JP2012087001A - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP2012087001A
JP2012087001A JP2010234306A JP2010234306A JP2012087001A JP 2012087001 A JP2012087001 A JP 2012087001A JP 2010234306 A JP2010234306 A JP 2010234306A JP 2010234306 A JP2010234306 A JP 2010234306A JP 2012087001 A JP2012087001 A JP 2012087001A
Authority
JP
Japan
Prior art keywords
carbon monoxide
heat insulating
insulating material
reforming
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010234306A
Other languages
Japanese (ja)
Other versions
JP5605157B2 (en
Inventor
Yuji Mukai
裕二 向井
Akira Maenishi
晃 前西
Yoji Kawaguchi
洋史 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010234306A priority Critical patent/JP5605157B2/en
Publication of JP2012087001A publication Critical patent/JP2012087001A/en
Application granted granted Critical
Publication of JP5605157B2 publication Critical patent/JP5605157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent overheating of a carbon monoxide reducing part when the heat dissipation of a reforming part happens by the convection of air that exists in the gap between the circumference of the reforming part and a heat insulating material and air that exists in the gap between the circumference of the carbon monoxide reducing part and the heat insulating material.SOLUTION: The hydrogen generator includes a reaction vessel that includes the reforming part and the carbon monoxide reducing part, the heat insulating material arranged to cover the outer circumference of the reaction vessel, and a convection prevention part arranged between the reaction vessel and the heat insulating material and below the carbon monoxide reducing part in a gravity direction.

Description

本発明は、炭化水素化合物を原料として水素を含む燃料ガスを生成し、燃料電池に燃料ガスを供給する水素生成装置に関するものである。   The present invention relates to a hydrogen generator that generates a fuel gas containing hydrogen using a hydrocarbon compound as a raw material and supplies the fuel gas to a fuel cell.

燃料電池発電装置は、燃料電池と、燃料電池に水素を含む燃料ガスを供給する水素生成装置と、燃料電池が発電した直流電力を交流電力へ変換するインバーター回路、およびそれらを制御する制御装置などによって構成されている。燃料電池には種々の方式が用いられているが、表面に貴金属触媒を坦持した高分子などの固体電解質の片面に水素ガスを供給し、供給された水素ガスを水素イオンへ変換し、反対面に酸素を供給して固体電解質内を拡散してきた水素イオンを燃焼消費することによって電荷の移動、すなわち電流を得る方式が一般的である。また、水素生成装置にも幾つかの方式があるが、一般的にはルテニウムなどを坦持した触媒を用い、原料となる炭化水素化合物と水蒸気を高温で反応させて水蒸気改質反応によって水素を高濃度に含む改質ガスを生成する改質部と、改質ガス中に含まれる一酸化炭素を低減する一酸化炭素低減部とからなる反応容器部と、この反応容器部の外周を覆って断熱する断熱材から構成される。   A fuel cell power generator includes a fuel cell, a hydrogen generator that supplies a fuel gas containing hydrogen to the fuel cell, an inverter circuit that converts DC power generated by the fuel cell into AC power, and a control device that controls them. It is constituted by. Various types of fuel cells are used, but hydrogen gas is supplied to one side of a solid electrolyte such as a polymer carrying a noble metal catalyst on the surface, and the supplied hydrogen gas is converted into hydrogen ions, which is the opposite A general method is to obtain charge transfer, that is, current by supplying oxygen to the surface and burning and consuming hydrogen ions diffused in the solid electrolyte. There are also several types of hydrogen generators, but in general, a catalyst carrying ruthenium or the like is used, and a hydrocarbon compound as a raw material is reacted with steam at a high temperature to generate hydrogen by a steam reforming reaction. A reaction vessel part composed of a reforming part for generating a reformed gas containing a high concentration, a carbon monoxide reducing part for reducing carbon monoxide contained in the reformed gas, and an outer periphery of the reaction vessel part are covered. Consists of heat insulating material.

改質部で生成され得る最大の水素量は、反応平衡によって定まる反応転化率によって決定される。反応転化率は反応温度により強く影響され、反応温度が高いほど反応転化率が高くなり多くの水素を生成することができる。そこで、反応転化率の高い水素生成装置を得るには、改質部の温度を高温に維持することが不可欠であり、そのためには改質部の放熱を極力抑制することが必要である。従って、反応容器部の外周を覆う断熱材の断熱性能は水素生成装置の性能に大きく影響する。   The maximum amount of hydrogen that can be generated in the reforming section is determined by the reaction conversion rate determined by the reaction equilibrium. The reaction conversion is strongly influenced by the reaction temperature. The higher the reaction temperature, the higher the reaction conversion and the more hydrogen can be generated. Therefore, in order to obtain a hydrogen generator having a high reaction conversion rate, it is essential to maintain the temperature of the reforming section at a high temperature, and for that purpose, it is necessary to suppress the heat radiation of the reforming section as much as possible. Therefore, the heat insulation performance of the heat insulating material covering the outer periphery of the reaction vessel portion greatly affects the performance of the hydrogen generator.

特許文献1には、改質部と、一酸化炭素低減部である変成部と一酸化炭素選択酸化部の外径が同じ反応容器部を覆う断熱材構成が示されている。また、特許文献2の図4には、外径の異なる改質部と変成部からなる反応容器部を覆う断熱材構成が示されている。なお、代表的な温度を示すと、改質部の最高温度は600〜700℃と比較的高温であり、それに比べて変成部の最高温度は210〜300℃と比較的低温である。一方、水素生成装置は熱応力による破壊や劣化を防止するため、特許文献3に記載されているように低温部で吊り下げられるように保持するのが一般的である。   Patent Document 1 shows a heat insulating material configuration that covers a reforming section, a reaction section having the same outer diameter of a shift section that is a carbon monoxide reduction section, and a carbon monoxide selective oxidation section. Further, FIG. 4 of Patent Document 2 shows a heat insulating material configuration that covers a reaction vessel portion including a reforming portion and a transformation portion having different outer diameters. In addition, as a representative temperature, the maximum temperature of the reforming part is 600 to 700 ° C., which is relatively high, and the maximum temperature of the transformation part is 210 to 300 ° C., which is relatively low. On the other hand, in order to prevent destruction and deterioration due to thermal stress, the hydrogen generator is generally held so as to be suspended at a low temperature portion as described in Patent Document 3.

特開2004−247241号公報Japanese Patent Laid-Open No. 2004-247241 国際公開第02/098790号International Publication No. 02/098790 特開2002−284506号公報JP 2002-284506 A

これらの特許文献では反応容器部と断熱材とが隙間なく組み立てられているように図示されているが、実際には両者の間には必ず隙間が生じている。断熱材の加工精度を反応容器部と同等に高くすることは困難であるため、反応容器部と断熱材の間には、片側で1mmから3mm程度の隙間が生じている。この隙間に存在する空気は、より高温の改質部とより低温の一酸化炭素低減部とによって加熱されるが、温度差があるため隙間を通じて空気の対流が起こる。空気の対流によって、改質部では熱が奪われ改質部の温度が想定よりも低下し、一酸化炭素低減部では、過剰に加熱され変成部の温度が想定よりも上昇してし
まうという課題があった。
In these patent documents, the reaction vessel portion and the heat insulating material are illustrated as being assembled with no gap, but in practice, there is always a gap between the two. Since it is difficult to make the processing accuracy of the heat insulating material as high as that of the reaction vessel portion, a gap of about 1 mm to 3 mm is generated on one side between the reaction vessel portion and the heat insulating material. The air present in the gap is heated by the higher temperature reforming section and the lower temperature carbon monoxide reduction section, but air convection occurs through the gap due to a temperature difference. Due to the convection of air, heat is lost in the reforming section and the temperature of the reforming section is lower than expected, and in the carbon monoxide reduction section, the temperature of the metamorphic section is increased more than expected due to excessive heating. was there.

本発明は、上記従来の課題を解決するもので、改質部周囲の隙間に存在する空気の対流による放熱を抑制し、また、一酸化炭素低減部の過剰な温度上昇を抑制することができる水素生成装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and can suppress heat release due to convection of air existing in the gap around the reforming section, and can suppress an excessive temperature rise in the carbon monoxide reduction section. An object is to provide a hydrogen generator.

特許文献1の技術では、改質部周囲と断熱材との隙間と一酸化炭素低減部である変成部周囲と断熱材との隙間が上下に連なってしまう。各々の隙間部に存在する空気は、それぞれ改質部と一酸化炭素低減部部により加熱されるが、前述のように改質部の温度が高温のため、改質部周囲の隙間に存在する空気は対流し、より温度の低い一酸化炭素低減部部周囲の隙間に流入する。この対流により改質部の熱が奪われ改質温度が低下し反応転化率が低下してしまう。すなわち、この対流により放熱損失が発生し、高性能の断熱材を使用していてもその効果を十分に発揮することができない恐れがあった。また、一酸化炭素低減部においても、一酸化炭素低減部の周囲の隙間に流入した高温空気により一酸化炭素低減部が加熱され、一酸化炭素低減部が適温から外れてしまい、一酸化炭素低減性能が低下したり、一酸化炭素低減部の触媒が高温によって劣化してしまう恐れがあった。   In the technique of Patent Literature 1, the gap between the reforming portion and the heat insulating material and the gap between the metamorphic portion and the heat insulating material, which are the carbon monoxide reduction portions, are connected vertically. The air present in each gap is heated by the reforming unit and the carbon monoxide reduction unit, respectively. However, since the temperature of the reforming unit is high as described above, the air exists in the gap around the reforming unit. The air convects and flows into the gap around the lower part of the carbon monoxide reduction portion. Due to this convection, the heat of the reforming section is removed, the reforming temperature is lowered, and the reaction conversion rate is lowered. That is, heat loss is generated by this convection, and even if a high-performance heat insulating material is used, there is a possibility that the effect cannot be fully exhibited. Also, in the carbon monoxide reduction part, the carbon monoxide reduction part is heated by the high-temperature air flowing into the gap around the carbon monoxide reduction part, and the carbon monoxide reduction part is removed from the appropriate temperature, thereby reducing the carbon monoxide. There was a risk that the performance would be reduced, or the catalyst in the carbon monoxide reduction part would be deteriorated by high temperature.

また、特許文献2のように、改質部外径よりも一酸化炭素低減部外径の方が大きい場合であっても、改質部周囲と一酸化炭素低減部周囲の各々と断熱材との隙間が存在する。ここで、特許文献3のように低温の一酸化炭素低減部で吊り下げて保持する場合には、改質部外径と一酸化炭素低減部外径の段差部にも断熱材との隙間が生じるため、改質部周囲の隙間に存在する空気が対流して一酸化炭素低減部周囲の隙間に流入してしまう恐れがあった。   Further, as in Patent Document 2, even when the carbon monoxide reduction part outer diameter is larger than the reforming part outer diameter, each of the reforming part periphery, the carbon monoxide reduction part periphery, and the heat insulating material There are gaps. Here, when suspended and held in the low-temperature carbon monoxide reduction unit as in Patent Document 3, there is a gap between the reforming portion outer diameter and the step portion between the carbon monoxide reduction portion outer diameter and the heat insulating material. As a result, air existing in the gap around the reforming part may convect and flow into the gap around the carbon monoxide reduction part.

本発明者らは、鋭意検討を行った結果、上記従来の課題を解決するために、反応容器と断熱材の間に対流防止部を配置することによって、改質部周囲の隙間に存在する空気の対流による放熱を抑制し、一酸化炭素低減部の過剰な温度上昇を抑制することができることを見出した。   As a result of earnest studies, the present inventors have arranged air convection prevention portions between the reaction vessel and the heat insulating material in order to solve the above-described conventional problems. It has been found that heat dissipation due to convection can be suppressed and an excessive temperature rise in the carbon monoxide reduction portion can be suppressed.

即ち、本発明の水素生成装置は、原料及び水を反応させて水素含有ガスを生成する改質部、並びに、前記水素含有ガス中に含まれる一酸化炭素を低減する一酸化炭素低減部を含む反応容器と、前記改質部及び前記一酸化炭素低減部を加熱する加熱部と、前記反応容器の外周を覆うように配置された断熱材と、前記反応容器と前記断熱材の間に配置された対流防止部を備える。この構成により、反応容器とその周囲の断熱材との隙間に存在する空気の対流などによる移動を抑制することができる。従って、改質部周囲の隙間に存在する空気の対流による放熱損失を抑制し、改質部の反応転化率の低下を抑制できる。また、一酸化炭素低減部の一酸化炭素低減性能の低下や一酸化炭素低減部の触媒が高温で劣化することを抑制できる。   That is, the hydrogen generator of the present invention includes a reforming unit that generates a hydrogen-containing gas by reacting a raw material and water, and a carbon monoxide reducing unit that reduces carbon monoxide contained in the hydrogen-containing gas. A reaction vessel, a heating unit for heating the reforming unit and the carbon monoxide reduction unit, a heat insulating material arranged to cover an outer periphery of the reaction vessel, and arranged between the reaction vessel and the heat insulating material. A convection prevention unit is provided. With this configuration, movement due to convection of air existing in the gap between the reaction vessel and the surrounding heat insulating material can be suppressed. Therefore, it is possible to suppress heat dissipation loss due to convection of air existing in the gap around the reforming section, and to suppress a reduction in reaction conversion rate of the reforming section. Moreover, it can suppress that the carbon monoxide reduction performance decline of a carbon monoxide reduction part and the catalyst of a carbon monoxide reduction part deteriorate at high temperature.

また、本発明の前記対流防止部は、前記反応容器に設けられた容器凸部、及び、前記断熱材に設けられ、前記容器凸部と対向するように設けられた断熱材凸部を有し、前記容器凸部及び前記断熱材凸部が互いに押圧されるように、前記反応容器部及び前記断熱材を固定する固定具をさらに備える。これにより、反応容器とその周囲の断熱材との隙間に存在する空気の対流などによる移動の抑制をより確実なものにすることができる。   In addition, the convection prevention unit of the present invention has a container convex part provided in the reaction vessel, and a heat insulating material convex part provided in the heat insulating material so as to face the container convex part. And a fixture for fixing the reaction container part and the heat insulating material so that the container convex part and the heat insulating material convex part are pressed against each other. Thereby, it is possible to more reliably suppress movement due to convection of air existing in the gap between the reaction vessel and the surrounding heat insulating material.

更に本発明の前記対流防止部は、前記容器凸部及び前記断熱材凸部の間に配置された弾性部材をさらに有し、前記容器凸部及び前記断熱材凸部は、前記弾性部材を介して互いに押圧されている。これにより、前記容器凸部の下面と前記断熱材凸部の上面の間の隙間をより一層防止することができる。   Furthermore, the convection prevention part of the present invention further includes an elastic member disposed between the container convex part and the heat insulating material convex part, and the container convex part and the heat insulating material convex part are interposed via the elastic member. Are pressed against each other. Thereby, the clearance gap between the lower surface of the said container convex part and the upper surface of the said heat insulating material convex part can be prevented further.

なお、前記対流防止部は、前記反応容器及び前記断熱材の間で、かつ、前記改質部及び前記一酸化炭素低減部の境界部分に配置されている。これにより、改質部周囲の断熱材との隙間に存在する空気と一酸化炭素低減部周囲の断熱材との隙間に存在する空気との対流を抑制することができる。   In addition, the said convection prevention part is arrange | positioned between the said reaction container and the said heat insulating material, and the boundary part of the said modification part and the said carbon monoxide reduction part. Thereby, the convection of the air which exists in the clearance gap between the heat insulation materials around a reforming part and the air which exists in the clearance gap between the heat insulation materials around a carbon monoxide reduction part can be controlled.

また、本発明では、前記反応容器内部のうち、前記改質部及び前記一酸化炭素低減部の間には、空間部が設けている。これにより、改質部周囲の隙間に存在する空気により一酸化炭素低減部内の触媒が直接加熱されることを防止できる。   Moreover, in this invention, the space part is provided between the said modification | reformation part and the said carbon monoxide reduction part among the said reaction containers. Thereby, it can prevent that the catalyst in a carbon monoxide reduction part is directly heated by the air which exists in the clearance gap around a reforming part.

また、本発明の前記容器凸部は、前記改質部の外径より前記一酸化炭素低減部の外径を大きくすることにより形成する。これにより新たな部材を追加することなく、改質部周囲の断熱材との隙間に存在する空気と一酸化炭素低減部周囲の断熱材との隙間に存在する空気との対流を抑制できる。   Moreover, the said container convex part of this invention is formed by making the outer diameter of the said carbon monoxide reduction part larger than the outer diameter of the said modification part. Accordingly, convection between air existing in the gap between the heat insulating material around the reforming portion and air existing in the gap between the heat insulating material around the carbon monoxide reduction portion can be suppressed without adding a new member.

また、本発明では、前記容器凸部は、前記改質部の外径より前記一酸化炭素低減部の外径を大きくすることにより形成するとともに、前記反応容器内部のうち、前記一酸化炭素低減部の前記段差部側には、空間部が設けている。これにより、改質部周囲の隙間に存在する空気により一酸化炭素低減部内の触媒が直接加熱されることを防止できる。   Further, in the present invention, the container convex portion is formed by making the outer diameter of the carbon monoxide reducing portion larger than the outer diameter of the reforming portion, and the carbon monoxide reduction in the reaction container. A space portion is provided on the stepped portion side of the portion. Thereby, it can prevent that the catalyst in a carbon monoxide reduction part is directly heated by the air which exists in the clearance gap around a reforming part.

本発明の水素生成装置によれば、改質部周囲の隙間に存在する空気の対流による放熱を抑制し、一酸化炭素低減部の過剰な温度上昇を抑制することができる。   According to the hydrogen generator of the present invention, heat release due to convection of air existing in the gap around the reforming unit can be suppressed, and an excessive temperature rise in the carbon monoxide reducing unit can be suppressed.

本発明の実施の形態1における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 1 of the present invention 本発明の実施の形態2における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 2 of the present invention 本発明の実施の形態3における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 3 of the present invention 本発明の実施の形態4における水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator in Embodiment 4 of the present invention

(実施の形態1)
以下、本発明に係る水素生成装置の実施の形態について、図1を用いて説明する。
(Embodiment 1)
Hereinafter, an embodiment of a hydrogen generator according to the present invention will be described with reference to FIG.

図1は、本発明の実施の形態における水素生成装置1の概略構成図である。水素生成装置1の動作は、先ず、改質部Aで、炭化水素化合物及び水蒸気を原料として水蒸気改質反応を行い、水素、二酸化炭素、一酸化炭素、未反応のメタン及び水蒸気を含む改質ガスを生成する。次に、一酸化炭素低減部Bによって燃料電池3に有害となる一酸化炭素を除去して燃料ガスを生成する。この燃料ガスを用いて燃料電池3が発電を行う。一酸化炭素低減部Bは、一酸化炭素を水蒸気と反応させて低減する変成反応部と、なおも残留する一酸化炭素に空気を供給して燃焼除去させる選択酸化反応部とを有するものが一般的である。また、簡単な構造で高効率の水素生成装置を実現するには、水素生成装置1のように、改質部Aと一酸化炭素低減部Bからなる反応容器30を一体化して上下に並べて配置する構成が提案されている。   FIG. 1 is a schematic configuration diagram of a hydrogen generator 1 in an embodiment of the present invention. The operation of the hydrogen generator 1 is first performed in the reforming unit A by performing a steam reforming reaction using hydrocarbon compounds and steam as raw materials, and reforming including hydrogen, carbon dioxide, carbon monoxide, unreacted methane and steam. Generate gas. Next, carbon monoxide that is harmful to the fuel cell 3 is removed by the carbon monoxide reduction unit B to generate fuel gas. The fuel cell 3 generates power using this fuel gas. The carbon monoxide reduction part B generally has a modification reaction part that reduces carbon monoxide by reacting with water vapor and a selective oxidation reaction part that supplies air to the remaining carbon monoxide and removes it by combustion. Is. In order to realize a high-efficiency hydrogen generator with a simple structure, the reaction vessel 30 composed of the reforming part A and the carbon monoxide reduction part B is integrated and arranged side by side like the hydrogen generator 1. A configuration has been proposed.

図1において、水素生成装置1は、バーナ2と、改質器Aと、一酸化炭素低減部Bと、成型断熱材11と、断熱材12と、固定板14と、を有している。   In FIG. 1, the hydrogen generator 1 includes a burner 2, a reformer A, a carbon monoxide reduction unit B, a molded heat insulating material 11, a heat insulating material 12, and a fixed plate 14.

バーナ2は、水素生成装置1中心に位置するように反応容器30の内部に配置されている。バーナ2は、水蒸気改質反応に必要な反応熱を供給するもので、原料又は燃料電池3
から排出されるオフガスを燃焼し、排気口13を通じて燃焼排ガスを排出するように構成されている。原料供給口4から供給された原料及び水は、らせん状に流路が構成された蒸発器5内でバーナ2の燃焼排ガスによって加熱され、蒸発した水と原料とが混合して改質器A内の改質触媒層6へ送られる。改質触媒層6の改質触媒としては、例えば、ルテニウムを主成分とする触媒、又は、ニッケルを主成分とする触媒を用いることができる。原料及び水蒸気の混合ガスは、改質触媒層6内で燃焼排ガスによって600から700℃程度に加熱され、水素、二酸化炭素、一酸化炭素、未反応のメタン及び水蒸気を含む改質ガスへと反応する。一酸化炭素は、一酸化炭素低減部B内の変成触媒層7によって改質ガス中の水蒸気と反応して濃度が1%以下にまで低減される。改質ガスは更に空気供給口8から供給された空気と混合されて、一酸化炭素低減部B内の選択酸化触媒層9によって一酸化炭素が選択的に燃焼除去される。生成された燃料ガスは、燃料ガス出口10から燃料電池3へ送られる。
The burner 2 is disposed inside the reaction vessel 30 so as to be located at the center of the hydrogen generator 1. The burner 2 supplies reaction heat necessary for the steam reforming reaction.
The exhaust gas discharged from the combustion chamber is combusted and the combustion exhaust gas is discharged through the exhaust port 13. The raw material and water supplied from the raw material supply port 4 are heated by the combustion exhaust gas of the burner 2 in the evaporator 5 having a spiral flow path, and the evaporated water and the raw material are mixed to form the reformer A. It is sent to the reforming catalyst layer 6 inside. As the reforming catalyst of the reforming catalyst layer 6, for example, a catalyst containing ruthenium as a main component or a catalyst containing nickel as a main component can be used. The mixed gas of the raw material and steam is heated to about 600 to 700 ° C. by the combustion exhaust gas in the reforming catalyst layer 6 and reacts to reformed gas containing hydrogen, carbon dioxide, carbon monoxide, unreacted methane and steam. To do. The concentration of carbon monoxide is reduced to 1% or less by reacting with the water vapor in the reformed gas by the shift catalyst layer 7 in the carbon monoxide reduction section B. The reformed gas is further mixed with the air supplied from the air supply port 8, and carbon monoxide is selectively burned and removed by the selective oxidation catalyst layer 9 in the carbon monoxide reduction unit B. The generated fuel gas is sent from the fuel gas outlet 10 to the fuel cell 3.

また、成型断熱材11は、一酸化炭素低減部Bの側面、改質部Aの側面及び改質部Aの一酸化炭素低減部Bが配置されている側の反対側の面を覆うように配置されている。この成型断熱材11は、改質部A側に設けられた底部、円筒形状の側部及び一酸化炭素低減部B側に開口部を有する。断熱材12は、成型断熱材11の開口部側の部分と一酸化炭素低減部B側との隙間に配置されている。断熱材12の材料としては、例えば、グラスファイバーを用いることができる。固定板14は、一酸化炭素低減部B及びバーナ2のうちの少なくとも一方に一体化されている。   Further, the molded heat insulating material 11 covers the side surface of the carbon monoxide reducing portion B, the side surface of the reforming portion A, and the surface opposite to the side on which the carbon monoxide reducing portion B is disposed. Has been placed. This molded heat insulating material 11 has an opening on the bottom provided on the reforming part A side, the cylindrical side part, and the carbon monoxide reduction part B side. The heat insulating material 12 is arrange | positioned in the clearance gap between the part by the side of the opening part of the shaping | molding heat insulating material 11, and the carbon monoxide reduction part B side. As a material of the heat insulating material 12, for example, glass fiber can be used. The fixing plate 14 is integrated with at least one of the carbon monoxide reduction part B and the burner 2.

水素生成装置1は、成型断熱材11の中に反応容器30を挿入して構成しているため、成型断熱材11の内径は反応容器30の外径よりも大きく作られている。しかも成型断熱材11の加工精度は反応容器30に比べて劣るため、反応容器30と成型断熱材11の間には、片側で1mmから3mmの隙間が生じている。   Since the hydrogen generator 1 is configured by inserting the reaction container 30 into the molded heat insulating material 11, the inner diameter of the molded heat insulating material 11 is made larger than the outer diameter of the reaction container 30. In addition, since the processing accuracy of the molded heat insulating material 11 is inferior to that of the reaction container 30, a gap of 1 mm to 3 mm is generated on one side between the reaction container 30 and the molded heat insulating material 11.

本実施の形態では、改質部Aと成型断熱材11の間の隙間aと、一酸化炭素低減部Bと成型断熱材11の間の隙間bとの間で、隙間a及び隙間bに存在する空気が対流移動しないように、改質部Aと一酸化炭素低減部Bとの間に凸部となるフランジ15を設け、成型断熱材11にはフランジ15の位置する箇所に段差16を設けて、この段差16とフランジ15とを密着させている。この密着性を確保するため、本実施の形態では、水素生成装置1を乗せた部材17に接続された板材18と固定板14を固定することにより、フランジ15と成型断熱材11の段差16とが互いに押圧するように密着させている。   In the present embodiment, the gap a and the gap b are present between the gap a between the reforming part A and the molded heat insulating material 11 and the gap b between the carbon monoxide reducing part B and the molded heat insulating material 11. In order to prevent the convection of the air to be convectively moved, a flange 15 serving as a convex portion is provided between the reforming portion A and the carbon monoxide reducing portion B, and a step 16 is provided in the molded heat insulating material 11 at a position where the flange 15 is located Thus, the step 16 and the flange 15 are brought into close contact with each other. In order to secure this adhesion, in the present embodiment, the plate member 18 and the fixing plate 14 connected to the member 17 on which the hydrogen generator 1 is placed are fixed, whereby the flange 15 and the step 16 between the molded heat insulating material 11 and Are in close contact with each other so as to press each other.

なお、変成触媒層7の上流側には空間部19を設けてもよい。この空間部19は、改質部Aと成型断熱材11の間の隙間aに存在する高温空気が変成触媒層7に触れて、変成触媒層7が加熱されることがないようにするためのものである。   A space 19 may be provided on the upstream side of the shift catalyst layer 7. This space portion 19 prevents the high temperature air existing in the gap a between the reforming portion A and the molded heat insulating material 11 from touching the shift catalyst layer 7 and heating the shift catalyst layer 7. Is.

この構成により、改質部Aによって高温に加熱された隙間a内の空気が、一酸化炭素低減部B周囲の隙間b内へ対流移動することを抑制し、改質部Aの放熱を抑制することができる。   With this configuration, air in the gap a heated to a high temperature by the reforming part A is prevented from convectively moving into the gap b around the carbon monoxide reduction part B, and heat dissipation of the reforming part A is suppressed. be able to.

本実施の形態のように、改質部Aが重力方向の下側に配置され、一酸化炭素低減部Bが上側に配置される構成の場合、改質部A周囲の隙間に存在する高温の空気は、一酸化炭素低減部B側に上昇して対流が起こりやすくなり、一酸化炭素低減部B周囲の隙間に流入しやすくなる。従って、本実施の形態を採用することによって、改質部Aによって高温に加熱された隙間a内の空気が、一酸化炭素低減部B周囲の隙間b内へ対流移動することを抑制し、改質部Aの放熱を抑制するという効果をより顕著に得ることができる。   In the case where the reforming part A is arranged on the lower side in the direction of gravity and the carbon monoxide reducing part B is arranged on the upper side as in the present embodiment, the high temperature existing in the gap around the reforming part A Air rises toward the carbon monoxide reduction portion B side, and convection is likely to occur, and air easily flows into the gap around the carbon monoxide reduction portion B. Therefore, by adopting this embodiment, the air in the gap a heated to a high temperature by the reforming part A is prevented from convectively moving into the gap b around the carbon monoxide reduction part B, and The effect of suppressing heat dissipation of the mass part A can be obtained more remarkably.

(実施の形態2)
次に、本発明の実施の形態2における水素生成装置について、図2を用いて説明する。
(Embodiment 2)
Next, the hydrogen generator in Embodiment 2 of this invention is demonstrated using FIG.

図2は、本発明の実施の形態2における水素生成装置1の概略構成図である。図2において、実施の形態1と同一の構成要素には同一の番号を記している。実施の形態1の水素生成装置1では、原料と共に供給される水は蒸発器5内を上から下へらせん流路を流下しながら蒸発するように構成されている。しかし、実施の形態1の構成では、水が蒸発器5の下まで流れ終わるまでに蒸発が完了しないと、蒸発していない水が改質触媒層6へ供給されてしまう恐れがある。蒸発していない水が改質触媒層6へ供給されると、改質触媒層6内で急激に沸騰して、水素生成装置1内のガスを急激に押し出してしまい、一酸化炭素が十分に除去できていない改質ガスを燃料電池3へ供給してしまう。その結果、燃料電池3が一酸化炭素により被毒してしまい発電が停止してしまう恐れがある。そこで本実施の形態の水素生成装置1は、図1の発明の実施の形態の水素生成装置の上下を逆にした構成としている。本実施の形態では、原料供給口4から供給された水を蒸発器下部51に溜めて加熱蒸発させ発器上部52で高温の水蒸気に過熱する構成としている。   FIG. 2 is a schematic configuration diagram of the hydrogen generator 1 according to Embodiment 2 of the present invention. In FIG. 2, the same components as those in the first embodiment are denoted by the same numbers. In the hydrogen generator 1 of Embodiment 1, the water supplied together with the raw material is configured to evaporate while flowing down the spiral flow path from the top to the bottom in the evaporator 5. However, in the configuration of the first embodiment, if the evaporation is not completed before the water has flowed to the bottom of the evaporator 5, the water that has not evaporated may be supplied to the reforming catalyst layer 6. When water that has not evaporated is supplied to the reforming catalyst layer 6, it suddenly boils in the reforming catalyst layer 6 and rapidly pushes out the gas in the hydrogen generator 1, so that carbon monoxide is sufficient. The reformed gas that has not been removed is supplied to the fuel cell 3. As a result, the fuel cell 3 may be poisoned by carbon monoxide and power generation may be stopped. Therefore, the hydrogen generator 1 of the present embodiment has a configuration in which the hydrogen generator of the embodiment of the invention of FIG. 1 is turned upside down. In the present embodiment, the water supplied from the raw material supply port 4 is accumulated in the evaporator lower part 51 and is heated and evaporated to be heated to high-temperature steam in the generator upper part 52.

本実施の形態の水素生成装置1では、改質部Aが重力方向の上側に配置され、一酸化炭素低減部Bが下側に配置されている。この場合、改質部A周囲の隙間に存在する高温の空気は、より低温である一酸化炭素低減部B周囲の隙間に対流して流入する。そこで、本実施の形態では高温の空気が隙間bに流入しないように、改質部Aと一酸化炭素低減部Bの間に凸部となるフランジ15を設け、成型断熱材11にはフランジ15の位置する箇所に段差16を設けている。この段差16とフランジ15が密着させることによって、改質部Aによって高温に加熱された隙間a内の空気が、一酸化炭素低減部B周囲の隙間b内へ対流して移動することを抑制し、改質部Aの放熱を抑制することができる。   In the hydrogen generator 1 of the present embodiment, the reforming part A is arranged on the upper side in the direction of gravity, and the carbon monoxide reducing part B is arranged on the lower side. In this case, the high-temperature air existing in the gap around the reforming part A flows in convection into the gap around the carbon monoxide reduction part B, which is cooler. Therefore, in the present embodiment, a flange 15 serving as a convex portion is provided between the reforming portion A and the carbon monoxide reducing portion B so that hot air does not flow into the gap b, and the molded heat insulating material 11 has the flange 15. A step 16 is provided at the position where the By bringing the step 16 and the flange 15 into close contact with each other, the air in the gap a heated to a high temperature by the reforming part A is prevented from convection and moving into the gap b around the carbon monoxide reduction part B. The heat radiation of the reforming part A can be suppressed.

(実施の形態3)
次に、本発明の実施の形態3における水素生成装置について、図3を用いて説明する。
(Embodiment 3)
Next, the hydrogen generator in Embodiment 3 of this invention is demonstrated using FIG.

図3は、本発明の実施の形態3における水素生成装置1の概略構成図である。図3において、実施の形態1と同じ構成要素には同一の番号を記している。本実施の形態では、改質部Aの外径に比べて、一酸化炭素低減部Bの変成触媒層7の外径を大きく構成している。これにより実施の形態1のフランジ15に相当する反応容器凸部を、改質部Aと一酸化炭素低減部Bとの段差20により構成している。この段差20を成型断熱材11の段差16と密着させることにより、改質部Aによって高温に加熱された隙間a内の空気が、一酸化炭素低減部B周囲の隙間b内へ対流して移動することを抑制し、改質部Aの放熱を抑制することができる。   FIG. 3 is a schematic configuration diagram of the hydrogen generator 1 according to Embodiment 3 of the present invention. In FIG. 3, the same reference numerals are given to the same components as those in the first embodiment. In the present embodiment, the outer diameter of the shift catalyst layer 7 of the carbon monoxide reduction section B is configured to be larger than the outer diameter of the reforming section A. Thereby, the reaction vessel convex portion corresponding to the flange 15 of the first embodiment is constituted by the step 20 between the reforming portion A and the carbon monoxide reducing portion B. By bringing the step 20 into close contact with the step 16 of the molded heat insulating material 11, the air in the gap a heated to a high temperature by the reforming part A moves convectively into the gap b around the carbon monoxide reduction part B. It is possible to suppress the heat release of the reforming part A.

(実施の形態4)
次に、本発明の実施の形態4における燃料電池発電装置について、図4を用いて説明する。
(Embodiment 4)
Next, a fuel cell power generator according to Embodiment 4 of the present invention will be described with reference to FIG.

図4は、本発明の実施の形態2における水素生成装置1の概略構成図である。図4においても、実施の形態3と同じ構成要素には同じ番号を付与している。本実施の形態が実施の形態3と異なる点は、反応容器30の段差20と成型断熱材11の段差16との間に、弾性シート21を挟んでいる点にある。弾性シート21は、例えば、耐熱性に優れたアルミナ・シリカからなるセラミック繊維をブランケット状に成型して弾性を持たせたものを用いることができる。弾性シート21を挟むことにより、板材18と固定板14を固定した際に、弾性シート21が圧縮され、改質部Aと成型断熱材11の間の隙間aと、一酸化炭素低減部Bと成型断熱材11の間の隙間bの間の隙間をふさいで対流をより確実に防止することができる。   FIG. 4 is a schematic configuration diagram of the hydrogen generator 1 according to Embodiment 2 of the present invention. Also in FIG. 4, the same reference numerals are assigned to the same components as those in the third embodiment. The present embodiment is different from the third embodiment in that an elastic sheet 21 is sandwiched between the step 20 of the reaction vessel 30 and the step 16 of the molded heat insulating material 11. As the elastic sheet 21, for example, a ceramic fiber made of alumina / silica having excellent heat resistance can be molded into a blanket shape to give elasticity. When the plate member 18 and the fixing plate 14 are fixed by sandwiching the elastic sheet 21, the elastic sheet 21 is compressed, and the gap a between the reforming part A and the molded heat insulating material 11, the carbon monoxide reducing part B, Convection can be more reliably prevented by closing the gap between the gaps b between the molded heat insulating materials 11.

なお、上述の実施の形態では、一酸化炭素低減部Bは、変成反応部と選択酸化反応部とを有するとしたが、これに限定されず、例えば、一酸化炭素低減部Bとして変成反応部のみを有するものであってもよい。   In the above-described embodiment, the carbon monoxide reduction unit B has the modification reaction unit and the selective oxidation reaction unit. However, the present invention is not limited to this. For example, the carbon monoxide reduction unit B is the transformation reaction unit. It may have only.

本発明の水素生成装置は、改質部の放熱を抑制できる水素生成装置を実現することができる。更に、一酸化炭素低減部の一酸化炭素低減性能の低下を抑制できる上、一酸化炭素低減の触媒の高温劣化を防止することができる。   The hydrogen generator of the present invention can realize a hydrogen generator that can suppress heat dissipation from the reforming unit. Furthermore, it is possible to suppress a decrease in the carbon monoxide reduction performance of the carbon monoxide reduction unit and to prevent high temperature deterioration of the catalyst for reducing carbon monoxide.

1 水素生成装置
5 蒸発器
6 改質触媒層
7 変成触媒層
9 選択酸化触媒層
11 成型断熱材
14 固定板
17 部材
18 板材
DESCRIPTION OF SYMBOLS 1 Hydrogen generator 5 Evaporator 6 Reforming catalyst layer 7 Metamorphic catalyst layer 9 Selective oxidation catalyst layer 11 Molding heat insulating material 14 Fixed plate 17 Member 18 Plate material

Claims (7)

原料及び水を反応させて水素含有ガスを生成する改質部、並びに、前記水素含有ガス中に含まれる一酸化炭素を低減する一酸化炭素低減部を含む反応容器と、
前記改質部及び前記一酸化炭素低減部を加熱する加熱部と、
前記反応容器の外周を覆うように配置された断熱材と、
前記反応容器と前記断熱材の間に配置された対流防止部と、
を備えた水素生成装置。
A reaction vessel including a reforming unit that reacts a raw material and water to generate a hydrogen-containing gas, and a carbon monoxide reducing unit that reduces carbon monoxide contained in the hydrogen-containing gas;
A heating unit for heating the reforming unit and the carbon monoxide reduction unit;
A heat insulating material arranged to cover the outer periphery of the reaction vessel;
A convection prevention unit disposed between the reaction vessel and the heat insulating material;
A hydrogen generation apparatus comprising:
前記対流防止部は、前記反応容器に設けられた容器凸部、及び、前記断熱材に設けられ、前記容器凸部と対向するように設けられた断熱材凸部を有し、前記容器凸部及び前記断熱材凸部が互いに押圧されるように、前記反応容器部及び前記断熱材を固定する固定具をさらに備える、請求項1に記載の水素生成装置。   The convection prevention portion has a container convex portion provided in the reaction vessel, and a heat insulating material convex portion provided in the heat insulating material so as to face the container convex portion, and the container convex portion. The hydrogen generator according to claim 1, further comprising: a fixture that fixes the reaction vessel portion and the heat insulating material such that the heat insulating material convex portions are pressed against each other. 前記対流防止部は、前記容器凸部及び前記断熱材凸部の間に配置された弾性部材をさらに有し、前記容器凸部及び前記断熱材凸部は、前記弾性部材を介して互いに押圧される、請求項2に記載の水素生成装置。   The convection prevention portion further includes an elastic member disposed between the container convex portion and the heat insulating material convex portion, and the container convex portion and the heat insulating material convex portion are pressed against each other via the elastic member. The hydrogen generator according to claim 2. 前記対流防止部は、前記反応容器及び前記断熱材の間で、かつ、前記改質部及び前記一酸化炭素低減部の境界部分に配置されている、請求項1〜3のいずれかに記載の水素生成装置。   The said convection prevention part is arrange | positioned between the said reaction container and the said heat insulating material, and is arrange | positioned in the boundary part of the said modification part and the said carbon monoxide reduction part. Hydrogen generator. 前記反応容器内部のうち、前記改質部及び前記一酸化炭素低減部の間には、空間部が設けられている、請求項4に記載の水素生成装置。   The hydrogen generation apparatus according to claim 4, wherein a space is provided between the reforming unit and the carbon monoxide reduction unit in the reaction vessel. 前記容器凸部は、前記改質部の外径より前記一酸化炭素低減部の外径を大きくすることにより形成された段差部である、請求項1〜4のいずれかに記載の水素生成装置。   5. The hydrogen generator according to claim 1, wherein the container convex portion is a stepped portion formed by increasing the outer diameter of the carbon monoxide reducing portion from the outer diameter of the reforming portion. . 前記反応容器内部のうち、前記一酸化炭素低減部の前記段差部側には、空間部が設けられている、請求項6に記載の水素生成装置。   The hydrogen generation apparatus according to claim 6, wherein a space portion is provided on the stepped portion side of the carbon monoxide reduction portion in the reaction vessel.
JP2010234306A 2010-10-19 2010-10-19 Hydrogen generator Active JP5605157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234306A JP5605157B2 (en) 2010-10-19 2010-10-19 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234306A JP5605157B2 (en) 2010-10-19 2010-10-19 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2012087001A true JP2012087001A (en) 2012-05-10
JP5605157B2 JP5605157B2 (en) 2014-10-15

Family

ID=46259049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234306A Active JP5605157B2 (en) 2010-10-19 2010-10-19 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP5605157B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137592A (en) * 2018-02-14 2019-08-22 パナソニックIpマネジメント株式会社 Hydrogen generator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246946A (en) * 2000-03-08 2001-09-11 Toyota Motor Corp Fuel tank
JP2002211906A (en) * 2001-01-12 2002-07-31 Toyota Motor Corp Hydrogen producing system
JP2002284506A (en) * 2001-03-23 2002-10-03 Aisin Seiki Co Ltd Support structure of fuel reforming device
JP2004515434A (en) * 2000-12-08 2004-05-27 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Reforming equipment with heat shield
JP2004303695A (en) * 2003-04-01 2004-10-28 Toshiba Corp High temperature body housing device
JP2005335982A (en) * 2004-05-25 2005-12-08 Ebara Ballard Corp Fuel treating apparatus and fuel cell power generation system
JP2006043021A (en) * 2004-08-03 2006-02-16 Matsushita Electric Ind Co Ltd Heat retaining tub
JP2008005949A (en) * 2006-06-28 2008-01-17 Tiger Vacuum Bottle Co Ltd Electric hot water storage container
JP2008149516A (en) * 2006-12-15 2008-07-03 Canon Inc Liquid ejection head

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246946A (en) * 2000-03-08 2001-09-11 Toyota Motor Corp Fuel tank
JP2004515434A (en) * 2000-12-08 2004-05-27 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Reforming equipment with heat shield
JP2002211906A (en) * 2001-01-12 2002-07-31 Toyota Motor Corp Hydrogen producing system
JP2002284506A (en) * 2001-03-23 2002-10-03 Aisin Seiki Co Ltd Support structure of fuel reforming device
JP2004303695A (en) * 2003-04-01 2004-10-28 Toshiba Corp High temperature body housing device
JP2005335982A (en) * 2004-05-25 2005-12-08 Ebara Ballard Corp Fuel treating apparatus and fuel cell power generation system
JP2006043021A (en) * 2004-08-03 2006-02-16 Matsushita Electric Ind Co Ltd Heat retaining tub
JP2008005949A (en) * 2006-06-28 2008-01-17 Tiger Vacuum Bottle Co Ltd Electric hot water storage container
JP2008149516A (en) * 2006-12-15 2008-07-03 Canon Inc Liquid ejection head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137592A (en) * 2018-02-14 2019-08-22 パナソニックIpマネジメント株式会社 Hydrogen generator

Also Published As

Publication number Publication date
JP5605157B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP6611040B2 (en) Fuel cell system
JP2002124289A (en) Solid electrolyte fuel cell system
JP2011238363A (en) Fuel cell
JP6280470B2 (en) Fuel cell module
JP5468713B1 (en) Hydrogen generator and fuel cell system
JP6111904B2 (en) Fuel cell device
JP6405211B2 (en) Fuel cell system
JP6098795B2 (en) Solid oxide fuel cell system
JP3539562B2 (en) Solid oxide fuel cell stack
JP2006269332A (en) Solid oxide type fuel cell system
JP2017195084A (en) Fuel cell system
JPWO2012091029A1 (en) Fuel cell system
JP5605157B2 (en) Hydrogen generator
JP4210912B2 (en) Fuel reformer and fuel cell power generator
JP5895169B2 (en) Hydrogen generator
JP4480486B2 (en) Fuel cell reformer
KR101316042B1 (en) Integrated Reformer System for a Fuel Cell
JP5125815B2 (en) Hydrogen production apparatus and fuel cell power generation system
JP2007122964A (en) Solid-oxide fuel cell power generation system
JP4479237B2 (en) Insulated container structure
JP2017199658A (en) Fuel cell device
JP2014082146A (en) Fuel cell
JP6142286B2 (en) Hydrogen generator
JP5948605B2 (en) Hydrogen generator
JP2009076275A (en) Fuel cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131015

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R151 Written notification of patent or utility model registration

Ref document number: 5605157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151