JP2012084460A - プロトン伝導体薄膜の作製方法 - Google Patents

プロトン伝導体薄膜の作製方法 Download PDF

Info

Publication number
JP2012084460A
JP2012084460A JP2010231252A JP2010231252A JP2012084460A JP 2012084460 A JP2012084460 A JP 2012084460A JP 2010231252 A JP2010231252 A JP 2010231252A JP 2010231252 A JP2010231252 A JP 2010231252A JP 2012084460 A JP2012084460 A JP 2012084460A
Authority
JP
Japan
Prior art keywords
proton conductor
thin film
conductor thin
proton
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010231252A
Other languages
English (en)
Inventor
Takashi Otsuka
隆 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010231252A priority Critical patent/JP2012084460A/ja
Publication of JP2012084460A publication Critical patent/JP2012084460A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】アモルファス酸化物基板上に結晶性良くプロトン伝導体薄膜を作製すること。
【解決手段】プロトン伝導体として組成が、BaN1−xMxO3(N;ZrおよびCeから選ばれた1種類以上の金属、MはY,In,Ybから選ばれた一種類以上の金属)で表されるプロトン伝導体薄膜の酸化物基板上101への形成方法であって、種結晶層102としてZrを1nmないし10nm以内の厚さに、酸化物基板上へ島状に形成する工程と、前記酸化物基板101上へプロトン伝導体前駆体を塗布する工程と、熱処理によってプロトン伝導体前駆体を結晶化する工程とからなる。この工程を用いることによって、アモルファス酸化膜基板上へも良好な結晶性を有するプロトン伝導体薄膜が作製できる。
【選択図】図1

Description

本発明は燃料電池やガスセンサー等の電気化学素子に利用可能なプロトン伝導体とその製造方法に関する。
プロトン伝導体や、酸素伝導体を用いたガスセンサーや、燃料電池が開発されてきている。
特に酸素イオン伝導体を用いるSOFC(固体酸化物形燃料電池)は、高い発電効率を有するため、有望な燃料電池の方式である。
燃料電池は固体電解質の両側に触媒電極を形成した構成をとっており、電極での触媒反応から電子を取り出す一方、固体電解質中をイオンのみが移動することによって電池として機能する。
これまでに開発されてきているSOFCは、酸素を伝導イオンとして用いており、酸素イオン伝導体として、YSZ(Y23部分安定化ZrO2)等の酸化物酸素イオン伝導体を用いている。
しかしながら、酸素イオンは700℃程度以上の温度で良好に伝導するため、SOFCの動作温度は酸素イオン伝導体のイオン伝導温度に制約され、700℃以上となっている。 そのために燃料電池を構成する電極から電子を取り出すための集電体や、セルを支持、保持する材料が高温に耐えうる材料を使用する必要がある。
そのため、ペロブスカイト型プロトン伝導体を用いた燃料電池の開発が行われてきている。
特許文献1および非特許文献1では、プロトン伝導体としてペロブスカイト型酸化物を用いた例が開示されている。
このペロブスカイト型酸化物プロトン伝導体を用いた燃料電池では、アノードで燃料であるH2等の燃料ガスからプロトンを生成して、プロトン伝導体で輸送したのち、カソードで酸素と反応させることによって燃料電池動作する。
また、非特許文献2ではNiとペロブスカイト型プロトン伝導体サーメットをアノード電極としたプロトン伝導体の動作について開示されている。
以上のように、ペロブスカイト型プロトン伝導体を用いた燃料電池では、プロトンを生成あるいは輸送する電極上に形成されている。
また水素センサーでは水素ガスを含む気体にペロブスカイト型プロトン伝導体が接する必要から多孔性の電極がペロブスカイト型プロトン伝導体に形成されている。
このように、プロトンを用いる電気化学素子では、平坦でない基板や電極の上にプロトン伝導体膜を形成する必要がある。その方法として、レーザーアブレーションや、スパッタリングといった物理的手法や、有機プリカーサーの塗布法や、プロトン伝導体粉末をスラリー状にして、塗布して焼成するといった方法が用いられており、プロトン伝導性を確保するためには結晶性の良い緻密な膜を電極上に形成することが必要である。
そのために、特許文献1および非特許文献1においては、結晶性を確保するために高エネルギーを用いた成膜手法であるレーザーアブレーションによってアノード電極上にペロブスカイト型プロトン伝導体膜を形成していた。
また特許文献2によれば、膜の密着性を確保するために電極とプロトン伝導体膜の間に密着層を挿入した構成とすることによって電極上の膜の密着を確保する構成が開示されている。
特開2004−146337号公報 特開2007−185586号公報
N. Ito, M. Iijima, K. Kimura, S. Iguchi, Journal of Power Sources 152 (2005) 200.
しかしながら、多孔性の電極の上に結晶性良く緻密な膜を形成するためには、レーザーアブレーションやスパッタリングといった物理的膜形成手法ではカバレッジが悪く緻密な膜が形成しにくいといった問題があるため、塗布のような電極の凹凸追随性の良い膜形成手法が望まれるが、基板の結晶構造によってプロトン伝導体膜の結晶性が変化して、プロトン伝導性が悪化するといったことが生じていた。とくに結晶性の悪いアモルファス基板の上に構成で結晶化させる事は難しかった。
また、密着性層等を挿入することによって、プロトン伝導体膜の結晶性が変化したり、プロトンの透過性自体が変化するといった問題を有していた。
本発明は前記従来の課題を解決するもので、アモルファス材質の基板上においても、プロトンの透過性能を損なうことなく、凹凸電極上に結晶性の良いペロブスカイト型プロトン伝導体を形成する方法を提供する事を目的としている。
前記従来の課題を解決するために、本発明のプロトン伝導体薄膜の製造方法は、プロトン伝導体として組成が、BaN1−xMxO3(N;ZrおよびCeから選ばれた1種類以上の金属、MはY,In,Ybから選ばれた一種類以上の金属)で表されるプロトン伝導体薄膜の形成方法に関しており、酸化物基板上へ、Zrを1nmないし10nm以内の厚さに島状形成する工程と、Zrを島状形成した酸化物基板上へプロトン伝導体前駆体を塗布する工程と、熱処理によってプロトン伝導体前駆体を結晶化する工程とからなっている。
以上のような工程を含むプロトン伝導体薄膜の形成方法とすることによって、島状に形成したZrを核として、塗布したプロトン伝導体薄膜前駆体の結晶化が促進されることとなる。
本発明のプロトン伝導体薄膜の形成方法によれば、凹凸を有するアモルファス酸化物基板上にプロトンのプロトン伝導体膜への供給を阻害する事なく、結晶性良くプロトン伝導体薄膜を形成することが可能となる。
本発明の実施の形態1におけるプロトン伝導体薄膜の作成方法における膜断面図 本発明の実施の形態1におけるプロトン伝導体薄膜の作製方法におけるフローを示す図 本発明の実施例におけるプロトン伝導体薄膜のX線回折のグラフ 本発明の実施例におけるプロトン伝導体薄膜を用いた燃料電池の作製フローを示す図 本発明の比較例におけるプロトン伝導体薄膜のX線回折のグラフ
以下本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の実施の形態1におけるプロトン伝導体薄膜の断面図である。また、図2に本発明におけるプロトン伝導体薄膜の作製方法におけるフローチャートを示す。
図1において、101は酸化物基板、102は種結晶層。103はプロトン伝導体薄膜である。 図1において、酸化物基板101としてSiO2を用いており、その上部に種結晶層102としてZrが島状に形成されている。その後BaZrYO系前駆体を塗布した後、熱処理により結晶化する工程を経た後プロトン伝導体薄膜103の形成は完了する。以上の工程をまとめると図2に示すフローとなる。
以上のようなプロトン伝導体薄膜の作製方法によれば酸化物基板101上に種結晶層102としてZrが形成されたことによってプロトン伝導体前駆体が結晶する過程において、結晶化をZrが促進するため、良好な結晶性を有するプロトン伝導体薄膜103とする事が可能となる。さらに、種結晶層が島状であるため、酸化物基板からのプロトンの輸送を阻害することなく効率的にプロトン伝導体薄膜へ輸送することが可能となる。
(実施例1)
以下に、酸化膜基板上へのプロトン伝導体薄膜の形成方法について実施した例について図面を用いながら説明する。
図2において、酸化膜基板101としてシリコンウエハーを用意した。シリコンウエハーを熱酸化して酸化膜を100nm形成させ(図示なし)酸化膜基板101とした。この酸化膜付シリコンウエハーをスパッタ装置に搬送して、次のような条件でZrを形成した。 ターゲットとしてZrターゲットを用い、成膜圧力を0.1Paとして、Arガスを導入しRFスパッタリングによって酸化膜基板101上へ種結晶層102を形成した。
この時酸化膜基板温度は常温として、別途Zrの成膜レートを算出したのちに時間換算で膜厚が3nm、5nm、10nmとなるように2枚の酸化膜基板101を準備した。
この種結晶層102を形成した酸化膜基板101を取り出し、原子間力顕微鏡(AFM)にて酸化膜基板表面を観察したところ、10nmの形成でほぼ酸化膜基板上に全面に形成されていることが判明した。この結果より種結晶層の厚みを10nm未満とした。
次に種結晶層102を3nm形成した酸化膜基板101を上記と同様の方法で準備した後、スピンコート法によってBaZr0.9Y0.1O3薄膜の形成工程に移った。
プロトン伝導体BaZr0.9Y0.1O3の塗布による膜形成のプリカーサーとして高純度化学社製MODコート材料を使用した。 種結晶層102を3nm形成した酸化膜基板101に、プリカーサーをスピンコート法によって塗布した後、200℃で5分および450℃で5分乾燥させた後、高速熱処理炉へ導入して、700℃で1分、酸素中で焼成を行った。
以上の工程によって、プロトン伝導体薄膜103が形成された。
得られたプロトン伝導体薄膜を電子顕微鏡で観察したところ、膜厚は約100nmであった。結晶化の効果を評価するためにこの膜をX線回折による分析を行い、結晶性の評価を行った。
得られたプロトン伝導体薄膜103のX線回折図を図3に示す。
種結晶層102を3nm、すなわち島状に形成した後塗布法によって作製したプロトン伝導体薄膜103は、良好な結晶性で結晶化されていることが確認された。
また、種結晶層102の回折ピークは観測されなかったが、塗布によってプロトン伝導体膜を形成する過程において、酸化しているものと考えられた。
得られたプロトン伝導体薄膜103を燃料電池のセルとするために、図4に示す工程で燃料電池セルを形成した。
上記で得られたプロトン伝導体薄膜103を酸化膜基板101である、SiO2/Si基板をプロトン伝導体薄膜と反対側よりドライエッチングによって、SiおよびSiO2をエッチングして5ミクロン径の微細孔104を形成した。
さらに、微細孔104上にプロトン伝導体薄膜のみが残るように酸化基板101を加工した。
その後、プロトン伝導体膜103の両側からスパッタリング法によって多孔質のPtを電極105として形成して燃料電池セルを形成した。
以上の工程によって燃料電池セルは完成した。
このような燃料電池セルを完成させる場合には、種結晶層103は酸化していると考えられるため、種結晶層がプロトン伝導体103界面に全面形成されていると、燃料電池セルを形成したときに、電極105からのプロトン供給を阻害することになるため、種結晶層102は島状である必要があった。
以上のように、本発明におけるプロトン伝導体薄膜の作製方法によれば、アモルファス酸化物の上においてもカバレッジよく良好な結晶性を確保する事が可能なプロトン伝導体薄膜の作製が可能でる。
さらに、プロトン伝導体薄膜を燃料電池セルとして利用する時に、種結晶層はプロトンの伝導を阻害することなく形成されるため、燃料電池に最適なプロトン伝導体薄膜の作製方法とすることが可能である。
本実施例においてはYを10%Zrに対して置換した組成のプロトン伝導体を用いたが、InやYbを用いた場合も同様の効果であった。
(比較例)
本発明におけるプロトン伝導体薄膜103の作製方法において、種結晶層102の効果を明確にするため、図2に示す手順に従い種結晶層102を用いずにプロトン伝導体薄膜103を形成して比較検討を行った。
種結晶層102の効果を定量的に把握するために、実施例1の方法と同じ方法でプロトン伝導体薄膜103を酸化物基板101上に形成した。 実施においての各条件は実施例1に記載の方法と同一である。
一方図4に示すように、種結晶層102を形成しない工程でプロトン伝導体薄膜103を形成した。この時の条件も種結晶層102を形成しない点以外は同一である。
上記それぞれ種結晶層102を入れて作製したプロトン伝導体薄膜103と種結晶層102をいれずに作製したプロトン伝導体薄膜103をそれぞれX線回折によって評価して、結晶性の尺度として、回折ピークの強度比較を行った結果を表1に示す。
Figure 2012084460
表1に示した通り、種結晶層102を導入して作製したプロトン伝導体薄膜103は、同一厚みであるにもかかわらず約25%の強度上昇が認められた。この結果より、種結晶層102として用いたZrは、プロトン伝導体薄膜103の結晶性を向上させる効果があることが認められた。
以上のように本発明のプロトン伝導体薄膜の作製方法によれば、アモルファス酸化物の上においても、良好な結晶性を有するプロトン伝導体薄膜を形成することが可能となる。
本発明にかかるプロトン伝導体薄膜の作製方法は、プロトンを用いる燃料電池、水素センサーなどの電気化学デバイスを作製する方法として有用である。
101 酸化物基板
102 種結晶層
103 プロトン伝導体薄膜
104 微細孔
105 電極

Claims (2)

  1. プロトン伝導体として組成が、BaN1−xMxO3(N;ZrおよびCeから選ばれた1種類以上の金属、MはY,In,Ybから選ばれた一種類以上の金属)で表されるプロトン伝導体薄膜の酸化物基板上への形成方法であって、種結晶層としてZrを1nmないし10nm以内の厚さに、酸化物基板上へ島状に形成する工程と、前記酸化物基板上へプロトン伝導体前駆体を塗布する工程と、熱処理によってプロトン伝導体前駆体を結晶化する工程とからなる事を特徴とする、プロトン伝導体薄膜の作製方法。
  2. 請求項1記載のプロトン伝導体薄膜の作製方法であって、酸化物基板がSiO2からなることを特徴とする請求項1記載のプロトン伝導体薄膜の作製方法。
JP2010231252A 2010-10-14 2010-10-14 プロトン伝導体薄膜の作製方法 Pending JP2012084460A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231252A JP2012084460A (ja) 2010-10-14 2010-10-14 プロトン伝導体薄膜の作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231252A JP2012084460A (ja) 2010-10-14 2010-10-14 プロトン伝導体薄膜の作製方法

Publications (1)

Publication Number Publication Date
JP2012084460A true JP2012084460A (ja) 2012-04-26

Family

ID=46243105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231252A Pending JP2012084460A (ja) 2010-10-14 2010-10-14 プロトン伝導体薄膜の作製方法

Country Status (1)

Country Link
JP (1) JP2012084460A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181526A1 (ja) * 2013-05-07 2014-11-13 パナソニックIpマネジメント株式会社 プロトン伝導体およびプロトン伝導デバイス
JP2015134699A (ja) * 2013-10-08 2015-07-27 パナソニックIpマネジメント株式会社 酸化物膜およびプロトン伝導デバイス
JP2015149243A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 燃料電池
WO2018159584A1 (ja) 2017-02-28 2018-09-07 国立研究開発法人産業技術総合研究所 プロトン伝導性電解質

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181526A1 (ja) * 2013-05-07 2014-11-13 パナソニックIpマネジメント株式会社 プロトン伝導体およびプロトン伝導デバイス
JP5720001B1 (ja) * 2013-05-07 2015-05-20 パナソニックIpマネジメント株式会社 プロトン伝導体およびプロトン伝導デバイス
US9466852B2 (en) 2013-05-07 2016-10-11 Panasonic Intellectual Property Management Co., Ltd. Proton conductor and proton conductor device
JP2015134699A (ja) * 2013-10-08 2015-07-27 パナソニックIpマネジメント株式会社 酸化物膜およびプロトン伝導デバイス
JP2015149243A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 燃料電池
WO2018159584A1 (ja) 2017-02-28 2018-09-07 国立研究開発法人産業技術総合研究所 プロトン伝導性電解質

Similar Documents

Publication Publication Date Title
JP5131629B2 (ja) 固体電解質型燃料電池の製造方法
JP6366305B2 (ja) グラフェンの製造方法
CN101517799B (zh) 燃料电池用隔板的制造方法、燃料电池用隔板及燃料电池
KR101908180B1 (ko) 연료 전지용 세퍼레이터의 제조 방법 및 연료 전지용 세퍼레이터
US20060040168A1 (en) Nanostructured fuel cell electrode
JP5282819B2 (ja) 正極活物質層の製造方法
JP2010108894A (ja) 高分子電解質膜にナノ構造の表面を形成するための燃料電池用膜・電極接合体の製造方法
JP5417038B2 (ja) 膜電極接合体に用いられる触媒電極の製造方法、膜電極接合体に用いられる触媒電極、膜電極接合体の製造方法、膜電極接合体、および、燃料電池
JP2014002965A (ja) 固体電解質薄膜の製造方法、固体電解質薄膜、および固体電池
Chang et al. Direct plasma deposition of amorphous Si/C nanocomposites as high performance anodes for lithium ion batteries
JP6190527B2 (ja) 固体電池のための基板
JP3978603B2 (ja) 固体酸化物形燃料電池用セル板及びその製造方法
JP2008239369A (ja) カーボンナノウォール(cnw)の精製方法、精製されたカーボンナノウォール、燃料電池用触媒層の製造方法、燃料電池用触媒層、及び固体高分子型燃料電池
WO2013073641A1 (ja) 略垂直配向カーボンナノチューブ付き基材
CN104213101A (zh) 形成铂薄膜的方法
KR101209791B1 (ko) 연료전지용 금속분리판 및 이의 표면처리방법
JP2012084460A (ja) プロトン伝導体薄膜の作製方法
KR20100127577A (ko) 그라핀이 코팅된 연료전지용 분리판 및 이의 제조방법
JP6759780B2 (ja) 燃料電池用金属セパレータ及びこれを用いた燃料電池
Qu et al. Eutectic nano-droplet template injection into bulk silicon to construct porous frameworks with concomitant conformal coating as anodes for Li-ion batteries
JP2008503038A (ja) ガス拡散電極、膜電極アセンブリー及びその製造方法
JP2010027574A (ja) 燃料電池用電極及び燃料電池用電極の製造方法
CN113140784A (zh) 一种改性固态电解质及其制备方法和应用
KR102070042B1 (ko) 적층된 육방정계 질화붕소 박막을 포함하는 연료전지 막전극접합체 및 그 제조방법
JP2006031978A (ja) 触媒の製造方法及び触媒を有する燃料電池の製造方法