JP2012086118A - Method for recovering resources from used electric and electronic equipment using steam gasification reaction in coexistence of alkali salt - Google Patents

Method for recovering resources from used electric and electronic equipment using steam gasification reaction in coexistence of alkali salt Download PDF

Info

Publication number
JP2012086118A
JP2012086118A JP2010233146A JP2010233146A JP2012086118A JP 2012086118 A JP2012086118 A JP 2012086118A JP 2010233146 A JP2010233146 A JP 2010233146A JP 2010233146 A JP2010233146 A JP 2010233146A JP 2012086118 A JP2012086118 A JP 2012086118A
Authority
JP
Japan
Prior art keywords
plastic layer
alkali salt
waste
electronic
electronic equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010233146A
Other languages
Japanese (ja)
Other versions
JP5874061B2 (en
Inventor
Toru Kamo
徹 加茂
Yoichi Kodera
洋一 小寺
Hideki Nakagome
秀樹 中込
Kunio Yoshikawa
邦夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Institute of Technology NUC
Original Assignee
Chiba University NUC
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, National Institute of Advanced Industrial Science and Technology AIST, Tokyo Institute of Technology NUC filed Critical Chiba University NUC
Priority to JP2010233146A priority Critical patent/JP5874061B2/en
Publication of JP2012086118A publication Critical patent/JP2012086118A/en
Application granted granted Critical
Publication of JP5874061B2 publication Critical patent/JP5874061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering various valuables such as a metal, a fibrous glass fiber or the like from the waste of electric and electronic equipment or electronic parts having a plastic layer and in which circuit boards are incorporated.SOLUTION: The metal or glass fiber is recovered from the waste of electric and electronic equipment or electronic parts having the plastic layer and in which the circuit boards are incorporated, by introducing overheated steam in an anaerobic gas atmosphere and bringing the waste of the electric and electronic equipment or electronic parts housed in a reactor into contact with an alkali salt to subject the plastic to steam gasification. The alkali salt is a solid alkali salt (1) of which the melting point is higher than steam gasification reaction temperature or a liquid alkali salt (2) of which the melting point is lower than the steam gasification reaction temperature.

Description

本発明は、プラスチック層を有し、回路基板を備える電気電子機器又は電子部品の廃棄物をアルカリ塩の共存下にて水蒸気ガス化反応させることを特徴とするプラスチック層を有し、回路基板を備える電気電子機器又は電子部品の廃棄物から金属及びガラス繊維を回収する方法に関し、詳しくは、プラスチック層を有し、回路基板を備える電気電子機器又は電子部品の廃棄物をアルカリ塩の共存下にて水蒸気ガス化反応させ、金属及びガラス繊維を回収することができ、しかもアルカリ塩とガラスとの反応が抑制されるので、アルカリ塩の無駄な消耗が低減されることを特徴とするからプラスチック層を有し、回路基板を備える電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法に関する。   The present invention has a plastic layer characterized in that a waste gas of an electric or electronic device or electronic component having a circuit board is subjected to a steam gasification reaction in the presence of an alkali salt, and the circuit board is provided. More particularly, the present invention relates to a method for recovering metal and glass fiber from waste of electrical and electronic equipment or electronic components, and more specifically, waste of electrical and electronic equipment or electronic components having a plastic substrate and a circuit board in the presence of an alkali salt. It is possible to recover the metal and glass fiber by steam gasification reaction, and since the reaction between the alkali salt and the glass is suppressed, wasteful consumption of the alkali salt is reduced. The present invention relates to a method for recovering metals and glass fibers from wastes of electrical and electronic equipment or electronic components having a circuit board.

技術革新が急速に発展し、多くの民生用機器や産業用機器では、種々の機能が電子回路によって制御されるようになってきている。その結果、例えば回路基板の使用量は、益々増える方向にある。これは、使用済となり、廃棄される回路基板も増えることとなる。
この回路基板にはプリント配線板用基板が用いられ、銅張積層板が最も多く使用されている。該銅張積層板は、通常、ガラス布およびガラス不織布などの基材に、フェノール樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、などの熱硬化性樹脂を塗布含浸・乾燥させたものを積層し、これに銅箔を片面あるいは両面にプレスで加工・加熱して作られている。
この回路基板を備える電気電子機器は各種プラスチックを例えば筐体等として使用している。
Technological innovation is rapidly developing, and in many consumer and industrial equipment, various functions are controlled by electronic circuits. As a result, for example, the amount of circuit board used is increasing. This increases the number of circuit boards that are used up and discarded.
As this circuit board, a printed wiring board substrate is used, and a copper-clad laminate is most often used. The copper-clad laminate is usually made by laminating a substrate such as glass cloth and glass nonwoven fabric with a thermosetting resin such as phenol resin, unsaturated polyester resin, or epoxy resin, impregnated and dried. It is made by processing and heating copper foil on one or both sides with a press.
The electrical and electronic equipment provided with this circuit board uses various plastics as, for example, a casing.

廃棄される電子機器又は電子部品から有価物を回収する技術が盛んに研究され報告されている。例えば、電子機器に用いられるガラス基材と樹脂と金属箔よりなる積層板を前記金属箔がガラス化しない程度の温度に加熱して樹脂からガスを放出させた後に、該積層板にせん断力を加えて金属箔と基材とを分離するようにして、積層板から資源を回収することが記載され(特許文献1)、プラスチック・金属複合体の廃棄物を、金属の融点以下の温度で、プラスチックを熱分解ガス化する以上の温度、好ましくは400〜600℃の熱媒体と直接接触させることにより、プラスチック分を除去し金属を回収することが記載されている(特許文献2)。
それら熱分解物を排出することになるが、前記プラスチックとしてポリ塩化ビニルが使用されているとき、あるいは前記プラスチックに臭素系難燃剤が使用されているときには、熱分解物を排出するには環境を汚さないようにさらに熱分解物を処理することが必要となる。
Technologies for recovering valuable materials from discarded electronic devices or electronic parts have been actively researched and reported. For example, after a laminate made of a glass substrate, resin and metal foil used in an electronic device is heated to a temperature at which the metal foil is not vitrified to release gas from the resin, a shear force is applied to the laminate. In addition, it is described that the resources are recovered from the laminate by separating the metal foil and the base material (Patent Document 1), and the waste of the plastic / metal composite is at a temperature below the melting point of the metal, It is described that plastics are removed and metal is recovered by direct contact with a heat medium at a temperature higher than that at which plastic is pyrolyzed and gasified, preferably 400 to 600 ° C. (Patent Document 2).
These pyrolysates will be discharged, but when polyvinyl chloride is used as the plastic, or when brominated flame retardants are used in the plastic, the environment must be reduced to discharge the pyrolysate. It is necessary to further treat the pyrolyzate so as not to contaminate it.

また、ロータリーキルンタイプの過熱水蒸気処理装置の間接加熱による内筒に、過熱水蒸気の雰囲気温度を500〜600℃として有価金属を含有するガラス繊維および樹脂製の集積回路基板からなる廃集積回路基板を、連続装入してガラス繊維と樹脂からなる積層基板を炭化により剥離し、さらに廃集積回路基板の難燃剤成分のハロゲンをガス化して回収し、一方、廃集積回路基板に含有の金、銀、銅、鉛、亜鉛、パラジウムその他の金属などの有価金属を分離回収することが記載されている(特許文献3)。この技術には、廃集積回路基板に存在するガラス繊維を繊維状として回収する考えはない。   In addition, a waste integrated circuit board made of glass fiber containing valuable metals and an integrated circuit board made of resin with an atmosphere temperature of superheated steam of 500 to 600 ° C. in an inner cylinder by indirect heating of a rotary kiln type superheated steam treatment apparatus, Continuously charged, the laminated substrate made of glass fiber and resin is peeled off by carbonization, and the halogen of the flame retardant component of the waste integrated circuit board is gasified and recovered, while the waste integrated circuit board contains gold, silver, It describes that valuable metals such as copper, lead, zinc, palladium and other metals are separated and recovered (Patent Document 3). This technology has no idea of recovering glass fibers present on the waste integrated circuit board as fibers.

なお、電子回路板を含む使用済み形態電話の破砕物をナトリウム、カリウム、カルシウムの炭酸塩との存在下に処理する技術が例えば特許文献4にて報告されている。しかし、有機物を水蒸気ガス化して水素を発生させ、炭酸塩をその触媒として利用し、さらに炭酸塩とガラスとの反応を抑制させ、炭酸塩の無駄な消耗を低減させる考えはなく、また電子回路板中のガラス繊維は前記炭酸塩と反応してガラス繊維が崩壊し粉状となり、繊維状を保持したガラス繊維として回収することはできない。   For example, Patent Document 4 reports a technique for treating a crushed material of a used phone including an electronic circuit board in the presence of sodium, potassium, or calcium carbonate. However, there is no idea to reduce the wasteful consumption of carbonate by reducing the wasteful consumption of carbonate by using organic gas as a gas to generate hydrogen, using carbonate as its catalyst, and further suppressing the reaction between carbonate and glass. The glass fiber in the plate reacts with the carbonate to disintegrate into a powder and cannot be recovered as glass fiber holding the fiber.

特開平10−314711号公報JP 10-314711 A 特開平9−323076号公報JP 9-323076 A 特開2008−194618号公報JP 2008-194618 A 特開2003−301225号公報JP 2003-301225 A

本発明者らは、従来から知られている電気電子機器又は電子部品の廃棄物の熱分解・過熱水蒸気分解では、プラスチックの多くが炭化するために残渣中に多くの炭素が残留しており、ガラス繊維や金属類を容易に分別回収することができなかったこと、また、回路基板中のガラス繊維は崩壊し粉状となること、多くの電気電子機器又は電子部品にて使用される塩化ビニル樹脂や難燃剤含有プラスチックから塩化水素ガスや臭化水素ガス等の有害ガスが発生し、後段のエネルギー回収が困難であると知り、できるだけ繊維状を保持するガラス繊維を回収する技術の開発等を目指して研究するなか、プラスチック層を有し、回路基板を備える電気電子機器又は電子部品の廃棄物を水蒸気ガス化し、前記プラスチック層を熱分解する際にアルカリ塩を共存させることが有用であるとの知見を得た。さらに、当該知見に基づき、鋭意研究を重ね、遂に本発明に到達した。   In the thermal decomposition and superheated steam decomposition of the waste of electrical and electronic equipment or electronic parts that have been conventionally known, many carbons remain in the residue because many of the plastics are carbonized. Glass fibers and metals could not be separated and collected easily, and glass fibers in circuit boards collapsed and became powdery. Vinyl chloride used in many electrical and electronic equipment and electronic components Knowing that it is difficult to recover energy in the later stages because of the generation of harmful gases such as hydrogen chloride gas and hydrogen bromide gas from plastics containing resin and flame retardants, we have developed technology to recover glass fibers that hold the fiber shape as much as possible. During the research aimed at, the waste of electrical and electronic equipment or electronic parts having a plastic layer and a circuit board is converted to steam gas, and when the plastic layer is thermally decomposed, an alkali salt The coexistence was obtained a finding that it is useful. Furthermore, based on the said knowledge, earnest research was repeated and it finally reached this invention.

すなわち、本発明の課題は、プラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維等の各種有価物を回収する方法を提供するものであり、とくにプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を水蒸気ガス化して前記プラスチック層を熱分解する際に、共存させるルカリ塩のガラスとの反応が抑制され、アルカリ塩の無駄な消耗が低減される技術を提供することにあり、また、その点に加えて、さらに、プラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を水蒸気ガス化して前記プラスチック層を熱分解する際に、回路基板にて使用されるガラス繊維を粉状ではなく、繊維状として回収すると共に、反応後に回収されるガラス繊維や金属中に残留する炭素および臭素を低減化させることができる技術を提供することにある。   That is, an object of the present invention is to provide a method for recovering various valuable materials such as metals and glass fibers from wastes of electrical and electronic equipment or electronic components having a plastic layer and incorporating a circuit board. When the waste of electrical and electronic equipment or electronic components having a plastic layer is converted into water vapor gas to thermally decompose the plastic layer, the reaction with the glass of rucali salt coexisting is suppressed, and the alkali salt In addition to this, in addition to this point, the waste gas of electrical and electronic equipment or electronic components having a plastic layer and incorporating a circuit board is converted into steam gas. When the plastic layer is thermally decomposed, the glass fiber used in the circuit board is recovered not as a powder but as a fiber and is recovered after the reaction. It is to provide a technique capable of reducing the carbon and bromine remaining in cellulose fiber and the metal.

本発明者らは、鋭意研究し、以下の発明に到達した。
(1)嫌気性ガス雰囲気中にて、過熱水蒸気を導入させると共に反応器内に収容したプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物をアルカリ塩と接触させて前記プラスチックを水蒸気ガス化させるプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維を回収する方法であって、前記アルカリ塩が、(1)融点が前記水蒸気ガス化反応温度以上の固体状のアルカリ塩、又は(2)融点が前記水蒸気ガス化反応温度以下のアルカリ塩の液体状物であることを特徴とするプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。
ここで、なお、本発明でいう金属とは金、銀、パラジウム等の貴金属や銅、鉛、亜鉛などのベースメタル、レアメタルやレアアースおよびその他の有価金属等の電気電子機器又は電子部品に用いられる金属類を意味する(以下、同様)。
(2)アルカリ塩が、融点が前記水蒸気ガス化反応温度以上の固体状のアルカリ塩であり、前記固体状のアルカリ塩の量はプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を基準にして、0.001〜20質量倍である上記(1)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。
(3)アルカリ塩が、融点が前記水蒸気ガス化反応温度以下のアルカリ塩の液体状物であり、前記液体状のアルカリ塩の量はプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を基準にして、20質量倍以下であるである上記(1)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。
(4)アルカリ塩が、液体状の炭酸リチウム、液体状の炭酸ナトリウム、及び液体状の炭酸カリウムから選ばれる少なくとも1種である上記(1)又は(3)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。
The present inventors have intensively studied and have reached the following invention.
(1) In an anaerobic gas atmosphere, superheated steam is introduced and a plastic layer contained in the reactor is brought into contact with the waste of an electrical or electronic device or electronic component incorporating a circuit board with an alkali salt. A method of recovering metal and glass fiber from wastes of electrical and electronic equipment or electronic components having a plastic layer for vaporizing the plastic into a circuit board, wherein the alkali salt comprises (1) a melting point A circuit board having a plastic layer, characterized in that it is a solid alkali salt having a temperature equal to or higher than the steam gasification reaction temperature, or (2) a liquid substance of an alkali salt having a melting point equal to or lower than the steam gasification reaction temperature. A method for recovering metals and glass fibers from wastes of built-in electrical and electronic equipment or electronic components.
Here, the metal referred to in the present invention is used for electrical and electronic equipment or electronic parts such as noble metals such as gold, silver and palladium, base metals such as copper, lead and zinc, rare metals, rare earths and other valuable metals. Means metals (hereinafter the same).
(2) The alkali salt is a solid alkali salt having a melting point equal to or higher than the water vapor gasification reaction temperature, and the amount of the solid alkali salt is an electric or electronic device or electronic device having a plastic layer and incorporating a circuit board. From the waste of electrical and electronic equipment or electronic parts having a plastic layer as described in (1) above, which is 0.001 to 20 times by mass, based on the waste of parts, the metal and glass fiber Collection method.
(3) The alkali salt is a liquid substance of an alkali salt having a melting point equal to or lower than the water vapor gasification reaction temperature, and the amount of the liquid alkali salt has an electric or electronic device having a plastic layer and incorporating a circuit board or It has a plastic layer according to the above (1), which is 20 mass times or less, based on the waste of electronic parts, and is made of metal and glass fiber from wastes of electrical and electronic equipment or electronic parts incorporating a circuit board. Collection method.
(4) The circuit has a plastic layer according to (1) or (3), wherein the alkali salt is at least one selected from liquid lithium carbonate, liquid sodium carbonate, and liquid potassium carbonate, A method for recovering metals and glass fibers from wastes of electrical and electronic equipment or electronic components incorporating a substrate.

(5)アルカリ塩が、固体状の炭酸リチウム、固体状の炭酸ナトリウム、及び固体状の炭酸カリウムから選ばれる少なくとも1種である上記(1)又は(2)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。
(6)反応器内に収容した液体状のアルカリ塩へ、プラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を投入する上記(1)又は(3)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。
(7)固体状の炭酸塩を、反応器内に収容したププラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物にふりかける上記(1)又は(2)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。
(8)反応器がロータリーキルン又は流動層炉である上記(1)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。
(5) The alkali salt has at least one selected from solid lithium carbonate, solid sodium carbonate, and solid potassium carbonate, and has a plastic layer as described in (1) or (2) above. A method for recovering metals and glass fibers from wastes of electrical and electronic equipment or electronic components incorporating a substrate.
(6) The plastic according to (1) or (3) above, wherein the waste of electrical or electronic equipment or electronic parts having a plastic layer and incorporating a circuit board is put into a liquid alkali salt contained in the reactor. A method for recovering metal and glass fiber from waste of electrical and electronic equipment or electronic components having a layer and incorporating a circuit board.
(7) The plastic according to (1) or (2) above, wherein the solid carbonate has a plastic layer accommodated in a reactor, and is sprinkled on waste of electrical and electronic equipment or electronic components incorporating a circuit board. A method for recovering metal and glass fiber from waste of electrical and electronic equipment or electronic components having a layer and incorporating a circuit board.
(8) A method for recovering metals and glass fibers from wastes of electrical and electronic equipment or electronic parts having a plastic layer as described in (1) above, wherein the reactor is a rotary kiln or fluidized bed furnace.

以下、本発明を詳細に説明する。
電気電子機器又は電子部品には各種プラスチック、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリエステル、ポリアミド、ABS樹脂等の熱可塑性樹脂やエポキシ樹脂、ウレタン樹脂等の熱硬化性樹脂が多用されている。本発明でいうプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品は、前記プラスチックからなる層を有し、しかも回路基板を組み込んだ電気電子機器又は電子部品をいう。具体的には、電子計算機、携帯電話機、パソコン、携帯用オーディオ、液晶テレビや冷蔵庫等の家電製品、制御機用電子基板、電子回路基板、自動車回収された電子部品等が挙げられるが、それら具体物に限定されない。前記家電製品は、いわゆるマテリアルリサイクルに必要なプラスチックを除くことが好ましい。
本発明では、熱可塑性プラスチック、熱硬化性プラスチック、難燃剤入りプラスチック、ポリ塩化ビニルなどの全てのプラスチックを一度に処理できるのであり、前記廃棄物を事前に分解する必要がないという有利さがある。さらに、前記電気電子機器又は電子部品と共にバイオマスや石炭などが混入していても所期の効果を達成することができるので、その点でも有利である。
Hereinafter, the present invention will be described in detail.
Various plastics, for example, thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, polyester, polyamide, and ABS resin, and thermosetting resins such as epoxy resin and urethane resin are frequently used for electric and electronic devices or electronic parts. An electric / electronic device or electronic component having a plastic layer and incorporating a circuit board as used in the present invention refers to an electric / electronic device or electronic component having a layer made of the plastic and incorporating a circuit board. Specific examples include electronic computers, mobile phones, personal computers, portable audio, home appliances such as liquid crystal televisions and refrigerators, electronic boards for controllers, electronic circuit boards, and automobile collected electronic parts. It is not limited to things. It is preferable to remove the plastic required for so-called material recycling from the home appliance.
In the present invention, all plastics such as thermoplastics, thermosetting plastics, flame retardant plastics, and polyvinyl chloride can be treated at a time, and there is an advantage that the waste does not need to be decomposed in advance. . Furthermore, even if biomass, coal, or the like is mixed with the electric / electronic device or electronic component, the desired effect can be achieved, which is also advantageous in that respect.

本発明では、それら電気電子機器又は電子部品の廃棄物を水蒸気ガス化することが一つの大きな特徴であるが、当該廃棄物には使用後に廃棄される廃棄物の他、未使用であっても廃棄される物も含まれる。なお、水蒸気ガス化するまえに、前記廃棄物を小さく破断することが好ましい。
本発明でいう回路基板はすでに広く知られており、例えば何らかの機能を実現させるための機能を有するものを配置する板状物を例示できるが、それに限定されない。
In the present invention, it is one of the major features that the waste of these electric and electronic devices or electronic components is converted into steam gas. However, the waste may be discarded after use as well as unused. This includes waste that is discarded. In addition, it is preferable to break the waste to a small size before steam gasification.
The circuit board referred to in the present invention is already widely known. For example, a plate-like object on which a function having a function for realizing a certain function is arranged can be exemplified, but the invention is not limited thereto.

水蒸気ガス化すること自体は本出願前から知られていることであるが、本発明では、プラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を後述するアルカリ塩の共存下に水蒸気ガス化することにも特徴がある。具体的には、電気炉等の反応器内にて、嫌気性ガス雰囲気下、過熱水蒸気を導入して、プラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を500℃〜800℃、1秒〜180分程度加熱してプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を水蒸気ガス化する。なお、嫌気性ガス雰囲気とは、酸素ガスを含まないガス雰囲気を意味するが、本発明の所期の目的を果たすことができる範囲内において僅かな酸素ガスが共存していてもよい。   Although the steam gasification itself has been known before the present application, in the present invention, the waste of an electrical or electronic device or electronic component having a plastic layer and incorporating a circuit board is used for the alkali salt described later. It is also characterized by steam gasification in the presence of coexistence. Specifically, in a reactor such as an electric furnace, superheated steam is introduced in an anaerobic gas atmosphere, and a waste of electrical and electronic equipment or electronic components having a plastic layer and incorporating a circuit board is removed. The waste of electrical / electronic equipment or electronic parts having a plastic layer and having a circuit board is heated and gasified into steam gas at a temperature of from about 800 ° C. to 800 ° C. for about 1 second to 180 minutes. The anaerobic gas atmosphere means a gas atmosphere that does not contain oxygen gas, but a slight amount of oxygen gas may coexist within a range that can achieve the intended purpose of the present invention.

本発明では、それら電気電子機器又は電子部品の廃棄物をアルカリ塩と接触させる点が一つの特徴である。ここでいうアルカリ塩は、炭酸塩が好ましく、例えば炭酸カリウムや水酸化カリウム等のカリウム塩)、炭酸ナトリウムや水酸化ナトリウム等のナトリウム塩、炭酸リチウム等のアルカリ塩を例示でき、これらアルカリ塩単独あるいは2種以上の混合物として用いる。このアルカリ塩は液状としてあるいは固体状として使用することができる。
本発明では、融点が水蒸気ガス化反応温度以上のアルカリ塩を用いるときには、固体状のアルカリ塩とし、融点が水蒸気ガス化反応温度以下のアルカリ塩を用いるときには、液体状のアルカリ塩とすることが一つの大きな特徴である。前記水蒸気ガス化反応温度は、水蒸気ガス化させる対象物の種類や性状、その量等により変動するがおおむね500〜800℃の間におさまるときが多い。
In the present invention, one of the characteristics is that wastes of these electric and electronic devices or electronic parts are brought into contact with an alkali salt. The alkali salt herein is preferably a carbonate, for example, a potassium salt such as potassium carbonate or potassium hydroxide), a sodium salt such as sodium carbonate or sodium hydroxide, or an alkali salt such as lithium carbonate. These alkali salts alone Or it uses as a mixture of 2 or more types. The alkali salt can be used as a liquid or a solid.
In the present invention, when an alkali salt having a melting point equal to or higher than the steam gasification reaction temperature is used, a solid alkali salt is used. When an alkali salt having a melting point equal to or lower than the steam gasification reaction temperature is used, a liquid alkali salt is used. It is one big feature. The steam gasification reaction temperature varies depending on the type and properties of the object to be steam gasified, the amount thereof, and the like, but is generally within a range of about 500 to 800 ° C.

本発明の好ましい態様の一つが、融点が700℃以上の固体のアルカリ塩を用いることにある。当該アルカリ塩をプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を基準にして、0.001〜20質量倍、さらに0.1〜20質量倍、さらに0.5〜20質量倍とすると、水蒸気ガス化反応を促進させ、水素ガスの収率が高まるので、その点で有利である。当該アルカリ塩を用いると、水蒸気ガス化反応温度は固体のアルカリ塩の融点に対して十分低いため、当該固体のアルカリ塩とガラス繊維との反応が抑制され、ガラス繊維はほとんど劣化しないで回収できる。また、プラスチック層に存在するハロゲン系難燃剤の分解によって生成されるハロゲン化水素やハロゲンガスも、固体の炭酸カリウムによって十分捕捉できる。
固体のアルカリ塩の中では、固体の炭酸塩を用いることが好ましく、さらには固体の炭酸カリウムを用いることが、本発明の所期の効果をもたらす点で有利である。
One preferred embodiment of the present invention is to use a solid alkali salt having a melting point of 700 ° C. or higher. The alkali salt has a plastic layer, and is based on the waste of electrical and electronic equipment or electronic components incorporating a circuit board, 0.001 to 20 times, further 0.1 to 20 times, and further 0.5 If it is ˜20 mass times, the steam gasification reaction is promoted and the yield of hydrogen gas is increased, which is advantageous in that respect. When the alkali salt is used, the steam gasification reaction temperature is sufficiently lower than the melting point of the solid alkali salt, so that the reaction between the solid alkali salt and the glass fiber is suppressed, and the glass fiber can be recovered with almost no deterioration. . Further, hydrogen halide and halogen gas generated by decomposition of the halogen-based flame retardant present in the plastic layer can be sufficiently captured by solid potassium carbonate.
Among the solid alkali salts, it is preferable to use a solid carbonate, and it is advantageous to use solid potassium carbonate in that the desired effect of the present invention can be obtained.

本発明の好ましい他の態様の一つが、融点が600℃以下であって水蒸気ガス化反応温度以下のアルカリ塩の液体状物を用いることにあり、とくに液体状のアルカリ塩混合物を用いることにある。当該アルカリ塩をプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を基準にして、20質量倍以下、さらには2質量倍以下、より好ましくは、0.5質量倍以下とすると、アルカリ塩の融点は水蒸気ガス化反応温度よりも十分低いため、液体状のアルカリ塩は廃棄物や過熱水蒸気と物理的な接触効率が高くなり、固体のアルカリ塩に比べて少量で高い触媒活性やハロゲン捕捉能を発揮する。一方、試料に付着する混合炭酸塩は極微量であるため、ガラス繊維と反応してもガラス繊維の劣化は少なく、ガラス類と反応して消耗される炭酸塩の消費量も抑制することができる。この反応では、当該アルカリ塩とガラス繊維との反応が抑制され、ガラス繊維はほとんど劣化しないで回収できる。   One of the other preferred embodiments of the present invention is to use a liquid substance of an alkali salt having a melting point of 600 ° C. or lower and a steam gasification reaction temperature or lower, and particularly to using a liquid alkali salt mixture. . 20 mass times or less, further 2 mass times or less, more preferably 0.5 mass times based on the waste of electrical or electronic equipment or electronic components having a plastic layer and a circuit board incorporated with the alkali salt If the following, the melting point of the alkali salt is sufficiently lower than the steam gasification reaction temperature, so the liquid alkali salt has a higher physical contact efficiency with waste and superheated steam, and the amount is smaller than that of the solid alkali salt. High catalytic activity and halogen capture ability. On the other hand, since the mixed carbonate adhering to the sample is extremely small, there is little deterioration of the glass fiber even if it reacts with the glass fiber, and the consumption of carbonate consumed by reacting with the glass can be suppressed. . In this reaction, the reaction between the alkali salt and the glass fiber is suppressed, and the glass fiber can be recovered with almost no deterioration.

本発明により、プラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を水蒸気ガス化処理して、金属及び繊維状のガラス繊維を回収することができる。とくに、固体の炭酸カリウムを用いたときには、炭酸カリウムとガラス繊維との反応が抑制され、ガラス繊維はほとんど劣化しないで回収できる。また、プラスチックに多用される臭素系難燃剤の分解によって生成される臭素も、固体の炭酸カリウムによって十分捕捉でき、熱分解ガス中には臭化水素ガス等の有毒ガスは殆ど存在しない。また、熱分解ガス中には水素ガスを多量に存在させることも可能にした。液体状の炭酸塩混合物を微量用いると、水蒸気ガス化反応は円滑に進行し、しかもガラス繊維の劣化は少なくなるので有利である。さらに、アルカリ塩、とくに炭酸塩とガラスとの反応が抑制されるので、アルカリ塩の無駄な消耗が低減されるので、その点でも本発明は優れている。   According to the present invention, it is possible to recover a metal and a fibrous glass fiber by subjecting a waste of an electrical / electronic device or electronic component having a plastic layer and incorporating a circuit board to steam gasification. In particular, when solid potassium carbonate is used, the reaction between potassium carbonate and glass fiber is suppressed, and the glass fiber can be recovered with little deterioration. Also, bromine produced by the decomposition of brominated flame retardants frequently used in plastics can be sufficiently captured by solid potassium carbonate, and there is almost no toxic gas such as hydrogen bromide gas in the pyrolysis gas. In addition, a large amount of hydrogen gas can be present in the pyrolysis gas. Use of a small amount of a liquid carbonate mixture is advantageous because the steam gasification reaction proceeds smoothly and the deterioration of the glass fiber is reduced. Furthermore, since the reaction between alkali salts, particularly carbonates and glass, is suppressed, wasteful consumption of alkali salts is reduced, so that the present invention is also excellent in this respect.

以下、本発明を好ましい態様及び実施例に基いて説明する。
実施態様1
使用済み電気電子機器に多量の固体の炭酸カリウムを、粉砕ボールが予め収容されている500−800℃のロータリーキルン内で混合して水蒸気ガス化させた。
使用済み電気電子機器に使用されているプラスチックの水蒸気ガス化に対し、固体の炭酸カリウムの添加量が十分多ければ水蒸気ガス化反応を促進させ、水素の収率が高まることを見出した。また反応温度は炭酸カリウムの融点に対して十分低いため、炭酸カリウムとガラス繊維との反応が抑制され、ガラス繊維はほとんど劣化しないで回収できる。また、電気電子機器のプラスチック層に存在する難燃剤の分解によって生成される臭素も、固体の炭酸カリウムによって十分捕捉できることが確認された。
Hereinafter, the present invention will be described based on preferred embodiments and examples.
Embodiment 1
A large amount of solid potassium carbonate was mixed in a used electric and electronic device in a rotary kiln at 500 to 800 ° C. in which pulverized balls were previously stored, and steam gasified.
It has been found that, compared with steam gasification of plastics used in used electrical and electronic equipment, if the amount of solid potassium carbonate added is sufficiently large, the steam gasification reaction is promoted and the yield of hydrogen is increased. Further, since the reaction temperature is sufficiently lower than the melting point of potassium carbonate, the reaction between potassium carbonate and glass fiber is suppressed, and the glass fiber can be recovered with almost no deterioration. Moreover, it was confirmed that bromine produced by the decomposition of the flame retardant present in the plastic layer of the electric / electronic device can be sufficiently captured by the solid potassium carbonate.

実施態様2
使用済み電気電子機器に微量な溶融混合炭酸塩を吹き付け、水蒸気ガス化させた。
混合溶融炭酸塩(炭酸カリウム、炭酸リチウム、炭酸ナトリウム)の融点は本反応温度よりも低く、液状の炭酸塩は試料や水蒸気と物理的な接触効率が高いために固体の炭酸カリウムに比べて少量で高い触媒活性や臭素捕捉能を発揮する。一方、試料に付着する混合炭酸塩は極微量であるため、ガラス繊維と反応してもガラス繊維の劣化は少なく、ガラス類と反応して消耗される炭酸塩の消費量も抑制することができる。
Embodiment 2
A small amount of molten mixed carbonate was sprayed on the used electrical and electronic equipment to gasify the water vapor.
The melting point of the mixed molten carbonate (potassium carbonate, lithium carbonate, sodium carbonate) is lower than the reaction temperature, and the liquid carbonate is small in volume compared to solid potassium carbonate because of its high physical contact efficiency with the sample and water vapor. High catalytic activity and bromine scavenging ability. On the other hand, since the mixed carbonate adhering to the sample is extremely small, there is little deterioration of the glass fiber even if it reacts with the glass fiber, and the consumption of carbonate consumed by reacting with the glass can be suppressed. .

以下、本発明を実施例に基いて説明する。本発明はこれら実施例に何等限定されるものではない。
実施例1
表1の組成を有する両面を銅で覆われたガラス繊維強化エポキシ基板(日立化成社製、MCL-E-67)を一辺5mmの正方形に切断した試料10g、炭酸カリウム100gを1000cm3の反応器に入れ、窒素ガスを160cm3/minで流しながら昇温を開始した。反応器の温度がおよそ100℃に達した直後から水蒸気を1.0 g/min導入し、所定の温度まで約20分間で昇温した。反応器内部の温度が625℃または675℃に達してから60分間保持し、その後冷却して生成物を取りだした。反応中に反応器から流出する全ての生成物を氷水に浸したステンレス管を通すことで室温まで冷却した後、水とタール状物質とガス生成物に分離し、ガス生成物をガスバックに捕集した。
前記エポキシ基板の熱分解生成物として水素、一酸化炭素、メタン、二酸化炭素、タール状物質、および炭素残渣が得られた(表2を参照)。炭素残渣の収率は1.8%であった。炭素残渣は、反応後に反応器内に残った固体生成物を水で洗浄して炭酸カリウムを除去して回収された銅やガラス繊維に付着している重質な有機物である。本実験条件下では炭素残渣をほとんど含まないガラス繊維および銅箔をほぼ完全に回収することができた。回収されたガラス繊維を機械的に叩くと容易に銅箔が剥がれおちるので、全ての銅箔をガラス繊維から剥離させた後、ガラス繊維と銅箔を比重差で分離しそれぞれを回収した。回収した銅箔は表面が少し黒ずんでいるが、銅箔の全重量は反応器に投入した銅箔付きエポキシ強化基板の全重量の約15%に相当し(表1参照)、水蒸気ガス化反応による銅の消失あるいは酸化などはほとんど無視できることが確認された。また、反応器内部の温度が675℃のときには、臭化水素の発生をほぼ完全に抑制させることができた(表3を参照)。なお、表3の縦軸は前記反応器から流出する全ての生成物から分離した水に含まれる臭素量であり、イオンクロマトグラフィによる臭素イオンの定量分析値に基いた値である(以下、同様)。
Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.
Example 1
Reactor with 10g sample of glass fiber reinforced epoxy substrate (MCL-E-67, manufactured by Hitachi Chemical Co., Ltd.) with both sides covered with copper having the composition of Table 1 cut into a 5mm square, 1000cm 3 of potassium carbonate 100g The temperature was raised while flowing nitrogen gas at 160 cm 3 / min. Immediately after the temperature of the reactor reached about 100 ° C., 1.0 g / min of water vapor was introduced, and the temperature was raised to a predetermined temperature in about 20 minutes. The temperature inside the reactor reached 625 ° C. or 675 ° C. and held for 60 minutes, and then cooled to take out the product. All products flowing out of the reactor during the reaction are cooled to room temperature by passing through a stainless steel tube immersed in ice water, and then separated into water, tar-like substances and gas products, and the gas products are trapped in a gas bag. Gathered.
Hydrogen, carbon monoxide, methane, carbon dioxide, tar-like substances, and carbon residues were obtained as thermal decomposition products of the epoxy substrate (see Table 2). The yield of carbon residue was 1.8%. The carbon residue is a heavy organic substance adhering to copper or glass fiber recovered by washing the solid product remaining in the reactor after the reaction with water to remove potassium carbonate. Under this experimental condition, glass fibers and copper foil containing almost no carbon residue could be recovered almost completely. When the recovered glass fiber was mechanically hit, the copper foil was easily peeled off. Therefore, after all the copper foil was peeled from the glass fiber, the glass fiber and the copper foil were separated by a specific gravity difference and recovered. The recovered copper foil has a slightly dark surface, but the total weight of the copper foil corresponds to about 15% of the total weight of the epoxy reinforced substrate with copper foil charged into the reactor (see Table 1). It was confirmed that the disappearance or oxidation of copper due to copper was almost negligible. Moreover, when the temperature inside the reactor was 675 ° C., the generation of hydrogen bromide could be suppressed almost completely (see Table 3). In addition, the vertical axis | shaft of Table 3 is a bromine amount contained in the water isolate | separated from all the products which flow out from the said reactor, and is a value based on the quantitative analysis value of the bromine ion by ion chromatography (hereinafter the same). .

表1 ガラス繊維強化エポキシ基板の組成(%)

Figure 2012086118
Table 1 Composition of glass fiber reinforced epoxy substrate (%)
Figure 2012086118

実施例2〜3
反応器に入れる炭酸カリウムを5g、及び20gとし、それ以外は実施例1と同様に操作した。
エポキシ基板の熱分解生成物として水素、一酸化炭素、メタン、二酸化炭素、タール状物質、および炭素残渣が得られた(表2を参照)。675℃および625℃のいずれの温度でも、炭酸カリウムの添加量を増加させるに従って炭素残渣の収率が減少し、二酸化炭素および水素の収率が増加した。反応温度が625℃あるいは675℃では、炭酸カリウムを20g以上添加すると炭素残渣の収率は2%以下となり、水で炭酸カリウムを洗浄除去すると炭素をほとんど含まないガラス繊維および銅箔をほぼ完全に回収することができた。
回収された水には難燃剤の分解によって発生した臭化水素が吸収されたが、炭酸カリウムの添加量を増加させるに従って臭素量は減少した(表3を参照)。
Examples 2-3
The procedure was the same as in Example 1 except that the potassium carbonate in the reactor was 5 g and 20 g.
Hydrogen, carbon monoxide, methane, carbon dioxide, tar-like substances, and carbon residues were obtained as thermal decomposition products of the epoxy substrate (see Table 2). At both 675 ° C. and 625 ° C., the carbon residue yield decreased and the carbon dioxide and hydrogen yields increased as the amount of potassium carbonate added was increased. When the reaction temperature is 625 ° C or 675 ° C, adding 20g or more of potassium carbonate yields a carbon residue yield of 2% or less, and washing and removing potassium carbonate with water almost completely removes glass fibers and copper foil containing almost no carbon. It was possible to recover.
The recovered water absorbed hydrogen bromide generated by the decomposition of the flame retardant, but the bromine content decreased as the amount of potassium carbonate added was increased (see Table 3).

比較例1
炭酸カリウムを反応器に入れず、それ以外は実施例1と同様に操作した。
エポキシ基板の熱分解生成物として水素、一酸化炭素、メタン、二酸化炭素、タール状物質、および炭素残渣が得られた(表2を参照)。675℃および625℃のいずれの温度でも、炭酸カリウムの添加量を増加させるに従って炭素残渣の収率が多く、二酸化炭素および水素の収率が減少した。炭素残渣の収率は2%以上となり、水で炭酸カリウムを洗浄除去しても炭素をほとんど含まないガラス繊維および銅箔をほぼ完全に回収することはできなかった。
回収された水には難燃剤の分解によって発生した臭化水素が多く吸収された(表3を参照)。
Comparative Example 1
The same operation as in Example 1 was carried out except that potassium carbonate was not added to the reactor.
Hydrogen, carbon monoxide, methane, carbon dioxide, tar-like substances, and carbon residues were obtained as thermal decomposition products of the epoxy substrate (see Table 2). At both temperatures of 675 ° C. and 625 ° C., the yield of carbon residue increased and the yields of carbon dioxide and hydrogen decreased as the amount of potassium carbonate added was increased. The yield of carbon residue was 2% or more, and even when the potassium carbonate was washed away with water, glass fibers and copper foil containing almost no carbon could not be recovered almost completely.
The recovered water absorbed a large amount of hydrogen bromide generated by the decomposition of the flame retardant (see Table 3).

表2 熱分解生成物の組成とそれらの収率(%)

Figure 2012086118
表3 熱分解生成ガス中の臭素量(g)
Figure 2012086118
Table 2 Composition of pyrolysis products and their yield (%)
Figure 2012086118
Table 3 Amount of bromine in pyrolysis product gas (g)
Figure 2012086118

実施例4
実施例1で使用した試料10g、炭酸カリウム20gを1000 cm3の反応器に入れ、実施例1と同様に窒素および過熱水蒸気を流しながら525℃、575℃、625℃および675℃まで昇温し、反応器内部の温度が所定の温度に達してから60分間保持し、その後冷却して生成物を取りだした。反応中に反応器から流出した水とガス生成物に分離し、ガス生成物をガスバックに捕集した。
Example 4
10 g of the sample used in Example 1 and 20 g of potassium carbonate were placed in a 1000 cm 3 reactor and heated to 525 ° C., 575 ° C., 625 ° C. and 675 ° C. while flowing nitrogen and superheated steam in the same manner as in Example 1. The temperature inside the reactor was maintained for 60 minutes after reaching a predetermined temperature, and then cooled to take out the product. During the reaction, water and gas product that flowed out of the reactor were separated, and the gas product was collected in a gas bag.

比較例2
炭酸カリウムを反応器に入れず、それ以外は実施例4と同様に操作した。
実施例4と比較例2とから、次のことがいえる。
炭酸カリウムを添加しない場合(比較例2)、水素、一酸化炭素、およびメタンの収率は、反応温度が高くなるに従って増加した(表4を参照)。反応温度675℃で60分間水蒸気ガス化して6.6%もの炭素残渣が生成物に残り、エポキシ基板は黒色の炭素に全面覆われたガラス繊維および銅箔として回収された。これに対して炭酸カリウムを20g添加すると(実施例4)、反応温度が高くなるに従って水素、一酸化炭素、およびメタンの収率は増加し、炭素残渣の収率は減少した。反応温度625℃以上では炭素残渣の収率はおよそ2%程度であり、水で炭酸カリウムを洗浄すると炭素をほとんど含まないガラス繊維および銅箔をほぼ完全に回収することができた。
炭酸カリウムを添加しない場合、難燃剤の分解によって発生した臭化水素量は反応温度が高くなるに従って増加したが、炭酸カリウムを20g添加すると反応温度が高くなっても発生する臭化水素量の増加を完全に抑制することができた(表5を参照)。
Comparative Example 2
The same operation as in Example 4 was carried out except that potassium carbonate was not added to the reactor.
From Example 4 and Comparative Example 2, the following can be said.
When potassium carbonate was not added (Comparative Example 2), the yields of hydrogen, carbon monoxide, and methane increased as the reaction temperature increased (see Table 4). As a result of steam gasification at a reaction temperature of 675 ° C. for 60 minutes, as much as 6.6% of carbon residue remained in the product, and the epoxy substrate was recovered as glass fiber and copper foil entirely covered with black carbon. In contrast, when 20 g of potassium carbonate was added (Example 4), the yields of hydrogen, carbon monoxide, and methane increased and the yield of carbon residues decreased as the reaction temperature increased. At a reaction temperature of 625 ° C. or higher, the yield of carbon residue was about 2%. When potassium carbonate was washed with water, glass fibers and copper foil containing almost no carbon could be almost completely recovered.
When potassium carbonate was not added, the amount of hydrogen bromide generated by the decomposition of the flame retardant increased as the reaction temperature increased, but when 20 g of potassium carbonate was added, the amount of hydrogen bromide generated increased even when the reaction temperature increased. Was completely suppressed (see Table 5).

表4 熱分解生成物の組成とそれらの収率(%)

Figure 2012086118
表5 熱分解生成ガス中の臭素量(g)
Figure 2012086118
Table 4 Composition of pyrolysis products and their yield (%)
Figure 2012086118
Table 5 Amount of bromine in pyrolysis product gas (g)
Figure 2012086118

実施例5
実施例1で使用した試料10g 、炭酸カリウム、炭酸ナトリウム、および炭酸リチウムを各1.0 gずつ(合計3.0 g)1000 cm3の反応器に入れ、実施例1と同様に窒素ガスおよび水蒸気を流しながら625℃および675℃まで昇温し、60分間保持した。実施例1と同様に反応器から流出した水とガス生成物に分離し、ガス生成物をガスバックに捕集した。
Example 5
10 g of the sample used in Example 1, potassium carbonate, sodium carbonate, and lithium carbonate (1.0 g each) (total 3.0 g) were placed in a 1000 cm 3 reactor, and nitrogen gas and water vapor were allowed to flow as in Example 1. The temperature was raised to 625 ° C. and 675 ° C. and held for 60 minutes. In the same manner as in Example 1, it separated into water and gas product flowing out from the reactor, and the gas product was collected in a gas bag.

比較例3
炭酸カリウム、炭酸ナトリウム、および炭酸リチウムを反応器に入れず、それ以外は実施例5と同様に操作した。
実施例5と比較例3とから、次のことがいえる。
混合炭酸塩を添加しない場合では(比較例3)、水素、一酸化炭素、およびメタンの収率は、あまり増加せず、エポキシ基板は黒色の炭素に全面覆われたガラス繊維および銅箔として回収された。これに対して混合炭酸塩を3.0 g添加すると(実施例5)、反応温度625℃および675℃のいずれの場合でも、水素、一酸化炭素、メタン、および二酸化炭素の収率が増加した。一方、炭素残渣の収率が顕著に低下し、特に675℃では1%程度となり、水で混合炭酸塩を洗浄すると炭素をほとんど含まないガラス繊維および銅箔をほぼ完全に回収することができた。ガラス繊維を機械的に叩くと容易に銅箔が剥がれおちるので、全ての銅箔をガラス繊維から剥離させた後、ガラス繊維と銅箔を比重差で分離しそれぞれを回収した。
炭酸塩を添加しない場合、エポキシ基板に含まれる難燃剤の分解によって回収した水には多くの臭化水素が検出され、臭素の回収量は反応温度が高くなるに従って増加した。一方3.0gの混合炭酸塩を添加すると、回収水に含まれる臭素濃度は劇的に減少した。
Comparative Example 3
The same operation as in Example 5 was conducted except that potassium carbonate, sodium carbonate, and lithium carbonate were not added to the reactor.
From Example 5 and Comparative Example 3, the following can be said.
In the case where the mixed carbonate was not added (Comparative Example 3), the yields of hydrogen, carbon monoxide, and methane did not increase so much, and the epoxy substrate was recovered as glass fiber and copper foil covered entirely with black carbon. It was done. In contrast, when 3.0 g of mixed carbonate was added (Example 5), the yields of hydrogen, carbon monoxide, methane, and carbon dioxide increased at both reaction temperatures of 625 ° C. and 675 ° C. On the other hand, the yield of carbon residue decreased significantly, especially about 1% at 675 ° C. When the mixed carbonate was washed with water, glass fibers and copper foil containing almost no carbon could be almost completely recovered. . Since the copper foil easily peels off when the glass fiber is mechanically hit, after separating all the copper foil from the glass fiber, the glass fiber and the copper foil were separated by a specific gravity difference and recovered.
When no carbonate was added, a large amount of hydrogen bromide was detected in the water recovered by decomposition of the flame retardant contained in the epoxy substrate, and the amount of bromine recovered increased as the reaction temperature increased. On the other hand, when 3.0 g of mixed carbonate was added, the bromine concentration in the recovered water decreased dramatically.

表6 熱分解生成物の組成とそれらの収率(%)

Figure 2012086118
表7 熱分解生成ガス中の臭素量(g)
Figure 2012086118
Table 6 Composition of pyrolysis products and their yield (%)
Figure 2012086118
Table 7 Amount of bromine in pyrolysis product gas (g)
Figure 2012086118

本発明は,次のように記載することができる。
(1)嫌気性ガス雰囲気中にて、過熱水蒸気を導入させると共に反応器内に収容したプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物をアルカリ塩と接触させて前記プラスチックを水蒸気ガス化させるプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物の処理方法であって、前記水蒸気ガス化反応後に繊維状のガラス繊維を回収することができることを特徴とするプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物の処理方法。
(2)アルカリ塩が、融点が700℃以上の固体状のアルカリ塩であり、前記固体状のアルカリ塩の量はプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を基準にして、0.001〜20質量倍である(1)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物の処理方法。
(3)アルカリ塩が、融点が600℃以下の液体状のアルカリ塩であり、前記液体状のアルカリ塩の量はプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を基準にして、20質量倍以下である(1)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物の処理方法。
The present invention can be described as follows.
(1) In an anaerobic gas atmosphere, superheated steam is introduced and a plastic layer contained in the reactor is brought into contact with the waste of an electrical or electronic device or electronic component incorporating a circuit board with an alkali salt. A method for treating waste of electrical and electronic equipment or electronic parts having a plastic layer for vaporizing the plastic into steam and incorporating a circuit board, wherein fiber glass fibers are collected after the steam gasification reaction A method for treating waste of electrical and electronic equipment or electronic parts having a plastic layer and having a circuit board incorporated therein.
(2) The alkali salt is a solid alkali salt having a melting point of 700 ° C. or more, and the amount of the solid alkali salt has a plastic layer and is a waste of electrical and electronic equipment or electronic components incorporating a circuit board A waste disposal method for electrical and electronic equipment or electronic parts having a plastic layer according to (1), which is 0.001 to 20 times the mass of the circuit board and incorporating a circuit board.
(3) The alkali salt is a liquid alkali salt having a melting point of 600 ° C. or less, and the amount of the liquid alkali salt has a plastic layer, and is a waste of electrical and electronic equipment or electronic components incorporating a circuit board. A waste disposal method for electrical and electronic equipment or electronic parts having a plastic layer according to (1), which is 20 mass times or less based on the above, and incorporating a circuit board.

(4)アルカリ塩が、液体状の炭酸リチウム、液体状の炭酸ナトリウム、及び液体状の炭酸カリウムから選ばれる少なくとも1種である(3)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物の処理方法。
(5)アルカリ塩が、固体の炭酸カリウムである(2)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物の処理方法。
(6)反応器内に収容した液体状のアルカリ塩へ、プラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を投入する(3)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物の処理方法。
(7)反応器がロータリーキルン又は流動層炉である(1)記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物の処理方法。
(8)窒素ガス及び過熱水蒸気雰囲気中にて、反応器内に収容したプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を炭酸塩と接触させて前記プラスチックを熱分解ガス化し、次いで前記熱分解ガス化物から水素ガスを分離することを特徴とする水素ガスの製造方法。
(9)嫌気性ガス雰囲気中にて、過熱水蒸気を導入させると共に反応器内に収容したプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物をアルカリ塩と接触させて前記プラスチックを水蒸気ガス化させるプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物の水蒸気ガス化処理方法。

(4) The electricity having the plastic layer according to (3), wherein the alkali salt is at least one selected from liquid lithium carbonate, liquid sodium carbonate, and liquid potassium carbonate, and incorporating a circuit board Waste disposal method for electronic equipment or electronic parts.
(5) A method for treating waste of electrical and electronic equipment or electronic parts having a plastic layer according to (2), wherein the alkali salt is solid potassium carbonate and incorporating a circuit board.
(6) The liquid alkali salt housed in the reactor has a plastic layer, and has a plastic layer as described in (3), in which waste of electrical and electronic equipment or electronic components incorporating a circuit board is placed, A method for treating waste of electrical and electronic equipment or electronic components incorporating a circuit board.
(7) A method for treating a waste of electrical or electronic equipment or electronic parts having the plastic layer according to (1), wherein the reactor is a rotary kiln or a fluidized bed furnace, and incorporating a circuit board.
(8) In a nitrogen gas and superheated steam atmosphere, the plastic layer contained in the reactor is brought into contact with the carbonate of a waste of electrical / electronic equipment or electronic components incorporating a circuit board to heat the plastic. A method for producing hydrogen gas, characterized in that hydrogen gas is separated from the pyrolysis gasification product after being cracked and gasified.
(9) In an anaerobic gas atmosphere, superheated steam is introduced and a plastic layer is contained in the reactor, and the waste of electrical / electronic equipment or electronic parts incorporating a circuit board is brought into contact with an alkali salt. A method for steaming gasification of waste of electrical and electronic equipment or electronic parts having a plastic layer for steaming the plastic into a circuit board and incorporating a circuit board.

Claims (8)

嫌気性ガス雰囲気中にて、過熱水蒸気を導入させると共に反応器内に収容したプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物をアルカリ塩と接触させて前記プラスチックを水蒸気ガス化させるプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維を回収する方法であって、前記アルカリ塩が、(1)融点が前記水蒸気ガス化反応温度以上の固体状のアルカリ塩、又は(2)融点が前記水蒸気ガス化反応温度以下のアルカリ塩の液体状物であることを特徴とするプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。 In an anaerobic gas atmosphere, superheated steam is introduced and a plastic layer is housed in the reactor, and the waste of electrical / electronic equipment or electronic components incorporating a circuit board is brought into contact with an alkali salt to remove the plastic. A method for recovering metals and glass fibers from wastes of electrical and electronic equipment or electronic components having a plastic layer to be converted into water vapor gas and incorporating a circuit board, wherein the alkali salt (1) has a melting point of the water vapor gas A solid alkali salt having a temperature equal to or higher than the gasification reaction temperature, or (2) an electric circuit having a plastic layer, wherein the melting point is a liquid substance of an alkali salt having a melting point equal to or lower than the water vapor gasification temperature, A method for recovering metals and glass fibers from waste of electronic equipment or electronic components. 融点が前記水蒸気ガス化反応温度以上の固体状のアルカリ塩の量は、プラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を基準にして、0.001〜20質量倍である請求項1記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。 The amount of the solid alkali salt having a melting point equal to or higher than the steam gasification reaction temperature is 0.001 to 20 mass based on the waste of electrical and electronic equipment or electronic components having a plastic layer and incorporating a circuit board. A method for recovering metal and glass fiber from waste of electrical and electronic equipment or electronic parts having a plastic layer according to claim 1 and incorporating a circuit board. 融点が前記水蒸気ガス化反応温度以下のアルカリ塩の液体状物の量は、プラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を基準にして、10質量倍以下である請求項1記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。 The amount of the alkali salt liquid material having a melting point equal to or lower than the steam gasification reaction temperature is 10 mass times or less based on the waste of electrical and electronic equipment or electronic parts having a plastic layer and incorporating a circuit board. A method for recovering metal and glass fiber from waste of electrical and electronic equipment or electronic components having a plastic layer according to claim 1 and incorporating a circuit board. アルカリ塩が、液体状の炭酸リチウム、液体状の炭酸ナトリウム、及び液体状の炭酸カリウムから選ばれる少なくとも1種である請求項1又は3記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。 4. An electronic device having a plastic layer and incorporating a circuit board according to claim 1, wherein the alkali salt is at least one selected from liquid lithium carbonate, liquid sodium carbonate, and liquid potassium carbonate. A method for recovering metals and glass fibers from the waste of equipment or electronic components. アルカリ塩が、固体状の炭酸リチウム、固体状の炭酸ナトリウム、及び固体状の炭酸カリウムから選ばれる少なくとも1種である請求項1又は2記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。 3. An electronic device having a plastic layer according to claim 1 or 2, wherein the alkali salt is at least one selected from solid lithium carbonate, solid sodium carbonate, and solid potassium carbonate. A method for recovering metals and glass fibers from the waste of equipment or electronic components. 反応器内に収容した液体状のアルカリ塩へ、プラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物を投入する請求項1又は3記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。 A circuit having a plastic layer according to claim 1 or 3, wherein a waste of electrical or electronic equipment or electronic parts having a plastic layer is placed in a liquid alkali salt contained in a reactor and a circuit board is incorporated. A method for recovering metals and glass fibers from wastes of electrical and electronic equipment or electronic components incorporating a substrate. 固体状の炭酸塩を、反応器内に収容したププラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物にふりかける請求項1又は2記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。 3. A plastic layer according to claim 1 or 2, comprising a plastic layer containing solid carbonate contained in a reactor and sprinkled on waste of electrical and electronic equipment or electronic components incorporating a circuit board. A method for recovering metals and glass fibers from wastes of electrical and electronic equipment or electronic components incorporating a substrate. 反応器がロータリーキルン又は流動層炉である請求項1記載のプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維の回収方法。



The method for recovering metals and glass fibers from wastes of electrical and electronic equipment or electronic parts having a plastic layer and having a circuit board, wherein the reactor is a rotary kiln or a fluidized bed furnace.



JP2010233146A 2010-10-16 2010-10-16 Method for recovering resources from used electrical and electronic equipment using water vapor gasification reaction in the presence of alkali salts Expired - Fee Related JP5874061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233146A JP5874061B2 (en) 2010-10-16 2010-10-16 Method for recovering resources from used electrical and electronic equipment using water vapor gasification reaction in the presence of alkali salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233146A JP5874061B2 (en) 2010-10-16 2010-10-16 Method for recovering resources from used electrical and electronic equipment using water vapor gasification reaction in the presence of alkali salts

Publications (2)

Publication Number Publication Date
JP2012086118A true JP2012086118A (en) 2012-05-10
JP5874061B2 JP5874061B2 (en) 2016-03-01

Family

ID=46258354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233146A Expired - Fee Related JP5874061B2 (en) 2010-10-16 2010-10-16 Method for recovering resources from used electrical and electronic equipment using water vapor gasification reaction in the presence of alkali salts

Country Status (1)

Country Link
JP (1) JP5874061B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216944A (en) * 2012-04-09 2013-10-24 National Institute Of Advanced Industrial Science & Technology Method for recovering metal from circuit board and metal recovering apparatus
JP2015003287A (en) * 2013-06-19 2015-01-08 国立大学法人 千葉大学 Method for separating core and resin of element
CN110590188A (en) * 2019-08-29 2019-12-20 泰山玻璃纤维邹城有限公司 Processing method of waste glass fiber powder
CN111171871A (en) * 2020-03-04 2020-05-19 江西昌昱实业有限公司 Process for preparing synthetic gas or fuel gas from waste circuit board resin
WO2020175350A1 (en) * 2019-02-28 2020-09-03 三菱マテリアル株式会社 Method for treating waste electronic substrate
CN113560319A (en) * 2021-07-21 2021-10-29 中南大学 Solvent gasification pyrolysis device and method for waste circuit board
US11746036B2 (en) * 2018-11-05 2023-09-05 University Of Tennessee Research Foundation Molten salt assisted pyrolysis recycling of glass fiber reinforced polymer composites
JP7386304B1 (en) 2022-10-06 2023-11-24 株式会社ミライ化成 Method for producing recycled reinforcing fibers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188674A (en) * 1993-12-27 1995-07-25 Mitsubishi Chem Corp Method for heat decomposition of synthetic halogenated resin
JPH0871521A (en) * 1994-09-05 1996-03-19 Hitachi Chem Co Ltd Treatment of waste printed circuit board
JP2001514680A (en) * 1997-03-03 2001-09-11 イヴァン,イング マダール Method for thermal and / or catalytic decomposition and / or depolymerization of lower organic substances and apparatus for implementing the method
JP2003290755A (en) * 2002-04-01 2003-10-14 Watabe:Kk Method for treating waste printed circuit board
JP2008194618A (en) * 2007-02-13 2008-08-28 Kogi Corp Method of continuously recovering valuable metal from waste integrated circuit board
JP2009226302A (en) * 2008-03-21 2009-10-08 Nippon Magnetic Dressing Co Ltd Method for treating waste printed circuit board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188674A (en) * 1993-12-27 1995-07-25 Mitsubishi Chem Corp Method for heat decomposition of synthetic halogenated resin
JPH0871521A (en) * 1994-09-05 1996-03-19 Hitachi Chem Co Ltd Treatment of waste printed circuit board
JP2001514680A (en) * 1997-03-03 2001-09-11 イヴァン,イング マダール Method for thermal and / or catalytic decomposition and / or depolymerization of lower organic substances and apparatus for implementing the method
JP2003290755A (en) * 2002-04-01 2003-10-14 Watabe:Kk Method for treating waste printed circuit board
JP2008194618A (en) * 2007-02-13 2008-08-28 Kogi Corp Method of continuously recovering valuable metal from waste integrated circuit board
JP2009226302A (en) * 2008-03-21 2009-10-08 Nippon Magnetic Dressing Co Ltd Method for treating waste printed circuit board

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216944A (en) * 2012-04-09 2013-10-24 National Institute Of Advanced Industrial Science & Technology Method for recovering metal from circuit board and metal recovering apparatus
JP2015003287A (en) * 2013-06-19 2015-01-08 国立大学法人 千葉大学 Method for separating core and resin of element
US11746036B2 (en) * 2018-11-05 2023-09-05 University Of Tennessee Research Foundation Molten salt assisted pyrolysis recycling of glass fiber reinforced polymer composites
WO2020175350A1 (en) * 2019-02-28 2020-09-03 三菱マテリアル株式会社 Method for treating waste electronic substrate
JP2020138141A (en) * 2019-02-28 2020-09-03 三菱マテリアル株式会社 Processing method of waste electronic substrate
CN110590188A (en) * 2019-08-29 2019-12-20 泰山玻璃纤维邹城有限公司 Processing method of waste glass fiber powder
CN111171871A (en) * 2020-03-04 2020-05-19 江西昌昱实业有限公司 Process for preparing synthetic gas or fuel gas from waste circuit board resin
CN111171871B (en) * 2020-03-04 2021-05-18 梵境新能源科技(浙江)有限公司 Process for preparing synthetic gas or fuel gas from waste circuit board resin
CN113560319A (en) * 2021-07-21 2021-10-29 中南大学 Solvent gasification pyrolysis device and method for waste circuit board
CN113560319B (en) * 2021-07-21 2022-04-29 中南大学 Solvent gasification pyrolysis device and method for waste circuit board
JP7386304B1 (en) 2022-10-06 2023-11-24 株式会社ミライ化成 Method for producing recycled reinforcing fibers

Also Published As

Publication number Publication date
JP5874061B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5874061B2 (en) Method for recovering resources from used electrical and electronic equipment using water vapor gasification reaction in the presence of alkali salts
Xiu et al. A novel treatment of waste printed circuit boards by low-temperature near-critical aqueous ammonia: Debromination and preparation of nitrogen-containing fine chemicals
Shen et al. Waste-to-energy: Dehalogenation of plastic-containing wastes
Liu et al. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water
Andooz et al. A comprehensive review on pyrolysis of E-waste and its sustainability
Sanito et al. Application of plasma technology for treating e-waste: A review
Shen et al. Co-pyrolysis of E-waste nonmetallic residues with biowastes
Mankhand et al. Pyrolysis of printed circuit boards
Xiu et al. Application of critical water-alcohol composite medium to treat waste printed circuit boards: Oil phase products characteristic and debromination
JP2019507682A5 (en)
CN104479756A (en) Water-vapor gasification separation apparatus and method for waste printed circuit boards
Risco et al. Chemical recovery of waste electrical and electronic equipment by microwave-assisted pyrolysis: A review
Hense et al. PYROLYSIS OF WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT (WEEE) FOR RECOVERING METALS AND ENERGY: PREVIOUS ACHIEVEMENTS AND CURRENT APPROACHES.
JP2022506131A (en) Porous composites capable of generating electric arcs in microwave fields, their preparation methods, and their use
Yao et al. Thermochemical conversion of waste printed circuit boards: Thermal behavior, reaction kinetics, pollutant evolution and corresponding controlling strategies
CN100518969C (en) Low-temperature vacuum themal dissociation waste printed wiring board preprocessing method
CN111014229B (en) Pyrolysis recovery device utilizing waste heat of fuel cell and working method
CN103386314A (en) Method for preparing photocatalyst with visible light response by mechanochemical treatment on polybrominated diphenyl ether solid waste
CN115228905B (en) Method for treating nonmetallic materials in waste circuit boards
Sahu et al. CO2 based co-gasification of printed circuit board with high ash coal
JP7370731B2 (en) Method for producing pyrolysis oil
Xing et al. A novel process for detoxification of BERs in waste PCBs
Bose et al. Recent trends in valorization of non-metallic ingredients of waste printed circuit board: a review
JP2015160163A (en) Recovery method and recovery system of valuable from waste electronic apparatus or the like by steam gasification
Kameda et al. Effect of a phase-transfer catalyst on the chemical modification of poly (vinyl chloride) by substitution with thiocyanate as a nucleophile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R150 Certificate of patent or registration of utility model

Ref document number: 5874061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees