JP2012071296A - Dehydration aid for sludge, method and apparatus for dehydrating sludge - Google Patents

Dehydration aid for sludge, method and apparatus for dehydrating sludge Download PDF

Info

Publication number
JP2012071296A
JP2012071296A JP2011173205A JP2011173205A JP2012071296A JP 2012071296 A JP2012071296 A JP 2012071296A JP 2011173205 A JP2011173205 A JP 2011173205A JP 2011173205 A JP2011173205 A JP 2011173205A JP 2012071296 A JP2012071296 A JP 2012071296A
Authority
JP
Japan
Prior art keywords
sludge
fiber
dewatering
aid
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011173205A
Other languages
Japanese (ja)
Other versions
JP5658107B2 (en
JP2012071296A5 (en
Inventor
Toshiyuki Yasunaga
利幸 安永
Takahiro Okawa
高寛 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2011173205A priority Critical patent/JP5658107B2/en
Priority to KR1020110086473A priority patent/KR20120021241A/en
Priority to CN201110258829.8A priority patent/CN102381827B/en
Publication of JP2012071296A publication Critical patent/JP2012071296A/en
Publication of JP2012071296A5 publication Critical patent/JP2012071296A5/ja
Application granted granted Critical
Publication of JP5658107B2 publication Critical patent/JP5658107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dehydration aid which is used to carry out dehydration treatment of sludge of poor dewaterability produced from waste water treating facilities and to provide a method and an apparatus for dehydrating the sludge which use the dehydration aid.SOLUTION: The dehydration aid for the sludge is composed of an assemblage of a plurality of fibers and has 5 to 20 recessed parts which are formed at outer circumferential surfaces of respective fibers along a longitudinal direction of the fiber. At the recessed part, streaks which act as a water transfer channel for transferring water by a capillary action when the sludge comes into contact therewith are stretched along the longitudinal direction of the fiber.

Description

本発明は、下水処理施設、し尿処理施設、その他排水処理施設から発生する汚泥を脱水処理する為に使用する脱水助剤、並びに、当該脱水助剤を用いた汚泥の脱水方法及び装置に関する。   The present invention relates to a dewatering aid used for dewatering sludge generated from a sewage treatment facility, human waste treatment facility, and other wastewater treatment facilities, and a sludge dewatering method and apparatus using the dewatering aid.

従来から下水処理施設、し尿処理施設、その他排水処理施設から発生する汚泥(以下「汚泥」という)に、有機高分子凝集剤を添加して機械脱水する処理が行われている。しかし、近年の生活様式の変化等により汚泥が難脱水性となったため、機械脱水処理を行っても汚泥の含水率を低下させることが難しくなっている。特に、オキシデーションディッチ処理された汚泥の脱水性は、混合生汚泥、活性汚泥の余剰汚泥、消化汚泥等に比較して脱水性が非常に悪い。これは、オキシデーションディッチ法におけるエアレーション時間が非常に長いため、硝化・脱窒が進行して、汚泥中の繊維分がかなり分解され、凝集の核となる汚泥中の繊維分が少なくなるためであると考えられている。更には、ベルトプレス脱水機やフィルタープレス脱水機のような加圧式脱水機を使用する場合には、ろ布からの脱水ケーキの剥離性が悪く、ろ布が目詰まりするため、ろ過不良を起し、安定した脱水ができなくなるばかりでなく、ろ布の洗浄に時間が掛かるといった問題も生じている。   Conventionally, an organic polymer flocculant has been added to sludge generated from sewage treatment facilities, human waste treatment facilities, and other wastewater treatment facilities (hereinafter referred to as “sludge”) to perform mechanical dehydration. However, since sludge has become difficult to dehydrate due to changes in lifestyles in recent years, it is difficult to reduce the moisture content of sludge even if mechanical dehydration is performed. In particular, the dewaterability of sludge treated with oxidation ditch is very poor as compared with mixed raw sludge, surplus activated sludge, digested sludge, and the like. This is because the aeration time in the oxidation ditch method is very long, and nitrification / denitrification proceeds, so that the fiber content in the sludge is considerably decomposed and the fiber content in the sludge that is the core of aggregation decreases. It is thought that there is. Furthermore, when using a pressure dehydrator such as a belt press dehydrator or a filter press dehydrator, the dewatered cake is not easily peeled off from the filter cloth, and the filter cloth is clogged. However, not only does stable dehydration become impossible, but there is also a problem that it takes time to wash the filter cloth.

し尿処理施設においては、生物処理の前段に設けられているスクリーンにより汚泥から殆どの夾雑物が除去されるため、発生する汚泥には繊維分が少なくなり、汚泥の含水率を低下させることが難しい。   In human waste treatment facilities, most of the contaminants are removed from the sludge by the screen provided at the front stage of the biological treatment, so that the generated sludge has less fiber and it is difficult to reduce the moisture content of the sludge. .

また、廃棄物の再利用の観点から、汚泥のコンポスト化が推進されている。コンポスト化処理の場合、対象汚泥の含水率を40〜60%にする必要がある。また、コンポスト化においては、脱水処理で使用する薬剤等は生分解性(微生物で分解できる)であることが必要である。   In addition, sludge composting is being promoted from the viewpoint of recycling waste. In the case of composting treatment, the water content of the target sludge needs to be 40 to 60%. In composting, it is necessary that the chemicals used in the dehydration process be biodegradable (degradable by microorganisms).

汚泥の含水率を低下させる手段として、汚泥に繊維状物を混合した後に高分子凝集剤を添加して脱水する方法が提案されている。例えば、有機性汚泥に、合成繊維と凝集剤を添加した後、脱水処理する方法(特開2002−219500号公報)などが提案されている。当該方法では、従来の古紙裁断物を添加する方法と比較して、少ない添加量でも含水率が低い脱水ケーキが得られる。   As a means for reducing the moisture content of sludge, a method of adding a polymer flocculant and dehydrating after mixing fibrous materials with sludge has been proposed. For example, a method of adding a synthetic fiber and a flocculant to organic sludge and then performing a dehydration process (Japanese Patent Laid-Open No. 2002-219500) has been proposed. In this method, a dehydrated cake having a low moisture content can be obtained even with a small addition amount as compared with the conventional method of adding a waste paper cut product.

汚泥に合成繊維を混合する方法では、ある程度のケーキ含水率の低減が可能である。しかし、本発明者の検討によれば、合成繊維の汚泥に対する濡れ性が不十分な場合には、槽内全体を十分に攪拌できる装置を具備していない汚泥貯留槽などへ合成繊維を投入する場合に、汚泥中での開繊が困難であり、合成繊維を汚泥中に均一に混合することができないことが判明した。また、合成繊維を汚泥中に均一に混合できたとしても、脱水機内で圧搾される時に汚泥から合成繊維が分離してしまい、脱水に寄与できないために安定した脱水処理ができないことが判明した。また、繊維状物の中には、微生物で分解され難いものもあり、コンポスト化には不向きな場合もある。   In the method of mixing the synthetic fiber with the sludge, the moisture content of the cake can be reduced to some extent. However, according to the inventor's study, when the wettability of the synthetic fiber to sludge is insufficient, the synthetic fiber is thrown into a sludge storage tank or the like that is not equipped with a device that can sufficiently stir the entire tank. In some cases, it was difficult to open the fiber in the sludge, and the synthetic fiber could not be mixed uniformly in the sludge. Further, it has been found that even if the synthetic fiber can be uniformly mixed in the sludge, the synthetic fiber is separated from the sludge when squeezed in the dehydrator and cannot contribute to dehydration, so that stable dehydration treatment cannot be performed. In addition, some fibrous materials are difficult to be decomposed by microorganisms and may not be suitable for composting.

また、本発明者らが検討した結果、公知の合成繊維は、理由は明らかではないが、汚泥の性状によってはケーキ含水率を低減させる効果がほとんど得られない場合があり、合成繊維を添加するだけでは根本的な解決にはなっていないことが判明した。   Further, as a result of the study by the present inventors, the reason for the known synthetic fibers is not clear, but depending on the properties of the sludge, the effect of reducing the moisture content of the cake may be hardly obtained, and synthetic fibers are added. It turns out that alone is not a fundamental solution.

合成繊維を用いて、脱水ケーキの含水率を低下させる技術は、上記のとおり検討されている。しかし、従来技術の殆どは、合成繊維の素材、太さ、及び長さを調節して含水率を低下させようとしている。しかし、本発明者らが検討した結果、単に合成繊維の素材、太さ及び長さを調節するだけでは、難脱水性汚泥を機械脱水しても脱水ケーキの含水率を十分に低下させることはできないことが判明した。   Techniques for reducing the moisture content of a dehydrated cake using synthetic fibers have been studied as described above. However, most of the prior art attempts to reduce the moisture content by adjusting the material, thickness, and length of the synthetic fiber. However, as a result of the study by the present inventors, it is not possible to sufficiently reduce the moisture content of the dehydrated cake even if the mechanically dehydrated hardly dewaterable sludge is simply adjusted by adjusting the material, thickness and length of the synthetic fiber. It turned out not to be possible.

特開2002−219500号公報JP 2002-219500 A

本発明は、上記公知技術の欠点を解決し、難脱水性の汚泥から含水率の低い脱水ケーキを得ることができる脱水助剤、並びに当該脱水助剤を用いる汚泥の脱水方法及び装置を提供することを目的とする。   The present invention provides a dehydration aid capable of solving the above-mentioned disadvantages of the known technology and obtaining a dehydrated cake having a low water content from hardly dehydrated sludge, and a method and apparatus for dewatering sludge using the dehydration aid. For the purpose.

上記課題を解決するために、本発明者らが鋭意研究した結果、繊維の断面形状が汚泥の脱水性に影響を与えることがわかった。本発明は、かかる知見に基づいてなされた新規な汚泥脱水法である。   In order to solve the above-mentioned problems, the present inventors conducted extensive research and found that the cross-sectional shape of the fiber affects the dewaterability of sludge. The present invention is a novel sludge dewatering method based on such knowledge.

本発明者らは、単繊維の横断面の外周部に凹凸部を5〜20箇所有し、かつ前記凹部の繊維軸方向に連続的な条痕を連続的に有する繊維状物を汚泥用脱水助剤として使用すると、汚泥の脱水率が向上することを見いだした。汚泥用脱水助剤を構成する各繊維の横断面には、外周部に5〜20箇の凹凸部が存在する。凹部には、繊維軸方向すなわち繊維の長手方向に連続する条痕すなわち筋が存在する。   The present inventors have dehydrated sludge for a fibrous material having 5 to 20 concavo-convex portions on the outer periphery of a cross section of a single fiber and continuously having continuous streaks in the fiber axis direction of the recesses. It has been found that the sludge dewatering rate improves when used as an auxiliary agent. In the cross section of each fiber constituting the dewatering aid for sludge, there are 5 to 20 uneven portions on the outer periphery. In the recess, there are streaks or streaks continuous in the fiber axis direction, that is, the longitudinal direction of the fiber.

したがって、本発明によれば、複数の繊維が集合してなり、各繊維の外周面に繊維の長手方向に沿って延在する5〜20個の凹部を有し、当該凹部には、汚泥が接触する際に毛細管作用により水分を移送する水分移送路として作用する筋が繊維の長手方向に沿って延在する、ことを特徴とする汚泥用脱水助剤が提供される。   Therefore, according to the present invention, a plurality of fibers are assembled, and the outer peripheral surface of each fiber has 5 to 20 recesses extending along the longitudinal direction of the fibers, and sludge is contained in the recesses. Provided is a sludge dewatering aid, characterized in that muscles that act as a moisture transport path for transporting moisture by capillary action when contacted extend along the longitudinal direction of the fiber.

前記汚泥用脱水助剤において、前記繊維は、再生セルロース繊維であることが好ましい。前記繊維は乾燥状態ではなく、含水率が30〜80質量%の範囲にあることが好ましい。また、繊維の長さは1mm〜50mmであり、繊維径は1μm〜100μmであることが好ましい。   In the dewatering aid for sludge, the fiber is preferably a regenerated cellulose fiber. It is preferable that the fiber is not in a dry state and has a moisture content in the range of 30 to 80% by mass. The length of the fiber is preferably 1 mm to 50 mm, and the fiber diameter is preferably 1 μm to 100 μm.

本発明によれば、前記汚泥用脱水助剤を用いる汚泥の脱水方法が提供される。本発明の汚泥の脱水方法は、有機性汚泥に、前記汚泥用脱水助剤を添加して混合した後に、高分子凝集剤を添加して有機性汚泥を凝集させ、次いで機械脱水する態様、有機性汚泥に、前記汚泥用脱水助剤と高分子凝集剤とを混合してなる脱水助剤含有高分子凝集剤液を添加して有機性汚泥を凝集させ、次いで機械脱水する態様、又は、有機性汚泥に、前記汚泥用脱水助剤と高分子凝集剤とを同時に添加して有機性汚泥を凝集させ、機械脱水する態様のいずれかを含む。   According to the present invention, there is provided a sludge dewatering method using the sludge dewatering aid. In the sludge dewatering method of the present invention, the organic sludge is mixed with the sludge dewatering aid, and then the polymer flocculant is added to coagulate the organic sludge, followed by mechanical dewatering, organic An aspect in which organic sludge is agglomerated by adding a dehydration aid-containing polymer flocculant liquid obtained by mixing the dewatering aid for sludge and the polymer flocculant to the activated sludge, and then mechanically dewatering, or organic The sludge dewatering aid and the polymer flocculant are simultaneously added to the activated sludge to agglomerate the organic sludge and include mechanical dewatering.

さらに、本発明によれば、前記汚泥用脱水助剤を用いる有機性汚泥を機械脱水する汚泥脱水装置が提供される。本発明の汚泥脱水装置は、汚泥貯留槽と、凝集槽と、機械脱水機と、有機性汚泥に前記汚泥脱水助剤を供給する脱水助剤供給機と、前記凝集槽に供給する高分子凝集剤を溶解する高分子凝集剤溶解装置と、を具備する。前記脱水助剤供給機は、前記汚泥貯留槽、前記凝集槽、前記機械脱水機又は前記高分子凝集剤溶解装置の1以上に配管を介して接続されている。前記高分子凝集剤溶解装置は、凝集槽に配管を介して接続されている。   Furthermore, according to the present invention, there is provided a sludge dewatering device for mechanically dewatering organic sludge using the sludge dewatering aid. The sludge dewatering device of the present invention includes a sludge storage tank, a coagulation tank, a mechanical dehydrator, a dehydration aid supplier for supplying the sludge dehydration aid to organic sludge, and a polymer coagulation supplied to the coagulation tank. A polymer flocculant dissolving apparatus for dissolving the agent. The dehydrating auxiliary agent feeder is connected to one or more of the sludge storage tank, the coagulation tank, the mechanical dehydrator, or the polymer coagulant dissolving apparatus via a pipe. The polymer flocculant dissolving apparatus is connected to a coagulation tank via a pipe.

本発明の汚泥脱水装置は、前記汚泥貯留槽の前段に汚泥濃縮槽を設けてもよい。前記汚泥濃縮槽は前記脱水助剤供給機に接続されていてもよい。また、本発明の汚泥脱水装置において、前記凝集槽と前記機械脱水機の間に、回転する一群の楕円板を備えたスリットセイバー、あるいは凝集槽出口から下方に傾斜したスクリーンなどの濾過濃縮部を設けてもよい。本発明の汚泥脱水装置において、前記機械脱水機として、スクリュープレス脱水機を用いることが好ましい。   In the sludge dewatering apparatus of the present invention, a sludge concentration tank may be provided in the preceding stage of the sludge storage tank. The said sludge concentration tank may be connected to the said dehydration auxiliary agent supply machine. Further, in the sludge dewatering apparatus of the present invention, a filtration concentrating unit such as a slit saver provided with a group of rotating ellipse plates or a screen inclined downward from the outlet of the coagulation tank is provided between the coagulation tank and the mechanical dehydrator. It may be provided. In the sludge dewatering apparatus of the present invention, it is preferable to use a screw press dehydrator as the mechanical dehydrator.

本発明によれば、特異な断面形状を有する繊維からなる汚泥脱水助剤を用いることにより、難脱水性の汚泥においても、従来の合成繊維を添加する方法と比較して少量の添加量で脱水ケーキの含水率を良好に低下させることができる。また、本発明の汚泥脱水助剤を用いることにより、加圧脱水の場合に、脱水ケーキを濾布から容易に剥離することができ、濾布の目詰まりを防止することができる。   According to the present invention, by using a sludge dewatering aid composed of fibers having a unique cross-sectional shape, even in difficult-to-dewater sludge, dehydration is performed in a small amount compared to the conventional method of adding synthetic fibers. The moisture content of the cake can be reduced satisfactorily. In addition, by using the sludge dewatering aid of the present invention, in the case of pressure dewatering, the dewatered cake can be easily peeled from the filter cloth, and clogging of the filter cloth can be prevented.

本発明の汚泥脱水装置の一例を示すフロー構成図。The flow block diagram which shows an example of the sludge dehydration apparatus of this invention. 本発明の汚泥脱水装置の他の例を示すフロー構成図。The flow block diagram which shows the other example of the sludge dehydration apparatus of this invention. 本発明の汚泥脱水装置の他の例を示すフロー構成図。The flow block diagram which shows the other example of the sludge dehydration apparatus of this invention. 脱水助剤A,B,E,G(実施例)を構成する繊維の断面斜視図。The cross-sectional perspective view of the fiber which comprises dehydration adjuvant A, B, E, G (Example). 脱水助剤C,D(実施例)を構成する繊維の断面斜視図。The cross-sectional perspective view of the fiber which comprises dehydration auxiliary | assistance C and D (Example). 脱水助剤F(実施例)を構成する繊維の断面斜視図。The cross-sectional perspective view of the fiber which comprises the dehydration adjuvant F (Example). 脱水助剤H(実施例)を構成する繊維の断面斜視図。The cross-sectional perspective view of the fiber which comprises the dehydration adjuvant H (Example). 脱水助剤I(比較例)を構成する繊維の断面斜視図。The cross-sectional perspective view of the fiber which comprises the dehydration adjuvant I (comparative example). 脱水助剤J,K(市販品)を構成する繊維の断面斜視図。The cross-sectional perspective view of the fiber which comprises the dehydration adjuvants J and K (commercial item). 繊維径を示す脱水助剤を構成する繊維の断面図。Sectional drawing of the fiber which comprises the dehydration adjuvant which shows a fiber diameter. 筋を形成する凹部の最深部の頂点までの深さを示す脱水助剤を構成する繊維の断面図。Sectional drawing of the fiber which comprises the dehydration auxiliary agent which shows the depth to the vertex of the deepest part of the recessed part which forms a line | wire.

本発明の汚泥用脱水助剤は、複数の繊維が集合してなり、各繊維の外周面に繊維の長手方向に沿って延在する5〜20個の凹部を有し、当該凹部には、汚泥が接触する際に毛細管作用により水分を移送する水分移送路として作用する筋が繊維の長手方向に沿って延在するため、優れた吸水性、導水性が得られる。   The sludge dewatering aid of the present invention is composed of a plurality of fibers and has 5 to 20 recesses extending along the longitudinal direction of the fibers on the outer peripheral surface of each fiber. Since the muscles acting as a moisture transfer path for transferring moisture by capillary action when the sludge comes into contact extend along the longitudinal direction of the fiber, excellent water absorption and water conductivity can be obtained.

従来から、肌着やスポーツウェア等の衣料分野において、発汗時の濡れによるべとつき感などの不快感を解消することを意図して、繊維に高吸水性を付与することが検討されている。水分は、繊維の表面から吸収されることから、吸収速度を速くするためには表面積を大きくし、大量の水分を吸着させれば良い。表面に凹凸が多いほど表面積は大きくなり、表面の凹部は、繊維内部に水分が浸透するまでの間、水分を留めておくことができる。このため、肌着やスポーツウェア等の衣料分野においては、Y型、X型、あるいはT型の断面形状の繊維が好ましいとされている。しかしながら、本発明者らが検討したところ、Y型、X型、あるいはT型の断面形状の繊維を裁断して汚泥の脱水に使用した場合、ある程度のケーキ含水率低減は認められるが、オキシデーションディッチ処理された汚泥のような、難脱水性汚泥に対しては必ずしも満足できる程に、脱水ケーキの含水率は低下しないことがわかった。理由は明らかではないが、その断面内に長いたわみ部分を有して凹部の開口部が広くなるために、細かい汚泥粒子により開口毛細路が閉塞されて、毛細路としての役割を果さなくなってしまうこと、機械脱水時に高い圧搾圧力に耐え切れずに、たわみ部分が破壊されてしまうことが原因であると推測される。   Conventionally, in the field of apparel such as underwear and sportswear, it has been studied to impart high water absorption to fibers in order to eliminate discomfort such as stickiness due to wetting during sweating. Since moisture is absorbed from the surface of the fiber, in order to increase the absorption rate, it is sufficient to increase the surface area and adsorb a large amount of moisture. As the surface has more irregularities, the surface area becomes larger, and the recesses on the surface can retain moisture until moisture penetrates into the fiber. For this reason, in the field of apparel such as underwear and sportswear, Y-type, X-type, or T-type cross-sectional fibers are preferred. However, when the present inventors examined, when a Y-type, X-type, or T-type cross-sectional fiber was cut and used for sludge dehydration, a certain degree of cake water content reduction was observed, but oxidation was observed. It has been found that the moisture content of the dewatered cake does not decrease to a satisfactory degree for the hardly dewatering sludge such as the sludge treated with the ditch. The reason is not clear, but since the opening of the recess has a long flexible part in the cross section, the opening capillary is blocked by fine sludge particles, and it can no longer serve as a capillary It is presumed that this is because the flexible part is destroyed without being able to withstand the high pressing pressure during mechanical dehydration.

本発明の脱水助剤に用いる繊維は、外周面に繊維の長手方向に沿って延在する5個以上20個以下、好ましくは10個以下の凹部を有する。外周面の凹部が多くなり過ぎると、かえって開口部面積が狭くなり、脱水助剤としての機能を果さなくなるし、工業的に製造が困難でコスト的に好ましくない。なお、本発明の脱水助剤は、前記Y型、X型、あるいはT型の断面形状の繊維外周面に凹部を設けることも可能である。しかしながら、このような繊維は、その断面内に長いたわみ部分を有しているために、機械脱水時に受ける圧搾圧力によってたわみ部分が破壊され易いので注意が必要である。   The fiber used for the dehydrating aid of the present invention has 5 or more and 20 or less, and preferably 10 or less recesses extending along the longitudinal direction of the fiber on the outer peripheral surface. If there are too many recesses on the outer peripheral surface, the area of the opening becomes narrower and the function as a dehydrating aid is not achieved. The dehydrating aid of the present invention can also be provided with a recess on the outer peripheral surface of the Y-shaped, X-shaped, or T-shaped cross-section. However, since such a fiber has a long flexible part in the cross section, care must be taken because the flexible part is easily broken by the pressing pressure received during mechanical dehydration.

脱水助剤に用いる繊維は、同じ個数の凹部を有する繊維である必要は無く、5個以上の凹部を有する繊維を混合してもよい。また、脱水性を損なわない範囲で、5個未満の凹部を有する繊維を混合してもよい。   The fibers used for the dehydrating aid need not be fibers having the same number of recesses, and fibers having 5 or more recesses may be mixed. Moreover, you may mix the fiber which has a recessed part less than five in the range which does not impair dehydrating property.

次に、繊維長手方向に延在する筋について説明する。繊維の長手方向に沿って延在する凹部の筋は、本発明の脱水助剤に汚泥が接触する際に、毛細管作用により水分を移送する水分移送路として作用する。本発明の脱水助剤は、当該毛細管作用のため、従来の繊維状物を用いる脱水助剤と比較して吸水性能が著しく向上する。この理由はいまだ明らかではないが、汚泥と脱水助剤の接触表面積がふえると共に、毛細管現象により汚泥から水分が吸引されながら移送されること、及び、脱水助剤の内部構造が水分子の通過に好適であるためと考えられる。   Next, the streaks extending in the fiber longitudinal direction will be described. When the sludge comes into contact with the dehydrating aid of the present invention, the streaks of the recess extending along the longitudinal direction of the fiber act as a moisture transfer path for transferring moisture by capillary action. Due to the capillary action of the dehydrating aid of the present invention, the water absorption performance is remarkably improved as compared with the conventional dehydrating aid using a fibrous material. The reason for this is not yet clear, but the contact surface area between the sludge and the dehydration aid is increased, moisture is sucked from the sludge by capillary action, and the internal structure of the dehydration aid is used for the passage of water molecules. This is considered to be preferable.

汚泥への添加、混合又脱水時の作業性の観点から、脱水助剤を構成する各繊維の長さは、1〜50mm、好ましくは3〜20mmであり、繊維径は1μm〜100μm、好ましくは5μm〜50μm程度であることが望ましい。ここで「繊維径」とは、図10に示すように、断面形状が対称であるか非対称であるかを問わず、凸部の頂点を結ぶ最長距離をいう。また、図11に示すように隣接する凸部の頂点を結ぶ接線と凹部の最深部の頂点までの垂直距離(図11の場合にはD1〜D3)が0.1〜5μmの範囲であることが好ましい。   From the viewpoint of workability during addition to sludge, mixing or dehydration, the length of each fiber constituting the dehydration aid is 1 to 50 mm, preferably 3 to 20 mm, and the fiber diameter is 1 μm to 100 μm, preferably It is desirable to be about 5 μm to 50 μm. Here, the “fiber diameter” means the longest distance connecting the vertices of the convex portions regardless of whether the cross-sectional shape is symmetric or asymmetric, as shown in FIG. Moreover, as shown in FIG. 11, the perpendicular distance (in the case of FIG. 11, D1-D3) to the tangent which connects the vertex of an adjacent convex part and the deepest vertex of a recessed part is the range of 0.1-5 micrometers. Is preferred.

また、脱水助剤は、乾燥状態での比重が1.4以上であることが好ましい。比重が1.4未満の場合には、高濃度の汚泥を処理する場合や汚泥貯留槽の撹拌が緩やかな場合には、脱水助剤と汚泥との接触が悪くなり、また均一に混合するための時間が長くなる。   Further, the dehydrating aid preferably has a specific gravity in the dry state of 1.4 or more. When the specific gravity is less than 1.4, when processing high-concentration sludge or when the sludge storage tank is gently stirred, the contact between the dewatering aid and the sludge is deteriorated, and the mixture is uniformly mixed. The time will be longer.

本発明の脱水助剤は、含水率が30〜80重量%であることが好ましく、40〜70重量%の範囲にあることがより好ましい。含水率が30重量%以下では、汚泥との濡れ性が悪く、脱水助剤が不均一に分散された状態になる。また、後述の高分子凝集剤溶解槽に混合する場合には、高分子凝集剤が完全に溶解して溶解液が高粘度となることもあり、溶解槽内全体に脱水助剤を均一に分散させることが困難である。一方、含水率が80重量%を超えると、繊維に含浸しない遊離の水分が多くなり、フィーダー等で機械的に供給する場合に定量供給が困難である。また、汚泥中に分散する脱水汚泥の繊維分の割合が少なくなるため、経済的に不利である。   The dehydration aid of the present invention preferably has a water content of 30 to 80% by weight, more preferably 40 to 70% by weight. When the water content is 30% by weight or less, the wettability with sludge is poor and the dehydration aid is in a non-uniformly dispersed state. In addition, when mixed in the polymer flocculant dissolution tank described later, the polymer flocculant may be completely dissolved and the solution may become highly viscous, and the dehydration aid is uniformly dispersed throughout the dissolution tank. It is difficult to do. On the other hand, when the moisture content exceeds 80% by weight, the amount of free moisture not impregnated in the fiber increases, and it is difficult to quantitatively supply when mechanically supplying with a feeder or the like. Moreover, since the ratio of the fiber part of the dewatered sludge disperse | distributed in sludge decreases, it is economically disadvantageous.

脱水助剤の水分を調整する方法としては、以下の方法を好ましく用いることができる。乾式紡糸方法によって製造された繊維を用いる場合には、製造後の繊維にスプレーで水を噴霧するなどして含水率を調整した後に所定長さに裁断するか、又は裁断後に水を噴霧する。湿式紡糸方法によって製造された繊維を用いる場合には、溶媒置換し、洗浄後にローラー等で圧搾するか、乾燥させて水分を除去した後に所定長さに裁断するか、裁断後に乾燥させることができる。   As a method for adjusting the water content of the dehydrating aid, the following method can be preferably used. When using the fiber manufactured by the dry spinning method, the water content is adjusted by spraying water on the manufactured fiber, for example, and then cut to a predetermined length, or water is sprayed after cutting. When using fibers produced by a wet spinning method, the solvent can be replaced, and after washing, squeezed with a roller or the like, or dried to remove moisture and then cut to a predetermined length, or dried after cutting .

本発明の脱水助剤を構成する繊維としては、再生セルロース繊維が特に好ましい。再生セルロース繊維としては、セルロースをベースポリマーとするビスコースレーヨン繊維、キュプラレーヨン繊維等の再生人造繊維、セルロースジアセテート繊維、セルローストリアセテート繊維などの半合成再生繊維などを挙げることができる。繊維に凸部や、頂点が筋状に延在する凹部を形成し、或いは含水率を調整し易い点から、ビスコースレーヨン繊維が特に好ましい。再生セルロース繊維は、生分解性を有しており、土壌中で分解して消失するので、脱水ケーキを肥料などに再利用する場合に好適である。生分解性を有していても、綿花、亜麻、羊毛などは、繊維長手方向に延在する筋すなわち水分移送路を有していないので、脱水助剤としての効果が期待できない。   As the fiber constituting the dehydrating aid of the present invention, regenerated cellulose fiber is particularly preferable. Examples of the regenerated cellulose fiber include regenerated artificial fibers such as viscose rayon fiber and cupra rayon fiber having cellulose as a base polymer, and semisynthetic regenerated fibers such as cellulose diacetate fiber and cellulose triacetate fiber. Viscose rayon fibers are particularly preferred because they form convex portions or concave portions whose vertices extend in a streak shape on the fibers, or the water content can be easily adjusted. Since the regenerated cellulose fiber has biodegradability and decomposes and disappears in the soil, it is suitable when the dehydrated cake is reused as a fertilizer. Even if it has biodegradability, cotton, flax, wool, and the like do not have a line extending in the longitudinal direction of the fiber, that is, a water transport path, and therefore cannot be expected to have an effect as a dehydrating aid.

本発明の方法において、汚泥に対する脱水助剤の添加量は、各汚泥の濃度に依存して変動する。一般的には、汚泥中のSS(浮遊物質濃度)を100として、0.1〜20重量%、好ましくは1〜10重量%を添加することが好ましい。脱水助剤の添加量が0.1重量%未満の場合には、本発明の効果が得られない。一方、20重量%を超えると、汚泥中に脱水助剤を均一に混合させることが難しくなり、また経済的にも不利である。   In the method of the present invention, the amount of the dehydration aid added to the sludge varies depending on the concentration of each sludge. Generally, it is preferable to add 0.1 to 20% by weight, preferably 1 to 10% by weight, where SS (floating substance concentration) in the sludge is 100. When the addition amount of the dehydrating aid is less than 0.1% by weight, the effect of the present invention cannot be obtained. On the other hand, if it exceeds 20% by weight, it becomes difficult to uniformly mix the dewatering aid in the sludge, and it is also disadvantageous economically.

本発明の脱水助剤を混合した汚泥の脱水処理は、通常の加圧脱水機、真空脱水機、ベルトプレス脱水機、遠心脱水機、スクリュープレス脱水機を用いて行うことができる。特に近年、スクリュープレス脱水機は、中規模の下水処理場において、難脱水性汚泥処理用の脱水機として採用されつつある。スクリュープレス脱水機で汚泥の脱水処理を行う場合には、長さ3〜20mmの脱水助剤を汚泥に添加することが好ましく、汚泥中のSSを100として絶乾換算で1〜10重量%の範囲で添加することが好ましい。一方、ベルトプレス脱水機や遠心脱水機を用いて脱水処理を行う場合でも、長さ3〜20mmの脱水助剤を好ましく用いることができ、汚泥中のSSを100として1〜10重量%の範囲で添加することが好ましい。   The dewatering treatment of the sludge mixed with the dewatering aid of the present invention can be performed using a normal pressure dehydrator, vacuum dehydrator, belt press dehydrator, centrifugal dehydrator, screw press dehydrator. Particularly in recent years, screw press dewatering machines are being adopted as dewatering machines for the treatment of hardly dewatering sludge in medium-scale sewage treatment plants. When sludge is dehydrated with a screw press dehydrator, it is preferable to add a 3 to 20 mm long dehydration aid to the sludge. The SS in the sludge is 100 and the dryness is 1 to 10% by weight. It is preferable to add in a range. On the other hand, even when a dehydration process is performed using a belt press dehydrator or a centrifugal dehydrator, a dehydration aid having a length of 3 to 20 mm can be preferably used, and the SS in the sludge is 100 to a range of 1 to 10% by weight. It is preferable to add at.

本発明の脱水助剤は、汚泥貯留槽に添加して汚泥と混合することが好ましい。汚泥貯留槽がない場合には、濃縮槽から引き抜かれた汚泥が脱水機に至るまでのいずれかの配管中の汚泥に脱水助剤を添加しても、汚泥濃縮工程前の汚泥に脱水助剤を添加してもよい。   The dehydrating aid of the present invention is preferably added to the sludge storage tank and mixed with the sludge. If there is no sludge storage tank, the dewatering aid is added to the sludge before the sludge concentration process even if the dewatering aid is added to the sludge in any of the pipes until the sludge drawn from the thickening tank reaches the dehydrator. May be added.

脱水助剤を汚泥濃縮槽や汚泥貯留槽の汚泥に添加する場合には、前記添加量の範囲となるように一括投入することができる。また、配管中の汚泥に添加する場合には、常時又は間欠的に汚泥の流入、引抜きがあるために、汚泥の流入量、引抜き量に応じて脱水助剤を適宜追加してもよい。また、脱水機前で添加する場合には、脱水機に供給される汚泥流量に対して前記添加量の範囲となるように脱水助剤を添加すればよい。脱水助剤の添加は、凝集剤の添加前後どちらでも構わない。しかし、汚泥中へ脱水助剤を均一に混合させる点から、凝集剤の添加前に添加することがより好ましい。凝集剤を添加した後に、脱水助剤を汚泥に添加する場合には、凝集槽内の汚泥、凝集槽の下流に設けられている造粒濃縮槽内の汚泥、凝集槽からの汚泥を凝集ろ過した後の汚泥の何れの汚泥に添加してもよい。近年、ろ過濃縮部を有するスクリュープレス脱水機が開発されている。このタイプの脱水機の場合には、ろ過濃縮後、凝集汚泥が脱水機本体に供給される箇所に、同時に脱水助剤を添加してもよく、汚泥と脱水助剤との均一混合が可能である。脱水助剤は、繊維状(すなわち固形物)のまま汚泥に添加しても良いし、水を添加してスラリー状にした後に汚泥に添加しても良い。いずれの場合も、形状にあった供給装置を用いて定量添加が可能である。   When adding a dehydrating auxiliary agent to the sludge of a sludge concentration tank or a sludge storage tank, it can carry out batch addition so that it may become the range of the said addition amount. Moreover, when adding to sludge in piping, since there exists sludge inflow and drawing | extracting constantly or intermittently, you may add a dehydration auxiliary | assistance suitably according to sludge inflow amount and drawing-out amount. Moreover, when adding before a dehydrator, what is necessary is just to add a dehydration adjuvant so that it may become the range of the said addition amount with respect to the sludge flow volume supplied to a dehydrator. The dehydration aid may be added either before or after the addition of the flocculant. However, it is more preferable to add before the addition of the flocculant from the viewpoint of uniformly mixing the dehydration aid into the sludge. When adding the dewatering aid to the sludge after adding the flocculant, the sludge in the coagulation tank, the sludge in the granulation concentration tank provided downstream of the coagulation tank, and the sludge from the coagulation tank are coagulated and filtered. You may add to any sludge of the sludge after. In recent years, screw press dehydrators having a filtration concentration section have been developed. In the case of this type of dehydrator, a dewatering aid may be added to the location where the coagulated sludge is supplied to the main body of the dehydrator after filtration and concentration, and sludge and dewatering aid can be mixed uniformly. is there. The dehydrating aid may be added to the sludge in the form of a fiber (that is, a solid material), or may be added to the sludge after adding water to form a slurry. In any case, it is possible to add quantitatively by using a supply device suitable for the shape.

また、脱水助剤を高分子凝集剤と同時に添加しても良い。具体的には、高分子凝集剤の溶解作業中あるいは溶解後に、高分子凝集剤溶解槽に脱水助剤を所定量投入して混合すればよい。高分子凝集剤溶解槽中に高分子凝集剤と共に均一に分散された脱水助剤は、凝集槽で汚泥が凝集フロックを形成する間に、凝集フロック内に取り込まれる。   Further, the dehydrating aid may be added simultaneously with the polymer flocculant. Specifically, a predetermined amount of a dehydrating aid may be added and mixed in the polymer flocculant dissolution tank during or after the polymer flocculant is dissolved. The dehydration aid uniformly dispersed together with the polymer flocculant in the polymer flocculant dissolving tank is taken into the flocculent floc while the sludge forms the flocculent floc in the flocculant tank.

本発明の汚泥の脱水方法に使用する装置のフロー構成図を、図1〜図3に示す。
図1は、機械脱水機としてベルトプレス脱水機4を用いた1例である。汚泥濃縮槽1で濃縮された汚泥は、汚泥濃縮槽1の底部から汚泥貯留槽2に送出され、所定時間、貯留される。その後、汚泥は、汚泥貯留槽2から凝集槽3に送出される。凝集槽3には、高分子凝集剤溶解槽6から高分子凝集剤が添加され、汚泥を凝集させて凝集フロックを形成する。次いで、凝集フロック(汚泥)は、脱水機4に送出され、脱水処理されて脱水ケーキを形成する。脱水助剤供給機5から、汚泥濃縮槽1、汚泥貯留槽2、凝集槽3及び高分子凝集剤溶解槽6の1以上に、脱水助剤を添加できるように配管が接続されている。脱水助剤を汚泥に添加する場所は、処理状況に応じて、別々に又は同時に複数の槽及び配管を選択してよい。凝集フロック(汚泥)に脱水助剤を添加すると、個々の汚泥と脱水助剤との接触が低下するので、高分子凝集剤の添加前あるいは高分子凝集剤の添加と同時に脱水助剤を汚泥に添加することが好ましい。このため、脱水助剤を汚泥濃縮槽1又は高分子凝集剤溶解槽6に添加することが特に好ましい。
The flow block diagram of the apparatus used for the dewatering method of the sludge of this invention is shown in FIGS. 1-3.
FIG. 1 shows an example in which a belt press dehydrator 4 is used as a mechanical dehydrator. The sludge concentrated in the sludge concentration tank 1 is sent from the bottom of the sludge concentration tank 1 to the sludge storage tank 2 and stored for a predetermined time. Thereafter, the sludge is sent from the sludge storage tank 2 to the coagulation tank 3. A polymer flocculant is added from the polymer flocculant dissolution tank 6 to the flocculant tank 3 to aggregate the sludge to form a floc floc. Next, the aggregated floc (sludge) is sent to the dehydrator 4 and dehydrated to form a dehydrated cake. A pipe is connected from the dehydration aid supply machine 5 to one or more of the sludge concentration tank 1, the sludge storage tank 2, the coagulation tank 3, and the polymer coagulant dissolution tank 6 so that the dehydration aid can be added. The place where the dehydrating aid is added to the sludge may be selected separately or simultaneously from a plurality of tanks and pipes depending on the treatment status. When dehydration aid is added to the coagulation floc (sludge), the contact between the individual sludge and the dehydration aid decreases, so the dehydration aid is added to sludge before or simultaneously with the addition of the polymer flocculant. It is preferable to add. For this reason, it is particularly preferable to add the dehydration aid to the sludge concentration tank 1 or the polymer flocculant dissolution tank 6.

図2は、機械脱水機としてスクリュープレス脱水機7を用い、凝集槽として2槽式凝集槽3−1及び3−2を用いた例である。脱水助剤の添加は、図1に示す実施形態と同様でよい。本実施形態の場合には、脱水助剤を第1凝集槽3−1に添加した後、第2凝集槽3−2に高分子凝集剤を添加して、汚泥と脱水助剤とを凝集フロック内に一緒に取り込むことが特に好ましい。   FIG. 2 shows an example in which a screw press dehydrator 7 is used as a mechanical dehydrator and two-tank agglomeration tanks 3-1 and 3-2 are used as agglomeration tanks. The addition of the dehydrating aid may be the same as in the embodiment shown in FIG. In the case of the present embodiment, after adding the dehydration aid to the first flocculation tank 3-1, the polymer flocculant is added to the second flocculation tank 3-2, and the sludge and the dehydration aid are flocculated. It is particularly preferred to incorporate it together.

図3は、機械脱水機として、凝集槽3の後段に濾過濃縮部8が設けられているスクリュープレス脱水機7を用い、凝集槽として2槽式凝集槽3−1及び3−2を用いた例である。濾過濃縮部8にて、凝集槽3にて凝集された汚泥に含まれる水分を粗く脱水して、脱水助剤と汚泥を含む凝集フロックを濃縮する。濾過濃縮部8は、凝集槽と脱水機との間に配置された別個の装置、たとえば回転する一群の楕円板を備えたスリットセイバー、あるいは凝集槽出口から下方に傾斜したスクリーン、又は凝集槽内部に設けられたスリット付ろ過筒を有する造粒濃縮槽であってもよい。図3に示す実施形態において、脱水助剤の添加は、図2に示す実施形態と同様でよい。   FIG. 3 shows a mechanical dehydrator using a screw press dehydrator 7 provided with a filtration and concentrating unit 8 at the subsequent stage of the coagulation tank 3, and using two tank coagulation tanks 3-1 and 3-2 as the coagulation tank. It is an example. In the filtration and concentration unit 8, the moisture contained in the sludge aggregated in the coagulation tank 3 is roughly dehydrated, and the aggregated flocs containing the dewatering aid and sludge are concentrated. The filtration concentration unit 8 is a separate device disposed between the coagulation tank and the dehydrator, for example, a slit saver having a group of rotating ellipses, a screen inclined downward from the coagulation tank outlet, or the inside of the coagulation tank The granulation concentration tank which has the filtration cylinder with a slit provided in may be sufficient. In the embodiment shown in FIG. 3, the addition of the dehydrating aid may be the same as in the embodiment shown in FIG.

高分子凝集剤としてはカチオン系高分子凝集剤あるいは両性高分子凝集剤、アニオン系高分子凝集剤、ノニオン系高分子凝集剤を用いることができる。カチオン系高分子凝集剤とは、カチオン性モノマー単位を必須成分として有するものであり、カチオン性モノマーの共重合体、カチオン性モノマーとノニオン性モノマーとの共重合体がある。カチオン性モノマーとしては、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレートもしくはこれらの中和塩、4級塩などが挙げられる。また、分子内にアミジン単位を含有するカチオン系高分子凝集剤も使用することができる。ノニオン性モノマーとしては、アクリルアミド、メタクリルアミド、メタアクリロニトリル、酢酸ビニル等が挙げられる。   As the polymer flocculant, cationic polymer flocculants or amphoteric polymer flocculants, anionic polymer flocculants, and nonionic polymer flocculants can be used. The cationic polymer flocculant has a cationic monomer unit as an essential component, and includes a copolymer of a cationic monomer and a copolymer of a cationic monomer and a nonionic monomer. Examples of the cationic monomer include dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, or a neutralized salt or quaternary salt thereof. A cationic polymer flocculant containing an amidine unit in the molecule can also be used. Examples of nonionic monomers include acrylamide, methacrylamide, methacrylonitrile, vinyl acetate and the like.

両性高分子凝集剤は、カチオン性モノマー単位、アニオン性モノマー単位及びノニオン性モノマー単位の共重合体である。アニオン性モノマーとしては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、2−アクリルアミド−2−メチルプロパンスルホン酸、2−メタクリルアミド−2−メチルプロパンスルホン酸、及びこれらのアルカリ金属、アルカリ土類金属等の金属塩又はアンモニウム塩が挙げられる。   The amphoteric polymer flocculant is a copolymer of a cationic monomer unit, an anionic monomer unit, and a nonionic monomer unit. Examples of the anionic monomer include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-methacrylamide-2-methylpropanesulfonic acid, and alkali metals thereof. Examples thereof include metal salts such as alkaline earth metals or ammonium salts.

アニオン系高分子凝集剤としては、ポリアクリルアミド部分加水分解物、アニオン性モノマーの共重合体、アニオン性モノマーとアクリルアミド等のノニオン性モノマーとの共重合体が挙げられる。アニオン性モノマーとしては上記のものが挙げられ、これらアニオン性モノマーは単独で用いてもよく、2種以上を組み合わせて用いてもよい。ノニオン性モノマーとしては上記のものが挙げられ、これらノニオン性モノマーは単独で用いてもよく、2種以上を組み合わせて用いてもよい。共重合体として好ましいものは、アクリルアミド・アクリル酸塩共重合体、アクリルアミド・2−アクリルアミド−2−メチルプロパンスルホン酸共重合体である。   Examples of the anionic polymer flocculant include polyacrylamide partial hydrolyzate, a copolymer of an anionic monomer, and a copolymer of an anionic monomer and a nonionic monomer such as acrylamide. The above-mentioned thing is mentioned as an anionic monomer, These anionic monomers may be used independently and may be used in combination of 2 or more type. Examples of the nonionic monomer include those described above, and these nonionic monomers may be used alone or in combination of two or more. As the copolymer, an acrylamide / acrylate copolymer and an acrylamide / 2-acrylamido-2-methylpropanesulfonic acid copolymer are preferable.

ノニオン系高分子凝集剤とは、上記のノニオン性モノマーの重合体又は共重合体であるが、好ましくはポリアクリルアミドである。
高分子凝集剤の形状は、粉末状又はエマルジョン状のいずれも使用することができる。
The nonionic polymer flocculant is a polymer or copolymer of the above nonionic monomer, and is preferably polyacrylamide.
As the shape of the polymer flocculant, either powder or emulsion can be used.

また、高分子凝集剤の添加方法として、汚泥にカチオン系高分子凝集剤を添加した後、アニオン系高分子凝集剤を添加する二剤法も適用できる。
さらに、無機凝集剤や有機高分子凝結剤を添加した後に高分子凝集剤を添加する方法も適用可能である。無機凝集剤としては、汚泥処理技術に一般に使用される硫酸バンド、ポリ塩化アルミニウム(PAC)、ポリ硫酸第2鉄(ポリ鉄)、塩化第2鉄あるいはこれらの混合物が使用可能である。有機高分子凝結剤としては、縮合系ポリアミン、ジシアンジアミド・ホルマリン縮合物、ポリエチレンイミン、ポリビニルイミダリン、ポリビニルピリジン、ジアリルアミン塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩、ポリジメチルジアリルアンモニウム塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩・アクリルアミド共重合体、ポリジメチルジアリルアンモニウム塩・ジアリルアミン塩酸塩誘導体共重合体、アリルアミン塩重合体などを用いることができる。縮合系ポリアミンの具体例としては、アルキレンジクロライドとアルキレンポリアミンとの縮合物、アニリンとホルマリンの縮合物、アルキレンジアミンとエピクロルヒドリンとの縮合物、アンモニアとエピクロルヒドリンとの縮合物などが挙げられる。エピクロルヒドリンと縮合するアルキレンジアミンとしては、ジメチルアミン、ジエチルアミン、メチルプロピルアミン、メチルブチルアミン、ジブチルアミンなどが挙げられる。
Further, as a method for adding the polymer flocculant, a two-agent method in which a cationic polymer flocculant is added to sludge and then an anionic polymer flocculant is added can be applied.
Furthermore, a method of adding a polymer flocculant after adding an inorganic flocculant or an organic polymer coagulant is also applicable. As the inorganic flocculant, sulfuric acid band, polyaluminum chloride (PAC), polyferric sulfate (polyiron), ferric chloride or a mixture thereof generally used in sludge treatment technology can be used. Organic polymer coagulants include condensed polyamines, dicyandiamide / formalin condensates, polyethyleneimine, polyvinylimidarin, polyvinylpyridine, diallylamine salts / sulfur dioxide copolymers, polydimethyldiallylammonium salts, polydimethyldiallylammonium salts / dioxides A sulfur copolymer, polydimethyldiallylammonium salt / acrylamide copolymer, polydimethyldiallylammonium salt / diallylamine hydrochloride derivative copolymer, allylamine salt polymer, and the like can be used. Specific examples of the condensed polyamine include a condensate of alkylene dichloride and alkylene polyamine, a condensate of aniline and formalin, a condensate of alkylene diamine and epichlorohydrin, a condensate of ammonia and epichlorohydrin, and the like. Examples of the alkylene diamine condensed with epichlorohydrin include dimethylamine, diethylamine, methylpropylamine, methylbutylamine, and dibutylamine.

本発明の汚泥脱水方法において、汚泥処理技術に一般に使用される消泡剤や消臭剤を脱水助剤に予め含浸させておいても良い。また、他の天然繊維の粉砕物等を脱水助剤に混合しても良い。   In the sludge dewatering method of the present invention, a defoaming aid may be impregnated in advance with a defoaming agent or deodorant generally used in sludge treatment technology. Moreover, you may mix the pulverized material of another natural fiber, etc. with the dehydration aid.

本発明の汚泥脱水方法で脱水対象となる汚泥は、一般の排水処理、し尿処理、下水処理における活性汚泥処理工程から発生する汚泥であれは種類を問わない。特にオキシデーションディッチ法から発生する余剰汚泥や下水消化汚泥、し尿処理施設から発生する汚泥など、凝集性が不良で、脱水汚泥の含水率が低下し難い汚泥の脱水処理において、本発明の効果が最も発揮できる。   The sludge to be dehydrated in the sludge dewatering method of the present invention is not limited as long as it is sludge generated from an activated sludge treatment process in general wastewater treatment, human waste treatment, and sewage treatment. The effect of the present invention is particularly effective in dewatering sludge that has poor agglomeration properties such as surplus sludge generated from the oxidation ditch method, sewage digested sludge, sludge generated from human waste treatment facilities, and the moisture content of dehydrated sludge is difficult to decrease. The most can be demonstrated.

以下、実施例により本発明を詳細に説明する。
[脱水助剤の製造]
実施例で使用した脱水助剤は、下記の方法により製造した。
<脱水助剤А>
硫酸、硫酸ソーダ、硫酸亜鉛を含有する紡糸浴に、8.1wt%のセルロースを含むビスコース溶液(紡糸原液)を、円形断面を有する紡糸口金を通して連続して押し出して、セルロース繊維に紡糸した。次に、セルロース繊維を、硫酸を含む延伸−再生浴に導入して、延伸・再生して、再生セルロース糸条を得た。再生セルロース糸条をローラーで挟んで水切りし、含水率58%に調整した後、長さ10mmに切断した。
<脱水助剤B>
再生セルロース糸条を長さ1mmに切断した以外は、脱水助剤Aと同様に処理した。
<脱水助剤C>
Y型断面を有する紡糸口金を通して紡糸した以外は、脱水助剤Aと同様に処理して、再生セルロース糸条を得た。再生セルロース糸条を乾燥機で105℃の温度で2時間乾燥させた後、長さ5mmに切断し、水を噴霧して含水率48%に調整した。
<脱水助剤D>
再生セルロース糸条を長さ15mmに切断した以外は、脱水助剤Cと同様に処理した。
<脱水助剤E>
再生セルロース糸条を長さ38mmに切断した以外は、脱水助剤Aと同様に処理した。
<脱水助剤F>
セルローストリアセテートフレークを塩化メチレン/メタノール混合溶剤に溶解した紡糸原液を用い、再生セルロース糸条を得た。得られた再生セルロース糸条を長さ5mmに切断した。
<脱水助剤G>
ローラーによる圧搾の代わりに再生セルロース糸条を乾燥機にて105℃で2時間乾燥させた後、長さ5mmに切断した以外は、脱水助剤Aと同様に処理した。
<脱水助剤H>
楕円断面を有する紡糸口金を通して連続紡糸して得られた再生セルロース糸条を乾燥機で105℃の温度で2時間乾燥させた後、長さ10mmに切断し、水を噴霧して含水率54%に調整した以外は、脱水助剤Aと同様に処理した。
<脱水助剤I>
脱水助剤Fの紡糸原液にポリエチレングリコールを添加し、Y型断面を有する紡糸口金を通して連続して押し出して紡糸して得られた再生セルロース糸条を長さ5mmに切断した以外は、脱水助剤Aと同様に処理した。
<脱水助剤J>
市販のキュプラレーヨンフィラメントを長さ10mmに切断した。
<脱水助剤K>
8.1wt%のセルロースを含むビスコース溶液にポリエチレングリコールおよび炭酸ナトリウムを添加して調製した紡糸原液を用いた以外は、脱水助剤Aと同様に処理して再生セルロース糸条を得た。再生セルロース糸条を乾燥機で105℃の温度で2時間乾燥させた後、長さ10mmに切断し、水を噴霧して含水率43%に調整した。
Hereinafter, the present invention will be described in detail by way of examples.
[Production of dehydration aid]
The dehydrating aid used in the examples was produced by the following method.
<Dehydration aid А>
In a spinning bath containing sulfuric acid, sodium sulfate, and zinc sulfate, a viscose solution (spinning stock solution) containing 8.1 wt% cellulose was continuously extruded through a spinneret having a circular cross section and spun into cellulose fibers. Next, the cellulose fiber was introduced into a drawing-regeneration bath containing sulfuric acid, and drawn and regenerated to obtain a regenerated cellulose yarn. The regenerated cellulose yarn was sandwiched between rollers and drained, adjusted to a moisture content of 58%, and then cut to a length of 10 mm.
<Dehydration aid B>
The regenerated cellulose yarn was treated in the same manner as the dehydrating aid A except that it was cut to a length of 1 mm.
<Dehydration aid C>
A regenerated cellulose yarn was obtained in the same manner as in the dehydrating aid A except that spinning was performed through a spinneret having a Y-shaped cross section. The regenerated cellulose yarn was dried with a dryer at a temperature of 105 ° C. for 2 hours, then cut to a length of 5 mm, and sprayed with water to adjust the water content to 48%.
<Dehydration aid D>
The regenerated cellulose yarn was treated in the same manner as the dehydrating aid C except that it was cut to a length of 15 mm.
<Dehydration aid E>
The regenerated cellulose yarn was treated in the same manner as the dehydrating aid A except that it was cut to a length of 38 mm.
<Dehydration aid F>
Using a spinning stock solution in which cellulose triacetate flakes were dissolved in a methylene chloride / methanol mixed solvent, a regenerated cellulose yarn was obtained. The obtained regenerated cellulose yarn was cut into a length of 5 mm.
<Dehydration aid G>
Instead of pressing with a roller, the regenerated cellulose yarn was dried at 105 ° C. for 2 hours with a dryer and then treated in the same manner as dehydration aid A except that it was cut to a length of 5 mm.
<Dehydration aid H>
The regenerated cellulose yarn obtained by continuous spinning through a spinneret having an elliptical cross section was dried at a temperature of 105 ° C. for 2 hours with a dryer, cut into a length of 10 mm, and sprayed with water to contain a moisture content of 54%. The same treatment as in the dehydrating aid A was performed except that the amount was adjusted to 1.
<Dehydration aid I>
Except that polyethylene glycol was added to the spinning stock solution of the dehydrating aid F and the regenerated cellulose yarn obtained by spinning and spinning continuously through a spinneret having a Y-shaped cross section was cut into a length of 5 mm. Treated as in A.
<Dehydration aid J>
A commercially available cupra rayon filament was cut to a length of 10 mm.
<Dehydration aid K>
A regenerated cellulose yarn was obtained by treating in the same manner as dehydrating aid A except that a spinning stock solution prepared by adding polyethylene glycol and sodium carbonate to a viscose solution containing 8.1 wt% cellulose was used. The regenerated cellulose yarn was dried with a dryer at a temperature of 105 ° C. for 2 hours, then cut into a length of 10 mm, and sprayed with water to adjust the moisture content to 43%.

脱水助剤の含水率は、調製したままの脱水助剤の重さ(a)gを計量し、当該脱水助剤を105℃で4時間乾燥させて脱水した後の脱水助剤の重さ(b)gを計量し、(a−b)/a×100(%)の式より算出した。   The water content of the dehydration aid was determined by weighing the weight (a) g of the dehydration aid as prepared and drying the dehydration aid at 105 ° C. for 4 hours for dehydration ( b) g was weighed and calculated from the formula of (ab) / a × 100 (%).

繊維の凹部の数及び延在する筋の有無は、顕微鏡観察による目視で計数した。
本実施例において使用した脱水助剤の性状を表1に示す。
The number of fiber recesses and the presence or absence of extending streaks were counted visually by microscopic observation.
Table 1 shows the properties of the dehydrating aid used in this example.

Figure 2012071296
Figure 2012071296

脱水助剤A〜Kの繊維断面を含む斜視図を図4〜9に示す。
図4は、脱水助剤A、B、E、Gの斜視図である。繊維断面に複数の凹部があり、凹部に繊維長手方向に延在する筋が存在する。
The perspective views including the fiber cross section of the dehydrating aids A to K are shown in FIGS.
FIG. 4 is a perspective view of the dehydrating aids A, B, E, and G. There are a plurality of recesses in the fiber cross section, and there are streaks extending in the fiber longitudinal direction in the recesses.

図5は、脱水助剤C、Dの斜視図である。繊維断面に複数の凹部があり、凹部に繊維長手方向に延在する筋が存在する。
図6は、脱水助剤Fの斜視図である。繊維断面に複数の凹部があり、凹部に繊維長手方向に延在する筋が存在する。。
FIG. 5 is a perspective view of the dehydrating aids C and D. FIG. There are a plurality of recesses in the fiber cross section, and there are streaks extending in the fiber longitudinal direction in the recesses.
FIG. 6 is a perspective view of the dehydrating aid F. There are a plurality of recesses in the fiber cross section, and there are streaks extending in the fiber longitudinal direction in the recesses. .

図7は、脱水助剤Hの斜視図である。繊維断面に複数の凹部があり、凹部に繊維長手方向に延在する筋が存在する。
図8は、脱水助剤Iの斜視図である。繊維断面に複数の凹部があるが、繊維長手方向に沿って延在する筋が存在しない。
FIG. 7 is a perspective view of the dehydrating aid H. There are a plurality of recesses in the fiber cross section, and there are streaks extending in the fiber longitudinal direction in the recesses.
FIG. 8 is a perspective view of the dehydrating aid I. There are a plurality of recesses in the fiber cross section, but there are no streaks extending along the fiber longitudinal direction.

図9は、脱水助剤J、Kの斜視図である。繊維断面に凹部は無く、繊維長手方向に沿って延在する筋が存在しない。
[実施例1] (本発明の脱水助剤有無による比較)
表2に示す性状を有するオキシデーションディッチ方式下水処理場から発生する余剰汚泥スラリーに、SSを100として絶乾重量で3wt%となるように脱水助剤Aを添加して、汚泥スラリーを調整した。次に、高分子凝集剤(ジメチルアミノエチルアクリレートの塩化メチル四級化物/アクリルアミド共重合体、分子量400万、水道水で0.2%に調整)を使用して脱水試験を行った。汚泥200mlを300mlのビーカーに入れ、高分子凝集剤を所定量添加した後、ビーカー間の移し変えを10回行って汚泥を凝集させた。凝集した汚泥の大きさを測定した後、凝集した汚泥を60メッシュのナイロンろ布に載せて、重力をかけて脱水し、30秒後のろ過水量を測定した。重力ろ過後の汚泥を、2枚のろ布に挟み、ピストン型脱水機を用いて、2kg/cmの圧力で1分間圧搾した。得られた脱水ケーキの剥離性の評価と含水率の測定を行った。剥離性の評価は、脱水後、2枚のろ布を開いたときに、ろ布から剥がれるケーキ量を目視測定し、ほぼ完全に剥離している場合を◎、半分程度が剥離している場合を△、半分程度より多いが完全には剥離していない場合を○、ろ布全面に付着して剥離していない場合を×と判定した。結果を表3に示す。
FIG. 9 is a perspective view of the dehydration aids J and K. FIG. There are no recesses in the fiber cross section, and there are no streaks extending along the longitudinal direction of the fiber.
[Example 1] (Comparison with and without dehydration aid of the present invention)
To the excess sludge slurry generated from the oxidation ditch system sewage treatment plant having the properties shown in Table 2, the dewatering aid A was added so that the dry weight would be 3 wt% with SS as 100 to prepare the sludge slurry. . Next, a dehydration test was carried out using a polymer flocculant (dimethylaminoethyl acrylate methyl chloride quaternized / acrylamide copolymer, molecular weight of 4 million, adjusted to 0.2% with tap water). 200 ml of sludge was put in a 300 ml beaker, a predetermined amount of a polymer flocculant was added, and the sludge was agglomerated by changing between beakers 10 times. After measuring the size of the agglomerated sludge, the agglomerated sludge was placed on a 60 mesh nylon filter cloth, dehydrated by gravity, and the amount of filtered water after 30 seconds was measured. The sludge after gravity filtration was sandwiched between two filter cloths and squeezed for 1 minute at a pressure of 2 kg / cm 2 using a piston-type dehydrator. The obtained dehydrated cake was evaluated for peelability and the water content was measured. The peelability is evaluated by visually measuring the amount of cake peeled off from the filter cloth when two filter cloths are opened after dehydration. △, more than about half, but not completely peeled, ○, and the case where it adhered to the entire filter cloth and did not peel was judged as x. The results are shown in Table 3.

[比較例1及び2]
脱水助剤を添加せずに脱水試験を行った。実施例1と比較して、ケーキ含水率は2〜3ポイント高くなった。結果を表3に併記する。
[Comparative Examples 1 and 2]
A dehydration test was conducted without adding a dehydration aid. Compared to Example 1, the moisture content of the cake was increased by 2 to 3 points. The results are also shown in Table 3.

Figure 2012071296
Figure 2012071296

Figure 2012071296
Figure 2012071296

[実施例2〜9] (本発明の別の実施態様)
脱水助剤Aの代わりに表4に示す脱水助剤を使用し、脱水助剤の添加率を変化させた以外は、実施例1と同様に試験を行った。結果を表4に示す。
[Examples 2 to 9] (Another embodiment of the present invention)
A test was conducted in the same manner as in Example 1 except that the dehydrating aid shown in Table 4 was used instead of the dehydrating aid A and the addition rate of the dehydrating aid was changed. The results are shown in Table 4.

[比較例3〜6] (脱水助剤の比較)
脱水助剤H、I及びKを添加して、実施例1と同様に脱水試験を行った。汚泥への分散は不良で、ケーキ含水率は2ポイント以上高くなった(実施例2と比較例5、6との比較、或いは実施例5、6と比較例4との比較)。結果を表4に併記する。
[Comparative Examples 3 to 6] (Comparison of dehydrating aid)
Dehydration aids H, I and K were added, and a dehydration test was conducted in the same manner as in Example 1. Dispersion in the sludge was poor, and the moisture content of the cake increased by 2 points or more (comparison between Example 2 and Comparative Examples 5 and 6, or comparison between Examples 5 and 6 and Comparative Example 4). The results are also shown in Table 4.

Figure 2012071296
Figure 2012071296

[実施例10] (本発明の脱水助剤有無による比較)
表5に示す性状の下水処理場から発生する消化汚泥に、脱水助剤CをSSを100として絶乾重量で2wt%添加して汚泥スラリーを調製した。次に、高分子凝集剤(ジメチルアミノエチルアクリレートの塩化メチル四級化物重合体、分子量300万、水道水で0.2%に調整)を使用して実施例1と同様に脱水試験を行った。結果を、表6に記載する。
[Example 10] (Comparison with and without dehydration aid of the present invention)
Sludge slurry was prepared by adding 2 wt% of dewatering aid C with SS as 100 to digested sludge generated from a sewage treatment plant having the properties shown in Table 5 at an absolute dry weight. Next, a dehydration test was conducted in the same manner as in Example 1 using a polymer flocculant (dimethylaminoethyl acrylate methyl chloride quaternized polymer, molecular weight of 3 million, adjusted to 0.2% with tap water). . The results are listed in Table 6.

[比較例7、8]
脱水助剤Cを添加せずに脱水試験を行った。実施例10と比較してケーキ含水率は3ポイント以上高くなった。結果を表6に併記する。
[Comparative Examples 7 and 8]
The dehydration test was conducted without adding the dehydration aid C. Compared with Example 10, the moisture content of the cake increased by 3 points or more. The results are also shown in Table 6.

Figure 2012071296
Figure 2012071296

Figure 2012071296
Figure 2012071296

[実施例11〜15] (本発明の別の実施態様)
脱水助剤Cの代わりに表1に示す脱水助剤を使用した以外は、実施例10と同様に試験を行った。結果を、表7に示す。
[Examples 11 to 15] (Another embodiment of the present invention)
A test was conducted in the same manner as in Example 10 except that the dehydrating aid shown in Table 1 was used instead of the dehydrating aid C. The results are shown in Table 7.

[比較例9〜14] (脱水助剤の比較)
脱水助剤I及びJを添加して、実施例10と同様に脱水試験を行った。汚泥への分散は不良で、ケーキ含水率は2ポイント以上高くなった。結果を、表7に併記する。
[Comparative Examples 9 to 14] (Comparison of dehydration aid)
Dehydration aids I and J were added and a dehydration test was performed in the same manner as in Example 10. Dispersion in the sludge was poor, and the moisture content of the cake increased by 2 points or more. The results are also shown in Table 7.

Figure 2012071296
Figure 2012071296

[実施例16〜21](高分子凝集剤溶解液への添加及び本発明の脱水助剤有無による比較 スクリュープレス脱水機での実機試験)
<ビーカー試験>
実施例1で使用した高分子凝集剤の0.2%水溶液1Lを、ジャーテスターを用いて200rpmで撹拌しながら、脱水助剤A、D及びEをそれぞれ絶乾重量で3g(溶解した高分子凝集剤に対して1.5倍量)投入し、1時間撹拌を継続した。1時間後の液中脱水助剤の分散状態と流動性を観察した。結果を、表8に記載する。
<実機試験>
次に、高分子凝集剤溶解槽に、実施例1で使用した高分子凝集剤の0.2%水溶液(水道水)と、高分子凝集剤の1.5倍量の脱水助剤を投入し、撹拌、混合し脱水助剤含有高分子凝集剤液を調製した。
[Examples 16 to 21] (Comparison with addition of polymer flocculant solution and presence or absence of dehydrating aid of the present invention, actual machine test with screw press dehydrator)
<Beaker test>
While stirring 1 L of a 0.2% aqueous solution of the polymer flocculant used in Example 1 at 200 rpm using a jar tester, 3 g (dissolved polymer) of each of the dehydrating aids A, D, and E by an absolute dry weight was obtained. The amount was 1.5 times the amount of the flocculant, and stirring was continued for 1 hour. The dispersion state and fluidity of the dehydration aid in the liquid after 1 hour were observed. The results are listed in Table 8.
<Real machine test>
Next, 0.2% aqueous solution (tap water) of the polymer flocculant used in Example 1 and 1.5 times the amount of dehydration aid of the polymer flocculant were charged into the polymer flocculant dissolution tank. The mixture was stirred and mixed to prepare a polymer flocculant solution containing a dehydration aid.

引き続き、表9に示す性状のし尿処理施設から発生する余剰汚泥と凝集沈澱汚泥の混合汚泥スラリーを、凝集槽を通して図2に示すスクリュープレス脱水機(スクリーン径300mmΦ)に供給して脱水した。凝集槽へは、調製した脱水助剤含有高分子凝集剤液をモーノポンプを用いて添加し、汚泥スラリーを凝集させた。スクリュープレス脱水機では、スクリュー回転数0.4rpmの条件で脱水を行い、凝集汚泥のパンチングメタルからの漏れの状態を観察し、脱水ケーキの含水率を測定した。結果を、表10に記載する。   Subsequently, the mixed sludge slurry of excess sludge and coagulated sediment sludge generated from the human waste treatment facility having the properties shown in Table 9 was supplied to the screw press dehydrator (screen diameter 300 mmΦ) shown in FIG. The prepared dehydration aid-containing polymer flocculant liquid was added to the coagulation tank using a Mono pump to coagulate the sludge slurry. In the screw press dehydrator, dehydration was performed under the condition of a screw rotation speed of 0.4 rpm, the state of leakage of the coagulated sludge from the punching metal was observed, and the moisture content of the dewatered cake was measured. The results are listed in Table 10.

[比較例14、15]
高分子凝集剤単独で脱水し、脱水助剤を使用しなかった以外は実施例16と同様に試験を行った。結果を、表10に記載する。
[Comparative Examples 14 and 15]
The test was conducted in the same manner as in Example 16 except that the polymer flocculant was dehydrated alone and no dehydration aid was used. The results are listed in Table 10.

Figure 2012071296
Figure 2012071296

Figure 2012071296
Figure 2012071296

Figure 2012071296
Figure 2012071296

[比較例16〜17]
脱水助剤IとJを使用した以外は、実施例16〜21と同様に高分子凝集剤と脱水助剤を混合した。結果を、表11に示す。脱水助剤I及びJは、高分子凝集剤水溶液に均一に分散しなかったので、引き続く実機装置での試験は実施しなかった。
[Comparative Examples 16 to 17]
A polymer flocculant and a dehydration aid were mixed in the same manner as in Examples 16 to 21 except that dehydration aids I and J were used. The results are shown in Table 11. Since the dehydration aids I and J were not uniformly dispersed in the aqueous polymer flocculant solution, the subsequent tests with actual equipment were not performed.

表11に示すように、脱水助剤が均一に分散しなかったり、液の流動性が不良である場合には、脱水助剤含有高分子凝集剤液では薬注ポンプからの吐出量を一定に維持できないため、ポンプやその他の薬注ラインの閉塞を引き起こす可能性があり、このような使用には不適切であることがわかる。   As shown in Table 11, when the dehydration aid is not uniformly dispersed or the fluidity of the liquid is poor, the discharge amount from the drug injection pump is kept constant in the dehydration aid-containing polymer flocculant solution. Inability to maintain can cause blockage of pumps and other dosing lines, which proves inappropriate for such use.

Figure 2012071296
Figure 2012071296

1:汚泥濃縮槽、2:汚泥貯留槽、3、3−1、3−2:凝集槽、4:ベルトプレス脱水機、5:脱水助剤供給機、6:高分子凝縮剤溶解装置、7:スクリュープレス脱水機、8:濾過濃縮部、9:脱水助剤供給路、10:高分子凝集剤供給路 1: sludge concentration tank, 2: sludge storage tank, 3, 3-1, 3-2: flocculation tank, 4: belt press dehydrator, 5: dehydration aid feeder, 6: polymer condensing agent dissolving device, 7 : Screw press dehydrator, 8: Filtration concentration section, 9: Dehydration aid supply path, 10: Polymer flocculant supply path

Claims (14)

複数の繊維が集合してなり、
各繊維の外周面に繊維の長手方向に沿って延在する5〜20個の凹部を有し、
当該凹部には、汚泥が接触する際に毛細管作用により水分を移送する水分移送路として作用する筋が繊維の長手方向に沿って延在する、ことを特徴とする汚泥用脱水助剤。
A set of fibers
It has 5 to 20 recesses extending along the longitudinal direction of the fiber on the outer peripheral surface of each fiber,
A sludge dewatering aid, characterized in that, in the concave portion, muscles acting as a moisture transfer path for transferring moisture by capillary action when the sludge comes into contact extend along the longitudinal direction of the fiber.
再生セルロース繊維が集合してなり、含水率が30〜80質量%であることを特徴とする請求項1に記載の汚泥用脱水助剤。   The dewatering aid for sludge according to claim 1, wherein regenerated cellulose fibers are aggregated and have a water content of 30 to 80% by mass. 1mm〜50mmの長さと、1μm〜100μmの繊維径とを有する、請求項1に記載の汚泥用脱水助剤。   The dewatering aid for sludge according to claim 1, having a length of 1 mm to 50 mm and a fiber diameter of 1 µm to 100 µm. 複数の再生セルロース繊維が集合してなり、
各繊維の外周面に繊維の長手方向に沿って形成されている5〜20個の凹部を有し、
当該凹部には、汚泥が接触する際に毛細管作用により水分を移送する水分移送路として作用する筋が繊維の長手方向に沿って延在し、
30〜80質量%の含水率を有する、汚泥用脱水助剤。
A plurality of regenerated cellulose fibers are assembled,
Having 5 to 20 recesses formed along the longitudinal direction of the fiber on the outer peripheral surface of each fiber;
In the recess, muscles acting as a moisture transfer path for transferring moisture by capillary action when sludge comes into contact extend along the longitudinal direction of the fiber,
A dewatering aid for sludge having a water content of 30 to 80% by mass.
1mm〜50mmの長さと、1μm〜100μmの繊維径とを有する、請求項4に記載の汚泥用脱水助剤。   The dewatering aid for sludge according to claim 4, which has a length of 1 mm to 50 mm and a fiber diameter of 1 µm to 100 µm. 複数の繊維が集合してなり、各繊維の外周面に繊維の長手方向に沿って形成されている5〜20個の凹部を有し、当該凹部には、汚泥が接触する際に毛細管作用により水分を移送する水分移送路として作用する筋が繊維の長手方向に沿って延在する、ことを特徴とする汚泥用脱水助剤を、有機性汚泥に添加して混合した後に、高分子凝集剤を添加して当該有機性汚泥を凝集させた後、機械脱水することを特徴とする汚泥の脱水方法。   A plurality of fibers are aggregated, and have 5 to 20 recesses formed along the longitudinal direction of the fibers on the outer peripheral surface of each fiber, and when the sludge contacts the recesses by capillary action A sludge dehydration aid, characterized by the fact that the muscles that act as a moisture transport path for transporting moisture extend along the longitudinal direction of the fiber, is added to the organic sludge and mixed, and then the polymer flocculant A method for dewatering sludge, characterized in that the organic sludge is aggregated by adding slag and then mechanically dehydrated. 複数の繊維が集合してなり、各繊維の外周面に繊維の長手方向に沿って形成されている5〜20個の凹部を有し、当該凹部には、汚泥が接触する際に毛細管作用により水分を移送する水分移送路として作用する筋が繊維の長手方向に沿って延在する、ことを特徴とする汚泥用脱水助剤及び高分子凝集剤を混合してなる脱水助剤含有高分子凝集剤液を、有機性汚泥に添加して、当該有機性汚泥を凝集させた後、機械脱水することを特徴とする汚泥の脱水方法。   A plurality of fibers are aggregated, and have 5 to 20 recesses formed along the longitudinal direction of the fibers on the outer peripheral surface of each fiber, and when the sludge contacts the recesses by capillary action A dewatering aid-containing polymer aggregate comprising a mixture of a sludge dewatering aid and a polymer flocculant, characterized in that a muscle acting as a moisture transport path for transporting moisture extends along the longitudinal direction of the fiber. A method for dewatering sludge, comprising adding a chemical solution to organic sludge to agglomerate the organic sludge and then mechanically dehydrating the sludge. 複数の繊維が集合してなり、各繊維の外周面に繊維の長手方向に沿って形成されている5〜20個の凹部を有し、当該凹部には、汚泥が接触する際に毛細管作用により水分を移送する水分移送路として作用する筋が繊維の長手方向に沿って延在する、ことを特徴とする汚泥用脱水助剤と、高分子凝集剤と、を有機性汚泥に同時に添加して、当該有機性汚泥を凝集させた後、機械脱水することを特徴とする汚泥の脱水方法。   A plurality of fibers are aggregated, and have 5 to 20 recesses formed along the longitudinal direction of the fibers on the outer peripheral surface of each fiber, and when the sludge contacts the recesses by capillary action A sludge dewatering aid characterized by the fact that muscles acting as a moisture transport path for transporting moisture extend along the longitudinal direction of the fiber and a polymer flocculant are simultaneously added to the organic sludge. A method for dewatering sludge, characterized in that the organic sludge is aggregated and then mechanically dehydrated. 前記機械脱水は、スクリュープレス脱水機で行うことを特徴とする請求項6、7又は8に記載の汚泥の脱水方法。   The sludge dewatering method according to claim 6, 7 or 8, wherein the mechanical dewatering is performed by a screw press dewatering machine. 複数の繊維が集合してなり、各繊維の外周面に繊維の長手方向に沿って形成されている5〜20個の凹部を有し、当該凹部には、汚泥が接触する際に毛細管作用により水分を移送する水分移送路として作用する筋が繊維の長手方向に沿って延在する、ことを特徴とする汚泥用脱水助剤を有機性汚泥に添加して、当該有機性汚泥を機械脱水する装置であって、
汚泥貯留槽と、凝集槽と、機械脱水機と、有機性汚泥に汚泥用脱水助剤を供給する脱水助剤供給機と、当該凝集槽に供給する高分子凝集剤を溶解する高分子凝集剤溶解装置と、を具備し、
当該高分子凝集剤溶解装置は当該凝集槽に配管を介して接続されている、汚泥脱水装置。
A plurality of fibers are aggregated, and have 5 to 20 recesses formed along the longitudinal direction of the fibers on the outer peripheral surface of each fiber, and when the sludge contacts the recesses by capillary action Addition of sludge dewatering aid to organic sludge, which acts as a moisture transfer path for transferring moisture, extends along the longitudinal direction of the fiber, and mechanically dehydrates the organic sludge A device,
Sludge storage tank, coagulation tank, mechanical dehydrator, dehydration aid supplier for supplying sludge dehydration aid to organic sludge, and polymer flocculant for dissolving the polymer coagulant supplied to the coagulation tank A melting device,
The polymer flocculant dissolution apparatus is a sludge dewatering apparatus connected to the aggregation tank via a pipe.
前記汚泥貯留槽の前段に汚泥濃縮槽が設けられ、当該汚泥濃縮槽に前記脱水助剤供給機が配管を介して接続されている、請求項10に記載の汚泥脱水装置。   11. The sludge dewatering device according to claim 10, wherein a sludge concentration tank is provided in front of the sludge storage tank, and the dewatering aid supplier is connected to the sludge concentration tank via a pipe. 前記凝集槽と前記機械脱水機との間に濾過濃縮部が設けられている、請求項10に記載の汚泥の脱水装置。   The sludge dewatering device according to claim 10, wherein a filtration and concentration unit is provided between the coagulation tank and the mechanical dehydrator. 前記機械脱水装置が、スクリュープレス脱水機である、請求項10に記載の汚泥脱水装置。   The sludge dewatering device according to claim 10, wherein the mechanical dewatering device is a screw press dewatering machine. 当該脱水助剤供給機は、当該汚泥貯留槽、当該凝集槽、当該機械脱水機又は当該高分子凝集剤溶解装置の1以上に接続されている、請求項10に記載の汚泥の脱水装置。   The sludge dewatering device according to claim 10, wherein the dehydrating auxiliary agent supplying device is connected to one or more of the sludge storage tank, the coagulation tank, the mechanical dehydrator, or the polymer coagulant dissolving apparatus.
JP2011173205A 2010-08-31 2011-08-08 Sludge dewatering aid and sludge dewatering method and apparatus Active JP5658107B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011173205A JP5658107B2 (en) 2010-08-31 2011-08-08 Sludge dewatering aid and sludge dewatering method and apparatus
KR1020110086473A KR20120021241A (en) 2010-08-31 2011-08-29 Dewatering promoter for sludge and method and device for dewatering sludge
CN201110258829.8A CN102381827B (en) 2010-08-31 2011-08-31 Sludge dehydration assistant, sludge dehydration method and sludge dehydration apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010193079 2010-08-31
JP2010193079 2010-08-31
JP2011173205A JP5658107B2 (en) 2010-08-31 2011-08-08 Sludge dewatering aid and sludge dewatering method and apparatus

Publications (3)

Publication Number Publication Date
JP2012071296A true JP2012071296A (en) 2012-04-12
JP2012071296A5 JP2012071296A5 (en) 2013-08-15
JP5658107B2 JP5658107B2 (en) 2015-01-21

Family

ID=46167681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011173205A Active JP5658107B2 (en) 2010-08-31 2011-08-08 Sludge dewatering aid and sludge dewatering method and apparatus

Country Status (1)

Country Link
JP (1) JP5658107B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034956A (en) * 2011-08-09 2013-02-21 Swing Corp Method for treating sludge
JP2015003285A (en) * 2013-06-19 2015-01-08 水ing株式会社 Sludge treatment method and device
WO2015012039A1 (en) 2013-07-26 2015-01-29 株式会社石垣 Recovery device and recovery method for recovering specific material from sludge, sludge dehydration system, and sludge dehydration method
JP2015073966A (en) * 2013-10-10 2015-04-20 水ing株式会社 Sludge treatment method and apparatus, and chemical fertilizer production method and apparatus
JP2016097345A (en) * 2014-11-20 2016-05-30 水ing株式会社 Method for regulating polymer flocculant water solution, and regulation device therefor
JP2019129026A (en) * 2018-01-23 2019-08-01 国立研究開発法人農業・食品産業技術総合研究機構 Use method of plant-derived hydrogen peroxide
JP2020179336A (en) * 2019-04-24 2020-11-05 月島テクノメンテサービス株式会社 Fibrous dehydration aid charging device and charging method
WO2020241494A1 (en) * 2019-05-31 2020-12-03 デクセリアルズ株式会社 Water treatment agent, method for preparing same, and water treatment method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613099A (en) * 1979-07-10 1981-02-07 Nichireki Chem Ind Co Ltd Treating method of sludge
JPS6121800A (en) * 1984-04-25 1986-01-30 Sanyo Chem Ind Ltd Dehydration of sludge
JPH02293405A (en) * 1989-05-02 1990-12-04 Asahi Chem Ind Co Ltd Viscose rayon fiber
JPH07207538A (en) * 1994-01-11 1995-08-08 Asahi Chem Ind Co Ltd Combined filament yarn
JP2002219500A (en) * 2001-01-25 2002-08-06 Ebara Corp Dehydrating agent and method for dehydrating organic sludge
JP2003013325A (en) * 2001-06-29 2003-01-15 Mitsubishi Rayon Co Ltd Cellulose acetate fiber
JP2003053182A (en) * 2001-08-20 2003-02-25 Ebara Corp Dewatering aid and dewatering method using the same
JP2005131562A (en) * 2003-10-31 2005-05-26 Kuraray Co Ltd Solid/liquid separation system
JP2005240242A (en) * 2004-02-27 2005-09-08 Toray Ind Inc Combined filament yarn having modified cross-section
JP2005248337A (en) * 2004-03-01 2005-09-15 Seihachiro Miura Highly active cellulose fiber, method for producing the same, and dehydrating auxiliary using the same
JP2007283225A (en) * 2006-04-18 2007-11-01 Ebara Engineering Service Co Ltd Dehydration assistant for sludge and dehydration method/device for sludge using this assistant

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613099A (en) * 1979-07-10 1981-02-07 Nichireki Chem Ind Co Ltd Treating method of sludge
JPS6121800A (en) * 1984-04-25 1986-01-30 Sanyo Chem Ind Ltd Dehydration of sludge
JPH02293405A (en) * 1989-05-02 1990-12-04 Asahi Chem Ind Co Ltd Viscose rayon fiber
JPH07207538A (en) * 1994-01-11 1995-08-08 Asahi Chem Ind Co Ltd Combined filament yarn
JP2002219500A (en) * 2001-01-25 2002-08-06 Ebara Corp Dehydrating agent and method for dehydrating organic sludge
JP2003013325A (en) * 2001-06-29 2003-01-15 Mitsubishi Rayon Co Ltd Cellulose acetate fiber
JP2003053182A (en) * 2001-08-20 2003-02-25 Ebara Corp Dewatering aid and dewatering method using the same
JP2005131562A (en) * 2003-10-31 2005-05-26 Kuraray Co Ltd Solid/liquid separation system
JP2005240242A (en) * 2004-02-27 2005-09-08 Toray Ind Inc Combined filament yarn having modified cross-section
JP2005248337A (en) * 2004-03-01 2005-09-15 Seihachiro Miura Highly active cellulose fiber, method for producing the same, and dehydrating auxiliary using the same
JP2007283225A (en) * 2006-04-18 2007-11-01 Ebara Engineering Service Co Ltd Dehydration assistant for sludge and dehydration method/device for sludge using this assistant

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034956A (en) * 2011-08-09 2013-02-21 Swing Corp Method for treating sludge
JP2015003285A (en) * 2013-06-19 2015-01-08 水ing株式会社 Sludge treatment method and device
US10974982B2 (en) 2013-07-26 2021-04-13 Ishigaki Company Limited Recovery device and recovery method for recovering specific material from sludge
WO2015012039A1 (en) 2013-07-26 2015-01-29 株式会社石垣 Recovery device and recovery method for recovering specific material from sludge, sludge dehydration system, and sludge dehydration method
US11401188B2 (en) 2013-07-26 2022-08-02 Ishigaki Company Limited Sludge dehydration system and sludge dehydration method
EP3059015A1 (en) 2013-07-26 2016-08-24 Ishigaki Company Limited Sludge dehydration system and sludge dehydration method
US9975798B2 (en) 2013-07-26 2018-05-22 Ishigaki Company Limited Sludge dehydration system and sludge dehydration method
JP2015073966A (en) * 2013-10-10 2015-04-20 水ing株式会社 Sludge treatment method and apparatus, and chemical fertilizer production method and apparatus
JP2016097345A (en) * 2014-11-20 2016-05-30 水ing株式会社 Method for regulating polymer flocculant water solution, and regulation device therefor
JP2019129026A (en) * 2018-01-23 2019-08-01 国立研究開発法人農業・食品産業技術総合研究機構 Use method of plant-derived hydrogen peroxide
JP2020179336A (en) * 2019-04-24 2020-11-05 月島テクノメンテサービス株式会社 Fibrous dehydration aid charging device and charging method
JP7209581B2 (en) 2019-04-24 2023-01-20 月島テクノメンテサービス株式会社 Feeding device and feeding method for fibrous dehydration aid
WO2020241494A1 (en) * 2019-05-31 2020-12-03 デクセリアルズ株式会社 Water treatment agent, method for preparing same, and water treatment method
JP2020195982A (en) * 2019-05-31 2020-12-10 デクセリアルズ株式会社 Water treatment agent, method for preparing the same, and water treatment method

Also Published As

Publication number Publication date
JP5658107B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5658107B2 (en) Sludge dewatering aid and sludge dewatering method and apparatus
JP6209046B2 (en) Sludge treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
JP5855845B2 (en) Sludge treatment agent, sludge treatment method and sludge treatment apparatus using the same
JP4817431B2 (en) Sludge dewatering aid and sludge dewatering method and apparatus using the same
JPS6038200B2 (en) Sludge dewatering method
KR20120021241A (en) Dewatering promoter for sludge and method and device for dewatering sludge
JP4533232B2 (en) Sludge dewatering method and apparatus
JP2012071296A5 (en)
JP2016032811A (en) Processing method and processing apparatus of sludge
JP6861554B2 (en) Dehydrating agent for sludge
JP2004160353A (en) Coagulation reaction device
JP6362305B2 (en) Sludge treatment method and apparatus
JP2010229571A (en) Method and apparatus for papermaking
JP2013233509A (en) Method and apparatus of dehydration of organic sludge
JP6797089B2 (en) Water treatment method and treatment equipment for organic wastewater containing oil
JPS63252600A (en) Sludge dehydrating agent
JP5751230B2 (en) Sludge dewatering method
JP2982225B2 (en) Organic sludge dewatering method
JP2013000712A (en) Dehydration method and apparatus for organic sludge
JP2000176499A (en) Dehydration of inorganic oil-containing sludge
JP4029021B2 (en) Sludge dewatering agent and sludge dewatering method
JP3591077B2 (en) Sludge dewatering method
JP3064878B2 (en) Organic sludge treatment
JP2023080648A (en) Liquid waste concentration method and apparatus
JP2004195370A (en) Method for dehydrating digested sludge

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5658107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250