JP2012083436A - 光走査装置及び同光走査装置を備えた画像形成装置、並びに、光走査装置の製造方法 - Google Patents

光走査装置及び同光走査装置を備えた画像形成装置、並びに、光走査装置の製造方法 Download PDF

Info

Publication number
JP2012083436A
JP2012083436A JP2010227740A JP2010227740A JP2012083436A JP 2012083436 A JP2012083436 A JP 2012083436A JP 2010227740 A JP2010227740 A JP 2010227740A JP 2010227740 A JP2010227740 A JP 2010227740A JP 2012083436 A JP2012083436 A JP 2012083436A
Authority
JP
Japan
Prior art keywords
hole
resin
optical scanning
scanning device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010227740A
Other languages
English (en)
Inventor
Yasuo Nishikawa
恭生 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2010227740A priority Critical patent/JP2012083436A/ja
Publication of JP2012083436A publication Critical patent/JP2012083436A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】反射部の歪みが可及的に防止され、しかも、共振周波数が精度良く調整された光走査装置を提供する。
【解決手段】入射した光束を反射する反射部と、前記反射部から伸延する梁部と、同梁部を支持する固定部とを有する構造体と、前記固定部上に配置され、共振により前記反射部を前記梁部の軸線廻りに反復揺動させる駆動体と、を備えた光走査装置において、前記構造体の所定箇所に穿設された貫通孔に充填された光硬化樹脂を有し、同光硬化樹脂の硬化に伴い生じる収縮力を変化させる当該光硬化樹脂に対する光の照射量及び/または前記光硬化樹脂の重量によって、前記構造体の共振周波数を調整した。
【選択図】図2

Description

本発明は、光走査装置及び同光走査装置を備えた画像形成装置、並びに、光走査装置の製造方法に関する。
従来、入射した光束を反射する反射部を、支持部間に架け渡した梁の中途に設け、この反射部を反復揺動させて、反射光を走査する光走査装置が知られている。
このような光走査装置は、反射部の近傍に設けた圧電素子に所定の電圧を印加して振動させ反射部を駆動させる方式や、静電引力により反射部を駆動させる方式などが提案されているが、いずれも、反射部や梁の材質や形状、寸法等により決定される共振周波数で駆動させるのが効率がよい。
ところが、この共振周波数は、製造される個々の光走査装置ごとにそれぞれ異なっており、製品仕様の範囲内から逸脱した個体が発生する場合もあった。
そこで、反射部の表面に樹脂体を質量片として付着させ、反射部の慣性モーメントを調整する方法が提案されている(例えば、特許文献1参照。)。
この方法によれば、共振周波数を固体別に調整することができるとしている。
特開2004−219889号公報
しかしながら、樹脂体を反射部の表面に付着させる上記従来の方法では、樹脂が硬化する際に生起される収縮力が、反射部の表面に強く作用することとなり、反射部に歪みが生じてしまうおそれがあった。また、反射部を避けて樹脂体を付着すべく固定部の梁近傍表面に樹脂体を付着させた場合や、同位置に有底の凹部を設けて樹脂体を充填した場合であっても、表面に強く働く収縮力が梁を介して反射部に伝わり、反射部に歪みが生じる場合があった。
本発明は、斯かる事情に鑑みてなされたものであって、反射部の歪みが可及的に防止され、しかも、共振周波数が精度良く調整された光走査装置を提供する。また、このような光走査装置の製造方法についても提供する。
上記従来の課題を解決するために、請求項1に記載の光走査装置では、入射した光束を反射する反射部と、前記反射部から伸延する梁部と、同梁部を支持する固定部とを有する構造体と、前記固定部上に配置され、共振により前記反射部を前記梁部の軸線廻りに反復揺動させる駆動体と、を備えた光走査装置において、前記構造体の所定箇所に穿設された貫通孔に充填された光硬化樹脂を有し、同光硬化樹脂の硬化に伴い生じる収縮力を変化させる当該光硬化樹脂に対する光の照射量及び/または前記光硬化樹脂の重量によって、前記構造体の共振周波数を調整した。
また、請求項2に記載の光走査装置では、請求項1に記載の光走査装置において、前記構造体に、光硬化樹脂を充填するための貫通孔が複数設けられていることに特徴を有する。
また、請求項3に記載の光走査装置では、請求項1または請求項2に記載の光走査装置において、前記貫通孔を、少なくとも前記反射部に設けたことに特徴を有する。
また、請求項4に記載の光走査装置では、請求項1〜3いずれか1項に記載の光走査装置において、前記貫通孔を、前記反射部と、前記固定部との両方に設けたことに特徴を有する。
また、請求項5に記載の光走査装置では、請求項3または請求項4に記載の光走査装置において、前記反射部の貫通孔は、前記反射部の周縁に近接して設けられていることに特徴を有する。
また、請求項6に記載の光走査装置では、請求項1〜5いずれか1項に記載の光走査装置において、前記光硬化樹脂は、前記貫通孔の開口両側から光を照射して硬化したものであることに特徴を有する。
また、請求項7に記載の光走査装置では、請求項6に記載の光走査装置において、前記貫通孔の開口両側より照射する光のうち、一方の開口側から照射する光は、他方の開口側より照射され前記貫通孔を透過した光を反射させた光であることに特徴を有する。
また、請求項8に記載の画像形成装置では、画像信号に応じた光束を出射する光出射部と、請求項1〜7いずれか1項に記載の光走査装置とを備え、前記光出射部から出射した光束を前記光走査装置によって走査して画像を形成することとした。
また、請求項9に記載の光走査装置の製造方法では、入射した光束を反射する反射部と、前記反射部から伸延する梁部と、同梁部を支持する固定部とを備える構造体と、前記固定部上に配置され、共振により前記反射部を前記梁部の軸線廻りに反復揺動させる駆動体と、を備えた光走査装置の製造方法において、前記構造体の所定箇所に複数穿設された貫通孔のうち、光硬化樹脂を充填させる貫通孔を選択する貫通孔選択ステップと、前記貫通孔選択ステップにて選択した貫通孔に、光硬化樹脂を充填する樹脂充填ステップと、前記樹脂充填ステップにて充填した光硬化樹脂に対して光を照射し、前記光硬化樹脂を硬化させる樹脂硬化ステップと、を含む樹脂硬化処理を行い、前記光硬化樹脂の硬化に伴い生じる収縮力を変化させる当該光硬化樹脂に対する光の照射量及び/または前記光硬化樹脂の重量により、前記構造体の共振周波数を調整することとした。
さらに、請求項10に記載の光走査装置の製造方法では、請求項9に記載の光走査装置の製造方法において、前記樹脂硬化処理を、まず前記反射部を対象として行い、次いで、前記固定部を対象として行うことに特徴を有する。
本発明に係る光走査装置によれば、反射部の歪みが可及的に防止され、しかも、共振周波数が精度良く調整された光走査装置を提供することができる。
本実施形態に係る画像形成装置の電気的構成及び光学的構成を示した説明図である。 本実施形態に係る光走査装置の構成を示した説明図である。 光走査装置の反射部を示した説明図である。 梁への張力の伝達を示した説明図である。 光走査装置の製造工程を示したフローである。 共振周波数調整工程の詳細を示したフローである。 貫通孔の形成過程を示した説明図である。 紫外線硬化樹脂の硬化に関する説明図である。 構造体の変形例を示した説明図である。 他の光走査装置における本発明の適用例を示した説明図である。
〔本発明の概要〕
本発明は、反射部や梁部、固定部等を備えた構造体を有する光走査装置において、共振周波数の調整が施された構造体を有する光走査装置を提供するものである。
反射部や梁部、固定部等を備えた構造体の共振周波数は、反射部の慣性モーメントや、梁部のねじり剛性(バネ定数)が変化することにより変動することが知られている。
そこで本発明では、構造体の所定箇所に穿設した貫通孔に光硬化樹脂を充填し、光硬化樹脂の重量や、光硬化樹脂の硬化に伴って生起される収縮力によって、反射部の慣性モーメントを増大させたり、梁部のねじり剛性(バネ定数)を高めたりすることで構造体の共振周波数を調整している。
より具体的には、本発明は、下記のいずれか、若しくは両者を併用した調整を行うことにより、共振周波数が調整された構造体を有する光走査装置を提供するものであるとも言える。
(1)反射部に穿設した貫通孔に光硬化樹脂を充填し、この光硬化樹脂の重量によって反射部の慣性モーメントを増大させ、構造体の共振周波数を低下させる調整。
(2)固定部又は反射部に穿設した貫通孔に光硬化樹脂を充填し、この光硬化樹脂が硬化する際に生起する収縮力を梁部に伝搬させて梁部の張力を増し、梁部のねじり剛性(バネ定数)を高めて構造体の共振周波数を上昇させる調整。
上述のような調整を行うことにより、製造された複数の構造体によってそれぞれ異なる共振周波数のばらつきを補正することができ、共振周波数が精度良く調整された光走査装置を提供することができる。
〔具体的構成〕
以下、本発明に好適な実施形態について図面に基づいて説明する。まず、共振周波数の調整が既に行われた本発明に係る光走査装置を、網膜走査型ディスプレイに採用した実施形態について説明し、次いで、光走査装置について共振周波数の調整法を交えながら説明する。
〔画像形成装置の電気的構成〕
本実施形態における網膜走査型ディスプレイ1の電気的構成などについて図1を参照しながら説明する。
図1に示すように、網膜走査型ディスプレイ1には、外部から供給される画像信号Sを処理するための光源ユニット部10が設けられている。光源ユニット部10には、外部からの画像信号Sが入力され、それに基づいて映像を合成するための要素となる各信号を発生する駆動信号供給回路11が設けられ、この駆動信号供給回路11から駆動信号13(13r,13g,13b)、低速駆動信号18、高速駆動信号19が出力される。この光源ユニット部10は、画像信号Sに応じて光を出射する光出射部として機能する。
また、光源ユニット部10には、駆動信号供給回路11から駆動信号13として伝達される赤(R),緑(G),青(B)の各駆動信号をもとにそれぞれ強度調整されたレーザ光を出射するように、Rレーザ21,Gレーザ22,Bレーザを23、それぞれ駆動するためのRレーザドライバ15,Gレーザドライバ16,Bレーザドライバ17が設けられている。さらに、各レーザより出射されたレーザ光を平行光にコリメートするように設けられたコリメート光学系24(24r,24g,24b)と、それぞれコリメートされたレーザ光を合波するダイクロイックミラー25(25r,25g,25b)と、合波されたレーザ光を光ファイバ30に導く結合光学系26とが設けられている。尚、Rレーザ21,Gレーザ22,Bレーザ23として、レーザダイオード等の半導体レーザや固体レーザを利用してもよい。
また、網膜走査型ディスプレイ1には、光源ユニット部10から伝搬されたレーザ光を高速走査系42に導くコリメート光学系41と、コリメートされたレーザ光を、光走査装置Aを利用して水平方向に走査する高速走査系42と、高速走査系42によって走査されたレーザ光を低速走査系44に導く第1リレー光学系43と、高速走査系42に走査され、第1リレー光学系43を介して入射されたレーザ光を、ガルバノミラー44aを利用して垂直方向に走査する低速走査系44と、低速走査系44に走査されたレーザ光をユーザの瞳孔47に入射するように第2リレー光学系45と、ハーフミラー46とが設けられている。
尚、具体的な一例としては、高速走査系42は、表示すべき画像の1走査線ごとに、レーザビームを水平方向に水平走査(1次走査の一例)させる光学系である。また、高速走査系42は、レーザビームを水平方向に走査する光走査装置Aと、その光走査装置Aの駆動制御を行う高速走査駆動回路42cとを備えている。
これに対し、低速走査系44は、表示すべき画像の1フレームごとに、レーザビームを最初の走査線から最後の走査線に向かって垂直に垂直走査(2次走査の一例)する光学系である。また、低速走査系44は、垂直走査するガルバノミラー44aと、そのガルバノミラー44aの駆動制御を行う垂直制御回路44cとを備えている。
高速走査系42は、低速走査系44より高速にすなわち高周波数でレーザビームを走査するように設計されている。また、高速走査系42,低速走査系44は、各々駆動信号供給回路11に接続され、駆動信号供給回路11より出力される低速駆動信号18、高速駆動信号19にそれぞれ同期してレーザ光を走査するように構成されている。
次に、本発明の一実施形態の網膜走査型ディスプレイ1が、外部からの画像信号Sを受けてから、ユーザの網膜48上に映像を投影するまでの過程について図1を用いて説明する。
図1に示すように、本実施形態の網膜走査型ディスプレイ1では、光源ユニット部10に設けられた駆動信号供給回路11が外部からの画像信号Sの供給を受けると、駆動信号供給回路11は、赤,緑,青の各色のレーザ光を出力させるためのR駆動信号13r,G駆動信号13g,B駆動信号13bからなる駆動信号13と、低速駆動信号18と、高速駆動信号19とを出力する。Rレーザドライバ15,Gレーザドライバ16,Bレーザドライバ17は各々入力されたR駆動信号13r,G駆動信号13g,B駆動信号13bに基づいてRレーザ21,Gレーザ22,Bレーザ23に対してそれぞれの制御信号を出力する。この制御信号に基づいて、Rレーザ21,Gレーザ22,Bレーザ23はそれぞれ強度調整されたレーザ光を発生し、各々をコリメート光学系24に出力する。このように点光源から発生されるレーザ光は、このコリメート光学系24によってそれぞれが平行光にコリメートされ、さらに、ダイクロイックミラー25に入射されて1つのビーム光となるよう合成された後、結合光学系26によって光ファイバ30に入射されるよう導かれる。
光ファイバ30によって伝搬されたレーザ光は、光ファイバ30からコリメート光学系41によって平行光にコリメートされて高速走査系42に出射される。この出射されたレーザ光は、高速走査系42の光走査装置Aの反射部50に入射される。また、光走査装置Aの反射部50に入射したレーザ光は低速駆動信号18に同期して水平方向に走査されて第1リレー光学系43を介し、低速走査系44のガルバノミラー44aの反射ミラー44bに入射する。ガルバノミラー44aは、高速駆動信号19に同期して、その反射ミラー44bが入射光を垂直方向に反射するように往復振動をしており、このガルバノミラー44aによってレーザ光は垂直方向に走査される。ガルバノミラー44aによって走査されたレーザ光は、第2リレー光学系45とハーフミラー46とを介して、外光Laと共にユーザの瞳孔47に入射する。これによって、ユーザはこのように2次元走査されて網膜48上に投影されたレーザ光による画像を、外界の背景と共に認識することができる。つまり、この網膜走査型ディスプレイ1は、画像に関する画像信号に応じて変調された光を走査させて出射させることで、ユーザの少なくとも一方の眼の網膜48に画像を投影し、画像を表示するシースルー型の網膜走査型画像形成装置の一例に相当する。なお、本実施形態では、前述の1次方向を水平方向、前述の2次方向を垂直方向としているが、これに限定されるものではなく、例えば、1次方向を垂直方法、2次方向を水平方向として走査するようにしても良い。
[光走査装置Aの構成]
次に、本実施形態の要部を成す光走査装置Aの構成について、図2を参照しながら説明する。
本実施形態における高速走査系42の光走査装置Aは、図2に示すような光走査体51と、台座52と、を含む構成である。
この光走査体51は、シリコンで形成されたシリコン構造体61と、ガラスで形成された支持部材71と、を有する。
シリコン構造体61は、先に概要にて説明したように、共振周波数の調整の対象となる部材であり、シリコンで形成され、入射した光を反射する反射部50を有し、その反射部50を反復揺動させることによって、光を走査する素子である。
シリコン構造体61の中央には、開口62が形成されている。この開口62の中央には光走査装置Aの反射部50が設けられている。反射部50は、平面視矩形状に形成しており、その周縁に近接する角部に、それぞれ貫通孔Hが設けられている。
ここで、反射部50の構成について図3を参照しながら更に説明する。図3(a)は、反射部50に穿設された貫通孔Hに光硬化樹脂を充填させた状態を示しており、光硬化樹脂は網掛けで示している。また、図3(b)は、図3(a)におけるX−X断面を示した説明図である。
反射部50は、図3(b)に破線で示すように、梁63の伸延方向を揺動軸Pとして反復揺動することにより、入射した光を反射しながら走査する。
ここで、貫通孔Hは、反射部50上において、揺動軸Pから離隔した位置に設けられており、同貫通孔H内には、光硬化樹脂としての紫外線硬化樹脂Bを充填し、硬化させている。
光硬化樹脂は、同光硬化樹脂が硬化反応を行うために必要な所定波長の光(以下、「硬化光」という。)が照射されることにより硬化する樹脂であり、本実施形態では、紫外光が硬化光として機能する紫外線硬化樹脂Bを用いている。
貫通孔H内に充填された紫外線硬化樹脂Bは、後述の樹脂硬化工程にて紫外光が照射されて既に硬化している。このような構成を有する反射部50は、紫外線硬化樹脂Bを充填されていない状態の反射部50に比して、揺動軸Pを中心とする慣性モーメントが増大されており、シリコン構造体61の共振周波数の低下調整がなされている。
しかも、紫外線硬化樹脂Bは、反射部50の表裏を貫く貫通孔Hに充填しているため、紫外線硬化樹脂Bが硬化する際に生起される収縮力が、反射部50の表面に偏って作用してしまうことがない。したがって、紫外線硬化樹脂Bの硬化に伴って、反射部50が歪んでしまうことを可及的に防止することができる。
なお、貫通孔Hに充填する紫外線硬化樹脂Bは、必要に応じて増減させても良い。充填量を変化させることにより、揺動軸Pを中心とする慣性モーメントを調整することができ、反射部50の共振周波数を下げる方向に微調整を行うことができる。
図2の説明に戻ると、反射部50からは、相反する方向に一対の梁63が延びており、この一対の梁63が延びる先には、一対の梁63と連結され、それを支持する固定部64が設けられている。
この一対の梁63が連結された固定部64には、圧電体65が設けられており、圧電体65に電圧を印加することによって、反射部50が反復揺動することとなる。この圧電体65は、反射部50を反復揺動させる駆動体として機能する。
固定部64には、複数の貫通孔Hが形成されている。これら複数の貫通孔Hは、前述の反射部50の貫通孔Hと同様、紫外線硬化樹脂Bを充填するための孔として形成されており、いくつかの貫通孔Hの内部には紫外線硬化樹脂Bが充填されている。
ここで、固定部64に形成された貫通孔H内の紫外線硬化樹脂Bの働きについて図4を参照しながら更に説明する。
図4(a)に示すように、固定部64に形成された貫通孔Hは、充填した紫外線硬化樹脂Bが硬化する際に生起する収縮力が、梁63へ伝搬可能な領域(以下、「収縮力伝搬可能領域」という。)67内に形成されている。この収縮力伝搬可能領域67は、構造体の素材や形状、光硬化樹脂の収縮力、貫通孔Hの形状等により形状や面積が変化する領域である。
このような収縮力伝搬可能領域67内に穿設した貫通孔H内に紫外線硬化樹脂Bを充填して固化させることにより、図中破線の矢印で示すように、梁63に張力を付与して、固定部64の共振周波数を高めることができる。なお、図4(a)では、説明を容易とするために、梁63に最も近い貫通孔Hに充填された紫外線硬化樹脂Bによる張力のみを示しているが、その左右両側に位置する紫外線硬化樹脂Bが充填された貫通孔Hもまた同様に、その周辺に張力を発生させている。
固定部64に形成された貫通孔H内の紫外線硬化樹脂Bは、硬化する際に生起する収縮力によって梁63に張力を与えており、共振周波数を高める働きを担っている。
また、図4(b)は、反射部50の拡大図を示しているが、収縮力伝搬可能領域67は反射部50側にも存在するため、反射部50の収縮力伝搬可能領域67内に形成した貫通孔Hに、紫外線硬化樹脂Bを充填して硬化させ、梁63に張力を付与するようにしても良い。
反射部50の収縮力伝搬可能領域67内に穿設した貫通孔H内で紫外線硬化樹脂Bを固化させることによっても、図中破線の矢印で示すように、梁63に張力を付与して、シリコン構造体61の共振周波数を高めることができる。
また図4(b)に示したように、揺動軸Pを貫通させた状態で貫通孔Hを設けることにより、反射部50の慣性モーメントの増大を抑制しつつ、梁63に張力を付与してシリコン構造体61の共振周波数を高めることができる。
また、図4(b)において点線で示す貫通孔Hのように、収縮力伝搬可能領域67の領域内であって、揺動軸Pを貫通しない位置に貫通孔Hを設ければ、反射部50の慣性モーメントを増大しつつ、梁63に張力を伝達させることも可能である。
すなわち、共振周波数の下方調整と、上方調整とを併用することができ、シリコン構造体61の共振周波数の微妙な調整を行うことができる。
再び、図2の説明に戻る。支持部材71は、シリコン構造体61を支持し、台座52に配置される。この支持部材71は、シリコン構造体61と略同一の線膨張係数を有するとともに前記シリコン構造体61を陽極接合にて互いに強く接合しあった状態で支持するためにガラスで形成されている。また、支持部材71が設置されることによって、反射部50の揺動駆動のための高さを確保することができる。この支持部材71の中央には、開口73が形成されている。支持部材71の長手方向の端部には、上述したシリコン構造体61の固定部64や、台座52の接着部54が接着部材で接着される結合部72が形成されている。
台座52は、セラミックで形成されている。この台座52には、凹部53が形成されている。また、この凹部53の長手方向の端部には、上述した支持部材71の結合部72を接着するための接着部54が設けられている。台座52は、結合部72に接着部材で接着され、光走査体51を支持する。
[光走査装置Aの製造方法]
次に、図5〜図7を参照して、光走査装置Aの製造方法について説明する。図5は、本実施形態における網膜走査型ディスプレイ1の光走査装置Aの製造方法を示すフローであり、図6は光走査装置Aのシリコン構造体61の共振周波数の調整を行う過程を示したフローであり、図7はシリコン構造体61の製造過程を示した説明図である。
最初に、図5に示すように、シリコン構造体作製工程を行う(ステップS11)。この工程においては、シリコン構造体61をKOHウェットエッチングで形成し、開口62を形成する。これによって、シリコン基板81(図7参照)をエッチングして、反射部50、一対の梁63、固定部64を形成する。そして、更に圧電体65(駆動体)を配置して光走査体51を製造する。
すなわち、図7(A)に示すように、まずシリコン基板81の上下両面に熱酸化を行い、酸化膜82を形成する。そして、図7(B)に示すように、酸化膜82の上下両面にレジスト83を塗布し、露光を行い、反射部50や、梁63、固定部64を形成するためのパターニングを行う。また、このとき前記反射部50や固定部64の所定箇所に貫通孔Hを形成するためのパターニングも行う。そして、図7(C)に示すように、酸化膜82をパターニングし、図7(D)に示すように、シリコンウェットエッチングで反射部50や、固定部64、貫通孔Hを形成し、次いで、レジスト83を除去する。更に、図7(E)に示すように、酸化膜82を除去し、貫通孔Hが形成されたシリコン構造体61を作製する。
次に、図5に示すように、シリコン構造体61の共振周波数の調整工程を行う(ステップS12)。本工程は、前ステップS11にて形成した貫通孔Hに光硬化樹脂を充填し、反射部50の慣性モーメントを増大させたり、梁63への張力を付与することにより、シリコン構造体61の共振周波数を調整する工程であり、後に図6を参照しながら更に詳細に説明する。
次に、図5に示すように、ガラス支持部材作製工程を行う(ステップS13)。この工程においては、例えば、ガラスウエハにマスキングを行い、フッ素系ガスドライエッチングで加工を行うことにより、開口73の形成を行う。
次に、シリコン構造体61とガラスで作製した支持部材71とを陽極接合して、光走査体51を形成する(ステップS14)。
次に、セラミック製の台座52を作製する(ステップS16)。この工程においては、セラミック製の台座52を圧粉成形で作製する。
次に、台座52との相対位置決めを行い(ステップS17)、接着部材を滴下し(ステップS18)、乾燥させる(ステップS19)。これによって、光走査体51の結合部72(接着領域)を台座52に接着部材で固定され、光走査装置Aが製造される。
次に、前述のステップS12における共振周波数調整工程について、図6を参照しながら具体的に説明する。
図6に示すように、共振周波数調整工程では、まず、シリコンウエハ上に形成されたシリコン構造体61のダイシング(切り分け)を行う(ステップS20)。そして、切り分けられたシリコン構造体61の共振周波数の測定を行う(ステップS21)。
次に、測定を行ったシリコン構造体61の共振周波数は、例えば仕様などにより予め目標として定められている共振周波数の範囲(以下、目標共振周波数帯という。)内であるか否かについて判断を行う(ステップS22)。
ここで、測定した共振周波数が、目標共振周波数帯内でない場合(ステップS22:No)には、ステップS23の工程を行う。また、目標共振周波数帯内である場合(ステップS22:Yes)には、本共振周波数調整工程を終えて、前述のステップS13に工程を移す。
ステップS23では、目標共振周波数帯内でないシリコン構造体61に予め穿設されている複数の貫通孔Hのうち、いずれの貫通孔Hに光硬化樹脂を充填するかを選択する貫通孔選択工程を行う。
本工程にて選択する貫通孔Hは、次の樹脂充填工程にて用いる紫外線硬化樹脂Bが硬化する際に生起する収縮力等に応じて決定する。
次に、選択された貫通孔Hに紫外線硬化樹脂Bを充填する樹脂充填工程を行い(ステップS24)、充填した紫外線硬化樹脂Bに対して硬化光を照射する樹脂硬化工程を行う(ステップS25)。
この硬化光の照射方法は、貫通孔Hの開口の片方から照射しても良く、両方の開口から照射するようにしても良い。
両方の開口から照射する場合、シリコン構造体61の表裏両面側に硬化光を出射する照射源を配置しても良いが、例えば図8(a)に示すように、一方の開口側に照射源74を配置すると共に、他方の開口側に硬化光76を反射する反射体75を配置し、照射源74より出射したた硬化光76を貫通孔H内を透過させ、貫通孔Hから出射した硬化光76を反射体75で反射して再び貫通孔H内を透過させるようにしても良い。このような方法によれば、少ない照射源74で、貫通孔H内の紫外線硬化樹脂Bに対して効率よく硬化光76を両面から照射することができる。
また、貫通孔H内の紫外線硬化樹脂Bは、硬化反応を十分に行わせて完全に硬化させても良いが、硬化光76の照射量を調整して、完全に硬化する前に硬化反応を停止させるようにしても良い。なお、硬化光76の照射量は、硬化光76の照射時間や照射強度(すなわち、単位時間当たりに与えるエネルギー)を加減することにより調整することができる。
硬化光76の照射量を調整すれば、紫外線硬化樹脂Bは硬化度合いによって収縮力が異なるため、収縮力を調整することができ、シリコン構造体61の共振周波数の微調整を行うことができる。
図8(b)は、貫通孔Hに充填された紫外線硬化樹脂Bへの硬化光76の照射量と、シリコン構造体61の共振周波数との関係を示したグラフである。前述の如く、固定部64の収縮力伝搬可能領域67に形成した貫通孔Hや、反射部50の収縮力伝搬可能領域67で揺動軸Pを貫いて形成した貫通孔Hに紫外線硬化樹脂Bを充填した場合には、反射部50の慣性モーメントへの影響は無いか僅かであるため、図8(b)に示すように、紫外線硬化樹脂Bを硬化させる硬化光76の照射前の段階では、紫外線硬化樹脂Bを充填する前の共振周波数とほぼ同じである。
その後、硬化光76の照射量が増えるに従い、紫外線硬化樹脂Bの硬化が徐々に進み、紫外線硬化樹脂Bの収縮力が強くなるため、張力が梁63へ掛かり、シリコン構造体61の共振周波数が上昇することとなる。
したがって、貫通孔H内に充填した紫外線硬化樹脂Bへの硬化光76の照射量を調整することにより、硬化度合いを調整してシリコン構造体61の共振周波数を所望の値に調整することも可能である。
また、図4(b)にて破線で示した貫通孔Hの如く、反射部50の収縮力伝搬可能領域67内であって、揺動軸Pから離隔した位置に設けた場合、貫通孔Hに充填された紫外線硬化樹脂Bへの硬化光76の照射量と、シリコン構造体61の共振周波数との関係は、図8(c)に示すようになる。
すなわち、貫通孔Hに紫外線硬化樹脂Bを充填し硬化させる前の状態では、シリコン構造体61の共振周波数は、充填した紫外線硬化樹脂Bの重量による慣性モーメントの増大により、紫外線硬化樹脂Bを充填する前の共振周波数よりも下がるが、その後照射量が増加するに従い、梁63に張力が付与されて共振周波数が徐々に上昇する。
貫通孔H内の紫外線硬化樹脂Bは、硬化光76の照射量の増減によりこのような挙動を示すため、例えば、目標共振周波数帯よりも高い共振周波数を有するシリコン構造体61に対しては、反射部50の収縮力伝搬可能領域67内であって、揺動軸Pから離隔した位置に設けた貫通孔H内に紫外線硬化樹脂Bを充填することにより一旦共振周波数を下げ、その後、硬化光の照射量を徐々に増やしながら、シリコン構造体61の共振周波数の上方調整を行うことも可能である。
図6の説明に戻り、本樹脂硬化工程を終えると、処理を再びステップS21の共振周波数測定工程を行い、ステップS22においてシリコン構造体61の共振周波数が目標共振周波数帯内となった場合(ステップS22:Yes)には、処理を戻して、対象となっているシリコン構造体61の共振周波数の調整を終える。
一方、ステップS22において、シリコン構造体61の共振周波数が、未だ目標共振周波数帯内ではない場合(ステップS23:No)には、シリコン構造体61の共振周波数が目標共振周波数帯内に収まるまで、前述のステップS23〜S25(以下、樹脂硬化処理という。)を繰り返す。
なお、この樹脂硬化処理は、まず反射部50を対象として行い、次いで、固定部64を対象として行うのが好ましい。このような順で樹脂硬化処理を行うことにより、共振周波数調整前のシリコン構造体61の共振周波数が、目標共振周波数帯から高低いずれに外れていても、シリコン構造体61の共振周波数を目標共振周波数帯内に調整することができる。
本実施形態に係る光走査装置Aは、上述のようにして製造されることとなる。
[構造体の変形例]
次に、シリコン構造体61の貫通孔Hの形成に係る他の変形例について、図9を参照しながら説明する。なお、これらの変形例は、貫通孔Hの穿設位置によって生ずる効果を説明するための代表例として示すものであり、貫通孔Hの穿設位置は、以下に説明する変形例における穿設位置に限定されるものではなく、各変形例の穿設位置を適宜組み合わせたり増減させて実施しても良いのは勿論である。また、以下の説明において、前述と同様の部材に関しては同じ符号を付して説明を省略する。
図9(a)に示すシリコン構造体90は、前述のシリコン構造体61と略同様の構成を有しているが、反射部50に貫通孔Hが穿設されていない点で構造を異にしている。このような構造を有するシリコン構造体90によっても、シリコン構造体90の共振周波数を上方調整することができ、しかも貫通孔Hの数を減らして構造をシンプルにすることができる。
また、図9(b)に示すシリコン構造体91は、シリコン構造体90と略同様の構成を有しているが、反射部50上に、梁63に直交する方向へ複数の貫通孔Hを穿設した点で異なっている。このような構造を有するシリコン構造体91では、固定部64に穿設した貫通孔Hにより、シリコン構造体91の共振周波数を上方調整することができ、また、反射部50に設けた貫通孔Hによっても共振周波数の上方調整及び下方調整を行うことができる。
特に、反射部50に設けた貫通孔Hのうち、揺動軸Pからより離隔した貫通孔Hを選択することにより、貫通孔H内に充填した紫外線硬化樹脂Bの硬化度合いと、反射部50の慣性モーメントの調整とを同時に行うことができ、シリコン構造体91の共振周波数をより細やかに調整することができる。なお、反射部50に穿設した貫通孔Hは、全てが収縮力伝搬可能領域67内に形成してもよく、また、一部の貫通孔Hは、収縮力伝搬可能領域67外に形成しても良い。一部の貫通孔Hを収縮力伝搬可能領域67外に形成した場合には、その貫通孔Hに充填した紫外線硬化樹脂Bの重量による効果を享受することができ、収縮力による効果を無視してシリコン構造体91の共振周波数の調整を行うことができるため、共振周波数の調整作業を簡便なものとすることができる。
また、図9(c)に示すシリコン構造体92は、シリコン構造体61と略同様の構成を有しているが、固定部64に穿設した貫通孔Hの形成位置において構造を異にしている。具体的には、第2列目に形成された貫通孔H同士の間隔よりも、より梁63に近い第1列目に形成された貫通孔H同士の間隔を狭めて、張力が梁63の根元部に収束するようにしている。
このような構成とすることにより、貫通孔H内で生起される紫外線硬化樹脂Bの張力を効率的に梁63に伝達させることができ、シリコン構造体92の共振周波数の調整を行うことができる。
また、図9(d)に示すシリコン構造体93は、シリコン構造体61と略同様の構成を有しているが、固定部64に穿設した貫通孔Hのうち、梁63に最も近い第1列目の貫通孔Hの大きさを小さく形成した点で構造を異にしている。
このような構成とすることにより、梁63への影響が最も大きい位置の貫通孔Hにおける張力を小さくして、より細やかにシリコン構造体93の共振周波数の調整を行うことができる。
上述してきたように、本実施形態に係る光走査装置Aでは、入射した光束を反射する反射部(例えば、反射部50)と、反射部から伸延する梁部(例えば、梁63)と、梁部を支持する固定部(例えば、固定部64)とを有する構造体(例えば、シリコン構造体61)と、固定部上に配置され、共振により反射部を梁部の軸線(例えば、揺動軸P)廻りに反復揺動させる駆動体(例えば、圧電体65)と、を備えた光走査装置Aにおいて、構造体の所定箇所に穿設された貫通孔(例えば、貫通孔H)に充填された光硬化樹脂(例えば、紫外線硬化樹脂B)を有し、光硬化樹脂の硬化に伴い生じる収縮力を変化させる当該光硬化樹脂に対する光(例えば、硬化光76)の照射量及び/または光硬化樹脂の重量によって、構造体の共振周波数を調整した。したがって、反射部の歪みが可及的に防止され、しかも、共振周波数が精度良く調整された光走査装置を提供することができる。
また、構造体に、光硬化樹脂を充填するための貫通孔が複数設けられているため、穿設された位置の違いによる、反射部50の慣性モーメントへの影響や、梁63のバネ定数への影響を変化させることができ、細やかに共振周波数の調整がなされた光走査装置Aを提供することができる。
また、貫通孔Hを、少なくとも反射部50に設けることにより、反射部50の慣性モーメントへの影響と、梁63のバネ定数への影響とを同時に働かせて、共振周波数の上方調整と下方調整との両方を適宜行うことができる。
また、貫通孔Hを、反射部50と、固定部64との両方に設けることによっても、反射部50の慣性モーメントへの影響と、梁63のバネ定数への影響とを同時に働かせて、共振周波数の上方調整と下方調整との両方を適宜行うことができる。
また、反射部50の貫通孔Hは、反射部50の周縁に近接して設けることにより、揺動軸Pから離隔した位置に紫外線硬化樹脂Bによる重量を置くことができ、慣性モーメントを効率的に上げることができると共に、反射部50への入射光束に影響を及ぼさないようにすることができる。
また、紫外線硬化樹脂Bは、貫通孔Hの開口両側から光を照射して硬化したため、紫外線硬化樹脂Bを均一に硬化させることができる。
また、貫通孔Hの開口両側より照射する硬化光76のうち、一方の開口側から照射する硬化光76は、他方の開口側より照射され貫通孔Hを透過した光を反射体75により反射させた光とすることにより、少ない照射源74で、貫通孔H内の紫外線硬化樹脂Bに対して効率よく硬化光76を照射することができる。
また、本実施形態に係る画像形成装置(例えば、網膜走査型ディスプレイ1)は、画像信号Sに応じた光束を出射する光出射部(例えば、光源ユニット部10)と、請求項1〜7いずれか1項に記載の光走査装置とを備え、光出射部から出射した光束を光走査装置によって走査して画像を形成することとしたため、共振周波数が精度良く調整された光走査装置Aによって走査しながら画像を形成することができる。
また、本実施形態に係る光走査装置の製造方法では、入射した光束を反射する反射部と、反射部から伸延する梁部と、同梁部を支持する固定部とを備える構造体と、固定部上に配置され、共振により反射部を梁部の軸線廻りに反復揺動させる駆動体と、を備えた光走査装置の製造方法において、構造体の所定箇所に複数穿設された貫通孔のうち、光硬化樹脂を充填させる貫通孔を選択する貫通孔選択ステップ(例えば、貫通孔選択工程S23)と、前記貫通孔選択ステップにて選択した貫通孔に、光硬化樹脂を充填する樹脂充填ステップ(例えば、樹脂充填工程S24)と、前記樹脂充填ステップにて充填した光硬化樹脂に対して光を照射し、前記光硬化樹脂を硬化させる樹脂硬化ステップ(例えば、樹脂硬化工程S25)と、を含む樹脂硬化処理を行い、光硬化樹脂の硬化に伴い生じる収縮力を変化させる当該光硬化樹脂に対する光の照射量及び/または光硬化樹脂の重量により、構造体の共振周波数を調整することとしたため、反射部50の歪みが可及的に防止され、しかも、共振周波数が精度良く調整された光走査装置を製造することができる。
また、樹脂硬化処理を、まず反射部50を対象として行い、次いで、固定部64を対象として行うことにより、共振周波数調整前の構造体の共振周波数が、目標共振周波数帯から高低いずれに外れていても、構造体の共振周波数を目標共振周波数帯内に調整することができる。
最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
本実施形態における光走査装置Aの製造方法では、ウエハー上に複数形成したシリコン構造体61をダイシングにより別個に切り分けてから共振周波数の調整を行うようにしたが、これに限定されるものではなく、ウエハー上に複数のシリコン構造体61が形成されている状態で、それぞれのシリコン構造体61毎に共振周波数の測定を行うようにしても良い。
また、本実施形態のおける光走査装置Aの駆動体は、圧電体65としたが、これに限定されるものではなく、例えば、図10(a)に示すような可動電極95と固定電極96とを有する静電櫛歯97により静電駆動する光走査装置A1においても同様に本発明を適用することができる。
また、本実施形態における光走査装置Aはシリコンベースとしたが、これに限定されるものではなく、例えば、図10(b)に示すような形状の金属によって形成されるメタル構造体94を備えた光走査装置A2においても同様に本発明を適用することができる。
また、本実施形態におけるシリコン構造体では、貫通孔は、平面視において矩形状としたが、これに限定されるものではなく、円形や多角形など必要に応じてあらゆる形状とすることができる。
1 網膜走査型ディスプレイ
10 光源ユニット部
50 反射部
61 シリコン構造体
63 梁
64 固定部
65 圧電体
74 照射源
75 反射体
76 硬化光
A 光走査装置
B 紫外線硬化樹脂
H 貫通孔
P 揺動軸
S 画像信号

Claims (10)

  1. 入射した光束を反射する反射部と、前記反射部から伸延する梁部と、同梁部を支持する固定部とを有する構造体と、
    前記固定部上に配置され、共振により前記反射部を前記梁部の軸線廻りに反復揺動させる駆動体と、を備えた光走査装置において、
    前記構造体の所定箇所に穿設された貫通孔に充填された光硬化樹脂を有し、同光硬化樹脂の硬化に伴い生じる収縮力を変化させる当該光硬化樹脂に対する光の照射量及び/または前記光硬化樹脂の重量によって、前記構造体の共振周波数を調整したことを特徴とする光走査装置。
  2. 前記構造体に、光硬化樹脂を充填するための貫通孔が複数設けられていることを特徴とする請求項1に記載の光走査装置。
  3. 前記貫通孔を、少なくとも前記反射部に設けたことを特徴とする請求項1または請求項2に記載の光走査装置。
  4. 前記貫通孔を、前記反射部と、前記固定部との両方に設けたことを特徴とする請求項1〜3いずれか1項に記載の光走査装置。
  5. 前記反射部の貫通孔は、前記反射部の周縁に近接して設けられていることを特徴とする請求項3または請求項4に記載の光走査装置。
  6. 前記光硬化樹脂は、前記貫通孔の開口両側から光を照射して硬化したものであることを特徴とする請求項1〜5いずれか1項に記載の光走査装置。
  7. 前記貫通孔の開口両側より照射する光のうち、一方の開口側から照射する光は、他方の開口側より照射され前記貫通孔を透過した光を反射させた光であることを特徴とする請求項6に記載の光走査装置。
  8. 画像信号に応じた光束を出射する光出射部と、請求項1〜7いずれか1項に記載の光走査装置とを備え、前記光出射部から出射した光束を前記光走査装置によって走査して画像を形成することを特徴とする画像形成装置。
  9. 入射した光束を反射する反射部と、前記反射部から伸延する梁部と、同梁部を支持する固定部とを備える構造体と、
    前記固定部上に配置され、共振により前記反射部を前記梁部の軸線廻りに反復揺動させる駆動体と、を備えた光走査装置の製造方法において、
    前記構造体の所定箇所に複数穿設された貫通孔のうち、光硬化樹脂を充填させる貫通孔を選択する貫通孔選択ステップと、
    前記貫通孔選択ステップにて選択した貫通孔に、光硬化樹脂を充填する樹脂充填ステップと、
    前記樹脂充填ステップにて充填した光硬化樹脂に対して光を照射し、前記光硬化樹脂を硬化させる樹脂硬化ステップと、を含む樹脂硬化処理を行い、
    前記光硬化樹脂の硬化に伴い生じる収縮力を変化させる当該光硬化樹脂に対する光の照射量及び/または前記光硬化樹脂の重量により、前記構造体の共振周波数を調整することを特徴とする光走査装置の製造方法。
  10. 前記樹脂硬化処理を、まず前記反射部を対象として行い、次いで、前記固定部を対象として行うことを特徴とする請求項9に記載の光走査装置の製造方法。
JP2010227740A 2010-10-07 2010-10-07 光走査装置及び同光走査装置を備えた画像形成装置、並びに、光走査装置の製造方法 Pending JP2012083436A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010227740A JP2012083436A (ja) 2010-10-07 2010-10-07 光走査装置及び同光走査装置を備えた画像形成装置、並びに、光走査装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010227740A JP2012083436A (ja) 2010-10-07 2010-10-07 光走査装置及び同光走査装置を備えた画像形成装置、並びに、光走査装置の製造方法

Publications (1)

Publication Number Publication Date
JP2012083436A true JP2012083436A (ja) 2012-04-26

Family

ID=46242404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227740A Pending JP2012083436A (ja) 2010-10-07 2010-10-07 光走査装置及び同光走査装置を備えた画像形成装置、並びに、光走査装置の製造方法

Country Status (1)

Country Link
JP (1) JP2012083436A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235244A (ja) * 2013-05-31 2014-12-15 京セラドキュメントソリューションズ株式会社 光偏向器、その製造方法及び光走査装置
JP2014235245A (ja) * 2013-05-31 2014-12-15 京セラドキュメントソリューションズ株式会社 光偏向器及び光走査装置
EP2868624A1 (en) * 2013-10-30 2015-05-06 KYOCERA Document Solutions Inc. Optical scanning apparatus, and method of adjusting resonance frequency at oscillating mirror unit in the optical scanning apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235244A (ja) * 2013-05-31 2014-12-15 京セラドキュメントソリューションズ株式会社 光偏向器、その製造方法及び光走査装置
JP2014235245A (ja) * 2013-05-31 2014-12-15 京セラドキュメントソリューションズ株式会社 光偏向器及び光走査装置
US9279981B2 (en) 2013-05-31 2016-03-08 Kyocera Document Solutions Inc. Light deflector, optical scanning device and image forming apparatus
US9594244B2 (en) 2013-05-31 2017-03-14 Kyocera Document Solutions Inc. Light deflector with plate-like mirror forming a base of a recess in a movable member and a mass body on a non-deflecting surface of the mirror to adjust a resonent frequency of the movable member
EP2868624A1 (en) * 2013-10-30 2015-05-06 KYOCERA Document Solutions Inc. Optical scanning apparatus, and method of adjusting resonance frequency at oscillating mirror unit in the optical scanning apparatus
JP2015087553A (ja) * 2013-10-30 2015-05-07 京セラドキュメントソリューションズ株式会社 光走査装置、該光走査装置を備えた画像形成装置、及び光走査装置における振動ミラー部の共振周波数の調整方法
US9150030B2 (en) 2013-10-30 2015-10-06 Kyocera Document Solutions Inc. Optical scanning apparatus, image forming apparatus including the optical scanning apparatus, and method of adjusting resonance frequency at oscillating mirror unit in the optical scanning apparatus

Similar Documents

Publication Publication Date Title
US8848269B2 (en) Method for projecting an image
JP6308790B2 (ja) 可変形状ミラー及びその製造方法
JP5769941B2 (ja) アクチュエータの駆動装置
WO2015052877A1 (ja) ネイル成形装置およびネイル成形方法
JP2011511318A (ja) 光パッケージを位置合わせする方法およびシステム
JP2007272066A (ja) 光スキャナおよびそれを備えた画像形成装置
JP2007268374A (ja) 振動素子、振動素子の製造方法、光走査装置、画像形成装置及び画像表示装置
JP2002250886A (ja) マイクロ光電気機械式レーザスキャナ
TW201719230A (zh) 可調式光學裝置
JP2012083436A (ja) 光走査装置及び同光走査装置を備えた画像形成装置、並びに、光走査装置の製造方法
WO2015145943A1 (ja) 光走査デバイス
CN110945404B (zh) 扫描装置
US7582219B1 (en) Method of fabricating reflective mirror by wet-etch using improved mask pattern and reflective mirror fabricated using the same
JP4622916B2 (ja) 振動素子、振動素子の製造方法、光走査装置、画像形成装置及び画像表示装置
JP2020101588A (ja) 可動装置、距離測定装置、画像投影装置、車両、及び台座
JP5516746B2 (ja) マイクロスキャナおよびそれを備えた光学機器
WO2011114941A1 (ja) 走査光学系およびそれを備えたプロジェクタ
JP5282753B2 (ja) 圧電アクチュエータ、光スキャナ、光走査型画像表示装置、画像形成装置
JP5740819B2 (ja) 空間光変調器の製造方法、空間光変調器、照明光発生装置および露光装置
JP2011053253A (ja) 光スキャナ
WO2010113603A1 (ja) 光スキャナ
JP2020086268A (ja) 光偏向装置、距離測定装置、及び移動体
JP2005345837A (ja) 反射ミラー製作方法および反射ミラー
JP2006130598A (ja) はり構造体製作方法およびはり構造体
JP2009156700A (ja) 揺動体の振動状態検出方法及び共振周波数調整方法