JP5948605B2 - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP5948605B2
JP5948605B2 JP2012088966A JP2012088966A JP5948605B2 JP 5948605 B2 JP5948605 B2 JP 5948605B2 JP 2012088966 A JP2012088966 A JP 2012088966A JP 2012088966 A JP2012088966 A JP 2012088966A JP 5948605 B2 JP5948605 B2 JP 5948605B2
Authority
JP
Japan
Prior art keywords
raw material
hydrodesulfurization
hydrodesulfurizer
material gas
hydrogen generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012088966A
Other languages
Japanese (ja)
Other versions
JP2013216543A (en
Inventor
弘樹 藤岡
弘樹 藤岡
木村 洋一
洋一 木村
勝 福田
勝 福田
向井 裕二
裕二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012088966A priority Critical patent/JP5948605B2/en
Publication of JP2013216543A publication Critical patent/JP2013216543A/en
Application granted granted Critical
Publication of JP5948605B2 publication Critical patent/JP5948605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、炭化水素化合物原料を原料として発電する燃料電池発電装置に関し、より詳細には原料中に含まれ、水素生成装置に有害な硫黄化合物を除去する水添脱硫器を有する水素生成装置に係るものである。   The present invention relates to a fuel cell power generation apparatus that generates electricity using a hydrocarbon compound raw material as a raw material, and more particularly to a hydrogen generation apparatus having a hydrodesulfurizer that is contained in the raw material and removes sulfur compounds harmful to the hydrogen generation apparatus. It is concerned.

燃料電池発電装置は、燃料電池と、燃料電池に水素を含んだ燃料ガスを供給する水素生成装置と、燃料電池が発電した直流電力を交流電力へ変換するインバーター回路、およびそれらを制御する制御装置などによって構成されている。燃料電池には種々の方式が用いられているが、現在は固体高分子形の燃料電池が普及段階にある。また、水素生成装置に用いる水素生成器にも幾つかの方式があるが、原料となる炭化水素化合物と水蒸気を高温で触媒反応させて水素を得る水蒸気改質方式が高効率であるために主流となっている。なお、原料としては天然ガスからなる都市ガスや、LPガス、灯油、バイオガスなどが使用されるが、これらの中には付臭剤として添加された硫黄化合物、あるいは原料中に元々含まれていた硫黄化合物が混入している。これらの硫黄化合物は水素生成器に使用される触媒を被毒し、その活性を奪ってしまう。そのため、原料中の硫黄化合物は水素生成器へ供給される前に脱硫装置によって除去する必要がある。   A fuel cell power generator includes a fuel cell, a hydrogen generator that supplies fuel gas containing hydrogen to the fuel cell, an inverter circuit that converts DC power generated by the fuel cell into AC power, and a control device that controls them Etc. Various types of fuel cells are used. Currently, polymer electrolyte fuel cells are in widespread use. There are also several types of hydrogen generators used in hydrogen generators, but the mainstream because the steam reforming method, in which hydrogen is obtained by catalytic reaction of a hydrocarbon compound as a raw material and steam at a high temperature, is the mainstream. It has become. Natural gas city gas, LP gas, kerosene, biogas, etc. are used as raw materials, but these are originally included in sulfur compounds added as odorants or raw materials. It contains sulfur compounds. These sulfur compounds poison the catalyst used in the hydrogen generator and deprive its activity. Therefore, it is necessary to remove the sulfur compound in the raw material by a desulfurization apparatus before being supplied to the hydrogen generator.

脱硫装置としては現在、吸着脱硫方式と水添脱硫方式の2つの方式が用いられている。吸着脱硫方式とは、硫黄化合物を吸着する吸着剤を充填した吸着脱硫器内に原料を通過させて脱硫するもので、常温で吸着脱硫を行うので取り扱いが非常に簡便であるという長所がある。一方、水添脱硫方式は、例えば特許文献1に示されているように、原料に水素を加えて約200℃から300℃に昇温された水添脱硫触媒を充填した水添脱硫器に通過させることにより硫黄化合物を吸着されやすい硫化水素に変化させ、生成した硫化水素を吸着剤に吸着除去するもので、吸着容量が大きいため長期間にわたって吸着剤の交換が不要であるという長所がある。   Currently, two types of desulfurization apparatuses are used: an adsorption desulfurization method and a hydrodesulfurization method. The adsorptive desulfurization method is a method in which a raw material is passed through an adsorptive desulfurizer filled with an adsorbent that adsorbs a sulfur compound to perform desulfurization, and has an advantage that it is very easy to handle because it performs adsorptive desulfurization at room temperature. On the other hand, the hydrodesulfurization system is passed through a hydrodesulfurizer filled with a hydrodesulfurization catalyst heated to about 200 ° C. to 300 ° C. by adding hydrogen to the raw material, for example, as shown in Patent Document 1. By changing the sulfur compound into hydrogen sulfide that is easily adsorbed, the generated hydrogen sulfide is adsorbed and removed by the adsorbent. Since the adsorption capacity is large, it is not necessary to replace the adsorbent over a long period of time.

ところで、水添脱硫方式では水添脱硫触媒を昇温する必要がある。そこで水添脱硫器を水素生成装置内、あるいは水素生成器近傍に配置することによって、水素生成器の熱により水添脱硫器を動作温度まで加熱する構成が採用されている。例えば、特許文献1に開示された技術では、水添脱硫器を断熱材を介して改質部の周囲に配置することによって水添脱硫器を加熱昇温している。   By the way, in the hydrodesulfurization system, it is necessary to raise the temperature of the hydrodesulfurization catalyst. Accordingly, a configuration is employed in which the hydrodesulfurizer is heated to the operating temperature by the heat of the hydrogen generator by arranging the hydrodesulfurizer in the hydrogen generator or in the vicinity of the hydrogen generator. For example, in the technique disclosed in Patent Document 1, the hydrodesulfurizer is heated and heated by disposing the hydrodesulfurizer around the reforming section via a heat insulating material.

特開2010−058995号公報JP 2010-058995 A

ところが、このように水添脱硫器は昇温する必要があるものの、水添温度が低過ぎると吸着容量が低下してしまい、逆に水添温度が高過ぎると水添脱硫触媒が熱劣化してしまうという問題があり、水添脱硫触媒の全体の温度を上限に近いほぼ均一な温度に維持する必要がある。すなわち、上述の例では水添脱硫触媒全体の温度を250℃から300℃の温度差50℃程度に維持することが望ましい。   However, although it is necessary to raise the temperature of the hydrodesulfurizer in this way, if the hydrogenation temperature is too low, the adsorption capacity decreases, and conversely if the hydrogenation temperature is too high, the hydrodesulfurization catalyst is thermally deteriorated. It is necessary to maintain the overall temperature of the hydrodesulfurization catalyst at a substantially uniform temperature close to the upper limit. That is, in the above example, it is desirable to maintain the temperature of the entire hydrodesulfurization catalyst at a temperature difference of about 50 ° C. between 250 ° C. and 300 ° C.

しかしながら、上記従来技術では低温の原燃料が予熱されることなく高温の水添脱硫層に流入している。このような構成では、水添脱硫層の入口近傍の水添脱硫触媒が冷却され
、温度低下により吸着容量が低下してしまう。
However, in the above prior art, the low temperature raw fuel flows into the high temperature hydrodesulfurization layer without being preheated. In such a configuration, the hydrodesulfurization catalyst in the vicinity of the inlet of the hydrodesulfurization layer is cooled, and the adsorption capacity is reduced due to a decrease in temperature.

また、原燃料が水添脱硫層を流通する間に加熱されて水添脱硫層を流出している。このような構成では、水添脱硫層の出口近傍の水添脱硫触媒が高温化して熱劣化してしまう。すなわち、上記従来技術では、吸着容量の低下、及び熱劣化を考慮しなければならず、水添脱硫触媒量が多く必要となり、コストアップとなってしまう。また、水添脱硫触媒量を多量に搭載した水素生成装置は、容積が大きくなるばかりではなく、熱容量も大きくなるために、昇温時間が長くなり起動時間が長くかかってしまうという課題があった。加えて、加熱量が増加するために水素生成装置の効率が低下してしまうという課題があった。   The raw fuel is heated while flowing through the hydrodesulfurization layer and flows out of the hydrodesulfurization layer. In such a configuration, the hydrodesulfurization catalyst near the outlet of the hydrodesulfurization layer is heated to a high temperature and deteriorates. That is, in the above prior art, a reduction in adsorption capacity and thermal degradation must be taken into account, and a large amount of hydrodesulfurization catalyst is required, resulting in an increase in cost. In addition, the hydrogen generator equipped with a large amount of hydrodesulfurization catalyst has a problem that not only the volume is increased, but also the heat capacity is increased. . In addition, there is a problem that the efficiency of the hydrogen generator is reduced due to an increase in the amount of heating.

本発明は、上記従来の課題を解決するもので、簡単な構成で水添脱硫触媒の全体の温度をほぼ均一化させ、水添脱硫触媒の搭載量を最小限に抑えることができる水素生成装置を提供するものである。   The present invention solves the above-mentioned conventional problems, a hydrogen generator capable of making the entire temperature of the hydrodesulfurization catalyst substantially uniform with a simple configuration and minimizing the amount of hydrodesulfurization catalyst mounted. Is to provide.

上述の従来技術の課題を解決するために本発明の水素生成装置は、原料ガス中に含まれ
る硫黄化合物を水添脱硫により除去する水添脱硫触媒を充填した水添脱硫器と、バーナにより加熱され原料ガスから水素を主成分とする燃料ガスを生成する水素生成器とを備え、水添脱硫器には、原料ガスを供給する入口と原料ガスを予熱する予熱流路と水添脱硫触媒を充填した複数の水添脱硫流路と原料ガスを排出する出口とを設ける。また、水素生成器は円筒形状であり、水添脱硫器は、水素生成器の周囲に配置される環状であり、水添脱硫器の入口と出口とが隣接して配置されている。そして、入口から水添脱硫器に流入した原料ガスは、まず予熱流路において水素生成器からの熱により加熱されてから複数の水添脱硫流路を順に流通し、予熱流路及び複数の水添脱硫流路を流通する間に水素生成器からの熱により温度上昇して、水添脱硫器の出口から排出される。さらに、原料ガスが流入する最も低温の予熱流路と原料ガスが流出する最も高温の最下流側の水添脱硫流路とを水添脱硫器の周方向に隣接させて、原料ガスが流入する最も低温の予熱流路と原料ガスが流出する最も高温の最下流側の水添脱硫流路とを熱交換させる。これにより、低温の原料は、水素生成器からの熱で加熱された予熱流路を通過することにより予熱されて、水添脱硫層とほぼ同等の温度となって水添脱硫層に流入する。また、低温の原料ガスが流入する最も低温の入口と、予熱流路及び水添脱硫流路を流通する間に加熱された高温の原料ガスが流出する最も高温の出口とを熱交換させることができる。従って、水添脱硫層の入口近傍の水添脱硫触媒が冷却されにくくなり、最も低温の入口の温度が上昇し、最も高温の出口の温度が下降して、水添脱硫触媒の全体の温度をほぼ均一化できる。すなわち、吸着容量の低下、及び熱劣化を抑えることができ、水添脱硫触媒の搭載量を最小限に抑えることができる。また、予熱流路へ供給される熱量が増えるため、予熱流路を小さくしても原料を水添脱硫層とほぼ同等の温度に予熱することができる。すなわち、水添脱硫器を備える水素生成装置の容積を小さくすることができる。
In order to solve the above-described problems of the prior art, the hydrogen generator according to the present invention includes a hydrodesulfurizer filled with a hydrodesulfurization catalyst that removes sulfur compounds contained in a raw material gas by hydrodesulfurization, and a heating by a burner. And a hydrogen generator for generating a fuel gas containing hydrogen as a main component from the raw material gas. The hydrodesulfurizer includes an inlet for supplying the raw material gas, a preheating passage for preheating the raw material gas, and a hydrodesulfurization catalyst. A plurality of filled hydrodesulfurization flow paths and an outlet for discharging the raw material gas are provided. Further, the hydrogen generator has a cylindrical shape, and the hydrodesulfurizer has an annular shape arranged around the hydrogen generator, and the inlet and the outlet of the hydrodesulfurizer are arranged adjacent to each other. The raw material gas flowing into the hydrodesulfurizer from the inlet is first heated by the heat from the hydrogen generator in the preheating channel, and then sequentially flows through the plurality of hydrodesulfurization channels. While flowing through the hydrodesulfurization flow path, the temperature rises due to heat from the hydrogen generator and is discharged from the outlet of the hydrodesulfurizer. Further, the raw material gas flows in such a manner that the coldest preheating flow channel through which the raw material gas flows in and the hottest downstream downstream hydrodesulfurization flow channel through which the raw material gas flows out are adjacent to each other in the circumferential direction of the hydrodesulfurizer. Heat exchange is performed between the coldest preheating passage and the hottest hydrodesulfurization passage where the raw material gas flows out. Thereby, the low temperature raw material is preheated by passing through the preheating channel heated by the heat from the hydrogen generator, and flows into the hydrodesulfurization layer at a temperature substantially equal to that of the hydrodesulfurization layer. In addition, heat exchange can be performed between the coldest inlet through which the low temperature raw material gas flows and the hottest outlet through which the high temperature raw material gas heated while flowing through the preheating channel and the hydrodesulfurization channel. it can. Therefore, the hydrodesulfurization catalyst near the inlet of the hydrodesulfurization layer becomes difficult to cool, the temperature of the coldest inlet rises, the temperature of the hottest outlet drops, and the overall temperature of the hydrodesulfurization catalyst decreases. Almost uniform. That is, a decrease in adsorption capacity and thermal degradation can be suppressed , and the amount of hydrodesulfurization catalyst mounted can be minimized. Further, since the amount of heat supplied to the preheating channel increases, the raw material can be preheated to a temperature substantially equal to that of the hydrodesulfurization layer even if the preheating channel is reduced. That is, the volume of the hydrogen generator provided with the hydrodesulfurizer can be reduced.

また、原料ガスを予熱する予熱流路に熱交換器を設ける構成としても良い。これにより、低温の原料ガスは、水素生成器からの熱で加熱された予熱流路と予熱流路にある熱交換器とを通過するため、効率良く熱交換され予熱される。従って、予熱流路を小さくしても原料を水添脱硫層とほぼ同等の温度に予熱することができる。すなわち、水添脱硫器を備える水素生成装置の容積を小さくすることができる。   Moreover, it is good also as a structure which provides a heat exchanger in the preheating flow path which preheats source gas. As a result, the low-temperature source gas passes through the preheat channel heated by the heat from the hydrogen generator and the heat exchanger in the preheat channel, so that the heat is efficiently exchanged and preheated. Therefore, the raw material can be preheated to substantially the same temperature as the hydrodesulfurization layer even if the preheating flow path is reduced. That is, the volume of the hydrogen generator provided with the hydrodesulfurizer can be reduced.

本発明の技術を用いることにより、水添脱硫層の入口近傍の水添脱硫触媒が冷却されにくくなり、水添脱硫触媒の全体の温度をほぼ均一化できる。また、吸着容量の低下を抑えることができ、水添脱硫触媒の搭載量を最小限に抑えることができる。   By using the technique of the present invention, the hydrodesulfurization catalyst in the vicinity of the inlet of the hydrodesulfurization layer is hardly cooled, and the entire temperature of the hydrodesulfurization catalyst can be made substantially uniform. In addition, a decrease in adsorption capacity can be suppressed, and the amount of hydrodesulfurization catalyst mounted can be minimized.

また、水添脱硫層の出口近傍の水添脱硫触媒が高温化されにくくなり、水添脱硫触媒の全体の温度をほぼ均一化できる。すなわち、熱劣化を抑えることができ、水添脱硫触媒の搭載量を最小限に抑えることができる。   Further, the hydrodesulfurization catalyst near the outlet of the hydrodesulfurization layer is less likely to be heated, and the entire temperature of the hydrodesulfurization catalyst can be made substantially uniform. That is, thermal degradation can be suppressed and the amount of hydrodesulfurization catalyst mounted can be minimized.

また、予熱流路を小さくしても原料を水添脱硫層とほぼ同等の温度に予熱することができる。すなわち、水添脱硫器を備える水素生成装置の容積を小さくすることができる。   Moreover, even if the preheating channel is made small, the raw material can be preheated to a temperature substantially equal to that of the hydrodesulfurization layer. That is, the volume of the hydrogen generator provided with the hydrodesulfurizer can be reduced.

従って、低コストで小型の水素生成装置を得ることができる。さらに、高効率で、起動時間の短い水素生成装置を得ることができる。   Therefore, a small hydrogen generator can be obtained at low cost. Furthermore, a hydrogen generator having high efficiency and a short start-up time can be obtained.

本発明の実施の形態1または2における燃料電池システムの概略構成図Schematic configuration diagram of a fuel cell system according to Embodiment 1 or 2 of the present invention 本発明の実施の形態1または2における水素生成装置の概略断面図Schematic sectional view of the hydrogen generator in Embodiment 1 or 2 of the present invention 本発明の実施の形態1における水添脱硫器の概略展開図Schematic development view of the hydrodesulfurizer in Embodiment 1 of the present invention 本発明の実施の形態1または2における水添脱硫器の温度分布グラフTemperature distribution graph of hydrodesulfurizer in Embodiment 1 or 2 of the present invention 本発明の実施の形態2における水添脱硫器の概略展開図Schematic development view of a hydrodesulfurizer in Embodiment 2 of the present invention

(実施の形態1)
以下、本発明に係る水素生成装置の実施の形態について、図1を用いて説明する。図1は、都市ガスを原料として水蒸気改質反応により水素を生成する本発明の実施の形態1における水素生成装置1の概略構成図である。なお、本実施の形態では、便宜上、水素生成装置1を円筒形状として説明したが、これに限られるものではなく、非円筒形状でも良い。
(Embodiment 1)
Hereinafter, an embodiment of a hydrogen generator according to the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a hydrogen generator 1 according to Embodiment 1 of the present invention that generates hydrogen by a steam reforming reaction using city gas as a raw material. In the present embodiment, for convenience, the hydrogen generator 1 has been described as having a cylindrical shape. However, the present invention is not limited to this and may be a non-cylindrical shape.

流量調節して供給された原料の都市ガスは、原料ガス供給配管2Aを通じて水添脱硫器3へ供給される。ここで水添脱硫器3には、酸化銅と酸化亜鉛からなる水添脱硫触媒17が充填されて構成されている。水添脱硫器3によって脱硫された原料は、原料ガス供給配管2Bを通じて、改質水供給配管4から供給された改質水とともに蒸発部5へ送られる。原料と水蒸気との混合ガスは高温に加熱された改質触媒層6によって水蒸気改質反応を生じて、水素と炭酸ガスと一酸化炭素を含む改質ガスに変化する。この改質ガスは変成触媒層7に入り、変成反応によって一酸化炭素濃度が低減される。その後、空気供給配管8から供給された空気と混合され、選択酸化触媒層9内で一酸化炭素が燃焼され、燃料ガスとして燃料ガス供給配管10から燃料電池11へ供給される。なお、燃料電池11で消費されなかった水素はオフガス配管12を介してバーナ13へ供給され、水素生成装置1を加熱する熱源として利用される。これらのうち、蒸発部5、改質触媒層6、変成触媒層7、選択酸化触媒層9、バーナ13の一体となった構成が水素生成器18である。なお、バーナ13で燃焼した排ガスは、排ガス配管14を通じて排気される。また、水素生成器18と水添脱硫器3との間に内断熱材15が、水添脱硫器3と水素生成装置1との間には外断熱材16が構成されている。   The raw city gas supplied by adjusting the flow rate is supplied to the hydrodesulfurizer 3 through the raw material gas supply pipe 2A. Here, the hydrodesulfurizer 3 is configured by being filled with a hydrodesulfurization catalyst 17 made of copper oxide and zinc oxide. The raw material desulfurized by the hydrodesulfurizer 3 is sent to the evaporation unit 5 together with the reforming water supplied from the reforming water supply pipe 4 through the raw material gas supply pipe 2B. The mixed gas of the raw material and steam causes a steam reforming reaction by the reforming catalyst layer 6 heated to a high temperature, and changes to a reformed gas containing hydrogen, carbon dioxide, and carbon monoxide. This reformed gas enters the shift catalyst layer 7 and the carbon monoxide concentration is reduced by the shift reaction. Thereafter, it is mixed with air supplied from the air supply pipe 8, carbon monoxide is combusted in the selective oxidation catalyst layer 9, and supplied as fuel gas from the fuel gas supply pipe 10 to the fuel cell 11. The hydrogen that has not been consumed in the fuel cell 11 is supplied to the burner 13 via the offgas pipe 12 and used as a heat source for heating the hydrogen generator 1. Among these, the hydrogen generator 18 has a configuration in which the evaporator 5, the reforming catalyst layer 6, the shift catalyst layer 7, the selective oxidation catalyst layer 9, and the burner 13 are integrated. The exhaust gas burned by the burner 13 is exhausted through the exhaust gas pipe 14. Further, an inner heat insulating material 15 is formed between the hydrogen generator 18 and the hydrodesulfurizer 3, and an outer heat insulating material 16 is formed between the hydrodesulfurizer 3 and the hydrogen generator 1.

図2は、本発明の実施の形態1における水素生成装置1の概略A−A‘断面図である。また、図3は、本発明の実施の形態1における水添脱硫器3の概略展開図である。また、図4は、本発明の実施の形態1における水添脱硫器の温度分布のグラフである。
水添脱硫器3には、原料ガスが供給される入口19と供給された原料ガスを予熱する予熱流路20と予熱された原料ガスに含まれる硫黄化合物を除去する水添脱硫触媒17を充填した水添脱硫流路21と硫黄化合物が除去された原料ガスが排出される出口22とが設けられている。なお、水添脱硫流路21は、水添脱硫流路A21Aから水添脱硫流路G21Gによって構成されている。
FIG. 2 is a schematic AA ′ cross-sectional view of the hydrogen generator 1 according to Embodiment 1 of the present invention. FIG. 3 is a schematic development view of the hydrodesulfurizer 3 according to Embodiment 1 of the present invention. FIG. 4 is a graph of the temperature distribution of the hydrodesulfurizer in Embodiment 1 of the present invention.
The hydrodesulfurizer 3 is filled with an inlet 19 to which a raw material gas is supplied, a preheating passage 20 for preheating the supplied raw material gas, and a hydrodesulfurizing catalyst 17 for removing sulfur compounds contained in the preheated raw material gas. The hydrodesulfurization flow path 21 and the outlet 22 through which the raw material gas from which the sulfur compound is removed are provided. The hydrodesulfurization flow path 21 is configured by a hydrodesulfurization flow path A21A to a hydrodesulfurization flow path G21G.

このように構成された水添脱硫器3の作用を以下に説明する。水素生成器18は、バーナ13により、改質触媒層6の下流は600℃以上の高温に、また、変成触媒層7は200℃から300℃に加熱されており、水添脱硫器3は、内断熱材15を介して水素生成器
18からの熱を受けて加熱され、外断熱材16により、約200℃から300℃の温度に維持されている。
The operation of the hydrodesulfurizer 3 configured as described above will be described below. The hydrogen generator 18 is heated to a high temperature of 600 ° C. or more downstream of the reforming catalyst layer 6 by the burner 13, and the shift catalyst layer 7 is heated from 200 ° C. to 300 ° C. The hydrodesulfurizer 3 is It is heated by receiving heat from the hydrogen generator 18 through the inner heat insulating material 15 and maintained at a temperature of about 200 ° C. to 300 ° C. by the outer heat insulating material 16.

一方、従来技術では、原料ガスを予熱する予熱流路20が設けられていなかったため、常温に近い温度の原料ガスが約200℃から300℃の水添脱硫器3に流入し、水添脱硫器3の入口近傍が冷却され、温度が低下して、水添脱硫器3は約150℃から300℃の温度に維持されていた。そのため、吸着容量が低下してしまい、水添脱硫触媒17の搭載量を増やさなければならなかった。   On the other hand, in the prior art, since the preheating flow path 20 for preheating the raw material gas is not provided, the raw material gas having a temperature close to room temperature flows into the hydrodesulfurizer 3 having a temperature of about 200 ° C. to 300 ° C. The vicinity of the inlet 3 was cooled, the temperature was lowered, and the hydrodesulfurizer 3 was maintained at a temperature of about 150 ° C. to 300 ° C. For this reason, the adsorption capacity is reduced, and the amount of hydrodesulfurization catalyst 17 to be mounted has to be increased.

そこで、本発明では、原料ガスを予熱する予熱流路20を設けている。予熱流路20において、水素生成器18からの熱により、常温に近い温度の原料が予熱されて約200℃に上昇し、水添脱硫触媒17とほぼ同等の温度となって水添脱硫流路21に流入する。   Therefore, in the present invention, the preheating channel 20 for preheating the raw material gas is provided. In the preheating channel 20, the raw material at a temperature close to normal temperature is preheated by the heat from the hydrogen generator 18 and rises to about 200 ° C., and becomes a temperature substantially equal to that of the hydrodesulfurization catalyst 17. 21.

従って、水添脱硫器3の入口近傍の水添脱硫触媒17が冷却されにくくなり、水添脱硫触媒17の全体の温度を約200℃から300℃にほぼ均一化できる。すなわち、吸着容量の低下を抑えることができ、水添脱硫触媒17の搭載量を最小限に抑えることができる。
なお、水素生成装置1が円筒形状の場合は、水添脱硫器3の入口19と出口22、つまり予熱流路20と水添脱硫流路G21Gとを隣接して配置することにより、常温に近い温度の原料ガスが流入する最も低温の予熱流路20と、予熱流路20及び水添脱硫流路21を流通する間に加熱された約300℃の温度の原料ガスが流出する最も高温の水添脱硫流路G21Gとを熱交換させることができる。従って、最も低温の予熱流路20の温度が上昇し、最も高温水添脱硫流路G21Gの温度が下降して、水添脱硫触媒17の全体の温度を約220℃から290℃とより均一化できる。すなわち、吸着容量の低下、及び熱劣化を抑えることができ、水添脱硫触媒17の搭載量を最小限に抑えることができる。
Accordingly, the hydrodesulfurization catalyst 17 in the vicinity of the inlet of the hydrodesulfurizer 3 is hardly cooled, and the entire temperature of the hydrodesulfurization catalyst 17 can be made substantially uniform from about 200 ° C. to 300 ° C. That is, a decrease in adsorption capacity can be suppressed, and the amount of hydrodesulfurization catalyst 17 mounted can be minimized.
When the hydrogen generator 1 has a cylindrical shape, the inlet 19 and the outlet 22 of the hydrodesulfurizer 3, that is, the preheating channel 20 and the hydrodesulfurization channel G21G are arranged adjacent to each other, thereby being close to normal temperature. The coldest preheating channel 20 into which the raw material gas flows, and the hottest water from which the raw material gas having a temperature of about 300 ° C. heated while flowing through the preheating channel 20 and the hydrodesulfurization channel 21 flows out. Heat exchange can be performed with the addition / desulfurization flow path G21G. Accordingly, the temperature of the coldest preheating passage 20 rises, the temperature of the hottest hydrodesulfurization passage G21G falls, and the overall temperature of the hydrodesulfurization catalyst 17 becomes more uniform from about 220 ° C. to 290 ° C. it can. That is, a decrease in adsorption capacity and thermal degradation can be suppressed, and the amount of hydrodesulfurization catalyst 17 mounted can be minimized.

また、予熱流路20へ供給される熱量が増えるため、予熱流路20を小さくしても原料を水添脱硫触媒17とほぼ同等の温度に予熱することができる。すなわち、水添脱硫器3を備える水素生成装置1の容積を小さくすることができる。なお、内断熱材15及び外断熱材16を設けたが、内断熱材15または外断熱材16を設けなくても水添脱硫触媒17の温度を反応温度域に維持できる場合は設けなくても良い。   Further, since the amount of heat supplied to the preheating channel 20 increases, the raw material can be preheated to substantially the same temperature as the hydrodesulfurization catalyst 17 even if the preheating channel 20 is reduced. That is, the volume of the hydrogen generator 1 including the hydrodesulfurizer 3 can be reduced. In addition, although the inner heat insulating material 15 and the outer heat insulating material 16 are provided, even if the inner heat insulating material 15 or the outer heat insulating material 16 is not provided, it may be omitted if the temperature of the hydrodesulfurization catalyst 17 can be maintained in the reaction temperature range. good.

(実施の形態2)
以下に、本発明の実施の形態2における水素生成装置について、図1、図2、図4、図5を用いて説明する。なお、前述の実施の形態1と同じ構成要素には同じ番号を付与している。なお、本実施の形態では、便宜上、水素生成装置を円筒形状として説明したが、これに限られるものではなく、非円筒形状でも良い。
(Embodiment 2)
Below, the hydrogen generator in Embodiment 2 of this invention is demonstrated using FIG.1, FIG.2, FIG.4 and FIG. The same numbers are assigned to the same components as those in the first embodiment. In the present embodiment, for convenience, the hydrogen generation apparatus has been described as a cylindrical shape, but is not limited thereto, and may be a non-cylindrical shape.

図5に図示した実施の形態2と上述の図3の実施の形態1との違いは、予熱流路20にさらにフィン24が設けられているという点である。
フィン24を設けることにより、原料ガスは、水素生成器18からの熱で加熱された予熱流路20と予熱流路20にあるフィン24とを通過するため、効率良く熱交換され予熱される。すなわち、常温に近い温度の原料ガスが予熱されて約240℃に上昇し、水添脱硫触媒17と同等の温度となって水添脱硫流路21に流入する。
The difference between the second embodiment shown in FIG. 5 and the first embodiment shown in FIG. 3 is that the preheating channel 20 is further provided with fins 24.
By providing the fins 24, the raw material gas passes through the preheating channel 20 heated by the heat from the hydrogen generator 18 and the fins 24 in the preheating channel 20, so that heat is efficiently exchanged and preheated. That is, the raw material gas at a temperature close to normal temperature is preheated and rises to about 240 ° C., reaches a temperature equivalent to that of the hydrodesulfurization catalyst 17 and flows into the hydrodesulfurization flow path 21.

従って、水添脱硫触媒17の全体の温度を約240℃から300℃に均一化できる。すなわち、吸着容量の低下を抑えることができ、水添脱硫触媒17の搭載量を最小限に抑えることができる。   Therefore, the entire temperature of the hydrodesulfurization catalyst 17 can be made uniform from about 240 ° C. to 300 ° C. That is, a decrease in adsorption capacity can be suppressed, and the amount of hydrodesulfurization catalyst 17 mounted can be minimized.

また、予熱流路20を小さくしても原料を水添脱硫触媒17とほぼ同等の温度に予熱す
ることができる。すなわち、水添脱硫器3を備える水素生成装置1の容積を小さくすることができる。なお、フィン24を予熱流路20の水素生成器18側の壁面23に配接することにより、水素生成器18からの熱をフィン24に効率良く伝えることができる。従って、水添脱硫触媒17の全体の温度をさらに均一化できる。すなわち、吸着容量の低下をさらに抑えることができ、水添脱硫触媒17の搭載量を最小限に抑えることができる。また、予熱流路20を小さくしても原料を水添脱硫触媒17とほぼ同等の温度に予熱することができる。すなわち、水添脱硫器3を備える水素生成装置1の容積を小さくすることができる。なお、ここでは熱交換器としてフィン24を用いたが、熱交換機能を有していれば、フィン24でなくても良い。
Even if the preheating channel 20 is made small, the raw material can be preheated to a temperature substantially equal to that of the hydrodesulfurization catalyst 17. That is, the volume of the hydrogen generator 1 including the hydrodesulfurizer 3 can be reduced. In addition, the heat from the hydrogen generator 18 can be efficiently transmitted to the fins 24 by arranging the fins 24 on the wall surface 23 on the hydrogen generator 18 side of the preheating channel 20. Therefore, the overall temperature of the hydrodesulfurization catalyst 17 can be made more uniform. That is, the decrease in adsorption capacity can be further suppressed, and the amount of hydrodesulfurization catalyst 17 mounted can be minimized. Even if the preheating channel 20 is made small, the raw material can be preheated to a temperature substantially equal to that of the hydrodesulfurization catalyst 17. That is, the volume of the hydrogen generator 1 including the hydrodesulfurizer 3 can be reduced. Here, the fins 24 are used as heat exchangers, but the fins 24 may not be used as long as they have a heat exchange function.

本発明の水素生成装置は、水添脱硫触媒の全体の温度を均一化することができるので、水添脱硫触媒の吸着容量の低下、及び熱劣化を抑えることができ、水添脱硫触媒の搭載量を最小限に抑えることができる。   Since the hydrogen generator of the present invention can make the entire temperature of the hydrodesulfurization catalyst uniform, it is possible to suppress a decrease in adsorption capacity and thermal degradation of the hydrodesulfurization catalyst. The amount can be minimized.

1 水素生成装置
2A 原料ガス供給配管
2B 原料ガス供給配管
3 水添脱硫器
4 改質水供給配管
5 蒸発部
6 改質触媒層
7 変成触媒層
8 空気供給配管
9 選択酸化触媒層
10 燃料ガス供給配管
11 燃料電池
12 オフガス配管
13 バーナ
14 排ガス配管
15 内断熱材
16 外断熱材
17 水添脱硫触媒
18 水素生成器
19 入口
20 予熱流路
21 水添脱硫流路
21A 水添脱硫流路A
21B 水添脱硫流路B
21C 水添脱硫流路C
21D 水添脱硫流路D
21E 水添脱硫流路E
21F 水添脱硫流路F
21G 水添脱硫流路G
22 出口
23 壁面
24 フィン
DESCRIPTION OF SYMBOLS 1 Hydrogen generator 2A Raw material gas supply piping 2B Raw material gas supply piping 3 Hydrodesulfurizer 4 Reformed water supply piping 5 Evaporating part 6 Reforming catalyst layer 7 Shifting catalyst layer 8 Air supply piping 9 Selective oxidation catalyst layer 10 Fuel gas supply Piping 11 Fuel cell 12 Off-gas piping 13 Burner 14 Exhaust gas piping 15 Internal heat insulating material 16 External heat insulating material 17 Hydrodesulfurization catalyst 18 Hydrogen generator 19 Inlet 20 Preheating flow path 21 Hydrodesulfurization flow path 21A Hydrodesulfurization flow path A
21B Hydrodesulfurization flow path B
21C Hydrodesulfurization channel C
21D Hydrodesulfurization flow path D
21E Hydrodesulfurization flow path E
21F Hydrodesulfurization flow path F
21G Hydrodesulfurization channel G
22 Exit 23 Wall 24 Fin

Claims (2)

原料ガス中に含まれる硫黄化合物を水添脱硫により除去する水添脱硫触媒を充填した水添脱硫器と、
バーナにより加熱され前記原料ガスから水素を主成分とする燃料ガスを生成する水素生成器と、
を備え、
前記水添脱硫器には、前記原料ガスを供給する入口と前記原料ガスを予熱する予熱流路と前記水添脱硫触媒を充填した複数の水添脱硫流路と前記原料ガスを排出する出口とが設けられており、
前記水素生成器は円筒形状であり、
前記水添脱硫器は、前記水素生成器の周囲に配置される環状であり、前記水添脱硫器の入口と出口とが隣接して配置されており、
前記入口から前記水添脱硫器に流入した前記原料ガスは、まず前記予熱流路において前記水素生成器からの熱により加熱されてから複数の水添脱硫流路を順に流通し、前記予熱流路及び複数の前記水添脱硫流路を流通する間に前記水素生成器からの熱により温度上昇して、前記水添脱硫器の前記出口から排出され、
前記原料ガスが流入する最も低温の前記予熱流路と前記原料ガスが流出する最も高温の最下流側の前記水添脱硫流路とを前記水添脱硫器の周方向に隣接させて、前記原料ガスが流入する最も低温の前記予熱流路と前記原料ガスが流出する最も高温の最下流側の前記水添脱硫流路とを熱交換させた水素生成装置。
A hydrodesulfurizer filled with a hydrodesulfurization catalyst that removes sulfur compounds contained in the raw material gas by hydrodesulfurization;
A hydrogen generator that is heated by a burner to generate a fuel gas mainly composed of hydrogen from the raw material gas;
With
The hydrodesulfurizer includes an inlet for supplying the raw material gas, a preheating passage for preheating the raw material gas, a plurality of hydrodesulfurization passages filled with the hydrodesulfurization catalyst, and an outlet for discharging the raw material gas. Is provided ,
The hydrogen generator is cylindrical;
The hydrodesulfurizer is a ring arranged around the hydrogen generator, and an inlet and an outlet of the hydrodesulfurizer are arranged adjacent to each other,
The raw material gas flowing into the hydrodesulfurizer from the inlet is first heated by the heat from the hydrogen generator in the preheating channel, and then sequentially flows through a plurality of hydrodesulfurization channels. And while flowing through the plurality of hydrodesulfurization flow paths, the temperature rises due to heat from the hydrogen generator, and is discharged from the outlet of the hydrodesulfurizer,
The raw material gas is introduced by adjoining the coldest preheating flow channel through which the raw material gas flows in and the hydrothermal desulfurization flow channel at the lowest downstream side from which the raw material gas flows out in the circumferential direction of the hydrodesulfurizer. A hydrogen generation apparatus in which heat is exchanged between the coldest preheating flow channel into which gas flows and the hottest hydrodesulfurization flow channel from the hottest downstream side from which the raw material gas flows out .
前記原料ガスを予熱する予熱流路には、熱交換器が設けられている請求項1に記載の水素生成装置。   The hydrogen generator according to claim 1, wherein a heat exchanger is provided in a preheating flow path for preheating the raw material gas.
JP2012088966A 2012-04-10 2012-04-10 Hydrogen generator Active JP5948605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012088966A JP5948605B2 (en) 2012-04-10 2012-04-10 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012088966A JP5948605B2 (en) 2012-04-10 2012-04-10 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2013216543A JP2013216543A (en) 2013-10-24
JP5948605B2 true JP5948605B2 (en) 2016-07-06

Family

ID=49589136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012088966A Active JP5948605B2 (en) 2012-04-10 2012-04-10 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP5948605B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5895169B2 (en) * 2012-12-17 2016-03-30 パナソニックIpマネジメント株式会社 Hydrogen generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265201A (en) * 1997-03-26 1998-10-06 Sanyo Electric Co Ltd Reforming device for fuel cell
EP1394103B1 (en) * 2001-06-04 2007-08-29 Tokyo Gas Company Limited Cylindrical water vapor reforming unit
JP5534899B2 (en) * 2010-03-30 2014-07-02 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system

Also Published As

Publication number Publication date
JP2013216543A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5866546B2 (en) Fuel cell system
JP5476392B2 (en) Fuel cell system
JP5468713B1 (en) Hydrogen generator and fuel cell system
JP6405211B2 (en) Fuel cell system
JP5600460B2 (en) Hydrogen production apparatus and fuel cell system
JP5895169B2 (en) Hydrogen generator
JP5948605B2 (en) Hydrogen generator
JP6518086B2 (en) Fuel cell system
JP2011181268A (en) Heating method of desulfurizer for fuel cell and fuel cell system
JP5531168B2 (en) Hydrogen generator
JP2012041238A (en) Hydrogen generator and fuel cell system
JP5938580B2 (en) Hydrogen generator
JP6142286B2 (en) Hydrogen generator
JP6089210B2 (en) Hydrogen generator
JP2011136869A (en) Apparatus for producing reformed gas, operation control method thereof, and fuel cell system
JP2014009130A (en) Hydrogen production apparatus, and fuel cell system
JP2005255519A (en) Reactor
JP2014122143A (en) Fuel reformer
JP2016181369A (en) Fuel battery system
JP2017039626A (en) Hydrogen generator
JP2011136867A (en) Reformer, reforming unit, and fuel cell system
JP2016222497A (en) Hydrogen generator and fuel cell system using the same
JP2013203615A (en) Hydrogen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150306

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R151 Written notification of patent or utility model registration

Ref document number: 5948605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151