JP2012089421A - Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery - Google Patents

Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2012089421A
JP2012089421A JP2010236756A JP2010236756A JP2012089421A JP 2012089421 A JP2012089421 A JP 2012089421A JP 2010236756 A JP2010236756 A JP 2010236756A JP 2010236756 A JP2010236756 A JP 2010236756A JP 2012089421 A JP2012089421 A JP 2012089421A
Authority
JP
Japan
Prior art keywords
active material
battery
electrode active
material layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010236756A
Other languages
Japanese (ja)
Inventor
Mitsuyasu Ogawa
光靖 小川
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010236756A priority Critical patent/JP2012089421A/en
Publication of JP2012089421A publication Critical patent/JP2012089421A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a nonaqueous electrolyte battery by which a nonaqueous electrolyte battery having a stack of battery elements each having a bipolar electrode can be manufactured simply, readily, and efficiently.SOLUTION: The nonaqueous electrolyte battery is formed by stacking and connecting, in series, a plurality of battery elements 10 each having a bipolar electrode including a current collector 11, a positive active material layer 12 formed one face of the current collector, and a negative active material layer 13 formed on the other face of the current collector. The battery element 10 has solid electrolytic layers 14 formed on the positive active material layer 12 and the negative active material layer 13 respectively. The method for manufacturing the battery comprises: forming a positive active material layer on one face of a current collector material having a large area; forming a negative active material layer on the other face thereof; forming a solid electrolytic layer on both of the positive and negative active material layers; splitting the material thus formed into battery elements 10; and stacking and connecting the battery elements 10 in series.

Description

本発明は、非水電解質電池の製造方法および非水電解質電池に関する。特に、集電体の一方の面に正極活物質層が形成され、他方の面に負極活物質層が形成されたバイポーラ電極を有する複数の電池要素を積層した非水電解質電池を簡便に効率良く製造する方法およびその製造方法により製造された非水電解質電池に関する。   The present invention relates to a method for producing a nonaqueous electrolyte battery and a nonaqueous electrolyte battery. In particular, a non-aqueous electrolyte battery in which a plurality of battery elements having a bipolar electrode in which a positive electrode active material layer is formed on one surface of a current collector and a negative electrode active material layer is formed on the other surface is simply and efficiently stacked. The present invention relates to a manufacturing method and a nonaqueous electrolyte battery manufactured by the manufacturing method.

非水電解質電池は、長寿命・高効率・高容量であり、携帯電話、ノートパソコン、デジタルカメラなどの携帯機器に使用されている。非水電解質電池の代表例としては、リチウム電池やリチウムイオン二次電池(以下、単に「リチウム系電池」と呼ぶ)が挙げられる。   Non-aqueous electrolyte batteries have a long life, high efficiency, and high capacity, and are used in mobile devices such as mobile phones, notebook computers, and digital cameras. Typical examples of the nonaqueous electrolyte battery include a lithium battery and a lithium ion secondary battery (hereinafter simply referred to as “lithium battery”).

リチウム系電池は、正極活物質を含む正極活物質層と負極活物質を含む負極活物質層との間で、電解質層を介してリチウムイオンが移動する反応によって、充放電を行う。近年、有機電解液に代えて無機固体電解質を用いた全固体電池が提案されている。また、正極活物質層や負極活物質層、或いは固体電解質層を気相法により形成した薄膜タイプの全固体電池が検討されている。   Lithium batteries charge and discharge by a reaction in which lithium ions move through an electrolyte layer between a positive electrode active material layer containing a positive electrode active material and a negative electrode active material layer containing a negative electrode active material. In recent years, all-solid batteries using inorganic solid electrolytes instead of organic electrolytes have been proposed. Further, a thin film type all-solid battery in which a positive electrode active material layer, a negative electrode active material layer, or a solid electrolyte layer is formed by a vapor phase method has been studied.

一方、非水電解質電池の一形態として、バイポーラ電極を備えるバイポーラ電池が提案されている(例えば、特許文献1参照)。特許文献1に記載の全固体バイポーラ電池は、次のようにして製造している。まず、ステンレス鋼(SUS)板上に、固体電解質と正極活物質とを混合した正極材を吹きつけて正極層を形成し、更にその上に、固体電解質を吹きつけて固体電解質層を形成する。次に、SUS板の反対側に、固体電解質と負極活物質とを混合した負極材を吹きつけて負極層を形成し、更にその上に、固体電解質を吹きつけて固体電解質層を形成する。これにより、正極活物質と負極活物質とが1枚の集電体の両側に保持されるバイポーラ型電極を備えるユニット2(電池要素)が完成する。また、SUS板上の片面に、負極層を形成し、更にその上に、固体電解質層を形成してユニット1を製造すると共に、SUS板上の片面に、正極層を形成し、更にその上に、固体電解質層を形成してユニット3を製造する。そして、製造したユニット1、ユニット2及びユニット3の積層体から円形ユニットをくり抜いた後、加圧プレス機により、3つの円形ユニットを接合することで製造している。   On the other hand, a bipolar battery including a bipolar electrode has been proposed as one form of a nonaqueous electrolyte battery (see, for example, Patent Document 1). The all-solid-state bipolar battery described in Patent Document 1 is manufactured as follows. First, a positive electrode layer in which a solid electrolyte and a positive electrode active material are mixed is sprayed on a stainless steel (SUS) plate to form a positive electrode layer, and further, a solid electrolyte is sprayed thereon to form a solid electrolyte layer. . Next, a negative electrode material in which a solid electrolyte and a negative electrode active material are mixed is sprayed on the opposite side of the SUS plate to form a negative electrode layer, and further, a solid electrolyte is sprayed thereon to form a solid electrolyte layer. Thereby, a unit 2 (battery element) including a bipolar electrode in which the positive electrode active material and the negative electrode active material are held on both sides of one current collector is completed. In addition, a negative electrode layer is formed on one side of the SUS plate, and further, a solid electrolyte layer is formed thereon to manufacture the unit 1, and a positive electrode layer is formed on one side of the SUS plate, Next, a unit 3 is manufactured by forming a solid electrolyte layer. And after manufacturing a round unit from the laminated body of the manufactured unit 1, unit 2, and unit 3, it manufactures by joining three circular units with a press machine.

特開2008‐103285号公報JP 2008-103285 A

上述した従来の全固体バイポーラ電池の製造方法は、次のような問題がある。   The conventional method for manufacturing an all-solid-state bipolar battery described above has the following problems.

上記した電池要素を複数直列に積層して電池を構成する場合、電池要素を個々に製造する必要があり、効率的でなく生産性が悪い。   When a battery is configured by laminating a plurality of battery elements described above in series, it is necessary to individually manufacture the battery elements, which is not efficient and poor in productivity.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、バイポーラ電極を有する複数の電池要素を積層した非水電解質電池を簡便に効率良く製造することができる非水電解質電池の製造方法およびその製造方法により製造された非水電解質電池を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is a nonaqueous electrolyte capable of easily and efficiently producing a nonaqueous electrolyte battery in which a plurality of battery elements having bipolar electrodes are laminated. It is providing the manufacturing method of a battery, and the nonaqueous electrolyte battery manufactured by the manufacturing method.

(1)本発明の非水電解質電池の製造方法は、次の工程を備えることを特徴とする。
大面積の集電体素材の一方の面に正極活物質層を形成する正極層形成工程。
その集電体素材の他方の面に負極活物質層を形成する負極層形成工程。
正極活物質層と負極活物質層の少なくとも一方の上に固体電解質層を形成する電解質層形成工程。
以上の工程により作製した大面積の素材を分割して複数の電池要素とする分割工程。
電池要素を複数直列に積層して、各電池要素を接合する接合工程。
(1) The manufacturing method of the nonaqueous electrolyte battery of the present invention is characterized by including the following steps.
A positive electrode layer forming step of forming a positive electrode active material layer on one surface of a large-area current collector material.
A negative electrode layer forming step of forming a negative electrode active material layer on the other surface of the current collector material;
An electrolyte layer forming step of forming a solid electrolyte layer on at least one of the positive electrode active material layer and the negative electrode active material layer.
A dividing step of dividing a large-area material produced by the above steps into a plurality of battery elements.
A joining step of stacking a plurality of battery elements in series and joining each battery element.

この構成によれば、大面積の集電体素材に正極活物質層と負極活物質層とを形成してバイポーラ電極の形態とし、更に、正極活物質層と負極活物質層の少なくとも一方の上に固体電解質層を形成して大面積の素材を作製する。そして、その素材を分割するといった簡便な手法により、従来に比較して、効率良く複数の電池要素を作製することができるので、延いてはバイポーラ電極を有する複数の電池要素を積層した非水電解質電池を簡便に効率良く製造することができる。   According to this configuration, the positive electrode active material layer and the negative electrode active material layer are formed on the large-area current collector material to form a bipolar electrode, and further, on at least one of the positive electrode active material layer and the negative electrode active material layer. A solid electrolyte layer is formed on a large area material. Then, by a simple method of dividing the material, it is possible to produce a plurality of battery elements more efficiently than in the past, and as a result, a non-aqueous electrolyte in which a plurality of battery elements having bipolar electrodes are laminated. The battery can be manufactured simply and efficiently.

素材の分割は、せん断(機械的切断)やレーザ切断などの各種切断方式の中から適宜選択すればよい。   The material may be divided as appropriate from various cutting methods such as shearing (mechanical cutting) and laser cutting.

(2)電解質層形成工程において、正極活物質層と負極活物質層の両方の上に固体電解質層を形成することが好ましい。   (2) In the electrolyte layer forming step, it is preferable to form a solid electrolyte layer on both the positive electrode active material layer and the negative electrode active material layer.

この構成によれば、複数の電池要素を積層して接合する際、固体電解質層同士の接合となるため、接合し易い。   According to this configuration, when a plurality of battery elements are stacked and joined, the solid electrolyte layers are joined to each other, so that joining is easy.

(3)接合工程において、加熱しながら積層方向に加圧することが好ましい。   (3) In the joining step, it is preferable to pressurize in the laminating direction while heating.

この構成によれば、各電池要素を確実に接合し易い。加熱・加圧条件としては、例えば、100℃〜1000℃に加熱しながら2MPa〜300MPaに加圧して、1分間以上保持することが挙げられる。   According to this structure, it is easy to reliably join the battery elements. Examples of the heating / pressurizing condition include pressurizing to 2 MPa to 300 MPa while heating at 100 ° C. to 1000 ° C. and holding for 1 minute or more.

(4)集電体素材は、電池要素に対応する大きさに予め分割された複数の集電体を平面状に並べて集合して形成することが好ましい。   (4) It is preferable that the current collector material is formed by arranging a plurality of current collectors divided in advance in a size corresponding to the battery element in a plane.

この構成によれば、分割工程において大面積の素材を電池要素の大きさに分割(切断)し易い。例えば素材の分割を、折曲げ切断により行うことができる。   According to this configuration, it is easy to divide (cut) a large-area material into battery element sizes in the dividing step. For example, the material can be divided by bending and cutting.

(5)本発明の非水電解質電池は、上記した本発明の非水電解質電池の製造方法により製造されたことを特徴とする。   (5) The nonaqueous electrolyte battery of the present invention is manufactured by the above-described method for manufacturing a nonaqueous electrolyte battery of the present invention.

この構成によれば、簡便に効率良く製造することができる。   According to this structure, it can manufacture simply and efficiently.

本発明の非水電解質電池の製造方法は、大面積の素材を作製し、その素材を分割して複数の電池要素とすることで、バイポーラ電極を有する複数の電池要素を積層した非水電解質電池を簡便に効率良く製造することができる。また、本発明の非水電解質電池は、本発明の製造方法により、簡便に効率良く製造することができる。   The nonaqueous electrolyte battery manufacturing method of the present invention is a nonaqueous electrolyte battery in which a plurality of battery elements having bipolar electrodes are stacked by preparing a large area material and dividing the material into a plurality of battery elements. Can be easily and efficiently produced. The nonaqueous electrolyte battery of the present invention can be easily and efficiently manufactured by the manufacturing method of the present invention.

本発明の非水電解質電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the nonaqueous electrolyte battery of this invention.

本発明の実施の形態を説明する。図1に示す非水電解質電池(リチウム系電池)は、集電体11の一方の面に正極活物質層12が形成され、他方の面に負極活物質層13が形成されたバイポーラ電極を有する電池要素10を、複数直列に積層して接合することで構成されている。この例では、正極活物質層12および負極活物質層13の上に固体電解質層14がそれぞれ形成されている。また、積層した両端の電池要素10には、一端の電池要素10に対向する正極電池要素20と、他端の電池要素10に対向する負極電池要素30とが配置されている。以下、電池要素の各構成部材について詳しく説明する。   An embodiment of the present invention will be described. The non-aqueous electrolyte battery (lithium battery) shown in FIG. 1 has a bipolar electrode in which a positive electrode active material layer 12 is formed on one surface of a current collector 11 and a negative electrode active material layer 13 is formed on the other surface. A plurality of battery elements 10 are stacked in series and joined. In this example, solid electrolyte layers 14 are formed on the positive electrode active material layer 12 and the negative electrode active material layer 13, respectively. Further, the battery element 10 at both ends of the stack is arranged with a positive battery element 20 facing the battery element 10 at one end and a negative battery element 30 facing the battery element 10 at the other end. Hereinafter, each component of the battery element will be described in detail.

(集電体)
集電体11は、導電性材料で形成されている。集電体11の形成材料としては、例えば、ステンレスや、アルミニウム、ニッケル、銅及びそれらの合金などが挙げられる。
(Current collector)
The current collector 11 is made of a conductive material. Examples of the material for forming the current collector 11 include stainless steel, aluminum, nickel, copper, and alloys thereof.

(正極活物質層)
正極活物質層12は、正極活物質を含む。正極活物質としては、例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)及びオリビン型鉄リン酸リチウム(LiFePO4)から選択される一種のリチウム金属酸化物や、酸化マンガン(MnO2)などが挙げられる。その他、硫黄(S)や、硫化鉄(FeS)、二硫化鉄(FeS2)、硫化リチウム(Li2S)及び硫化チタニウム(TiS2)から選択される一種の硫化物が挙げられる。中でも、リチウム金属酸化物は、電子伝導性に優れており、好適である。
(Positive electrode active material layer)
The positive electrode active material layer 12 includes a positive electrode active material. As the positive electrode active material, for example, one kind selected from lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and olivine-type lithium iron phosphate (LiFePO 4 ) Examples include lithium metal oxide and manganese oxide (MnO 2 ). In addition, sulfur (S), a kind of sulfide selected from iron sulfide (FeS), iron disulfide (FeS 2 ), lithium sulfide (Li 2 S), and titanium sulfide (TiS 2 ) can be mentioned. Among these, lithium metal oxides are preferable because of their excellent electronic conductivity.

(負極活物質層)
負極活物質層13は、負極活物質を含む。負極活物質としては、リチウム金属(Li金属単体)又はリチウム合金(Liと添加元素からなる合金)の他、例えば、グラファイトなどの炭素(C)、シリコン(Si)、インジウム(In)などが挙げられる。中でも、リチウムを含む材料、特にリチウム金属は、電池の高容量化、高電圧化の点で優位であり、好適である。一方、リチウム合金は、リチウム金属に比較して、合金化することで融点が上昇するため、複数の電池要素を積層して接合する際の加熱温度をリチウム金属の融点(179℃)より高く設定することが可能である。リチウム合金の添加元素としては、例えば、アルミニウム(Al)、シリコン(Si)、錫(Sn)、ビスマス(Bi)、亜鉛(Zn)及びインジウム(In)などが挙げられる。
(Negative electrode active material layer)
The negative electrode active material layer 13 includes a negative electrode active material. As a negative electrode active material, for example, carbon (C) such as graphite, silicon (Si), indium (In), etc. in addition to lithium metal (Li metal simple substance) or lithium alloy (alloy composed of Li and an additive element) can be cited. It is done. Among them, a material containing lithium, particularly lithium metal, is advantageous in terms of increasing the capacity and voltage of the battery, and is preferable. On the other hand, since the melting point of a lithium alloy increases when alloyed compared to lithium metal, the heating temperature when stacking and joining a plurality of battery elements is set higher than the melting point of lithium metal (179 ° C). Is possible. Examples of the additive element of the lithium alloy include aluminum (Al), silicon (Si), tin (Sn), bismuth (Bi), zinc (Zn), and indium (In).

(固体電解質層)
固体電解質層14は、固体電解質で形成されている。固体電解質としては、Li2Sを含む硫化物系固体電解質、Li3PO4、LiPONなどの酸化物系固体電解質が代表的である。硫化物系固体電解質としては、例えば、Li2S‐P2S5系、Li2S‐SiS2系、Li2S‐B2S3系などが挙げられ、更にP2O5やLi3PO4を添加してもよい。硫化物系固体電解質は、酸化物系固体電解質に比較して、低温での接合が可能である。また、硫化物系固体電解質は、酸化物系固体電解質に比べて高いリチウムイオン伝導性を示す点で、好適である。
(Solid electrolyte layer)
The solid electrolyte layer 14 is formed of a solid electrolyte. Typical solid electrolytes include sulfide-based solid electrolytes containing Li 2 S and oxide-based solid electrolytes such as Li 3 PO 4 and LiPON. Examples of the sulfide-based solid electrolyte include Li 2 S-P 2 S 5 system, Li 2 S-SiS 2 system, Li 2 S-B 2 S 3 system, and further P 2 O 5 and Li 3 PO 4 may be added. A sulfide-based solid electrolyte can be bonded at a lower temperature than an oxide-based solid electrolyte. In addition, the sulfide-based solid electrolyte is preferable in that it exhibits higher lithium ion conductivity than the oxide-based solid electrolyte.

さらに、正極活物質層12と固体電解質層14との間に、これら両層の界面抵抗を低減する界面層を設けてもよい。例えば正極活物質に酸化物(例、LiCoO2)、固体電解質に硫化物を用いた場合、酸化物と硫化物とが反応し、正極活物質層12と固体電解質層14との界面の界面抵抗が増大することがある。そこで、正極活物質層12と固体電解質層14との界面近傍における両層間の相互拡散を抑制して反応を抑制する界面層を設けることで、界面抵抗を低減することができる。界面層の形成材料としては、例えば、LiNbO3、LiTaO3、Li4Ti5O12、LiXLa(2-X)/3TiO3(X=0.1〜0.5)、Li7+XLa3Zr2O12+(X/2)(-5≦X≦3)、Li3.6Si0.6P0.4O4、Li1.3Al0.3Ti1.7(PO4)3、Li1.8Cr0.8Ti1.2(PO4)3、Li1.4In0.4Ti1.6(PO4)3などが挙げられ、これらを単独で又は2種以上を組み合わせて用いてもよい。 Furthermore, an interface layer for reducing the interface resistance between these two layers may be provided between the positive electrode active material layer 12 and the solid electrolyte layer 14. For example, when an oxide (eg, LiCoO 2 ) is used for the positive electrode active material and a sulfide is used for the solid electrolyte, the oxide and the sulfide react with each other, and the interface resistance at the interface between the positive electrode active material layer 12 and the solid electrolyte layer 14 May increase. Therefore, the interface resistance can be reduced by providing an interface layer that suppresses the mutual diffusion between both layers in the vicinity of the interface between the positive electrode active material layer 12 and the solid electrolyte layer 14 and suppresses the reaction. Examples of the material for forming the interface layer include LiNbO 3 , LiTaO 3 , Li 4 Ti 5 O 12 , Li X La (2-X) / 3 TiO 3 (X = 0.1 to 0.5), Li 7 + X La 3 Zr 2 O 12+ (X / 2) (-5 ≦ X ≦ 3), Li 3.6 Si 0.6 P 0.4 O 4 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.8 Cr 0.8 Ti 1.2 (PO 4 ) 3 , Li 1.4 In 0.4 Ti 1.6 (PO 4 ) 3 and the like, and these may be used alone or in combination of two or more.

正極活物質層12、負極活物質層13、固体電解質層14および界面層は、公知の成膜技術、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法及びレーザーアブレーション法といった物理的蒸着(PVD)法や、化学的蒸着(CVD)法といった気相法により形成することができる。また、正極活物質層12又は負極活物質層13は、正極活物質の粉末又は負極活物質の粉末と固体電解質の粉末とを混合した混合粉末をプレスした成形体とすることもできる。上記した混合粉末には、必要に応じて、導電助剤を添加してもよい。導電助剤としては、例えば、アセチレンブラック(AB)やケッチェンブラック(KB)といったカーボンブラックなどが挙げられる。   The positive electrode active material layer 12, the negative electrode active material layer 13, the solid electrolyte layer 14, and the interface layer are formed by a known deposition technique such as physical vapor deposition (PVD) such as vacuum deposition, sputtering, ion plating, and laser ablation. ) Method or a vapor phase method such as a chemical vapor deposition (CVD) method. Alternatively, the positive electrode active material layer 12 or the negative electrode active material layer 13 may be a molded body obtained by pressing a powder of a positive electrode active material or a mixed powder obtained by mixing a powder of a negative electrode active material and a solid electrolyte powder. You may add a conductive support agent to the above-mentioned mixed powder as needed. Examples of the conductive assistant include carbon black such as acetylene black (AB) and ketjen black (KB).

(電池要素)
電池要素10は、次のようにして作製している。大面積の集電体素材の一方の面に正極活物質層を形成し、他方の面に負極活物質層を形成すると共に、正極活物質層と負極活物質層の両方の上に固体電解質層を形成する。これにより、大面積の素材が完成する。そして、その素材を電池要素10に対応する大きさに複数に分割することで作製している。
(Battery element)
The battery element 10 is manufactured as follows. A positive electrode active material layer is formed on one surface of a large-area current collector material, a negative electrode active material layer is formed on the other surface, and a solid electrolyte layer is formed on both the positive electrode active material layer and the negative electrode active material layer. Form. This completes a large area material. The material is manufactured by dividing the material into a plurality of sizes corresponding to the battery element 10.

集電体素材の大きさは、作製する電池要素10より大きく、複数の電池要素10を取り出せる大きさであれば、特に限定されるものではない。例えば、集電体素材の面積は200cm2以上とし、電池要素10の面積は1cm2〜100cm2とすることが挙げられる。また、集電体素材は、電池要素10に対応する大きさに予め分割された複数の集電体11を平面状に並べて集合して形成してもよい。この場合、大面積の素材を電池要素10の大きさに分割し易い。 The size of the current collector material is not particularly limited as long as it is larger than the battery element 10 to be manufactured and is large enough to take out a plurality of battery elements 10. For example, the area of the current collector material is a 200 cm 2 or more, the area of the battery element 10 can be mentioned that a 1 cm 2 100 cm 2. Further, the current collector material may be formed by arranging a plurality of current collectors 11 previously divided into sizes corresponding to the battery elements 10 in a plane. In this case, it is easy to divide a large-area material into battery element 10 sizes.

(非水電解質電池)
図1に示す非水電解質電池は、次のようにして製造している。上述のようにして作製した電池要素10を所定数直列に積層し、その積層体の両端に、一端の電池要素10に対向するように正極電池要素20と、他端の電池要素10に対向するように負極電池要素30とを配置する。そして、この積層体の各電池要素を接合することで製造している。電池要素の接合は、加熱しながら積層方向に加圧することで、確実に接合し易い。
(Nonaqueous electrolyte battery)
The nonaqueous electrolyte battery shown in FIG. 1 is manufactured as follows. A predetermined number of battery elements 10 produced as described above are laminated in series, and the positive electrode battery element 20 and the battery element 10 at the other end are opposed to the battery element 10 at one end at both ends of the laminate. Thus, the negative electrode battery element 30 is arranged. And it manufactures by joining each battery element of this laminated body. The battery elements can be joined easily and reliably by applying pressure in the stacking direction while heating.

正極電池要素20は、集電体11の表面に正極活物質層12を形成し、更にその上に、固体電解質層14を形成することで作製されている。一方、負極電池要素30は、集電体11の表面に負極活物質層13を形成し、更にその上に、固体電解質層14を形成することで作製されている。正極電池要素20および負極電池要素30は、電池要素10と同様にして作製することができる。正極電池要素20の集電体11は正極端子(図示略)に接続され、負極電池要素30の集電体11は負極端子(図示略)に接続される。   The positive electrode battery element 20 is produced by forming the positive electrode active material layer 12 on the surface of the current collector 11 and further forming the solid electrolyte layer 14 thereon. On the other hand, the negative electrode battery element 30 is produced by forming the negative electrode active material layer 13 on the surface of the current collector 11 and further forming the solid electrolyte layer 14 thereon. The positive battery element 20 and the negative battery element 30 can be produced in the same manner as the battery element 10. The current collector 11 of the positive battery element 20 is connected to a positive terminal (not shown), and the current collector 11 of the negative battery element 30 is connected to a negative terminal (not shown).

ここで、電池要素10を複数直列に積層するとは、隣り合う電池要素10の正極活物質層12と負極活物質層13とが固体電解質層14を介して対向するように積層することをいう。また、正極電池要素20は、正極電池要素20の正極活物質層12と一端の電池要素10の負極活物質層13とが固体電解質層14を介して対向するように配置する。一方、負極電池要素30は、負極電池要素30の負極活物質層13と他端の電池要素10の正極活物質層12とが固体電解質層14を介して対向するように配置する。つまり、電池を構成したときに、正極端子側から負極端子側に向かって、集電体11、正極活物質層12、固体電解質層14、固体電解質層14、負極活物質層13、集電体11、正極活物質層12、…、集電体11の順に積層された状態となる。   Here, stacking a plurality of battery elements 10 in series means stacking so that the positive electrode active material layer 12 and the negative electrode active material layer 13 of the adjacent battery elements 10 face each other with the solid electrolyte layer 14 therebetween. Further, the positive battery element 20 is disposed so that the positive electrode active material layer 12 of the positive battery element 20 and the negative electrode active material layer 13 of the battery element 10 at one end face each other with the solid electrolyte layer 14 therebetween. On the other hand, the negative electrode battery element 30 is disposed such that the negative electrode active material layer 13 of the negative electrode battery element 30 and the positive electrode active material layer 12 of the battery element 10 at the other end face each other with the solid electrolyte layer 14 therebetween. That is, when the battery is configured, the current collector 11, the positive electrode active material layer 12, the solid electrolyte layer 14, the solid electrolyte layer 14, the negative electrode active material layer 13, the current collector from the positive electrode terminal side toward the negative electrode terminal side. 11, the positive electrode active material layer 12,..., And the current collector 11 are stacked in this order.

この例では、正極活物質層12と負極活物質層13の両方の上に固体電解質層14を形成しており、各電池要素を接合する際、固体電解質層14同士の接合となるため、接合し易い。特に、両方の固体電解質層14を硫化物系固体電解質で形成した場合、低温での接合が可能であり、他の構成部材(正極活物質層12や負極活物質層13)に与える熱影響を抑えることが可能である。この場合、各電池要素を接合する際の加熱・加圧条件を、例えば、加熱温度:100℃〜250℃、加圧圧力:2MPa〜300MPa、保持時間:10分間以上とすることで、固体電解質層14同士を熱融着させることにより、確実に一体接合することができる。   In this example, the solid electrolyte layer 14 is formed on both the positive electrode active material layer 12 and the negative electrode active material layer 13, and when the battery elements are joined, the solid electrolyte layers 14 are joined together. Easy to do. In particular, when both solid electrolyte layers 14 are formed of a sulfide-based solid electrolyte, bonding at a low temperature is possible, and the thermal effect on other components (positive electrode active material layer 12 and negative electrode active material layer 13) is reduced. It is possible to suppress. In this case, the heating / pressurizing conditions for joining the battery elements are, for example, heating temperature: 100 ° C. to 250 ° C., pressurizing pressure: 2 MPa to 300 MPa, holding time: 10 minutes or more, so that the solid electrolyte By thermally fusing the layers 14 together, they can be reliably joined together.

<実施例1>
以上説明した非水電解質電池(リチウム系電池)を製造し、その電池性能を評価した。
<Example 1>
The non-aqueous electrolyte battery (lithium battery) described above was manufactured and its battery performance was evaluated.

ステンレス製の集電体素材(縦×横:20cm×20cm、厚さ:20μm)の一方の面に、スパッタリング法を用いてLiCoO2を成膜することで、厚さ5μmの正極活物質層を形成した。また、成膜したLiCoO2を結晶化させるために、成膜後に500℃でアニールを行った。 By depositing LiCoO 2 on one surface of a stainless steel current collector material (vertical x horizontal: 20 cm x 20 cm, thickness: 20 μm) using a sputtering method, a positive electrode active material layer with a thickness of 5 μm is formed. Formed. In addition, annealing was performed at 500 ° C. after the film formation in order to crystallize the formed LiCoO 2 .

次いで、正極活物質層の上に、スパッタリング法を用いてLiNbO3を成膜することで、厚さ20nmの界面層を形成した。この界面層は、正極活物質層と固体電解質層との間の界面抵抗の低減に寄与する。 Next, an LiNbO 3 film was formed on the positive electrode active material layer by a sputtering method, thereby forming an interface layer having a thickness of 20 nm. This interface layer contributes to reduction of the interface resistance between the positive electrode active material layer and the solid electrolyte layer.

次いで、集電体素材の一方の面とは反対側の他方の面に、真空蒸着法を用いてLi‐Al合金(Alの含有比率:50モル%)を成膜することで、厚さ1μmの負極活物質層を形成した。   Next, a Li-Al alloy (Al content: 50 mol%) is formed on the other surface opposite to the one surface of the current collector material by vacuum deposition, resulting in a thickness of 1μm The negative electrode active material layer was formed.

さらに、正極活物質層(界面層)と負極活物質層の両方の上に、真空蒸着法を用いてLi2S‐P2S5系固体電解質を成膜することで、厚さ10μmの固体電解質層をそれぞれ形成した。 Furthermore, a Li 2 S-P 2 S 5 solid electrolyte is deposited on both the positive electrode active material layer (interface layer) and the negative electrode active material layer using a vacuum deposition method, so that a solid with a thickness of 10 μm Each electrolyte layer was formed.

このようにして作製した素材をハサミでせん断することにより分割して、10mm×10mm角の電池要素10を複数得た。   The material thus prepared was divided by shearing with scissors to obtain a plurality of 10 mm × 10 mm square battery elements 10.

上述した電池要素10と同様にして、ステンレス製の集電体素材の上に、正極活物質層、界面層、固体電解質層を順に形成した後、それを分割して、10mm×10mm角の正極電池要素20を得た。   In the same manner as the battery element 10 described above, a positive electrode active material layer, an interface layer, and a solid electrolyte layer were formed in this order on a stainless steel current collector material, and then divided into 10 mm × 10 mm square positive electrodes Battery element 20 was obtained.

上述した電池要素10と同様にして、ステンレス製の集電体素材の上に、負極活物質層、固体電解質層を順に形成した後、それを分割して、10mm×10mm角の負極電池要素30を得た。   In the same manner as the battery element 10 described above, a negative electrode active material layer and a solid electrolyte layer were sequentially formed on a stainless steel current collector material, and then divided into 10 mm × 10 mm square negative electrode battery elements 30. Got.

次に、上述のようにして作製した電池要素10を9個直列に積層して積層体とし、負極電池要素30、電池要素10の積層体および正極電池要素20を順に金型に入れた。そして、200℃に加熱しながら積層方向に20MPaに加圧して3時間保持することにより、固体電解質層14同士を熱融着させ、各電池要素を接合することで電池を製造した。   Next, nine battery elements 10 produced as described above were laminated in series to form a laminate, and the negative electrode battery element 30, the laminate of battery elements 10, and the positive electrode battery element 20 were sequentially placed in a mold. Then, by heating to 200 ° C. and pressurizing to 20 MPa in the laminating direction and holding for 3 hours, the solid electrolyte layers 14 were thermally fused together, and the battery elements were joined to manufacture a battery.

この電池を一定時間充電した後、開放電圧を測定したところ、38Vであった。   After charging this battery for a certain period of time, the open circuit voltage was measured and found to be 38V.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、電池の各構成部材の形成材料などを適宜変更してもよい。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, you may change suitably the forming material of each structural member of a battery, etc.

本発明の非水電解質電池は、リチウム系電池の分野に好適に利用することができ、例えば、携帯電話、ノートパソコン、デジタルカメラの他、電気自動車などの電源にも使用することが可能である。   The nonaqueous electrolyte battery of the present invention can be suitably used in the field of lithium-based batteries, and can be used, for example, as a power source for electric vehicles as well as mobile phones, notebook computers, digital cameras, and the like. .

10 電池要素
11 集電体 12 正極活物質層 13 負極活物質層
14 固体電解質層
20 正極電池要素 30 負極電池要素
10 Battery element
11 Current collector 12 Positive electrode active material layer 13 Negative electrode active material layer
14 Solid electrolyte layer
20 Positive battery element 30 Negative battery element

Claims (5)

大面積の集電体素材の一方の面に正極活物質層を形成する正極層形成工程と、
前記集電体素材の他方の面に負極活物質層を形成する負極層形成工程と、
前記正極活物質層と前記負極活物質層の少なくとも一方の上に固体電解質層を形成する電解質層形成工程と、
以上の工程により作製した大面積の素材を分割して複数の電池要素とする分割工程と、
前記電池要素を複数直列に積層して、各電池要素を接合する接合工程と、
を備えることを特徴とする非水電解質電池の製造方法。
A positive electrode layer forming step of forming a positive electrode active material layer on one surface of a current collector material having a large area;
A negative electrode layer forming step of forming a negative electrode active material layer on the other surface of the current collector material;
An electrolyte layer forming step of forming a solid electrolyte layer on at least one of the positive electrode active material layer and the negative electrode active material layer;
A dividing step of dividing a large-area material produced by the above steps into a plurality of battery elements,
A plurality of battery elements stacked in series, and joining each battery element;
A method for producing a nonaqueous electrolyte battery, comprising:
前記電解質層形成工程において、前記正極活物質層と前記負極活物質層の両方の上に固体電解質層を形成することを特徴とする請求項1に記載の非水電解質電池の製造方法。   The method for producing a nonaqueous electrolyte battery according to claim 1, wherein in the electrolyte layer forming step, a solid electrolyte layer is formed on both the positive electrode active material layer and the negative electrode active material layer. 前記接合工程において、加熱しながら積層方向に加圧することを特徴とする請求項1又は2に記載の非水電解質電池の製造方法。   The method for producing a nonaqueous electrolyte battery according to claim 1, wherein in the joining step, pressure is applied in the stacking direction while heating. 前記集電体素材は、前記電池要素に対応する大きさに予め分割された複数の集電体を平面状に並べて集合して形成することを特徴とする請求項1〜3のいずれか一項に記載の非水電解質電池の製造方法。   The current collector material is formed by arranging a plurality of current collectors, which are divided in advance in a size corresponding to the battery element, in a planar shape. The manufacturing method of the nonaqueous electrolyte battery as described in any one of. 請求項1〜4のいずれか一項に記載の非水電解質電池の製造方法により製造されたことを特徴とする非水電解質電池。   A non-aqueous electrolyte battery manufactured by the method for manufacturing a non-aqueous electrolyte battery according to claim 1.
JP2010236756A 2010-10-21 2010-10-21 Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery Pending JP2012089421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236756A JP2012089421A (en) 2010-10-21 2010-10-21 Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236756A JP2012089421A (en) 2010-10-21 2010-10-21 Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2012089421A true JP2012089421A (en) 2012-05-10

Family

ID=46260823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236756A Pending JP2012089421A (en) 2010-10-21 2010-10-21 Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2012089421A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142228A (en) * 2011-01-05 2012-07-26 Toyota Motor Corp Method for manufacturing electrode body, and method for manufacturing battery
JP2016507865A (en) * 2012-12-31 2016-03-10 アイ テン Method for manufacturing all-solid battery with laminated structure
US20180131038A1 (en) 2016-11-08 2018-05-10 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
JP2018077986A (en) * 2016-11-08 2018-05-17 トヨタ自動車株式会社 Fluoride ion battery and method for manufacturing the same
DE102018220388A1 (en) 2018-11-28 2020-05-28 Robert Bosch Gmbh Battery system
CN114759266A (en) * 2022-06-15 2022-07-15 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Prefabricated module of solid-state battery, solid-state battery and preparation method of solid-state battery
CN115395070A (en) * 2021-05-25 2022-11-25 本田技研工业株式会社 Solid-state battery and method for manufacturing solid-state battery
JP7261920B1 (en) 2022-07-07 2023-04-20 Apb株式会社 lithium ion battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142228A (en) * 2011-01-05 2012-07-26 Toyota Motor Corp Method for manufacturing electrode body, and method for manufacturing battery
JP2016507865A (en) * 2012-12-31 2016-03-10 アイ テン Method for manufacturing all-solid battery with laminated structure
US20180131038A1 (en) 2016-11-08 2018-05-10 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
JP2018077986A (en) * 2016-11-08 2018-05-17 トヨタ自動車株式会社 Fluoride ion battery and method for manufacturing the same
US10727533B2 (en) 2016-11-08 2020-07-28 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
US10790539B2 (en) 2016-11-08 2020-09-29 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery and method for producing fluoride ion battery
DE102018220388A1 (en) 2018-11-28 2020-05-28 Robert Bosch Gmbh Battery system
CN115395070A (en) * 2021-05-25 2022-11-25 本田技研工业株式会社 Solid-state battery and method for manufacturing solid-state battery
CN114759266A (en) * 2022-06-15 2022-07-15 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Prefabricated module of solid-state battery, solid-state battery and preparation method of solid-state battery
JP7261920B1 (en) 2022-07-07 2023-04-20 Apb株式会社 lithium ion battery
JP2024008139A (en) * 2022-07-07 2024-01-19 Apb株式会社 lithium ion battery

Similar Documents

Publication Publication Date Title
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP6319335B2 (en) Manufacturing method of all solid state battery
JP6265580B2 (en) Battery and manufacturing method thereof
JP2012089421A (en) Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
WO2012020699A1 (en) Layered solid-state battery
WO2012020700A1 (en) Layered solid-state battery
CN109565028B (en) Method for producing an electrochemical cell having a lithium electrode, and electrochemical cell
JP6149657B2 (en) All solid battery
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
JP2012014892A (en) Nonaqueous electrolyte battery
JP2019096476A (en) Series laminate type all-solid battery
JP2012164571A (en) Negative electrode body and lithium ion battery
US20130065134A1 (en) Nonaqueous-electrolyte battery and method for producing the same
JP2011159596A (en) Secondary battery and method of manufacturing the same
JP2020013729A (en) Manufacturing method of series-stacked all-solid-state battery
WO2020038011A1 (en) Lithium ion battery and preparation method therefor, and electric vehicle
JP2014086174A (en) All solid state battery and manufacturing method therefor
CN111384433A (en) Solid electrolyte laminate and solid battery
JP2011258477A (en) Nonaqueous electrolyte battery
JP2011154900A (en) All-solid battery
JP2015018670A (en) Bipolar battery
JP2019192564A (en) All-solid battery
JP6748348B2 (en) All solid state battery
WO2017217079A1 (en) All-solid battery
JP2014116136A (en) All-solid-state secondary battery