベルL(n)とを比較し、L(n)より高いL(n)があれば、L(n)>L(n)となるような補正フィルタを生成し、再生信号へ適用する。
【選択図】 図1

Description

本発明は音響処理装置に関し、特に、聴取室の音響特性やスピーカの音圧周波数特性等の影響によって発生する音質の劣化を抑制する音響処理装置及び方法に関する。
Blu−ray Diskなどの大容量記憶媒体の登場や高音質音源のネットワーク配信の拡大により、家庭内で高精度・高ダイナミックレンジのオーディオ信号が手軽に入手できるようになった。このようなオーディオ信号の高精度化に伴って、再生機器に対してもより原信号に近いすなわちより原音忠実な臨場感のある音響再生への要求が高まっている。原音忠実な再生環境を実現するには原信号がそのまま聴取者へ届く、すなわち再生装置から聴取者の耳までのオーディオ信号が辿る経路(以下「音響経路」という。)の音圧周波数特性(以下「f特」という。)がフラットであることが望ましい。
しかし、家庭でオーディオ信号を再生する場合、音響経路のf特をフラットにするのはきわめて困難である。音響経路のf特が変化する要因は様々あり、スピーカのf特や音響経路上の音響機器の持つf特、聴取室の音響特性などが挙げられるが、中でも影響力が大きいのが、聴取室の音響特性による影響である。
聴取室内において聴取者にはスピーカから発音された直接音だけでなく、壁や床、天井などで反射した反射音も届く。それらの音波は干渉するため、f特上に大きなディップやピークを生じる。さらに聴取位置が変化すると、直接音と反射音の経路差も変化するため、ピークやディップの位置が変化してしまう。つまり聴取室の音響特性による影響は聴取位置に依存し大きく変化してしまうという特性をもっている。
このように再生されたオーディオ信号は音質劣化、結果として聴感に様々な影響を及ぼす。そこで、原音忠実な信号再生を実現するためには上記のような音響経路のf特の乱れを補正し、聴感上の悪影響を抑制するような音響処理が非常に重要になってくる。
従来、このようなf特の乱れに対しては、入力信号のf特を調整するグラフィックイコライザなどのf特調整装置を利用しユーザ自身が手作業で所望のf特に近づける方法があった。また、測定信号を用いて音響経路のf特を測定し、自動的に所望のf特に近づける補正を行う自動音場補正を用いる方法などもある(例えば、特許文献1参照)。
特開昭62−166698号公報
人の声や楽器の音は、図8(A)に示すように、基音と高調波から構成される。基音とは、いわゆる音高(又はピッチ)にあたる周波数成分であり、高調波とは、基音のN倍(N=2,3,4,・・・)の周波数成分である。通常、基音の振幅レベル(以下「基音レベルL」という。)はN次高調波の振幅レベル(以下「高調波レベルL」という。)よりも大きく、基音レベルLと高調波レベルLのバランスによって音色(tone color)が決まる。
ここで、基音レベルLと高調波レベルLのバランスについて、試聴実験から図8(B)に示すように、楽曲信号中の基音レベルLよりも高調波レベルLが相対的に大きくなる現象(以下「逆転現象」という。)が発生すると聴感上耳障りに感じるとの結果が出ている。これはつまり、オーディオ信号が再生される際に音響経路のf特の影響を受け基音レベルLと高調波レベルLのバランスが崩れてしまい逆転現象が発生すると、聴感上耳障りに感じてしまうことを意味する。
このような影響を補正するため音響経路のf特をフラットにする必要性がある。f特をフラットにする方法として逆フィルタによる補正が考えられる。しかしFIRフィルタで音響経路のf特をフラットにするほどの特性を実現するためには多大なタップ数が必要であり、現在の信号処理性能では非常に困難であった。
そのため、短いタップのフィルタを使用せざるを得なく、f特上にピークやディップが残ってしまっていた。つまり従来の方法では、上述の逆転現象により発生する聴感上の耳障りを抑制することができなかった。
また、聴取室のf特は聴取位置によって変化してしまう。そのため、f特をフラットにする逆フィルタが実現できたとしても、聴取位置以外の点(例えば聴取位置から1mずれた点)における音響経路のf特のピークやディップを増大させてしまう可能性があった。このように、従来のような音響経路のf特に対する逆フィルタによる補正では、聴取位置以外の場所では耳障り音の発生を助長してしまう可能性があった。
そこで、本発明は、特定の聴取位置において基音と高調波の逆転による耳障り音の発生を抑制することを可能にする。また、特定の聴取位置以外の位置においても、補正によって、耳障り音の発生を助長させないようにする。
本発明の一側面に係る音響処理装置は、入力した音響信号の基音周波数及び高調波周波数を算出する算出手段と、音響経路の少なくとも一部における音響特性を入力する入力手段と、前記音響信号と前記音響特性との畳み込み演算を行う演算手段と、前記演算手段での演算により得られた信号について、前記基音周波数の振幅レベルである基音レベルと、前記高調波周波数の振幅レベルである高調波レベルとを検出する第1のレベル検出手段と、前記高調波レベルが前記基音レベルより高い場合に、該基音レベルが該高調波レベルよりも高いレベルとなるように該基音レベル又は該高調波レベルを調整する調整手段とを有することを特徴とする。
本発明によれば、音響経路の周波数特性の影響で発生する基音レベルと高調波レベルとの逆転現象を抑制し、聴感上の耳障りな音が発生するのを抑制することができる。また、特定の聴取位置以外の点においても聴感上の耳障りな音の発生を助長することなく補正を行うことができる。
(A)及び(B)は実施形態1における音響処理装置のブロック図、(C)は実施形態1における音響信号処理部の詳細のブロック図。 (A)は畳み込みFFT処理部の出力信号、(B)はフィルタ生成部で生成される帯域減衰フィルタの特性の例を示す図。 実施形態1における音響処理のフローチャート。 実施形態1における基音周波数fb及び高調波周波数fNの検出を説明する図。 実施形態3における音響信号処理部の詳細のブロック図。 実施形態3における逆転判定を説明する図。 実施形態4における音響処理装置のブロック図。 (A)は基音及び高調波を説明する図、(B)は逆転現象を説明する図。
以下、添付の図面を参照して、本発明をその好適な実施形態に基づいて詳細に説明する。なお、以下の実施形態において示す構成は一例に過ぎず、本発明は図示された構成に限定されるものではない。
<実施形態1>
図1(A)は、実施形態1に係る音響処理装置の構成を示すブロック図である。同図において、信号解析処理部100は、再生信号入力部101、音響特性入力部102、音響信号処理部103、及び、信号出力部104を備える。
再生信号入力部101は、CDプレーヤ1又はDVDプレーヤなどの音響再生装置から再生信号としての音響信号を入力する。入力した音響信号がアナログ信号であった場合、後のデジタル信号処理のためにA/D変換を施す。
音響特性入力部102には、パーソナルコンピュータ(PC)2等の機器から、あらかじめ測定された音響経路又はその一部における音響特性のデータであるインパルス応答が入力される。なお、音響経路とは、上述したように、音響処理装置から聴取者の耳までの、音響信号が辿る経路をいう。ここで、音響特性入力部102に入力されるインパルス応答は、音響経路の少なくとも一部におけるインパルス応答を算出できる形式であればよい。周波数スペクトルや伝達関数の形式で入力された場合は、入力された信号をインパルス応答に変換して出力するようにしてもよい。
なお、音響特性入力部102は、音響特性のデータを外部から入力するかわりに、音響処理装置自体が音響特性を測定できる機能を有していてもよい。そのような例を、図1(B)を用いて説明する。同図に示す信号解析処理部100は、図1(A)に示した構成に対して、音響特性測定部302及びマイクロホン313を更に有する構成である。
音響特性測定部302は、測定信号生成部311及び音響特性演算部312を含む。測定信号生成部311は、聴取室の室内インパルス応答を測定するための測定信号を発生する。一般的には、室内インパルス応答を測定するための信号としては、MLS(Maximum Length Sequence)などが使用される。測定信号はその場で演算されてもよいし、あらかじめメモリなどに保持されていてもよい。測定信号生成部311で生成れたインパルス応答測定信号はスピーカ4から発音され、聴取位置にセッティングされたマイクロホン313で収音される。
音響特性演算部312ではマイクロホン313で収音された信号と測定信号から相互相関を取ることでインパルス応答が演算される。ここで図1(B)において算出されるインパルス応答は測定信号が通過した音響経路、すなわちユーザが設置したイコライザ5及びスピーカ4のf特と聴取室の音響特性が統合されたインパルス応答が算出される。算出されたインパルス応答は音響特性入力部102へ入力される。
このようにして、音響処理装置自体が音響特性測定を行うようにしてもよい。
音響信号処理部103は、再生信号入力部101と音響特性入力部102からの入力信号を受け、再生信号入力部101からの入力信号に所要の音響処理を施す。信号出力部104は、音響信号処理部103からの信号を受け、アナログ信号を出力する場合にはD/A変換を施し出力する。出力された信号はアンプ3などの音響機器に入力されスピーカ4から発音される。
なお、図には1チャネル分の経路しか描かれていないが、入力信号がマルチチャネル信号の場合、チャネルごとに上記の処理系統が独立に設けられる。例えば入力信号がステレオ信号ならば、2チャネルの系統を有することになる。
次に、上述した実施形態中の音響信号処理部103での信号の流れを図1(C)を参照して説明する。
再生信号入力部101より音響信号処理部103へ入力された音響信号は、フレーム分割部111へ入力される。フレーム分割部111は、入力した音響信号を所定の時間長のフレームに分割する。具体的には、後の処理のために信号を窓関数で切り出し、FFT処理部112、畳み込みFFT処理部114及び遅延処理部120へ出力する。FFT処理部112は、入力信号に対しFFT処理を施し、それにより得られた周波数スペクトルを基音・高調波周波数検出部113へ出力する。基音・高調波周波数検出部113は、入力された周波数スペクトルから基音周波数f及び高調波周波数fを検出し、レベル検出部115へ出力する。
一方、畳み込みFFT処理部114は、フレーム分割部111から出力された1フレームの音響信号と音響特性入力部102から入力されたインパルス応答との畳み込み演算、及び畳み込み演算の結果に対するFFT処理を行う。算出された周波数スペクトルは、レベル検出部115へ出力される。
レベル検出部115は、入力された周波数スペクトル、基音周波数f及び高調波周波数fから、入力された周波数スペクトルの基音レベルLと高調波レベルLを検出する。検出した基音レベルLと高調波レベルLは逆転判定部116へ出力される。
逆転判定部116は、入力された基音レベルLと高調波レベルLとを比較し、Lより高いが存在した場合、フィルタ生成処理実行を指示する制御信号をフィルタ生成部117へ出力する。一方、全てのLがL以下であった場合、フィルタ生成部117へフィルタ生成及び適用処理停止を指示する制御信号を出力する。
フィルタ生成部117は、制御信号を受けて、フィルタ生成の処理を行う。制御信号がフィルタ生成処理実行を示す場合は、次のような処理行う。例えば、畳み込みFFT処理部114の出力が図2(A)のようであった場合、図2(B)のように全てのLについてLb>Lとなるよう高調波レベルを減衰させる帯域減衰フィルタを生成し、フィルタ適用部118へ出力する。ここで本実施形態では信号の増幅によるデータのクリッピングを避けるために高調波レベルを減衰させるが、L>Lとなるよう基音レベルを増幅させる帯域増幅フィルタを生成してもよい。さらにL>Lとなるよう基音レベルを増幅させる帯域増幅フィルタと高調波レベルを減衰させる帯域減衰フィルタの両方を生成してもよい。しかし、増幅フィルタによってデータがクリッピングしないように注意する必要がある。
遅延処理部120は、フィルタ生成までの処理で発生する時間遅延を考慮して遅延処理を施し、フィルタ適用部118へ出力する。フィルタ適用部118は、入力されたフィルタを、遅延処理部120の出力に対して適用し、フレーム結合部119へ出力する。
逆転判定部116の出力がフィルタ生成及び適用停止を指示する制御信号であった場合、フィルタ生成部117及びフィルタ適用部118は処理を実行せず、フレーム分割部111の出力をそのままフレーム結合部119へ出力する。
最後に、フレーム結合部119は、フレームごと処理されたフィルタ適用部118の出力を結合し、信号出力部104へ出力する。
次に、音響信号処理部103での処理のフローを、図3を用いて詳細に説明する。
S201では、フレーム分割部111において再生信号の分割が行われる。すなわち、再生信号入力部101から入力された再生信号の時間波形信号を切り出す。ここで信号を切り出す窓関数は切り出した信号を再結合した際にデータ量が増減しないような窓関数を使用する。S202乃至S211の処理はこのフレーム単位で処理が行われ、処理が行われた信号はS212で結合される。
S202では、FFT処理部112においてフレーム分割部111からの出力信号に対して周波数スペクトルを算出するためにFFT処理が行われる。S203乃至S205は、基音・高調波周波数検出部113で処理される。S203乃至S205の基音周波数検出、高調波周波数の算出、未検出ピークの有無の判断については、図4を用いて説明する。
はじめに、S203で、最大ピーク周波数検出が行われる。S202の処理によって算出された周波数スペクトル(図4(A))から振幅レベルの最大値を検出し、その値が所定の振幅レベル以上である場合は、その最大値の周波数を算出する。ここで所定の振幅レベルとは信号とノイズを分離するために設定される値である。そのため、値は例えば図4(A)の最大振幅レベルの半分の値(約−6dB)としてもよいし、ユーザが設定できるようにしてもよく、その他の方法を用いて値を決定してもよい。
本実施形態では、図4(B)に示すように、算出した最大値の周波数を基音周波数f(n)とする。ここでnはS203及びS204の繰り返し回数を示すものであり、図4(B)では1回目の検出であるため、f(1)となっている。繰り返しの条件など詳細は後のS205の説明において述べる。
S204では、基音周波数f(n)に対してN倍(N=2,3,4,・・・)の周波数をN次高調波周波数f(n)として算出する。
(n) = f(n)*N (N=2,3,4,・・・)
ここで、楽曲中の高調波周波数は必ずしも基音周波数の整数倍でなく、多少周波数がずれている可能性がある。そこで算出した高調波周波数f(n)に対応するS202の周波数スペクトルを参照し、所定の範囲内にスペクトルピークがあった場合、そのピークに対応する周波数を高調波周波数f(n)としてもよい。
S205では、S202の周波数スペクトルにおいて基音周波数f(n)及び高調波周波数f(n)以外に所定の振幅レベルを超えるスペクトルピークがあるか否かを判定する。図4(A)に示したS202のスペクトルに対し、すでに検出した基音周波数f(1)及び高調波周波数f(1)の周波数成分を除いたスペクトル(図4(C))において所定の振幅レベルを超える信号があるかないかを判断する。所定の振幅レベルを超える信号があると判断された場合は、図4(D)の如く、S205において所定の振幅レベルを超える信号がなくなるまでS203及びS204の処理を行う。
S206乃至S207の処理は畳み込みFFT処理部114において行われる。S206では音響特性入力部102より入力されたインパルス応答と、S201でフレーム分割された信号の畳み込み演算が行われる。S207ではS206の畳み込み演算の結果に対してFFT処理を施し、S201でフレーム分割された信号に音響特性入力部102より入力されたインパルス応答を畳み込んだ信号の周波数スペクトルを算出する。この周波数スペクトルは再生信号の周波数スペクトルが入力された音響特性の影響を受けて変化した結果を示している。
S208の処理はレベル検出部115で行われる。S208ではS203乃至S205によって検出された全ての基音周波数f(n)と全ての高調波周波数f(n)についてS207で算出した周波数スペクトルにおける基音レベルL(n)及び高調波レベルL(n)を算出する。
S209の処理は逆転判定部116で行われる。S209ではそれぞれnについて独立に基音レベルL(n)と高調波レベルL(n)を比較する。全てのnについて比較を行った結果、基音レベルL(n)よりも高調波レベルL(n)が大きくなっている逆転現象が見つかった場合、フィルタ生成の制御信号をフィルタ生成部117へ出力する。一方、逆転現象が見つからなかった場合、フィルタ生成部117及びフィルタ適用部118へフィルタ生成及びフィルタ適用を止める制御信号を出力し、S210乃至S211の処理は行われない。
S210の処理はフィルタ生成部117で行われる。S210ではS209で検出した逆転現象を起こしている高調波周波数f(n)に対して高調波レベルL(n)が基音レベルL(n)より低くなるように帯域減衰フィルタ(ノッチフィルタ)を生成する。前述したとおり、基音周波数に対して基音レベルL(n)が高調波レベルL(n)より高くなるように帯域増幅フィルタを生成してもよいし、その両方を生成してもよい。ここで生成させるフィルタは、フィルタ処理を施すピークに隣接するピークに影響を及ぼさないような帯域幅に設計されることが望ましい。
S211の処理はフィルタ適用部118で行われる。S211ではS210で生成したフィルタをS201でフレーム分割された信号に対して適用する。ここでS201の出力はS202乃至S210の処理時間を鑑み遅延処理部120で遅延処理されている。
S212の処理はフレーム結合部119で行われる。S212ではフレームごとに処理されたS211の出力を結合していく。結合された信号は、信号出力部104へ出力される。
このような構成によれば、楽曲の高調波に対してのみ帯域減衰フィルタを適用するため、聴取位置以外の場所においても聴感上の耳障り音の発生を助長させることなく、聴取位置における耳障り音を抑制できるという利点がある。
<実施形態2>
以下では、聴取位置が複数ある場合の実施形態について説明する。
音響信号処理部の構成は図1(C)と同様である。本実施形態においては、説明のため、聴取点のf特(音圧周波数特性)を、GLP(f) (LP=A,B,C,・・・)で表す。ここでA,B,C,・・・はそれぞれ聴取位置を示し、fは周波数を示す。音響特性入力部102に複数聴取点のf特GLP(f)が入力された場合、畳み込みFFT処理部114ではそれぞれ聴取位置LPについて独立にGLP(f)とフレーム分割部111の出力との畳み込み演算及び演算結果に対するFFT処理が行われる。このようにして聴取位置ごと独立に周波数スペクトルが算出される。
S208乃至S209の処理も聴取位置LPごと独立に行われる。S209において逆転現象が検出された場合、逆転現象を抑制するフィルタを生成する。すなわち、全ての聴取位置LPにおいて高調波レベルLNLP(n)が基音レベルLbLP(n)より相対的に小さくなるようにフィルタを生成する。ここで、ユーザが各聴取位置LPに優先度をつけ、その優先度に応じて優先度が高い場所において高調波レベルLNLP(n)が基音レベルLbLP(n)より相対的に小さくなるようにフィルタを生成してもよい。また、過半数の聴取位置LPにおいて高調波レベルLNLP(n)が基音レベルLbLP(n)より相対的に小さくなるようにフィルタを生成してもよい。
このように、各処理部はそれぞれ聴取位置LPについて独立に動作する。このようにすれば聴取者が複数人数の場合においてもそれぞれの聴取位置において耳障り音を抑制できる。
<実施形態3>
図5は本発明の第3の実施形態に係る音響信号処理部103の構成をブロック図で示したものである。図1(C)に対して第2のレベル検出部215が追加されている。また、本実施形態において基音・高調波周波数検出部113では基音周波数検出方法として最大ピーク検出を用いた基音検出方法以外の方法を用いてもよい。例えば既存の音階検出(ピッチ検出)装置を用いて検出された音階を基音としてもよい。また逆転判定部116には第1のレベル検出部115の出力だけでなく第2のレベル検出部215の出力も入力される。なお他の構成は他の実施形態と同様である。
レベル検出部115では畳み込みFFT処理部114の出力に対してS208の基音レベルL(n)検出及び高調波レベルL(n)検出処理が行われる。レベル検出部215ではFFT処理部112の出力に対してS208の基音レベルLsb(n)及び高調波レベルLsN(n)の検出処理が行われる。
逆転判定部116では、レベル検出部115の出力に対して、それぞれnについて独立に基音レベルL(n)と高調波レベルL(n)の比較を行う。またレベル検出部215の出力に対しても、それぞれnについて独立に基音レベルLsb(n)と高調波レベルLsN(n)の比較を行う。
比較結果の一例を図6に示す。図6(A)の如く上記比較の結果においてLsb(n)とLsN(n)の比較からは発見されなかった逆転現象がL(n)とL(n)の比較において1つ以上発見された場合、フィルタ生成部117へフィルタ生成の制御信号を出力する。一方、図6(B)の如くFFT処理部112の出力において既に逆転が検出されている場合や逆転現象が起こっていなかった場合、フィルタ生成部117及びフィルタ適用部118へフィルタ生成及びフィルタ適用を止める制御信号を出力する。したがってS210乃至S211の処理は行われない。
フィルタ生成部117では、逆転判定部116からの制御信号を受け逆転抑制フィルタの生成を行う。
上記比較の結果、Lsb(n)>LsN(n)、かつ、L(n)<L(n)である基音周波数f(n)及び高調波周波数f(n)については次のようにする。すなわち、実施形態1の如く高調波レベルL(n)が基音レベルL(n)よりも低くなるように帯域減衰フィルタを生成する。ここでフィルタは以下のように生成してもよい。
上記比較の結果が図6(C)の如くLsb(n)>LsN(n)かつL(n)<L(n)かつL(n)>LsN(n)である場合、次のようにする。すなわち、高調波周波数f(n)に対してL(n) >L(n)となるように帯域減衰フィルタ(ノッチフィルタ)を生成する。
また、上記比較の結果が図6(D)の如くLsb(n)>LsN(n)かつL(n)<L(n)かつL(n)<Lsb(n)である場合は次のようにする。すなわち、基音周波数f(n)に対して、L(n) >L(n)となるように帯域増幅フィルタ(ピークフィルタ)を生成する。ここで、補正量すなわち補正フィルタのゲインは補正後の基音レベルと高調波レベルの比率が切り出し信号の比率と略等しくなるように設定されることが望ましい。
このような構成によれば、楽曲の基音に対して帯域増幅フィルタを適用し、高調波に対して帯域減衰フィルタを適用する。このため、聴取位置以外の場所においても聴感上の耳障り音の発生を助長させることなく、聴取位置における耳障り音を抑制できるという利点がある。さらに、実施形態1と比較して基音レベルL(n)と高調波レベルL(n)のバランスを基音レベルLsb(n)と高調波レベルLsN(n)のバランスに近づけることができるため、より理想的な補正が可能である。
<実施形態4>
試聴実験から、高域に関してはスピーカのf特と聴感の相関性が高く、低域は聴取位置で測定したf特と聴感の相関性が高いという結果が出ている。したがって、スピーカのf特と聴取位置で測定したf特が独立に入力されるように構成してもよい。また、グラフィックイコライザなどのユーザがf特を調整できる音響機器のf特は、逐次ユーザによって更新される可能性があるため、独立に入力されることが望ましい。その他にもスピーカが複数設置される場合、各スピーカごとに音響経路が異なるため、複数のインパルス応答の入力が必要となる。
このように、本発明において、音響特性入力部102に入力される音響特性は1つとは限らず、また、入力した音響特性を必ずしも全て使用する必要がないため、以下のような実施形態をとってもよい。
図7は、本発明の第4の実施形態に係る音響処理装置の構成を示すブロック図である。
図7では、図1(C)の音響特性入力部102が音響特性入力部402に置き換えられている。音響特性入力部402は、メモリ部412、選択部413、インパルス応答演算部411を含む。その他の構成は実施形態1と同様である。
音響特性入力部402には例えばPC2などが接続され、音響経路の少なくとも一部におけるインパルス応答が入力され、メモリ部412に記憶される。ここでメモリ部412には上述したような複数の音響特性が記憶されるため、あらかじめ記憶する音響特性に名前をつけるなど、それぞれの音響特性が何の音響特性か特定できるようにされていることが望ましい。
選択部413では補正に使用される音響特性が選択される。ここで選択部413は補正に使用する音響特性をユーザ自身が選択できるようにメモリ部412に記憶されている音響特性を特定する情報を表示する表示装置やどの音響特性を選択するのかを切り替える切り替えスイッチなどを備えていてもよい。また、選択部413は再生信号入力部101からの入力信号によって自動的に使用する音響特性を選択するようにしてもよい。例えば、マルチチャネルの音響特性がチャネルごと独立に記憶されている場合、再生信号入力部101に入力された再生信号がステレオかマルチチャネルかによって使用する音響特性を自動で選択するようにしてもよい。
インパルス応答演算部411では選択部413で選択された音響特性から補正に使用するインパルス応答を演算し出力する。ここで、インパルス応答演算部411において選択した音響特性の優先度や使用する帯域などを入力する装置を設け、ユーザがそれらのパラメータを任意に設定できるようにし、補正に使用するインパルス応答を演算するようにしてもよい。
このようにすれば、複数の音響特性が入力された場合においても補正に使用するインパルス応答をユーザが簡単に選択できる。
<他の実施形態>
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(又はCPUやMPU等)がプログラムを読み出して実行する処理である。この場合、そのプログラム、及び該プログラムを記憶した記憶媒体は本発明を構成することになる。

Claims (10)

  1. 入力した音響信号の基音周波数及び高調波周波数を算出する算出手段と、
    音響経路の少なくとも一部における音響特性を入力する入力手段と、
    前記音響信号と前記音響特性との畳み込み演算を行う演算手段と、
    前記演算手段での演算により得られた信号について、前記基音周波数の振幅レベルである基音レベルと、前記高調波周波数の振幅レベルである高調波レベルとを検出する第1のレベル検出手段と、
    前記高調波レベルが前記基音レベルより高い場合に、該基音レベルが該高調波レベルよりも高いレベルになるように該基音レベル又は該高調波レベルあるいはその両方を調整する調整手段と、
    を有することを特徴とする音響処理装置。
  2. 前記調整手段は、前記基音レベルを前記高調波レベルよりも高いレベルに増幅させる増幅手段であることを特徴とする請求項1に記載の音響処理装置。
  3. 前記調整手段は、前記高調波レベルを前記基音レベルよりも低いレベルに減衰させる減衰手段であることを特徴とする請求項1に記載の音響処理装置。
  4. 前記音響特性は、複数の聴取位置のそれぞれについての音圧周波数特性を含み、前記演算手段、前記第1のレベル検出手段、及び前記調整手段は、前記複数の聴取位置のそれぞれついて独立に動作することを特徴とする請求項1乃至3のいずれか1項に記載の音響処理装置。
  5. 前記音響信号について、前記基音レベル及び前記高調波レベルを検出する第2のレベル検出手段を更に有し、
    前記調整手段は、前記第2のレベル検出手段で検出された高調波レベルが該第2のレベル検出手段で検出された基音レベルより低く、かつ、前記第1のレベル検出手段で検出された高調波レベルが該第1のレベル検出手段で検出された基音レベルより高い場合に、前記第2のレベル検出手段で検出された基音レベル及び該第2のレベル検出手段で検出された高調波レベルに近づくように、前記第1のレベル検出手段で検出された高調波レベルを減衰させる、あるいは該第1のレベル検出手段で検出された基音レベルを増幅させることによって、該第1のレベル検出手段で検出された高調波レベルを該第1のレベル検出手段で検出された基音レベルよりも低いレベルになるよう調整する
    ことを特徴とする請求項1に記載の音響処理装置。
  6. 前記音響信号はマルチチャネルの音響信号であり、前記入力手段は、チャネルごとの音響特性を選択して入力することを特徴とする請求項1乃至5のいずれか1項に記載の音響処理装置。
  7. 前記音響特性は、スピーカの音圧周波数特性及び聴取位置の音圧周波数特性を含むことを特徴とする請求項1乃至6のいずれか1項に記載の音響処理装置。
  8. 前記音響特性は、前記音響処理装置から聴取の耳までの、前記音響信号が辿る音響経路の音圧周波数特性であることを特徴とする請求項1乃至7のいずれか1項に記載の音響処理装置。
  9. 算出手段が、入力した音響信号の基音周波数及び高調波周波数を算出する算出ステップと、
    入力手段が、音響経路の少なくとも一部における音響特性を入力する入力ステップと、
    演算手段が、前記音響信号と前記音響特性との畳み込み演算を行う演算ステップと、
    レベル検出手段が、前記演算ステップでの演算により得られた信号について、前記基音周波数の振幅レベルである基音レベルと、前記高調波周波数の振幅レベルである高調波レベルとを検出するレベル検出ステップと、
    前記高調波レベルが前記基音レベルより高い場合に、調整手段が、該基音レベルが該高調波レベルよりも高いレベルになるように該基音レベル又は該高調波レベルあるいはその両方を調整する調整ステップと、
    を有することを特徴とする音響処理方法。
  10. コンピュータを、請求項1乃至8のいずれか1項に記載の音響処理装置が有する各手段として機能させるためのプログラム。
JP2010246746A 2010-11-02 2010-11-02 音響処理装置及び方法 Withdrawn JP2012100117A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010246746A JP2012100117A (ja) 2010-11-02 2010-11-02 音響処理装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010246746A JP2012100117A (ja) 2010-11-02 2010-11-02 音響処理装置及び方法

Publications (1)

Publication Number Publication Date
JP2012100117A true JP2012100117A (ja) 2012-05-24

Family

ID=46391534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010246746A Withdrawn JP2012100117A (ja) 2010-11-02 2010-11-02 音響処理装置及び方法

Country Status (1)

Country Link
JP (1) JP2012100117A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015060007A (ja) * 2013-09-17 2015-03-30 日本放送協会 逆システム設計方法、逆システム設計装置及びプログラム
JP6217887B1 (ja) * 2017-02-27 2017-10-25 三菱電機株式会社 周波数算出装置及びレーダ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015060007A (ja) * 2013-09-17 2015-03-30 日本放送協会 逆システム設計方法、逆システム設計装置及びプログラム
JP6217887B1 (ja) * 2017-02-27 2017-10-25 三菱電機株式会社 周波数算出装置及びレーダ装置
WO2018154747A1 (ja) * 2017-02-27 2018-08-30 三菱電機株式会社 周波数算出装置及びレーダ装置

Similar Documents

Publication Publication Date Title
JP6490641B2 (ja) ラウドネスに基づくオーディ信号補償
CN110326308B (zh) 失真感测、防失真、以及失真察觉低音增强
JP5400225B2 (ja) オーディオ信号の空間的抽出のためのシステム
US10028055B2 (en) Audio signal correction and calibration for a room environment
JP4167286B2 (ja) 残響調整装置、残響補正方法、および、音響再生システム
JP3537674B2 (ja) オーディオシステム
RU2666316C2 (ru) Аппарат и способ улучшения аудиосигнала, система улучшения звука
US9554230B2 (en) Audio signal correction and calibration for a room environment
JP2005530432A (ja) 部屋における拡声器からの音声のデジタル等化方法、および、この方法の使用法
JP2006005902A (ja) 増幅装置及び振幅周波数特性調整方法
US9538288B2 (en) Sound field correction apparatus, control method thereof, and computer-readable storage medium
JP2006222867A (ja) 音響信号処理装置およびその方法
JPH11298990A (ja) オーディオ装置
JP2006324786A (ja) 音響信号処理装置およびその方法
JP2012100117A (ja) 音響処理装置及び方法
JPWO2009008068A1 (ja) 自動音場補正装置
JP7028613B2 (ja) オーディオプロセッサおよびオーディオ再生装置
JP5998357B2 (ja) 車載用音響再生装置
US11950089B2 (en) Perceptual bass extension with loudness management and artificial intelligence (AI)
JP6244652B2 (ja) 音声処理装置及びプログラム
JP2014090285A (ja) 音声再生装置
JP2006174078A (ja) オーディオ信号処理方法及び装置
JP2012073513A (ja) 音場補正システム及び音場補正方法
JP2008129189A (ja) 反射音付加装置および反射音付加方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107