JP2012089421A - 非水電解質電池の製造方法および非水電解質電池 - Google Patents

非水電解質電池の製造方法および非水電解質電池 Download PDF

Info

Publication number
JP2012089421A
JP2012089421A JP2010236756A JP2010236756A JP2012089421A JP 2012089421 A JP2012089421 A JP 2012089421A JP 2010236756 A JP2010236756 A JP 2010236756A JP 2010236756 A JP2010236756 A JP 2010236756A JP 2012089421 A JP2012089421 A JP 2012089421A
Authority
JP
Japan
Prior art keywords
active material
battery
electrode active
material layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010236756A
Other languages
English (en)
Inventor
Mitsuyasu Ogawa
光靖 小川
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010236756A priority Critical patent/JP2012089421A/ja
Publication of JP2012089421A publication Critical patent/JP2012089421A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】バイポーラ電極を有する複数の電池要素を積層した非水電解質電池を簡便に効率良く製造することができる非水電解質電池の製造方法を提供する。
【解決手段】非水電解質電池は、集電体11の一方の面に正極活物質層12が形成され、他方の面に負極活物質層13が形成されたバイポーラ電極を有する電池要素10を、複数直列に積層して接合することで構成されている。この電池要素10は、正極活物質層12および負極活物質層13の上に固体電解質層14がそれぞれ形成されている。この電池は、次のようにして製造している。大面積の集電体素材の一方の面に正極活物質層を形成し、他方の面に負極活物質層を形成すると共に、正極活物質層と負極活物質層の両方の上に固体電解質層を形成する。このようにして作製した素材を分割して複数の電池要素10とする。そして、この電池要素10を複数直列に積層して、各電池要素を接合することで製造している。
【選択図】図1

Description

本発明は、非水電解質電池の製造方法および非水電解質電池に関する。特に、集電体の一方の面に正極活物質層が形成され、他方の面に負極活物質層が形成されたバイポーラ電極を有する複数の電池要素を積層した非水電解質電池を簡便に効率良く製造する方法およびその製造方法により製造された非水電解質電池に関する。
非水電解質電池は、長寿命・高効率・高容量であり、携帯電話、ノートパソコン、デジタルカメラなどの携帯機器に使用されている。非水電解質電池の代表例としては、リチウム電池やリチウムイオン二次電池(以下、単に「リチウム系電池」と呼ぶ)が挙げられる。
リチウム系電池は、正極活物質を含む正極活物質層と負極活物質を含む負極活物質層との間で、電解質層を介してリチウムイオンが移動する反応によって、充放電を行う。近年、有機電解液に代えて無機固体電解質を用いた全固体電池が提案されている。また、正極活物質層や負極活物質層、或いは固体電解質層を気相法により形成した薄膜タイプの全固体電池が検討されている。
一方、非水電解質電池の一形態として、バイポーラ電極を備えるバイポーラ電池が提案されている(例えば、特許文献1参照)。特許文献1に記載の全固体バイポーラ電池は、次のようにして製造している。まず、ステンレス鋼(SUS)板上に、固体電解質と正極活物質とを混合した正極材を吹きつけて正極層を形成し、更にその上に、固体電解質を吹きつけて固体電解質層を形成する。次に、SUS板の反対側に、固体電解質と負極活物質とを混合した負極材を吹きつけて負極層を形成し、更にその上に、固体電解質を吹きつけて固体電解質層を形成する。これにより、正極活物質と負極活物質とが1枚の集電体の両側に保持されるバイポーラ型電極を備えるユニット2(電池要素)が完成する。また、SUS板上の片面に、負極層を形成し、更にその上に、固体電解質層を形成してユニット1を製造すると共に、SUS板上の片面に、正極層を形成し、更にその上に、固体電解質層を形成してユニット3を製造する。そして、製造したユニット1、ユニット2及びユニット3の積層体から円形ユニットをくり抜いた後、加圧プレス機により、3つの円形ユニットを接合することで製造している。
特開2008‐103285号公報
上述した従来の全固体バイポーラ電池の製造方法は、次のような問題がある。
上記した電池要素を複数直列に積層して電池を構成する場合、電池要素を個々に製造する必要があり、効率的でなく生産性が悪い。
本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、バイポーラ電極を有する複数の電池要素を積層した非水電解質電池を簡便に効率良く製造することができる非水電解質電池の製造方法およびその製造方法により製造された非水電解質電池を提供することにある。
(1)本発明の非水電解質電池の製造方法は、次の工程を備えることを特徴とする。
大面積の集電体素材の一方の面に正極活物質層を形成する正極層形成工程。
その集電体素材の他方の面に負極活物質層を形成する負極層形成工程。
正極活物質層と負極活物質層の少なくとも一方の上に固体電解質層を形成する電解質層形成工程。
以上の工程により作製した大面積の素材を分割して複数の電池要素とする分割工程。
電池要素を複数直列に積層して、各電池要素を接合する接合工程。
この構成によれば、大面積の集電体素材に正極活物質層と負極活物質層とを形成してバイポーラ電極の形態とし、更に、正極活物質層と負極活物質層の少なくとも一方の上に固体電解質層を形成して大面積の素材を作製する。そして、その素材を分割するといった簡便な手法により、従来に比較して、効率良く複数の電池要素を作製することができるので、延いてはバイポーラ電極を有する複数の電池要素を積層した非水電解質電池を簡便に効率良く製造することができる。
素材の分割は、せん断(機械的切断)やレーザ切断などの各種切断方式の中から適宜選択すればよい。
(2)電解質層形成工程において、正極活物質層と負極活物質層の両方の上に固体電解質層を形成することが好ましい。
この構成によれば、複数の電池要素を積層して接合する際、固体電解質層同士の接合となるため、接合し易い。
(3)接合工程において、加熱しながら積層方向に加圧することが好ましい。
この構成によれば、各電池要素を確実に接合し易い。加熱・加圧条件としては、例えば、100℃〜1000℃に加熱しながら2MPa〜300MPaに加圧して、1分間以上保持することが挙げられる。
(4)集電体素材は、電池要素に対応する大きさに予め分割された複数の集電体を平面状に並べて集合して形成することが好ましい。
この構成によれば、分割工程において大面積の素材を電池要素の大きさに分割(切断)し易い。例えば素材の分割を、折曲げ切断により行うことができる。
(5)本発明の非水電解質電池は、上記した本発明の非水電解質電池の製造方法により製造されたことを特徴とする。
この構成によれば、簡便に効率良く製造することができる。
本発明の非水電解質電池の製造方法は、大面積の素材を作製し、その素材を分割して複数の電池要素とすることで、バイポーラ電極を有する複数の電池要素を積層した非水電解質電池を簡便に効率良く製造することができる。また、本発明の非水電解質電池は、本発明の製造方法により、簡便に効率良く製造することができる。
本発明の非水電解質電池の一例を示す概略断面図である。
本発明の実施の形態を説明する。図1に示す非水電解質電池(リチウム系電池)は、集電体11の一方の面に正極活物質層12が形成され、他方の面に負極活物質層13が形成されたバイポーラ電極を有する電池要素10を、複数直列に積層して接合することで構成されている。この例では、正極活物質層12および負極活物質層13の上に固体電解質層14がそれぞれ形成されている。また、積層した両端の電池要素10には、一端の電池要素10に対向する正極電池要素20と、他端の電池要素10に対向する負極電池要素30とが配置されている。以下、電池要素の各構成部材について詳しく説明する。
(集電体)
集電体11は、導電性材料で形成されている。集電体11の形成材料としては、例えば、ステンレスや、アルミニウム、ニッケル、銅及びそれらの合金などが挙げられる。
(正極活物質層)
正極活物質層12は、正極活物質を含む。正極活物質としては、例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)及びオリビン型鉄リン酸リチウム(LiFePO4)から選択される一種のリチウム金属酸化物や、酸化マンガン(MnO2)などが挙げられる。その他、硫黄(S)や、硫化鉄(FeS)、二硫化鉄(FeS2)、硫化リチウム(Li2S)及び硫化チタニウム(TiS2)から選択される一種の硫化物が挙げられる。中でも、リチウム金属酸化物は、電子伝導性に優れており、好適である。
(負極活物質層)
負極活物質層13は、負極活物質を含む。負極活物質としては、リチウム金属(Li金属単体)又はリチウム合金(Liと添加元素からなる合金)の他、例えば、グラファイトなどの炭素(C)、シリコン(Si)、インジウム(In)などが挙げられる。中でも、リチウムを含む材料、特にリチウム金属は、電池の高容量化、高電圧化の点で優位であり、好適である。一方、リチウム合金は、リチウム金属に比較して、合金化することで融点が上昇するため、複数の電池要素を積層して接合する際の加熱温度をリチウム金属の融点(179℃)より高く設定することが可能である。リチウム合金の添加元素としては、例えば、アルミニウム(Al)、シリコン(Si)、錫(Sn)、ビスマス(Bi)、亜鉛(Zn)及びインジウム(In)などが挙げられる。
(固体電解質層)
固体電解質層14は、固体電解質で形成されている。固体電解質としては、Li2Sを含む硫化物系固体電解質、Li3PO4、LiPONなどの酸化物系固体電解質が代表的である。硫化物系固体電解質としては、例えば、Li2S‐P2S5系、Li2S‐SiS2系、Li2S‐B2S3系などが挙げられ、更にP2O5やLi3PO4を添加してもよい。硫化物系固体電解質は、酸化物系固体電解質に比較して、低温での接合が可能である。また、硫化物系固体電解質は、酸化物系固体電解質に比べて高いリチウムイオン伝導性を示す点で、好適である。
さらに、正極活物質層12と固体電解質層14との間に、これら両層の界面抵抗を低減する界面層を設けてもよい。例えば正極活物質に酸化物(例、LiCoO2)、固体電解質に硫化物を用いた場合、酸化物と硫化物とが反応し、正極活物質層12と固体電解質層14との界面の界面抵抗が増大することがある。そこで、正極活物質層12と固体電解質層14との界面近傍における両層間の相互拡散を抑制して反応を抑制する界面層を設けることで、界面抵抗を低減することができる。界面層の形成材料としては、例えば、LiNbO3、LiTaO3、Li4Ti5O12、LiXLa(2-X)/3TiO3(X=0.1〜0.5)、Li7+XLa3Zr2O12+(X/2)(-5≦X≦3)、Li3.6Si0.6P0.4O4、Li1.3Al0.3Ti1.7(PO4)3、Li1.8Cr0.8Ti1.2(PO4)3、Li1.4In0.4Ti1.6(PO4)3などが挙げられ、これらを単独で又は2種以上を組み合わせて用いてもよい。
正極活物質層12、負極活物質層13、固体電解質層14および界面層は、公知の成膜技術、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法及びレーザーアブレーション法といった物理的蒸着(PVD)法や、化学的蒸着(CVD)法といった気相法により形成することができる。また、正極活物質層12又は負極活物質層13は、正極活物質の粉末又は負極活物質の粉末と固体電解質の粉末とを混合した混合粉末をプレスした成形体とすることもできる。上記した混合粉末には、必要に応じて、導電助剤を添加してもよい。導電助剤としては、例えば、アセチレンブラック(AB)やケッチェンブラック(KB)といったカーボンブラックなどが挙げられる。
(電池要素)
電池要素10は、次のようにして作製している。大面積の集電体素材の一方の面に正極活物質層を形成し、他方の面に負極活物質層を形成すると共に、正極活物質層と負極活物質層の両方の上に固体電解質層を形成する。これにより、大面積の素材が完成する。そして、その素材を電池要素10に対応する大きさに複数に分割することで作製している。
集電体素材の大きさは、作製する電池要素10より大きく、複数の電池要素10を取り出せる大きさであれば、特に限定されるものではない。例えば、集電体素材の面積は200cm2以上とし、電池要素10の面積は1cm2〜100cm2とすることが挙げられる。また、集電体素材は、電池要素10に対応する大きさに予め分割された複数の集電体11を平面状に並べて集合して形成してもよい。この場合、大面積の素材を電池要素10の大きさに分割し易い。
(非水電解質電池)
図1に示す非水電解質電池は、次のようにして製造している。上述のようにして作製した電池要素10を所定数直列に積層し、その積層体の両端に、一端の電池要素10に対向するように正極電池要素20と、他端の電池要素10に対向するように負極電池要素30とを配置する。そして、この積層体の各電池要素を接合することで製造している。電池要素の接合は、加熱しながら積層方向に加圧することで、確実に接合し易い。
正極電池要素20は、集電体11の表面に正極活物質層12を形成し、更にその上に、固体電解質層14を形成することで作製されている。一方、負極電池要素30は、集電体11の表面に負極活物質層13を形成し、更にその上に、固体電解質層14を形成することで作製されている。正極電池要素20および負極電池要素30は、電池要素10と同様にして作製することができる。正極電池要素20の集電体11は正極端子(図示略)に接続され、負極電池要素30の集電体11は負極端子(図示略)に接続される。
ここで、電池要素10を複数直列に積層するとは、隣り合う電池要素10の正極活物質層12と負極活物質層13とが固体電解質層14を介して対向するように積層することをいう。また、正極電池要素20は、正極電池要素20の正極活物質層12と一端の電池要素10の負極活物質層13とが固体電解質層14を介して対向するように配置する。一方、負極電池要素30は、負極電池要素30の負極活物質層13と他端の電池要素10の正極活物質層12とが固体電解質層14を介して対向するように配置する。つまり、電池を構成したときに、正極端子側から負極端子側に向かって、集電体11、正極活物質層12、固体電解質層14、固体電解質層14、負極活物質層13、集電体11、正極活物質層12、…、集電体11の順に積層された状態となる。
この例では、正極活物質層12と負極活物質層13の両方の上に固体電解質層14を形成しており、各電池要素を接合する際、固体電解質層14同士の接合となるため、接合し易い。特に、両方の固体電解質層14を硫化物系固体電解質で形成した場合、低温での接合が可能であり、他の構成部材(正極活物質層12や負極活物質層13)に与える熱影響を抑えることが可能である。この場合、各電池要素を接合する際の加熱・加圧条件を、例えば、加熱温度:100℃〜250℃、加圧圧力:2MPa〜300MPa、保持時間:10分間以上とすることで、固体電解質層14同士を熱融着させることにより、確実に一体接合することができる。
<実施例1>
以上説明した非水電解質電池(リチウム系電池)を製造し、その電池性能を評価した。
ステンレス製の集電体素材(縦×横:20cm×20cm、厚さ:20μm)の一方の面に、スパッタリング法を用いてLiCoO2を成膜することで、厚さ5μmの正極活物質層を形成した。また、成膜したLiCoO2を結晶化させるために、成膜後に500℃でアニールを行った。
次いで、正極活物質層の上に、スパッタリング法を用いてLiNbO3を成膜することで、厚さ20nmの界面層を形成した。この界面層は、正極活物質層と固体電解質層との間の界面抵抗の低減に寄与する。
次いで、集電体素材の一方の面とは反対側の他方の面に、真空蒸着法を用いてLi‐Al合金(Alの含有比率:50モル%)を成膜することで、厚さ1μmの負極活物質層を形成した。
さらに、正極活物質層(界面層)と負極活物質層の両方の上に、真空蒸着法を用いてLi2S‐P2S5系固体電解質を成膜することで、厚さ10μmの固体電解質層をそれぞれ形成した。
このようにして作製した素材をハサミでせん断することにより分割して、10mm×10mm角の電池要素10を複数得た。
上述した電池要素10と同様にして、ステンレス製の集電体素材の上に、正極活物質層、界面層、固体電解質層を順に形成した後、それを分割して、10mm×10mm角の正極電池要素20を得た。
上述した電池要素10と同様にして、ステンレス製の集電体素材の上に、負極活物質層、固体電解質層を順に形成した後、それを分割して、10mm×10mm角の負極電池要素30を得た。
次に、上述のようにして作製した電池要素10を9個直列に積層して積層体とし、負極電池要素30、電池要素10の積層体および正極電池要素20を順に金型に入れた。そして、200℃に加熱しながら積層方向に20MPaに加圧して3時間保持することにより、固体電解質層14同士を熱融着させ、各電池要素を接合することで電池を製造した。
この電池を一定時間充電した後、開放電圧を測定したところ、38Vであった。
なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、電池の各構成部材の形成材料などを適宜変更してもよい。
本発明の非水電解質電池は、リチウム系電池の分野に好適に利用することができ、例えば、携帯電話、ノートパソコン、デジタルカメラの他、電気自動車などの電源にも使用することが可能である。
10 電池要素
11 集電体 12 正極活物質層 13 負極活物質層
14 固体電解質層
20 正極電池要素 30 負極電池要素

Claims (5)

  1. 大面積の集電体素材の一方の面に正極活物質層を形成する正極層形成工程と、
    前記集電体素材の他方の面に負極活物質層を形成する負極層形成工程と、
    前記正極活物質層と前記負極活物質層の少なくとも一方の上に固体電解質層を形成する電解質層形成工程と、
    以上の工程により作製した大面積の素材を分割して複数の電池要素とする分割工程と、
    前記電池要素を複数直列に積層して、各電池要素を接合する接合工程と、
    を備えることを特徴とする非水電解質電池の製造方法。
  2. 前記電解質層形成工程において、前記正極活物質層と前記負極活物質層の両方の上に固体電解質層を形成することを特徴とする請求項1に記載の非水電解質電池の製造方法。
  3. 前記接合工程において、加熱しながら積層方向に加圧することを特徴とする請求項1又は2に記載の非水電解質電池の製造方法。
  4. 前記集電体素材は、前記電池要素に対応する大きさに予め分割された複数の集電体を平面状に並べて集合して形成することを特徴とする請求項1〜3のいずれか一項に記載の非水電解質電池の製造方法。
  5. 請求項1〜4のいずれか一項に記載の非水電解質電池の製造方法により製造されたことを特徴とする非水電解質電池。
JP2010236756A 2010-10-21 2010-10-21 非水電解質電池の製造方法および非水電解質電池 Pending JP2012089421A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236756A JP2012089421A (ja) 2010-10-21 2010-10-21 非水電解質電池の製造方法および非水電解質電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236756A JP2012089421A (ja) 2010-10-21 2010-10-21 非水電解質電池の製造方法および非水電解質電池

Publications (1)

Publication Number Publication Date
JP2012089421A true JP2012089421A (ja) 2012-05-10

Family

ID=46260823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236756A Pending JP2012089421A (ja) 2010-10-21 2010-10-21 非水電解質電池の製造方法および非水電解質電池

Country Status (1)

Country Link
JP (1) JP2012089421A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142228A (ja) * 2011-01-05 2012-07-26 Toyota Motor Corp 電極体の製造方法、及び電池の製造方法
JP2016507865A (ja) * 2012-12-31 2016-03-10 アイ テン 積層構造の全固体電池の製造方法
US20180131038A1 (en) 2016-11-08 2018-05-10 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
JP2018077986A (ja) * 2016-11-08 2018-05-17 トヨタ自動車株式会社 フッ化物イオン電池およびその製造方法
DE102018220388A1 (de) 2018-11-28 2020-05-28 Robert Bosch Gmbh Batteriesystem
CN114759266A (zh) * 2022-06-15 2022-07-15 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种固态电池的预制模块、固态电池及其制备方法
CN115395070A (zh) * 2021-05-25 2022-11-25 本田技研工业株式会社 固体电池及固体电池的制造方法
JP7261920B1 (ja) 2022-07-07 2023-04-20 Apb株式会社 リチウムイオン電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142228A (ja) * 2011-01-05 2012-07-26 Toyota Motor Corp 電極体の製造方法、及び電池の製造方法
JP2016507865A (ja) * 2012-12-31 2016-03-10 アイ テン 積層構造の全固体電池の製造方法
US20180131038A1 (en) 2016-11-08 2018-05-10 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
JP2018077986A (ja) * 2016-11-08 2018-05-17 トヨタ自動車株式会社 フッ化物イオン電池およびその製造方法
US10727533B2 (en) 2016-11-08 2020-07-28 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
US10790539B2 (en) 2016-11-08 2020-09-29 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
DE102018220388A1 (de) 2018-11-28 2020-05-28 Robert Bosch Gmbh Batteriesystem
CN115395070A (zh) * 2021-05-25 2022-11-25 本田技研工业株式会社 固体电池及固体电池的制造方法
CN114759266A (zh) * 2022-06-15 2022-07-15 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种固态电池的预制模块、固态电池及其制备方法
JP7261920B1 (ja) 2022-07-07 2023-04-20 Apb株式会社 リチウムイオン電池
JP2024008139A (ja) * 2022-07-07 2024-01-19 Apb株式会社 リチウムイオン電池

Similar Documents

Publication Publication Date Title
JP6085370B2 (ja) 全固体電池、全固体電池用電極及びその製造方法
JP6319335B2 (ja) 全固体電池の製造方法
JP6265580B2 (ja) 電池およびその製造方法
JP2012089421A (ja) 非水電解質電池の製造方法および非水電解質電池
WO2012020699A1 (ja) 積層型固体電池
WO2012020700A1 (ja) 積層型固体電池
CN109565028B (zh) 具有锂电极的电化学电池单体的制造方法和电化学电池单体
JP6149657B2 (ja) 全固体電池
JP6259704B2 (ja) 全固体電池用電極の製造方法及び全固体電池の製造方法
JP2012014892A (ja) 非水電解質電池
JP2019096476A (ja) 直列積層型全固体電池
WO2011148824A1 (ja) 非水電解質電池、およびその製造方法
JP2012164571A (ja) 負極体及びリチウムイオン電池
JP2011159596A (ja) 二次電池、及びその製造方法
JP7188562B2 (ja) 固体電池
JP2020013729A (ja) 直列積層型全固体電池の製造方法
WO2020038011A1 (zh) 锂离子电池及其制备方法和电动车辆
JP2014086174A (ja) 全固体電池およびその製造方法
CN111384433A (zh) 固体电解质层叠片及固体电池
JP2011258477A (ja) 非水電解質電池
JP2011154900A (ja) 全固体電池
JP2019192564A (ja) 全固体電池
JP6748348B2 (ja) 全固体電池
WO2017217079A1 (ja) 全固体電池
JP2014116136A (ja) 全固体二次電池