JP7370731B2 - Method for producing pyrolysis oil - Google Patents

Method for producing pyrolysis oil Download PDF

Info

Publication number
JP7370731B2
JP7370731B2 JP2019091822A JP2019091822A JP7370731B2 JP 7370731 B2 JP7370731 B2 JP 7370731B2 JP 2019091822 A JP2019091822 A JP 2019091822A JP 2019091822 A JP2019091822 A JP 2019091822A JP 7370731 B2 JP7370731 B2 JP 7370731B2
Authority
JP
Japan
Prior art keywords
nitrogen
alkaline earth
earth metal
pyrolysis oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019091822A
Other languages
Japanese (ja)
Other versions
JP2019203124A (en
Inventor
賢二 朝見
春樹 谷
弥生 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENVIRONMENT ENERGY CO., LTD.
Original Assignee
ENVIRONMENT ENERGY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENVIRONMENT ENERGY CO., LTD. filed Critical ENVIRONMENT ENERGY CO., LTD.
Publication of JP2019203124A publication Critical patent/JP2019203124A/en
Application granted granted Critical
Publication of JP7370731B2 publication Critical patent/JP7370731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

特許法第30条第2項適用 平成30年10月17日、第48回石油・石油化学討論会予稿集 (刊行物等) 平成30年11月22日、日本エネルギー学会西部支部第3回学性・若手研究発表会Application of Article 30, Paragraph 2 of the Patent Act October 17, 2018, Proceedings of the 48th Petroleum and Petrochemical Symposium (Publications, etc.) November 22, 2018, 3rd Conference of the Western Branch of the Japan Institute of Energy Gender / Young Researcher Presentation

本発明は、熱分解油の製造方法、詳しくは、窒素を含有するプラスチックから低窒素熱分解油を得る熱分解油の製造方法に関する。 The present invention relates to a method for producing pyrolysis oil, and more particularly, to a method for producing pyrolysis oil for obtaining low nitrogen pyrolysis oil from nitrogen-containing plastics.

現在、プラスチックは日常生活のあらゆる分野に浸透しているとともに、高度技術を支えるのに不可欠な素材の一つであるが、生産量の増加とともにその廃棄物の処理対策が問題視されている。プラスチック生産量の大部分を占める熱可塑性プラスチックは、ポリスチレン系樹脂、ポリオレフィン系樹脂(例えばポリエチレン、ポリプロピレン等)等であり、これらの混合プラスチック廃棄物の廃棄物対策として、マテリアルリサイクル、サーマルリサイクルの開発と単純焼却、埋め立てなどの諸政策が検討されている。 Currently, plastic has permeated every field of daily life and is one of the essential materials that support advanced technology, but as the amount of production increases, measures to dispose of its waste are becoming an issue. Thermoplastic plastics, which account for the majority of plastic production, are polystyrene resins, polyolefin resins (e.g. polyethylene, polypropylene, etc.), and the development of material recycling and thermal recycling is needed to deal with the waste of these mixed plastics. Various policies such as simple incineration and landfilling are being considered.

特に近年、地球環境問題の高まりにより、廃棄物の適正処分、エネルギーの有効利用、リサイクルといった問題が強く叫ばれていることを背景に、廃プラスチックを再利用する様々な方法が研究開発されている。
特に、再利用方法のなかでも、プラスチック廃材を熱分解し、ガス、オイル等を回収する熱分解油化技術が注目され、その装置及び方法が数多く提案されている。例えば、特許文献1には、スチレン系樹脂を乾留熱分解して燃料用の油を取得し、エネルギーとして再利用する熱分解油化が開示されている。特許文献1に記載の技術は、周期率表の第2a族アルカリ土類金属、第1b族銅族金属、第1a族アルカリ金属から選ばれる金属化合物を熱分解触媒として存在させた熱分解槽にてスチレン系樹脂を熱分解するものである。
また、非特許文献1には、廃FCC触媒を用いた接触分解油化が開示されている。
Particularly in recent years, with the rise in global environmental issues, issues such as proper disposal of waste, effective use of energy, and recycling have been strongly emphasized, and various methods of reusing waste plastics have been researched and developed. .
In particular, among the reuse methods, pyrolysis technology that pyrolyzes plastic waste and recovers gas, oil, etc. has attracted attention, and many devices and methods have been proposed. For example, Patent Document 1 discloses pyrolysis to oil in which styrene-based resin is pyrolyzed by carbonization to obtain fuel oil and reused as energy. The technology described in Patent Document 1 is a pyrolysis tank in which a metal compound selected from group 2a alkaline earth metals, group 1b copper group metals, and group 1a alkali metals of the periodic table is present as a pyrolysis catalyst. This method thermally decomposes styrene resin.
Further, Non-Patent Document 1 discloses catalytic cracking to oil using a waste FCC catalyst.

特開平8-283745号公報Japanese Patent Application Publication No. 8-283745

山脇隆、外2名、「使用済家電混合プラスチック石油化学原料化プロセスの開発」、第23回廃棄物資源循環学会研究発表会要旨集、一般社団法人廃棄物資源循環学会、2012年、セッションID:B6-1Takashi Yamawaki, 2 others, "Development of a process for converting used home appliance mixed plastics into petrochemical raw materials", Abstracts of the 23rd Research Presentation of the Japan Society for Waste and Resource Recycling, Japan Society for Waste and Resource Recycling, 2012, Session ID :B6-1

プラスチック廃材にはプラスチックの種類により、分子構造中に窒素が存在するものがある。分子骨格中に窒素が存在するプラスチックは、熱分解により液状化することができたとしても、熱分解油中に窒素を多く含有する。窒素を多く含有する熱分解油は、燃焼により窒素酸化物が発生し、大気汚染、温室効果、オゾン層の破壊等の環境問題を引き起こす。このため、熱分解油中の窒素の含有量を極力低減させる必要がある。
しかしながら、引用文献1に記載の技術によれば、スチレン系樹脂を分解油の原料としており、スチレン系樹脂の構造中に窒素が含まれていない。このため、窒素を含有しない廃プラスチックを油化する技術には有用であるものの、様々な種類が存在するプラスチック廃材には不適な技術である。
また、非特許文献1に記載の技術では、廃FCC触媒を用いているが、廃FCC触媒を用いた場合でも、分解油中には多量の窒素分が残留しており、燃焼による環境問題を解消することができない。
Some plastic waste materials contain nitrogen in their molecular structure, depending on the type of plastic. Even if plastics containing nitrogen in their molecular skeletons can be liquefied by thermal decomposition, the pyrolysis oil will contain a large amount of nitrogen. Pyrolysis oil containing a large amount of nitrogen generates nitrogen oxides when burned, causing environmental problems such as air pollution, the greenhouse effect, and the destruction of the ozone layer. Therefore, it is necessary to reduce the nitrogen content in the pyrolysis oil as much as possible.
However, according to the technique described in Cited Document 1, a styrene resin is used as a raw material for cracked oil, and the structure of the styrene resin does not contain nitrogen. For this reason, although this technology is useful for converting waste plastics that do not contain nitrogen into oil, it is not suitable for processing plastic waste materials of which there are various types.
In addition, the technology described in Non-Patent Document 1 uses a waste FCC catalyst, but even when a waste FCC catalyst is used, a large amount of nitrogen remains in the cracked oil, causing environmental problems due to combustion. cannot be resolved.

そこで、発明者は、熱分解触媒・添加剤に着目し、廃FCC触媒を用いず、アルカリ土類金属化合物、特にカルシウム化合物、バリウム化合物、ストロンチウム化合物を用いることにより、熱分解油中の窒素含有量を抑えることができることを知見し、本発明を完成させた。 Therefore, the inventor focused on pyrolysis catalysts and additives, and by using alkaline earth metal compounds, especially calcium compounds, barium compounds, and strontium compounds, without using waste FCC catalysts, the inventors succeeded in reducing nitrogen content in pyrolysis oil. They discovered that the amount could be reduced and completed the present invention.

本発明は、窒素を含有するプラスチックから低窒素熱分解油を得る熱分解油の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing pyrolysis oil that obtains low-nitrogen pyrolysis oil from nitrogen-containing plastics.

請求項1に記載の発明は、窒素を含有するプラスチックを不活性ガス雰囲気中で熱分解することにより熱分解油を得る熱分解油の製造方法であって、前記プラスチックの熱分解は、廃FCC触媒を用いずに、アルカリ土類金属化合物を用いることで、熱分解時に前記プラスチックに含有された窒素を選択的にアンモニアに変換する熱分解油の製造方法である。 The invention according to claim 1 is a method for producing pyrolysis oil, in which pyrolysis oil is obtained by pyrolysis of nitrogen-containing plastic in an inert gas atmosphere , wherein the pyrolysis of the plastic is performed by pyrolysis of waste FCC . This is a method for producing pyrolysis oil in which nitrogen contained in the plastic is selectively converted into ammonia during pyrolysis by using an alkaline earth metal compound without using a catalyst .

請求項2に記載の発明は、前記アルカリ土類金属化合物が、カルシウム化合物、バリウム化合物またはストロンチウム化合物である請求項1に記載の熱分解油の製造方法である。 The invention according to claim 2 is the method for producing pyrolysis oil according to claim 1, wherein the alkaline earth metal compound is a calcium compound, a barium compound, or a strontium compound.

請求項3に記載の発明は、前記アルカリ土類金属化合物は、前記プラスチック100gに対し4g以上存在させる請求項1又は請求項2に記載の熱分解油の製造方法である。 The invention according to claim 3 is the method for producing pyrolysis oil according to claim 1 or 2, wherein the alkaline earth metal compound is present in an amount of 4 g or more per 100 g of the plastic.

請求項4に記載の発明は、前記窒素を含有するプラスチックは、ABS樹脂である請求項1~請求項3のいずれか1項に記載の熱分解油の製造方法である。 The invention according to claim 4 is the method for producing pyrolysis oil according to any one of claims 1 to 3, wherein the nitrogen-containing plastic is an ABS resin.

請求項5に記載の発明は、前記熱分解の後、吸着剤による吸着処理を施すことにより脱窒素処理を行う請求項1~請求項4のいずれか1項に記載の熱分解油の製造方法である。 The invention according to claim 5 is the method for producing pyrolyzed oil according to any one of claims 1 to 4, wherein after the thermal decomposition, denitrification treatment is performed by performing adsorption treatment with an adsorbent. It is.

窒素を含むプラスチック(たとえば、ABS樹脂(アクリロニトリル、ブタジエン、スチレン共重合合成樹脂))をアルカリ土類金属化合物の存在下にて加熱し、熱分解油を得た場合、熱分解油の収率の低下と、アンモニアと残渣の収率が増加する。このことから、アルカリ土類金属化合物の有する塩基性に起因して、プラスチックからの水素原子の引き抜きやアンモニアの発生が促進され、分解油中の窒素が除去されると考えられる。特に、ABS樹脂の場合、アルカリ土類金属化合物の存在下にて加熱し、熱分解油を得た場合、熱分解油の収率の低下と、アンモニアと残渣の収率が増加する。
本発明によれば、アルカリ土類金属化合物を用いることで、窒素を含有するプラスチックから分解油を製造した場合に、高い脱窒素効果が得られる。このため、窒素分が原因となる環境問題の抑制に寄与することができる。
When a plastic containing nitrogen (for example, ABS resin (acrylonitrile, butadiene, styrene copolymer synthetic resin)) is heated in the presence of an alkaline earth metal compound to obtain pyrolysis oil, the yield of pyrolysis oil is As it decreases, the yield of ammonia and residue increases. From this, it is considered that due to the basicity of the alkaline earth metal compound, the extraction of hydrogen atoms from the plastic and the generation of ammonia are promoted, and nitrogen in the cracked oil is removed. In particular, in the case of ABS resin, when pyrolysis oil is obtained by heating in the presence of an alkaline earth metal compound, the yield of pyrolysis oil decreases and the yield of ammonia and residue increases.
According to the present invention, by using an alkaline earth metal compound, a high denitrification effect can be obtained when cracked oil is produced from nitrogen-containing plastic. Therefore, it can contribute to suppressing environmental problems caused by nitrogen content.

ここで、アルカリ土類金属化合物は、アルカリ土類金属(ベリリウム・マグネシウム・カルシウム・ストロンチウム・バリウム・ラジウム)の炭酸塩、酸化物等が挙げられるが、アルカリ土類金属の酸化物の方が好ましい。なお、酸化ベリリウムは毒性があるという問題があるため、好ましくは、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化ストロンチウムである。特に好ましいのは、酸化カルシウム、酸化バリウム、酸化ストロンチウムである。
なお、アルカリ土類金属化合物には、たとえば、ドロマイトやハイドロタルサイト等のアルカリ土類金属同士の複合物やアルカリ土類金属を含む複合物が含まれる。
Here, examples of the alkaline earth metal compound include carbonates and oxides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium), but oxides of alkaline earth metals are preferable. . Since beryllium oxide has a problem of toxicity, magnesium oxide, calcium oxide, barium oxide, and strontium oxide are preferable. Particularly preferred are calcium oxide, barium oxide, and strontium oxide.
Note that the alkaline earth metal compounds include, for example, composites of alkaline earth metals such as dolomite and hydrotalcite, and composites containing alkaline earth metals.

アルカリ土類金属化合物は、処理するプラスチック100gに対し4g以上存在させることが好ましい。処理するプラスチック100gに対しアルカリ土類金属化合物の存在量が4gに満たない場合、十分な脱窒素効果が得られない。より好ましくは、処理するプラスチック100gに対し、アルカリ土類金属化合物の存在量が8g以上である。ただし、処理するプラスチックの種類、成分割合、処理温度等により、液状化した際の粘性が異なるため、アルカリ土類金属化合物の存在量の最大値は適宜調整される。 The alkaline earth metal compound is preferably present in an amount of 4 g or more per 100 g of plastic to be treated. If the amount of alkaline earth metal compound present is less than 4 g per 100 g of plastic to be treated, a sufficient denitrification effect cannot be obtained. More preferably, the amount of alkaline earth metal compound present is 8 g or more per 100 g of plastic to be treated. However, since the viscosity when liquefied varies depending on the type of plastic to be treated, component ratio, treatment temperature, etc., the maximum amount of the alkaline earth metal compound present is adjusted as appropriate.

本発明によれば、アルカリ土類金属化合物を用いることで、窒素を含有するプラスチックから分解油を製造した場合に、高い脱窒素効果が得られる。このため、窒素分が原因となる環境問題の抑制に寄与することができる。 According to the present invention, by using an alkaline earth metal compound, a high denitrification effect can be obtained when cracked oil is produced from nitrogen-containing plastic. Therefore, it can contribute to suppressing environmental problems caused by nitrogen content.

本発明の実施形態に係る熱分解油の製造装置の概略図を示す。1 shows a schematic diagram of an apparatus for producing pyrolysis oil according to an embodiment of the present invention. (a)アルカリ土類金属化合物無添加の場合とアルカリ土類金属化合物をそれぞれ2g添加した場合における原料のABS樹脂から生成された生成物組成を示すグラフである。(b)アルカリ土類金属化合物無添加の場合とアルカリ土類金属化合物をそれぞれ2g添加した場合での窒素移行率を示すグラフである。(a) It is a graph showing the composition of a product produced from the raw material ABS resin in the case where no alkaline earth metal compound is added and in the case where 2 g of an alkaline earth metal compound is added. (b) It is a graph showing the nitrogen transfer rate in the case where no alkaline earth metal compound is added and in the case where 2 g of an alkaline earth metal compound is added. アルカリ土類金属化合物を2g添加した場合の分解油のクロマトグラムである。This is a chromatogram of cracked oil when 2g of an alkaline earth metal compound is added. (a)酸化バリウムを16g添加して得られた熱分解油に市販の吸着剤を1g添加し脱窒素処理を行う前の窒素濃度を示すグラフである。(b)酸化バリウムを16g添加して得られた熱分解油に市販の吸着剤を1g添加し常温にて脱窒素処理を行った後の窒素濃度を示すグラフである。(a) It is a graph showing the nitrogen concentration before denitrification treatment is performed by adding 1 g of a commercially available adsorbent to pyrolysis oil obtained by adding 16 g of barium oxide. (b) It is a graph showing the nitrogen concentration after adding 1 g of a commercially available adsorbent to pyrolysis oil obtained by adding 16 g of barium oxide and performing denitrification treatment at room temperature. (a)酸化バリウムを16g添加して得られた熱分解油に市販の吸着剤を1g添加し脱窒素処理を行う前の窒素濃度を示すグラフである。(b)酸化バリウムを16g添加して得られた熱分解油に市販の吸着剤を1g添加し80℃にて脱窒素処理を行った後の窒素濃度を示すグラフである。(a) It is a graph showing the nitrogen concentration before denitrification treatment is performed by adding 1 g of a commercially available adsorbent to pyrolysis oil obtained by adding 16 g of barium oxide. (b) It is a graph showing the nitrogen concentration after adding 1 g of a commercially available adsorbent to pyrolysis oil obtained by adding 16 g of barium oxide and performing denitrification treatment at 80°C. (a)酸化カルシウムを0~4g添加した場合の生成物収率を示すグラフである。(b)酸化カルシウムを0~4g添加した場合の窒素移行率を示すグラフである。(a) It is a graph showing the product yield when 0 to 4 g of calcium oxide is added. (b) is a graph showing the nitrogen transfer rate when 0 to 4 g of calcium oxide is added. (a)酸化バリウムを0~16g添加した場合の生成物収率を示すグラフである。(b)酸化バリウムを0~16g添加した場合の窒素移行率を示すグラフである。(a) is a graph showing the product yield when 0 to 16 g of barium oxide is added. (b) is a graph showing the nitrogen transfer rate when 0 to 16 g of barium oxide is added.

以下、本発明について具体的に説明する。 The present invention will be explained in detail below.

(熱分解油の製造装置)
図1に示すように、本発明の実施形態に係る熱分解油の製造装置10は大きく、オートクレーブ型反応装置11と、冷却装置12から構成される。
(Pyrolysis oil production equipment)
As shown in FIG. 1, a pyrolysis oil manufacturing apparatus 10 according to an embodiment of the present invention is large and includes an autoclave type reaction device 11 and a cooling device 12.

オートクレーブ型反応装置11は、セミバッチ式で略立方体形状に構成された空間領域からなる内部空間に形成されている。内部空間には、原料とアルカリ土類金属化合物とが投入され、図示しない加熱装置にて原料とアルカリ土類金属化合物とが加熱される。
また、オートクレーブ型反応装置11には攪拌機11aが設けられている。攪拌機11aは、オートクレーブ型反応装置11の外部にモータが設けられ、モータから撹拌棒がオートクレーブ型反応装置11の内部空間まで伸び、モータにより撹拌棒が回転することにより原料とアルカリ土類金属化合物とを撹拌するものである。
そして、原料とアルカリ土類金属化合物とがヘリウム雰囲気下にて加熱されるために、オートクレーブ型反応装置11の上部にはヘリウムガスを供給するためのヘリウムガス供給口11bが設けられている。また、原料が熱により分解されて発生したガス状態の生成物とヘリウムガスとを、内部空間から冷却装置12に供給する連通管11cが、オートクレーブ型反応装置11の上部に設けられている。
The autoclave type reactor 11 is a semi-batch type reactor and is formed in an internal space consisting of a space region configured in a substantially cubic shape. A raw material and an alkaline earth metal compound are put into the internal space, and the raw material and the alkaline earth metal compound are heated by a heating device (not shown).
Further, the autoclave type reaction device 11 is provided with a stirrer 11a. In the stirrer 11a, a motor is provided outside the autoclave type reaction device 11, and a stirring rod extends from the motor to the internal space of the autoclave type reaction device 11, and as the stirring rod is rotated by the motor, the raw material and the alkaline earth metal compound are mixed. It stirs.
Since the raw material and the alkaline earth metal compound are heated in a helium atmosphere, a helium gas supply port 11b for supplying helium gas is provided in the upper part of the autoclave type reaction device 11. Further, a communication pipe 11c is provided in the upper part of the autoclave type reaction device 11 for supplying gaseous products generated by thermal decomposition of the raw material and helium gas from the internal space to the cooling device 12.

冷却装置12は、冷却器12aと氷冷トラップ12bと水トラップ12cとから構成されている。オートクレーブ型反応装置11から排出される生成物とヘリウムガスとが、連通管11cを通じて冷却器12aに供給される。冷却器12aにより冷却された生成物の一部が液状化する。この液状化した生成物は冷却器12aの下部から排出され、回収器13に回収される。
冷却器12aにて液状化しなかった生成物は、冷却器12aの上部から排出され、氷冷トラップ12bに供給される。氷冷トラップ12bにて、液状化した生成物は、氷冷トラップ12bから取り出され、回収器13に回収される。
氷冷トラップ12bにおいても液状化しなかった生成物は、水トラップ12cに供給される。水トラップ12cでは、氷冷トラップ12bにおいても液状化しなかったガス状の生成物を水中に供給する。水中ではアンモニアガスを回収するとともに、サンプルバッグ14を用いてガス状の生成物を捕集する。
The cooling device 12 includes a cooler 12a, an ice trap 12b, and a water trap 12c. The product and helium gas discharged from the autoclave reactor 11 are supplied to the cooler 12a through the communication pipe 11c. A part of the product cooled by the cooler 12a is liquefied. This liquefied product is discharged from the lower part of the cooler 12a and collected in the collector 13.
The product that has not been liquefied in the cooler 12a is discharged from the upper part of the cooler 12a and is supplied to the ice-cold trap 12b. The liquefied product is taken out from the ice-cold trap 12b and collected in the collector 13.
The product that has not been liquefied in the ice-cold trap 12b is supplied to the water trap 12c. In the water trap 12c, gaseous products that have not been liquefied in the ice-cold trap 12b are supplied into water. Ammonia gas is recovered in the water, and a sample bag 14 is used to collect gaseous products.

(熱分解油の製造条件、生成物分析)
オートクレーブ型反応装置11の内部空間に、原料としてABS樹脂(旭化成ケミカルズ株式会社製、スタイラックABS)50gとアルカリ土類金属化合物0~8gを投入し、撹拌しながら430℃まで昇温し、4時間加熱した。ヘリウムガスの流量は、100mL/minとした。
アルカリ土類金属化合物として、関東化学株式会社製の酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウムを用いた。
そして、回収器13に回収された分解油の分析および水トラップ12cにおいて回収したアンモニア、シアン化水素、炭素数1~5程度の炭化水素ガスの定量分析を行った。
(Production conditions of pyrolysis oil, product analysis)
50 g of ABS resin (Stylac ABS, manufactured by Asahi Kasei Chemicals Co., Ltd.) as raw materials and 0 to 8 g of an alkaline earth metal compound were put into the internal space of the autoclave-type reaction device 11, and the temperature was raised to 430 ° C. while stirring. heated for an hour. The flow rate of helium gas was 100 mL/min.
As alkaline earth metal compounds, magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, magnesium carbonate, calcium carbonate, strontium carbonate, and barium carbonate manufactured by Kanto Chemical Co., Ltd. were used. there was.
Then, analysis of the cracked oil collected in the collector 13 and quantitative analysis of ammonia, hydrogen cyanide, and hydrocarbon gas having about 1 to 5 carbon atoms collected in the water trap 12c were performed.

分解油の分析は、油中窒素分の定量分析、炭素数分布の分析、生成物の構造解析を行った。油中窒素分の定量分析は有機元素分析(ヤナコ製、MT-6 CHN Corder)にて行った。炭素数分布の分析はGC-FID(Agilent Technologies社製7890A GC system)を用いた。
生成物の構造解析は、GC-MS(島津製作所株式会社製、GCMS-QP2010 Ultra)を用いた。
このとき、気化室温度は80℃、キャリアガス(ヘリウム)流量は10mL/min、カラム初期温度は35℃、昇温速度は10℃/min、カラム最終温度は280℃、最終温度キープ時間は15min、スプリット比は2.8:1、使用カラムはGL Sciences InertCap1(30m×0.25mm×1.5μm)である。
The cracked oil was analyzed by quantitatively analyzing the nitrogen content in the oil, analyzing the carbon number distribution, and analyzing the structure of the products. Quantitative analysis of the nitrogen content in the oil was performed using organic elemental analysis (manufactured by Yanaco, MT-6 CHN Corder). The carbon number distribution was analyzed using GC-FID (7890A GC system manufactured by Agilent Technologies).
Structural analysis of the product was performed using GC-MS (GCMS-QP2010 Ultra, manufactured by Shimadzu Corporation).
At this time, the vaporization chamber temperature is 80°C, the carrier gas (helium) flow rate is 10 mL/min, the initial column temperature is 35°C, the temperature increase rate is 10°C/min, the final column temperature is 280°C, and the final temperature keeping time is 15 min. , the split ratio was 2.8:1, and the column used was GL Sciences InertCap 1 (30 m x 0.25 mm x 1.5 μm).

アンモニアの定量分析は検知管(株式会社GASTEC製気体検知管No.3HM)およびイオンクロマトグラフィ(Thermo Fisher scientific製、Dionex ICS-2100)にて行った。
このとき、溶離液は20mmol/Lメタンスルホン酸、流量は1.0mL/min、検出器は電気伝導度検出器(サプレッサー使用)、測定時間は16.0min、セルカラム温度は35℃、使用カラムはCS12Aである。
シアン化水素の定量分析は、検知管(株式会社GASTEC製気体検知管No.12L)を用いた。
炭化水素ガスの定量分析は、GC-FID(島津製作所株式会社製、GC14B)にて行った。
Quantitative analysis of ammonia was performed using a detection tube (Gas detection tube No. 3HM manufactured by GASTEC Corporation) and ion chromatography (Dionex ICS-2100 manufactured by Thermo Fisher scientific).
At this time, the eluent was 20 mmol/L methanesulfonic acid, the flow rate was 1.0 mL/min, the detector was an electrical conductivity detector (using a suppressor), the measurement time was 16.0 min, the cell column temperature was 35°C, and the column used was It is CS12A.
For quantitative analysis of hydrogen cyanide, a detection tube (gas detection tube No. 12L manufactured by GASTEC Co., Ltd.) was used.
Quantitative analysis of hydrocarbon gas was performed using GC-FID (GC14B, manufactured by Shimadzu Corporation).

(アルカリ土類金属化合物の種類による油化への影響)
図2(a)にアルカリ土類金属化合物無添加の場合とアルカリ土類金属化合物として、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウムをそれぞれ2g添加した場合における原料のABS樹脂から生成された生成物組成を示す。図2(a)より、全体的にアルカリ土類金属化合物を加えることで、無添加時と比較して分解油の収率の減少が見られた。また、それに伴いアンモニアと反応後の反応器内の残留物である残渣の割合がそれぞれ増加した。特に、酸化マグネシウム添加時では無添加時とほとんど変わらず、酸化カルシウム、酸化バリウム、酸化ストロンチウムでは分解油の収率減少と、アンモニアと残渣の収率増加が顕著に見られた。また、図2において鮮明に表れていないが、添加物を加えたいずれの場合でもシアン化水素の排出量を大きく低減し、酸化カルシウム添加時では排出が見られなかった。
(Influence of type of alkaline earth metal compound on oil conversion)
FIG. 2(a) shows the case where no alkaline earth metal compound is added and the alkaline earth metal compounds such as magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, magnesium carbonate, The composition of the product produced from the raw material ABS resin when 2 g each of calcium carbonate, strontium carbonate, and barium carbonate are added is shown. From FIG. 2(a), by adding the alkaline earth metal compound overall, a decrease in the yield of cracked oil was observed compared to when no addition was made. In addition, the proportions of ammonia and residue in the reactor after the reaction increased accordingly. In particular, when magnesium oxide was added, there was almost no difference from when it was not added, but when calcium oxide, barium oxide, and strontium oxide were used, a significant decrease in the yield of cracked oil and an increase in the yield of ammonia and residue were observed. Furthermore, although it is not clearly shown in FIG. 2, the amount of hydrogen cyanide discharged was greatly reduced in any case where additives were added, and no discharge was observed when calcium oxide was added.

図2(b)にアルカリ土類金属化合物無添加の場合とアルカリ土類金属化合物として、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウムをそれぞれ2g添加した場合での窒素移行率、つまり、原料のABS樹脂中の窒素がそれぞれの生成物に移行した割合を示す。図2(b)より、全体的に、熱分解触媒を加えることで、分解油への窒素移行率が低減され、アンモニア、残渣への窒素移行率が増加した。生成物収率の場合と同様に、酸化マグネシウムでは無添加時とほとんど変化がなかったのに対し、酸化カルシウム、酸化バリウム添加時では分解油への窒素移行を大きく低減し、アンモニアと残渣への窒素移行率が増加した。また、酸化ストロンチウム添加時では酸化カルシウム、酸化バリウム以上に分解油への窒素移行を大きく低減し、アンモニアと残渣への窒素移行率が増加した。 FIG. 2(b) shows the case where no alkaline earth metal compound is added and the alkaline earth metal compounds such as magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, magnesium carbonate, It shows the nitrogen transfer rate when 2 g of each of calcium carbonate, strontium carbonate, and barium carbonate is added, that is, the rate at which nitrogen in the raw material ABS resin is transferred to each product. From FIG. 2(b), overall, by adding the thermal decomposition catalyst, the nitrogen transfer rate to cracked oil was reduced, and the nitrogen transfer rate to ammonia and residue increased. As in the case of product yield, with magnesium oxide, there was almost no change compared to when no additive was added, but when calcium oxide and barium oxide were added, nitrogen transfer to cracked oil was greatly reduced, and ammonia and residue were significantly reduced. Nitrogen transfer rate increased. Furthermore, when strontium oxide was added, the nitrogen transfer to cracked oil was significantly reduced more than calcium oxide and barium oxide, and the nitrogen transfer rate to ammonia and residue increased.

図3にアルカリ土類金属化合物を2g添加した場合の分解油のクロマトグラムを示す。図3より、無触媒では、主な油中の生成物はトルエン、エチルベンゼンなどをはじめとした単環の芳香族化合物であり、窒素化合物としては4-フェニルブチロニトリルが確認された。また、触媒存在下の条件においても、生成物の種類に大きな変化は見られなかった。 Figure 3 shows a chromatogram of cracked oil when 2g of an alkaline earth metal compound was added. From FIG. 3, in the absence of catalyst, the main products in the oil were monocyclic aromatic compounds such as toluene and ethylbenzene, and 4-phenylbutyronitrile was confirmed as the nitrogen compound. Furthermore, no significant change in the types of products was observed even under the conditions in the presence of a catalyst.

表1にアルカリ土類金属化合物無添加の場合と酸化マグネシウム、酸化カルシウム、酸化バリウムをそれぞれについて、分解油への窒素移行率を最も低減させた場合の分解油についての窒素の有機元素分析値(N[%])、分解油重量、分解油収率、分解油への窒素移行率を示す。表1より、酸化カルシウム、酸化バリウムを加えることで、分解油の有機元素分析値が低減していることが確認された。有機元素分析値としては酸化バリウムを添加したときに最も低い値を示した。 Table 1 shows the nitrogen organic element analysis values for cracked oil when no alkaline earth metal compounds are added and when magnesium oxide, calcium oxide, and barium oxide are used to reduce the nitrogen transfer rate to cracked oil the most ( N [%]), cracked oil weight, cracked oil yield, and nitrogen transfer rate to cracked oil. From Table 1, it was confirmed that the addition of calcium oxide and barium oxide reduced the organic element analysis values of the cracked oil. The organic elemental analysis value showed the lowest value when barium oxide was added.

Figure 0007370731000001
Figure 0007370731000001

アルカリ土類金属化合物として酸化バリウムを16g添加して熱分解油を用い、市販の吸着剤による脱窒素処理を行った。吸着処理は、分解油1mlに対して吸着剤1gを混合し、室温(図4)または80℃(図5)で24時間静置した。得られた処理油のろ過前後の窒素濃度を図4、図5に示す。最も脱窒素効果が大きかった吸着剤はミズカライフ(登録商標)であり、処理温度やろ過の有無の影響はあまり大きくなかった。 16 g of barium oxide was added as an alkaline earth metal compound, and denitrification treatment was performed using a commercially available adsorbent using pyrolysis oil. In the adsorption treatment, 1 ml of cracked oil was mixed with 1 g of adsorbent, and the mixture was allowed to stand at room temperature (FIG. 4) or 80° C. (FIG. 5) for 24 hours. The nitrogen concentration of the obtained treated oil before and after filtration is shown in FIGS. 4 and 5. The adsorbent that had the greatest denitrification effect was Mizuka Life (registered trademark), and the effects of treatment temperature and presence or absence of filtration were not very significant.

(アルカリ土類金属化合物の添加量が反応に及ぼす影響)
図6(a)に酸化カルシウムを0~4g添加した場合の生成物収率を示す。図6(a)より、酸化カルシウムを添加することにより分解油収率の減少など、生成物収率の変化が見られたが、酸化カルシウム添加量を2gから4gに増加させた場合では、生成物収率にほとんど変化が見られなかった。また、酸化カルシウムを添加した場合には、添加量が少量であっても、シアン化水素の排出は見られなかった。
また、図6(b)に酸化カルシウムを0~4g添加した場合の窒素移行率を示す。図6(b)より、残渣への窒素移行率の減少など、移行率の変化は見られたものの、生成物収率と同様に、分解油への窒素移行率にはほとんど変化が見られなかった。
(Effect of the amount of alkaline earth metal compound added on the reaction)
FIG. 6(a) shows the product yield when 0 to 4 g of calcium oxide is added. From Figure 6(a), changes in product yield such as a decrease in cracked oil yield were observed by adding calcium oxide, but when the amount of calcium oxide added was increased from 2g to 4g, the production Almost no change was observed in the product yield. Furthermore, when calcium oxide was added, no hydrogen cyanide was discharged even if the amount added was small.
Further, FIG. 6(b) shows the nitrogen transfer rate when 0 to 4 g of calcium oxide is added. From Figure 6(b), although changes in the transfer rate were observed, such as a decrease in the rate of nitrogen transfer to the residue, almost no change was observed in the rate of nitrogen transfer to the cracked oil, similar to the product yield. Ta.

図7(a)に酸化バリウムを0~16g添加した場合の生成物収率を示す。図7(a)より、添加量を2gから増加させると、それに伴い分解油収率の減少が見られた。また、このときアンモニアと残渣の収率が増加したが、炭化水素ガスとシアン化水素の収率に変化は見られなかった。8g添加時で全体の収率の若干の減少が見られたが、全体の収率は92.1%と、添加量を増加させた時に起こる全体の収率の低下はほとんど見られなかった。
図7(b)に酸化バリウムを0~16g添加した場合の窒素移行率を示す。図7(b)より、添加量を2gから増加させると、分解油への窒素移行率は大きく低減していき、8g添加時では分解油への窒素移行率は26.4%と、無添加時の分解油への窒素移行率の70.5%と比較しても大きく低減がされた。さらに、16g添加時では分解油への窒素移行率は16.7%と、無添加時の分解油への窒素移行率の70.5%と比較しても大きく低減がされた。また、この時減少した分の窒素分はアンモニアと残渣に移行しており、アンモニアと残渣への窒素移行率が大きく増加した。
FIG. 7(a) shows the product yield when 0 to 16 g of barium oxide is added. From FIG. 7(a), when the amount added was increased from 2 g, a decrease in cracked oil yield was observed. Also, at this time, the yields of ammonia and residue increased, but no changes were observed in the yields of hydrocarbon gas and hydrogen cyanide. Although a slight decrease in the overall yield was observed when 8 g was added, the overall yield was 92.1%, and there was almost no decrease in the overall yield that would occur when the amount added was increased.
FIG. 7(b) shows the nitrogen transfer rate when 0 to 16 g of barium oxide is added. From Figure 7(b), when the addition amount is increased from 2 g, the nitrogen transfer rate to cracked oil decreases significantly, and when 8 g is added, the nitrogen transfer rate to cracked oil is 26.4%, and when no additive is added, the nitrogen transfer rate to cracked oil is 26.4%. This was a significant reduction compared to the 70.5% nitrogen transfer rate to the cracked oil. Furthermore, when 16 g was added, the nitrogen transfer rate to the cracked oil was 16.7%, which was significantly reduced compared to the nitrogen transfer rate to the cracked oil when no addition was made, which was 70.5%. Further, the nitrogen content decreased at this time was transferred to ammonia and residue, and the rate of nitrogen transfer to ammonia and residue increased significantly.

これらの結果から示すとおり、ABS樹脂のように窒素を含むプラスチックをアルカリ土類金属化合物の存在下にて加熱し、熱分解油を得た場合、熱分解油の収率の低下と、アンモニアと残渣の収率が増加することが明らかとなった。 As shown from these results, when pyrolysis oil is obtained by heating a nitrogen-containing plastic such as ABS resin in the presence of an alkaline earth metal compound, the yield of pyrolysis oil decreases and ammonia and It was found that the yield of the residue increased.

Claims (5)

窒素を含有するプラスチックを不活性ガス雰囲気中で熱分解することにより熱分解油を得る熱分解油の製造方法であって、
前記プラスチックの熱分解は、廃FCC触媒を用いずに、アルカリ土類金属化合物を用いることで、熱分解時に前記プラスチックに含有された窒素を選択的にアンモニアに変換する熱分解油の製造方法。
A method for producing pyrolysis oil, which obtains pyrolysis oil by pyrolysis of nitrogen-containing plastic in an inert gas atmosphere, the method comprising:
A method for producing pyrolysis oil in which nitrogen contained in the plastic is selectively converted into ammonia during the pyrolysis by using an alkaline earth metal compound without using a waste FCC catalyst .
前記アルカリ土類金属化合物が、カルシウム化合物、バリウム化合物またはストロンチウム化合物である請求項1に記載の熱分解油の製造方法。 The method for producing pyrolysis oil according to claim 1, wherein the alkaline earth metal compound is a calcium compound, a barium compound, or a strontium compound. 前記アルカリ土類金属化合物は、前記プラスチック100gに対し4g以上存在させる請求項1又は請求項2に記載の熱分解油の製造方法。 The method for producing pyrolysis oil according to claim 1 or 2, wherein the alkaline earth metal compound is present in an amount of 4 g or more per 100 g of the plastic. 前記窒素を含有するプラスチックは、ABS樹脂である請求項1~請求項3のいずれか1項に記載の熱分解油の製造方法。 The method for producing pyrolysis oil according to any one of claims 1 to 3, wherein the nitrogen-containing plastic is an ABS resin. 前記熱分解の後、吸着剤による吸着処理を施すことにより脱窒素処理を行う請求項1~請求項4のいずれか1項に記載の熱分解油の製造方法。 The method for producing pyrolysis oil according to any one of claims 1 to 4, wherein after the pyrolysis, denitrification treatment is performed by performing an adsorption treatment with an adsorbent.
JP2019091822A 2018-05-18 2019-05-15 Method for producing pyrolysis oil Active JP7370731B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018095899 2018-05-18
JP2018095899 2018-05-18

Publications (2)

Publication Number Publication Date
JP2019203124A JP2019203124A (en) 2019-11-28
JP7370731B2 true JP7370731B2 (en) 2023-10-30

Family

ID=68726216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019091822A Active JP7370731B2 (en) 2018-05-18 2019-05-15 Method for producing pyrolysis oil

Country Status (1)

Country Link
JP (1) JP7370731B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4139420A4 (en) * 2020-04-22 2024-05-29 Chevron Usa Inc Circular economy for plastic waste to polypropylene via oil refinery with filtering and metal oxide treatment of pyrolysis oil
US11639472B2 (en) * 2020-04-22 2023-05-02 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene via oil refinery with filtering and metal oxide treatment of pyrolysis oil
WO2024038916A1 (en) * 2022-08-19 2024-02-22 株式会社北浜化学 Oil-liquefaction apparatus, and oil-liquefaction method using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162881A (en) 2003-12-03 2005-06-23 Mitsubishi Materials Corp Method for treating waste plastic and plant therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154960B1 (en) * 2009-09-02 2012-06-18 정인영 Device for pyrolyzing waste plastic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162881A (en) 2003-12-03 2005-06-23 Mitsubishi Materials Corp Method for treating waste plastic and plant therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山脇隆,使用済家電混合プラスチック石油化学原料化プロセスの開発,第23回廃棄物資源循環学会研究発表会要旨集,一般社団法人廃棄物資源循環学会,2012年

Also Published As

Publication number Publication date
JP2019203124A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP7370731B2 (en) Method for producing pyrolysis oil
Zhu et al. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology
Liu et al. Preparation of liquid chemical feedstocks by co-pyrolysis of electronic waste and biomass without formation of polybrominated dibenzo-p-dioxins
Suriapparao et al. Selective production of phenolics from waste printed circuit boards via microwave assisted pyrolysis
Maliutina et al. Pressurized entrained-flow pyrolysis of microalgae: enhanced production of hydrogen and nitrogen-containing compounds
Acomb et al. Thermal processing of plastics from waste electrical and electronic equipment for hydrogen production
Alston et al. Environmental impact of pyrolysis of mixed WEEE plastics part 1: experimental pyrolysis data
Shang et al. Effect of additives on the microwave-assisted pyrolysis of sawdust
Park et al. Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants
Choi et al. Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal
Dai et al. Temperature influence and distribution in three phases of PAHs in wet sewage sludge pyrolysis using conventional and microwave heating
Brebu et al. The individual and cumulative effect of brominated flame retardant and polyvinylchloride (PVC) on thermal degradation of acrylonitrile–butadiene–styrene (ABS) copolymer
Krishna et al. Pyrolysis of electronic waste and their mixtures: Kinetic and pyrolysate composition studies
Joo et al. Achievements in pyrolysis process in E-waste management sector
Wan et al. Products distribution and hazardous elements migration during pyrolysis of oily sludge from the oil refining process
Veksha et al. Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: Impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis
Xu et al. Nitrogen evolution during rapid hydropyrolysis of coal
Ma et al. The behavior of heteroatom compounds during the pyrolysis of waste computer casing plastic under various heating conditions
Hall et al. Thermal processing of toxic flame-retarded polymers using a waste fluidized catalytic cracker (FCC) catalyst
Shafaghat et al. Selective recycling of BTX hydrocarbons from electronic plastic wastes using catalytic fast pyrolysis
Wang et al. Kinetic study of the hydrogenation of a monoterpene over spent FCC catalyst‐supported nickel
JP2007291281A (en) Treatment method for plastic
JP2019137717A (en) Method and device of treating tar component
Yu et al. Products and bromine migration characteristics of non-metallic components of waste printed circuit boards pyrolysis in a fluidized bed pyrolyzer
López et al. Enhanced oil dehalogenation during catalytic pyrolysis of WEEE-derived plastics over Fe-and Ca-modified zeolites

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190521

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231018

R150 Certificate of patent or registration of utility model

Ref document number: 7370731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150