JP2005131562A - Solid/liquid separation system - Google Patents

Solid/liquid separation system Download PDF

Info

Publication number
JP2005131562A
JP2005131562A JP2003371431A JP2003371431A JP2005131562A JP 2005131562 A JP2005131562 A JP 2005131562A JP 2003371431 A JP2003371431 A JP 2003371431A JP 2003371431 A JP2003371431 A JP 2003371431A JP 2005131562 A JP2005131562 A JP 2005131562A
Authority
JP
Japan
Prior art keywords
liquid
solid
water
liquid separation
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003371431A
Other languages
Japanese (ja)
Inventor
Shinya Inada
真也 稲田
Shoichi Nishiyama
正一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2003371431A priority Critical patent/JP2005131562A/en
Publication of JP2005131562A publication Critical patent/JP2005131562A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid/liquid separation system that can inexpensively generate clear water and be used repeatedly without any limitation on equipment scale as well as can concentrate even water containing dissolved components and liquids other than water. <P>SOLUTION: The solid/liquid separation system is composed of a fiber cluster containing polyvinyl alcohol fibers and makes use of a capillary phenomenon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ポリビニルアルコール(以下、PVAと称す)系繊維で構成された繊維集合体を用いてなる、毛管現象を利用して液体のみを除去する固液分離システムに関するものである。   The present invention relates to a solid-liquid separation system that uses a fiber assembly composed of polyvinyl alcohol (hereinafter referred to as PVA) fibers to remove only liquid using capillary action.

水処理が求められる分野は多岐にわたっており、例えばヘドロの減容化や余剰活性汚泥の分離、汚水の減容、水溶質分の濃縮、油分離等、様々な分野が存在する。しかしながら各分野において種々の問題があり、十分な拡販が行われていないのが現状である。
例えば、被処理物がヘドロのような懸濁物が存在する場合の水分離においては、凝集剤を用いてある程度沈降させた後、高濃度の沈降物をフィルタープレス等の機械的設備により脱水する方法が知られているが、懸濁物が低濃度の場合は沈降工程での濃縮物の収率が低く、設備を大型化する必要があるばかりか、機械的脱水のため初期設備投資、維持管理費等の費用が高価になることが問題となる。また、凝集剤を使用する場合においては、処理後の水の安全性について注意を払う必要があり、しかもランニングコストがかかる問題があった。
There are various fields where water treatment is required, and there are various fields such as sludge reduction, separation of excess activated sludge, volume reduction of sewage, concentration of water-soluble matter, oil separation, and the like. However, there are various problems in each field, and the current situation is that sufficient sales are not expanded.
For example, in water separation in the case where a suspension such as sludge is present, the high-concentration sediment is dehydrated by mechanical equipment such as a filter press after being settled to some extent using a flocculant. Although the method is known, when the concentration of the suspension is low, the yield of the concentrate in the sedimentation process is low, and it is necessary not only to enlarge the equipment but also to invest and maintain the initial equipment for mechanical dehydration. The problem is that the cost of management and the like becomes expensive. In the case of using a flocculant, it is necessary to pay attention to the safety of water after treatment, and there is a problem that running cost is high.

一方で、毛管現象を利用した水処理方法が知られている(例えば、特許文献1参照。)。この方法により活性汚泥層の水処理や、湖水や河川水等の原水を処理して清浄な水を得ることができるとされている。しかしながら、特許文献1に記載された方法は純粋に毛管現象のみを利用しているため、その吸い上げ高さに限界があり、そのため設備の大型化ができず処理量も限界があった。   On the other hand, a water treatment method using capillary action is known (for example, see Patent Document 1). According to this method, it is said that clean water can be obtained by water treatment of activated sludge layers and raw water such as lake water and river water. However, since the method described in Patent Document 1 uses only the capillary phenomenon purely, there is a limit to the suction height, so that the equipment cannot be increased in size and the processing amount is also limited.

また毛管現象だけでなく水頭差も利用して繊維間隙間を通水する方法が知られている(例えば、特許文献2あるいは特許文献3参照。)。しかしながらこの場合、濾過部材として細長い複数の紐状の繊維集合体により構成される必要があり、従って様々な形態への適合性に欠けているばかりか、水頭差も加味されるため濾過速度が毛管現象のみに比べて早く、従って目詰まりを起こしやすい。さらに水に溶解した成分あるいは水以外の液体が混合している場合においては、それらの成分は分離されずに濾水中に含まれる。毛管現象は被処理液の固液分離はできるが、溶質成分は水と共に移動するため分離は困難であり、また水とは別の液体も、移動速度は水とは異なるが、同様に毛管現象により移動するため、実質的には水との分離は困難である。   Also known is a method of passing water between the fibers using not only the capillary phenomenon but also the water head difference (see, for example, Patent Document 2 or Patent Document 3). However, in this case, it is necessary to be constituted by a plurality of long and slender string-like fiber aggregates as the filtration member, and therefore, the filtration speed is capillary because it is not only compatible with various forms but also includes a head difference. Faster than the phenomenon alone, and therefore easily clogged. Further, when components dissolved in water or liquids other than water are mixed, these components are not separated but are contained in filtrate. Capillary phenomenon allows solid-liquid separation of the liquid to be treated, but separation is difficult because the solute component moves with water, and the movement speed of other liquids is different from that of water. Therefore, separation from water is difficult.

また、汚水を積極的に蒸散させる方法も知られている(例えば、特許文献4参照。)。この方法によれば吊り下げられた湿潤体に汚水を給水せしめ、広い面積を湿潤体の全面積を利用して大量の水を蒸散することで汚水の濃縮化ならびに固液分離を行うことができるとしている。すなわち水のみが蒸発するため、水に溶解した成分あるいは水以外の液体が混合している場合においても、その成分が濃縮化できるとしている。該特許文献3における湿潤体とは、シート状のような形態で面積が広く、かつ汚水などの液体を毛管現象などで吸水しやすいものであればよく、布やフェルト、古新聞紙を重ねてキルティング状に縫い付けたものなど、各種の吸水性材料が利用できるとしている。しかしながら、実質的に吸水性素材としてはセルロース等の天然素材が一般的であるが、セルロース等の天然素材は生分解性があり、長期繰返し使用が困難であることが問題であった。一方、ポリエステル等の合成繊維を親水化させたものも油剤等による改質のため、繰返し使用によって親水性が低下するといった問題があった。   In addition, a method of actively evaporating sewage is also known (for example, see Patent Document 4). According to this method, sewage can be concentrated and solid-liquid separated by supplying sewage to the suspended wet body and evaporating a large amount of water using the entire area of the wet body over a large area. It is said. That is, since only water evaporates, even when a component dissolved in water or a liquid other than water is mixed, the component can be concentrated. The wet body in Patent Document 3 is not particularly limited as long as it has a sheet-like shape, a large area, and can easily absorb liquids such as sewage by capillary action, etc., and is quilted by stacking cloth, felt, and old newspaper. Various water-absorbing materials such as those sewn in a shape can be used. However, natural materials such as cellulose are generally used as the substantially water-absorbing material, but natural materials such as cellulose are biodegradable and difficult to use repeatedly for a long time. On the other hand, a synthetic fiber such as polyester that has been hydrophilized also has a problem that the hydrophilicity is lowered by repeated use because of modification by an oil agent or the like.

特開平11−347313号公報JP-A-11-347313 特開2002−190715号公報JP 2002-190715 A 特開2002−263408号公報JP 2002-263408 A 特開平11−042475号公報Japanese Patent Laid-Open No. 11-042475

以上述べたように、従来の固液分離システムでは、水との分離が不十分であったり濃縮物の収率が低いという問題があり、それらの問題点を解決した固液分離システムの開発が望まれていた。   As described above, conventional solid-liquid separation systems have problems such as insufficient separation from water and low yield of concentrate, and development of a solid-liquid separation system that solves these problems has occurred. It was desired.

上記目的を達成すべく本願発明者等は鋭意検討を重ねた結果、低コストで清澄な水が得られ、何度も処理可能で、装置の規模に制限なく、かつ溶解成分や水以外の液体が混在した水でも濃縮可能である固液分離システムを見出した。   As a result of intensive studies by the inventors of the present invention to achieve the above object, clear water can be obtained at low cost, can be treated many times, and there is no limit on the scale of the apparatus, and liquids other than dissolved components and water We have found a solid-liquid separation system that can concentrate even in water mixed with water.

すなわち本発明は、PVA系繊維を含む繊維集合体を用いてなる、毛管現象を利用した固液分離システムであり、好ましくは繊維集合体として、PVA系繊維が20〜100質量%含まれていることを特徴とする上記の固液分離システムであり、より好ましくはPVA系繊維が異型断面を有する上記の固液分離システムであり、さらに好ましくはPVA系繊維を含む集合体が、密度0.03〜1.0g/cmの布帛状物である上記の固液分離システムである。
また本発明は、好ましくはPVA系繊維を含む繊維集合体の一端を被除去物を含む液体に浸漬し、毛管現象により液体のみを吸い上げせしめ、吸い上げた液体を、該液体の自重濾過あるいは繊維集合体を加圧/減圧することにより搾液し、繊維集合体から液体のみを回収することを特徴とする上記の固液分離システムであり、さらに好ましくはPVA系繊維を含む繊維集合体の一端を被除去物を含む液体に浸漬し、毛管現象により液体のみを吸い上げせしめ、液体に浸漬されていない部分を乾燥することで、被除去物のみを濃縮させる上記の固液分離システムに関する。
That is, the present invention is a solid-liquid separation system using a capillary phenomenon using a fiber assembly containing PVA fibers, and preferably contains 20 to 100% by mass of PVA fibers as a fiber assembly. The solid-liquid separation system described above, more preferably the above-mentioned solid-liquid separation system in which the PVA fiber has an atypical cross section, and more preferably the aggregate containing the PVA fiber has a density of 0.03. It is said solid-liquid separation system which is a fabric-like thing of -1.0 g / cm < 3 >.
Further, in the present invention, preferably, one end of a fiber assembly containing PVA fibers is immersed in a liquid containing an object to be removed, and only the liquid is sucked up by capillary action, and the sucked liquid is subjected to self-weight filtration or fiber assembly of the liquid. The solid-liquid separation system is characterized in that liquid is squeezed by pressurizing / depressurizing the body and only the liquid is recovered from the fiber assembly, and more preferably, one end of the fiber assembly containing PVA fibers The present invention relates to the above-described solid-liquid separation system in which only the object to be removed is concentrated by dipping in the liquid containing the object to be removed, sucking up only the liquid by capillary action, and drying the portion not immersed in the liquid.

本発明はPVA系繊維で構成された繊維集合体を用いてなる、毛管現象を利用して液体のみを除去することが可能な固液分離システムであり、例えばヘドロの減容化や余剰活性汚泥の分離、汚水の蒸散用途、水溶質分の濃縮、油水分離等幅広い分野で応用可能である。   The present invention is a solid-liquid separation system using a fiber assembly composed of PVA-based fibers and capable of removing only liquid using capillary action. For example, sludge reduction and excess activated sludge It can be applied in a wide range of fields, such as separation of sewage, transpiration of sewage, concentration of water-soluble matter, separation of oil and water

本発明は、PVA系繊維を含む繊維集合体を用いてなる、毛管現象を利用した固液分離システムである。毛管現象による液面上昇高さは下式により表される。   The present invention is a solid-liquid separation system using capillary action, which uses a fiber assembly containing PVA fibers. The liquid level rising height due to capillary action is expressed by the following equation.

Figure 2005131562
Figure 2005131562

上式において、接触角であるcosθが大きいほど吸い上げ高さが高く、毛管現象を効率よく利用することができる。ここでPVA系繊維のcosθは0.81であり、ナイロン繊維の0.34、ポリエステル繊維の0.14に比べて格段に高いので、PVA系繊維を使用することにより毛管現象が効率良く利用できる。これはPVAが水酸基を多く含んでいるからである。同様に水酸基を多く含んだ繊維としては、セルロースに代表される天然繊維が挙げられ、これらの繊維も同様に毛管現象を効率良く利用できる。しかしながら、これら天然繊維は生分解性を有しているので長期繰返し使用した場合、経時的に強度が低下し、最終的には使用困難となる。一方、PVA系繊維は水に実質的に不溶のものでは生分解性を有さないため、長期繰返し使用が可能となる。   In the above formula, the larger the contact angle cos θ, the higher the suction height, and the capillary phenomenon can be used efficiently. Here, the cos θ of the PVA fiber is 0.81, which is much higher than the nylon fiber 0.34 and the polyester fiber 0.14, so that the capillary phenomenon can be efficiently used by using the PVA fiber. . This is because PVA contains many hydroxyl groups. Similarly, examples of fibers containing a large amount of hydroxyl groups include natural fibers typified by cellulose, and these fibers can also efficiently utilize capillary action. However, since these natural fibers are biodegradable, when they are used repeatedly for a long period of time, the strength decreases with time, and finally it becomes difficult to use. On the other hand, PVA fibers that are substantially insoluble in water do not have biodegradability and can be used repeatedly for a long time.

本発明の固液分離システムに用いる繊維集合体としてはPVA系繊維が20質量%以上含まれているのが好ましい。繊維集合体中のPVA系繊維の含有量が20質量%よりも少ない場合、繊維集合体の毛管現象が効率的に使用できない。より好ましくは40質量%以上、さらに好ましくは60質量%以上、最も好ましくは80質量%以上100質量%以下である。   The fiber assembly used in the solid-liquid separation system of the present invention preferably contains 20% by mass or more of PVA fiber. When the content of the PVA fiber in the fiber assembly is less than 20% by mass, the capillary phenomenon of the fiber assembly cannot be used efficiently. More preferably, it is 40 mass% or more, More preferably, it is 60 mass% or more, Most preferably, it is 80 mass% or more and 100 mass% or less.

また本発明で用いるPVA系繊維は異型断面を有することが好ましい。異型断面を有するPVA系繊維を使用することで、緻密な繊維間空隙が形成される。先述した毛管現象の液面上昇高さhは、膜厚dが小さいほど高くなるが、この膜厚dが繊維間空隙に相当するので本発明の異型断面を有するPVA系繊維を用いた場合、液面上昇高さhが高くなり、効率的に毛管現象を利用することができる。異型断面の形状は特に限定されず、扁平状、三角状、Y型状等様々な形状のものが使用される。また繊維の繊度は5dtex以下が好ましく、より好ましくは3dtex以下、さらに好ましくは2dtex以下である。   Moreover, it is preferable that the PVA-type fiber used by this invention has an atypical cross section. By using PVA fibers having an atypical cross section, a dense inter-fiber gap is formed. When the film thickness d is smaller, the height h of capillary level rise as described above becomes higher, but since this film thickness d corresponds to the inter-fiber gap, when the PVA fiber having an atypical cross section of the present invention is used, The height h of the liquid level rises and the capillary phenomenon can be used efficiently. The shape of the irregular cross section is not particularly limited, and various shapes such as a flat shape, a triangular shape, and a Y shape are used. The fineness of the fiber is preferably 5 dtex or less, more preferably 3 dtex or less, and still more preferably 2 dtex or less.

PVA系繊維を含む繊維集合体としては、密度が0.03g/cm〜1.0g/cmの布帛状であることが好ましい。密度が高いほど緻密な繊維間空隙が形成され、先述したように液面上昇高さが高くなる。固液分離を図るためには液面から少なくとも30mm以上は水が吸い上がっていないとシステム化が困難である。吸い上げ長30mmを得るためには、密度が0.03g/cm以上であることが好ましく、一方、密度が高すぎると液抵抗が大きく、逆に吸い上がりにくくなるため、1.0g/cm以下であることが好ましい。より好ましくは0.05〜0.5g/cmである。なお、布帛状とは、織物、編物、不織布のいずれの状態でもよい。 The fiber aggregate comprising the PVA fibers, it is preferable density of the fabric-like 0.03g / cm 3 ~1.0g / cm 3 . The higher the density, the denser inter-fiber voids are formed, and the height of the liquid level increases as described above. In order to achieve solid-liquid separation, systematization is difficult unless water is sucked up at least 30 mm from the liquid surface. In order to obtain a suction length of 30 mm, the density is preferably 0.03 g / cm 3 or more. On the other hand, if the density is too high, the liquid resistance is large and, on the contrary, it is difficult to suck up, so 1.0 g / cm 3 The following is preferable. More preferably, it is 0.05-0.5 g / cm < 3 >. The fabric shape may be any state of woven fabric, knitted fabric, and nonwoven fabric.

また、PVA系繊維を含む繊維集合体としては、繊維同士が融着され、集束されたブロック状であることがさらに好ましい。この場合、該ブロックの密度は0.03g/cm〜1.0g/cmであることが好ましい。該ブロックは実開平3−122646号公報に記載された方法に基づき作製することで得られる。該ブロックは繊維が引き揃った状態でブロック化されているため、毛管現象による吸い上げが容易であり、本発明において好適に使用することができる。ただし、繊維集合体が上記した布帛状物の場合と同様、密度が0.03g/cmよりも低いと30mm以上の吸い上げ長が得られず、一方密度が1.0g/cmよりも大きいと液抵抗が大きく吸い上がりにくい。より好ましくは0.05〜0.5g/cmである。また先述した布帛状物と組み合わせて、本発明の固液分離システムを形成しても何等差し支えない。 Moreover, as a fiber assembly containing a PVA-type fiber, it is more preferable that it is a block shape in which fibers are fused and converged. In this case, it is preferable density of the block is 0.03g / cm 3 ~1.0g / cm 3 . The block can be obtained by manufacturing based on the method described in Japanese Utility Model Laid-Open No. 3-122646. Since the block is made into a block in a state in which the fibers are aligned, it can be easily sucked up by capillary action and can be suitably used in the present invention. However, as in the case of the above-described fabric-like product, if the density is lower than 0.03 g / cm 3 , a suction length of 30 mm or more cannot be obtained, while the density is higher than 1.0 g / cm 3. And liquid resistance is large and difficult to suck up. More preferably, it is 0.05-0.5 g / cm < 3 >. Moreover, there is no problem even if the solid-liquid separation system of the present invention is formed in combination with the cloth-like material described above.

上記したようなPVA系繊維を含有する繊維集合体の一端を被除去物を含む液体に浸漬することで、毛管現象により液体のみを吸い上げることができ、吸い上げた液体は液体の自重濾過、あるいは繊維集合体を加圧/減圧して搾取されることにより繊維集合体から液体のみを回収することができ、そのため被除去物自体は濃縮され、固液分離を行うことができる。このときの固液分離の程度は減容率で表すことができる。なお本発明でいう減容率とは被除去物の容積が固液分離前後でどれだけ減少したかを示し、この値が大きいほど固液分離能力が高いといえる。また本発明でいう被除去物は水不溶性の固体あるいは液体、または水可溶性の固体あるいは液体のいずれでもよい。   By immersing one end of the fiber assembly containing the PVA fibers as described above in the liquid containing the object to be removed, only the liquid can be sucked up by capillary action, and the sucked liquid can be filtered by its own weight, or the fibers Only the liquid can be recovered from the fiber assembly by pressurizing / depressurizing the assembly, so that the object to be removed is concentrated and solid-liquid separation can be performed. The degree of solid-liquid separation at this time can be expressed by a volume reduction rate. The volume reduction rate referred to in the present invention indicates how much the volume of the object to be removed has decreased before and after solid-liquid separation, and it can be said that the larger this value, the higher the solid-liquid separation ability. Further, the object to be removed in the present invention may be a water-insoluble solid or liquid, or a water-soluble solid or liquid.

自重濾過については、図1(a)あるいは図1(b)に示すように繊維集合体の毛管中をサイホンの原理で通液して系外に放出することを利用すれば、効率良く回収ができる。図1(a)は、被濾過液に繊維集合体の一端が浸漬された状態を示しているが、繊維集合体の毛管現象により水のみが矢印方向に最上部まで吸い上げられる。さらに最上部まで吸い上がった水は矢印方向に伝播して系外へ放出される。また図1(b)のように複数の繊維集合体3を被濾過液に浸漬し、それらの繊維集合体3を被濾過液の液面上に浮かべてある繊維集合体2に繋ぎ、さらに繊維集合体2から系外へ水を放出するための繊維集合体1を設けることで、矢印方向に水が移動し、より大量かつ均一に吸い上げることが可能となる。   For self-weight filtration, as shown in FIG. 1 (a) or FIG. 1 (b), efficient recovery can be achieved by using the fact that the capillary of the fiber assembly is passed through the siphon principle and discharged out of the system. it can. FIG. 1A shows a state in which one end of the fiber assembly is immersed in the liquid to be filtered, but only water is sucked up to the top in the direction of the arrow due to the capillary action of the fiber assembly. Furthermore, the water sucked up to the uppermost part propagates in the direction of the arrow and is discharged out of the system. Further, as shown in FIG. 1B, a plurality of fiber aggregates 3 are immersed in the liquid to be filtered, and the fiber aggregates 3 are connected to the fiber aggregate 2 floating on the liquid surface of the liquid to be filtered. By providing the fiber assembly 1 for discharging water from the assembly 2 to the outside of the system, the water moves in the direction of the arrow and can be sucked up more uniformly and uniformly.

また図2あるいは図3に示すように、繊維集合体を加圧/減圧することでも効率的に液回収が図れる。図2では、矢印方向に吸い上がった水がプレス加圧により搾液される様子を示しているが、加圧で搾液される方が図1に示すような自重濾過に比べて系外への回収が早い。また図3では、繊維集合体の一端が減圧される構造になっているが、減圧されることで繊維集合体中の毛管内も減圧されるので被濾過液からの水の吸い上げ速度が速くなる。勿論、その濾液は繊維集合体を通過するので清澄なものとなる。   Further, as shown in FIG. 2 or FIG. 3, the liquid can be efficiently recovered by pressurizing / depressurizing the fiber assembly. FIG. 2 shows a state in which the water sucked in the direction of the arrow is squeezed by pressurization, but the direction of squeezing by pressurization is more out of the system than the self-weight filtration as shown in FIG. Recovery is fast. In FIG. 3, one end of the fiber assembly is structured to be depressurized. However, by depressurizing, the inside of the capillary in the fiber assembly is also depressurized, so that the suction speed of water from the liquid to be filtered increases. . Of course, the filtrate becomes clear because it passes through the fiber assembly.

さらに、これらの方法を組み合わせることで、より効率的に固液分離を行うことができる。図4にシステムの概略図を示す。図4は連続的に被濾過液を濃縮できる一例である。被濾過液は、タンク1からストック部2へ流入し、オーバーフローして次のストック部4(オーバーフローストック部)へ流れた後、被濾過水循環ポンプ9によりタンク1に循環される。ストック部2には、固液分離用の繊維集合体3の一端が被濾過液中に浸漬された状態で固定されている。この繊維集合体3は、被濾過液中の水のみを選択的に吸い上げる。吸い上げられた水は、繊維集合体3と接触しながら矢印方向に回転している転着布7に転着され、その水はプレスローラー5で加圧搾液を受けて回収される。なお濾過部の液面は、被濾過液が循環されているため常に高さが一定であるので、安定な吸い上げが可能となっている。   Furthermore, solid-liquid separation can be performed more efficiently by combining these methods. FIG. 4 shows a schematic diagram of the system. FIG. 4 shows an example in which the liquid to be filtered can be continuously concentrated. The liquid to be filtered flows from the tank 1 into the stock unit 2, overflows and flows to the next stock unit 4 (overflow stock unit), and is then circulated to the tank 1 by the filtered water circulation pump 9. One end of a fiber assembly 3 for solid-liquid separation is fixed to the stock unit 2 in a state where it is immersed in the liquid to be filtered. This fiber assembly 3 selectively sucks up only water in the liquid to be filtered. The sucked-up water is transferred to the transfer cloth 7 rotating in the direction of the arrow while being in contact with the fiber assembly 3, and the water is collected by receiving the pressure squeezed by the press roller 5. The liquid level of the filtration part is always constant because the liquid to be filtered is circulated, so that stable suction is possible.

本発明の固液分離システムでは、毛管現象により水のみ吸い上がるが、被除去物は繊維集合体の表面および浸漬部で大部分が阻止される。一部は吸い上がると水と一緒に毛管内を進入する可能性があるが、毛管内を移動する過程でその殆どが捕捉される。そのため、回収される液体の浮遊物質量(SS)は5mg/L以下となり非常に清澄なものとなる。   In the solid-liquid separation system of the present invention, only water is sucked up by capillary action, but most of the object to be removed is blocked at the surface of the fiber assembly and the immersion part. Some of it may enter the capillary with water when sucked up, but most of it is captured in the process of moving through the capillary. Therefore, the amount of suspended solids (SS) in the recovered liquid is 5 mg / L or less, which is very clear.

また本発明の固液分離システムにおいて、PVA系繊維を含む繊維集合体の一端を被除去物を含む液体に浸漬し、毛管現象により液体のみを吸い上げせしめ、そして液体に浸漬されていない部分を乾燥させることで、被除去物のみを濃縮させることができる。   In the solid-liquid separation system of the present invention, one end of the fiber assembly containing the PVA fiber is immersed in the liquid containing the object to be removed, and only the liquid is sucked up by capillary action, and the portion not immersed in the liquid is dried. By doing so, only the object to be removed can be concentrated.

従来の固液分離方法は、文字通り水中に浮遊している懸濁物と水とを除去する方法であり、濾過により達成されるが、濾過による方法では水中に溶解している溶質成分や、水中に溶解あるいは分散している別の液体までは分離不可能である。一方、本発明では、乾燥により水を蒸発除去せしめることで、処理水中の水分のみ除去することが可能となる。当然、水に溶解している溶質成分は蒸発しないが、水を蒸発させることにより溶質濃度は上昇し、やがて飽和溶解度を超えた場合に溶質成分が析出し、濃縮化が図れる。   The conventional solid-liquid separation method is literally a method of removing suspension and water floating in water, and is achieved by filtration. In the method by filtration, solute components dissolved in water, It is impossible to separate another liquid dissolved or dispersed in the liquid. On the other hand, in the present invention, only water in the treated water can be removed by evaporating and removing water by drying. Naturally, the solute component dissolved in the water does not evaporate, but by evaporating the water, the solute concentration increases, and when the saturation solubility is exceeded, the solute component precipitates and can be concentrated.

被処理物が液体の場合は少々異なり、水不溶性の液体は上記と同様に濃縮化ができるが、水より沸点の低い揮発性液体の場合は、逆にその液体の方が早く揮発し除去され、水との分離が図れる。しかしながら、水可溶性の液体の場合は、水と共沸する混合領域以外に限って分離が図れる。   If the material to be treated is a liquid, the water-insoluble liquid can be concentrated in the same manner as described above.However, in the case of a volatile liquid having a boiling point lower than that of water, the liquid is volatilized and removed earlier. Separation from water is possible. However, in the case of a water-soluble liquid, the separation can be achieved only in a region other than the mixing region azeotroped with water.

また本発明の固液分離システムにおいて繊維集合体の乾燥部表面積は1m以上であることが好ましい。毛管現象により吸い上がった水を乾燥するには、乾燥部の表面積が大きいほど速く乾燥するので、吸い上げた水を広い表面積の布帛状繊維集合体に伝播させ、さらに該布帛状繊維集合体上で乾燥させるのが好ましい。乾燥部の形状は特に限定されるものではなく、平板状でもよいし、表面積を大きくするためにプリーツ加工されていてもよい。 Further, in the solid-liquid separation system of the present invention, the surface area of the dry part of the fiber assembly is preferably 1 m 2 or more. In order to dry the water sucked up by capillarity, the larger the surface area of the drying part, the faster the drying, so that the sucked-up water is propagated to the cloth-like fiber aggregate having a large surface area and further on the cloth-like fiber aggregate. It is preferable to dry. The shape of the drying section is not particularly limited, and may be a flat plate shape or may be pleated to increase the surface area.

また、水の乾燥速度を速めるためには、繊維集合体に積極的に風を与えることが好ましい。風速が早いほど乾燥が促進させる。具体的には好ましくは5m/min以上、より好ましくは10m/min以上の風速がよい。しかしながら風速が大きすぎると繊維集合体が飛散することが懸念させるため、25m/min以下であることが好ましい。   In order to increase the drying speed of water, it is preferable to positively give wind to the fiber assembly. The faster the wind speed, the faster the drying. Specifically, the wind speed is preferably 5 m / min or more, more preferably 10 m / min or more. However, if the wind speed is too high, the fiber aggregate may be scattered, so that the speed is preferably 25 m / min or less.

水の乾燥速度をさらに速めるためには、繊維集合体に積極的に熱を与えることが好ましい。熱の付与方法としては熱風方式でも伝熱方式でもよいが、乾燥効率からは図5に示すような熱風方式の方が好ましい。熱の温度は高いほど乾燥が促進しやすく、具体的には好ましくは40℃以上、より好ましくは50℃以上、さらに好ましくは60℃以上である。しかしながら温度が高すぎると繊維集合体の熱劣化が起こるため、200℃以下とすることが好ましい。これらの方法を組み合わせることで、より効率的な固液分離が可能となる。
図5に簡単なシステムを示す。これは、乾燥することで連続的に被濾過液を濃縮できる一例である。被濾過液はタンク1からストック部2へ流入し、オーバーフローしてストック部4(オーバーフローストック部)へ流れた後、被濾過水循環ポンプ9によりタンク1に循環されている。ストック部2には固液分離用の繊維集合体3の一端が液中に浸漬された状態で固定されている。この繊維集合体3は、被濾過液中の水のみを選択的に吸い上げる。吸い上げられた水は、繊維集合体3と接触しながら矢印方向に回転している転着布7に転着される。転着布7は、加熱された吸い上げ水乾燥ローラー11を通過することで加熱され、転着された水が蒸散する。蒸散の促進手段として、送風ファン13で送風され、12を通じて水分は系外へ放出される。これら蒸散は、その蒸散防止手段として囲い部屋11に囲われて行われる。なお、濾過部の液面は被濾過液が循環されているため常に高さが一定であり、安定な吸い上げが可能となる。
In order to further increase the water drying rate, it is preferable to positively heat the fiber assembly. As a heat application method, either a hot air method or a heat transfer method may be used, but a hot air method as shown in FIG. 5 is preferable in terms of drying efficiency. The higher the temperature of heat, the easier the drying is promoted. Specifically, it is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 60 ° C. or higher. However, if the temperature is too high, thermal degradation of the fiber assembly occurs. By combining these methods, more efficient solid-liquid separation becomes possible.
FIG. 5 shows a simple system. This is an example in which the liquid to be filtered can be continuously concentrated by drying. The liquid to be filtered flows from the tank 1 into the stock unit 2, overflows and flows into the stock unit 4 (overflow stock unit), and is then circulated to the tank 1 by the water circulating pump 9 to be filtered. One end of a fiber assembly 3 for solid-liquid separation is fixed to the stock portion 2 in a state of being immersed in the liquid. This fiber assembly 3 selectively sucks up only water in the liquid to be filtered. The sucked-up water is transferred to the transfer cloth 7 rotating in the direction of the arrow while being in contact with the fiber assembly 3. The transfer cloth 7 is heated by passing through the heated suction water drying roller 11, and the transferred water is evaporated. As a means for promoting transpiration, the air is blown by the blower fan 13, and moisture is released to the outside through the system 12. These transpirations are performed by being enclosed in an enclosure 11 as a means for preventing the transpiration. In addition, since the liquid to be filtered is circulated, the liquid level of the filtration unit is always constant in height, and stable suction is possible.

以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何等限定されるものではない。なお以下の実施例において、浮遊物質量(SS)、減容率は以下の方法により測定または評価したものを示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this Example. In the following examples, the suspended solid content (SS) and volume reduction rate are those measured or evaluated by the following methods.

[浮遊物質量(SS) mg/L]
所定体積の液体中に含まれる固形分を孔径0.4μmのガラスフィルターにより濾過し乾燥した後、秤量して算出する。
[Amount of suspended solids (SS) mg / L]
The solid content contained in a predetermined volume of liquid is filtered through a glass filter having a pore size of 0.4 μm, dried, weighed and calculated.

[減容率 %]
被処理液がどれだけ減容されたかを、以下の式により求める。
減容率(%)=〔(処理前液量−処理後液量)/処理前液量〕×100
[Volume reduction rate%]
How much the volume of the liquid to be treated has been reduced is determined by the following formula.
Volume reduction rate (%) = [(pre-treatment liquid amount−post-treatment liquid amount) / pre-treatment liquid amount] × 100

[実施例1]
(1)断面の縦横比が縦/横=1/4である扁平断面PVA系繊維80質量部、熱融着繊維〔(株)クラレ製「PN720」〕20質量部を混綿、ウェブとしたものを積層し、130℃で熱処理を行い、密度0.07g/cm、厚み25mmの不織布を得た。この不織布を図6に示すように平面寸法が300mm×300mm、高さが100mmとなるように重ね合わせ、固液分離用繊維集合体を作製した。
(2)一方、断面の縦横比が縦/横=1/4である扁平断面PVA系繊維80質量部、熱融着繊維〔(株)クラレ製「PN720」〕20質量部を混綿、ウェブとしたものを積層後、ニードルパンチ不織布を作製し、130℃で熱処理を行い、密度0.09g/cm、厚み4mmの不織布を得た。これを幅35cm、長さ2.5mに裁断し、裁断端を縫合してベルト状とし、固液分離された液体を転着してプレス搾液を行う転着布とした。
(3)図7に示すように固液分離用繊維集合体を液面下50mmまで被処理液に浸漬し、図4に示す方式により被処理体としてヘドロ(岡山県児島湖より採取)が3.4質量%存在した懸濁液200リットルを、上記(1)で得られた不織布を重ね合わせて固液分離用繊維集合体3とし、上記(2)で得られた転着布を7として用いて搾液方法により固液分離試験を行った。結果を表1に示す。
(4)表1に示すように連続して4時間固液分離処理を行った時点での回収量は81.6リットルであり、4時間処理後の減容率は41%と非常に高いものであった。また回収液の浮遊物質量(SS)は2.0mg/Lであり、非常に清澄なものであった。
[Example 1]
(1) A cross-sectional aspect ratio of vertical / horizontal = 1/4 flat cross section PVA fiber 80 parts by mass, heat-bonded fiber ["Kuraray Co., Ltd." PN720 "] 20 parts by mass blended cotton and web And heat-treated at 130 ° C. to obtain a nonwoven fabric having a density of 0.07 g / cm 3 and a thickness of 25 mm. As shown in FIG. 6, the nonwoven fabric was superposed so that the plane dimensions were 300 mm × 300 mm and the height was 100 mm, and a fiber assembly for solid-liquid separation was produced.
(2) On the other hand, 80 parts by mass of a flat cross-sectional PVA fiber having a cross-sectional aspect ratio of vertical / horizontal = 1/4, and 20 parts by mass of heat-sealing fiber [“PN720” manufactured by Kuraray Co., Ltd.] After stacking, the needle punched nonwoven fabric was prepared and heat treated at 130 ° C. to obtain a nonwoven fabric having a density of 0.09 g / cm 3 and a thickness of 4 mm. This was cut into a width of 35 cm and a length of 2.5 m, the cut ends were stitched into a belt shape, and a transfer cloth for transferring the solid-liquid separated liquid and performing press pressing was obtained.
(3) As shown in FIG. 7, the solid-liquid separation fiber assembly is immersed in the liquid to be treated up to 50 mm below the liquid surface, and 3 sludges (collected from Kojima Lake, Okayama Prefecture) are used as the object to be treated by the method shown in FIG. 200 liters of the suspension present at 4% by mass was overlapped with the nonwoven fabric obtained in the above (1) to form a solid-liquid separation fiber assembly 3, and the transfer fabric obtained in (2) was designated as 7. A solid-liquid separation test was performed by the squeezing method. The results are shown in Table 1.
(4) As shown in Table 1, when the solid-liquid separation process is performed continuously for 4 hours, the recovered amount is 81.6 liters, and the volume reduction rate after the 4-hour process is as high as 41%. Met. The amount of suspended solids (SS) in the recovered liquid was 2.0 mg / L, which was very clear.

[実施例2]
図4の固液分離用繊維集合体3として、転着布と同組成のニードルパンチ不織布を重ねて形成する以外は、実施例1と同様の方式にて固液分離試験を行った。結果を表1に示す。
表1に示すように、不織布の密度は0.09g/cmと密であるため、連続して4時間固液分離処理を行った時点での回収量は99.2リットルと多く、4時間処理後の減容率も50%と非常に高いものであった。また回収液の浮遊物質量(SS)は1.5mg/Lであり、非常に清澄なものであった。
[Example 2]
A solid-liquid separation test was conducted in the same manner as in Example 1 except that the solid-liquid separation fiber assembly 3 in FIG. 4 was formed by overlapping needle transfer nonwoven fabrics having the same composition as the transfer cloth. The results are shown in Table 1.
As shown in Table 1, since the density of the nonwoven fabric is as dense as 0.09 g / cm 3 , the recovery amount when the solid-liquid separation treatment is continuously performed for 4 hours is as large as 99.2 liters and 4 hours. The volume reduction rate after the treatment was also very high at 50%. The amount of suspended solids (SS) in the recovered liquid was 1.5 mg / L, which was very clear.

[実施例3]
(1)断面の縦横比が縦/横=1/4である扁平断面PVA系繊維70質量部、熱融着繊維〔(株)クラレ製「PN720」〕30質量部を混綿、ウェブとし、実開平3−122646号公報に記載の方法に従って、断面が正方形で、正方形の一辺が50mm、高さ100mm、密度0.08g/cmのファイバーロッドを作製した。
(2)一方、転着布は、実施例1と同様に作製した不織布を長さ10mに裁断した後縫合して作製した。
(3)図7に示すように固液分離用繊維集合体を液面下50mmまで被処理液に浸漬し、図5に示す方式により被処理体としてヘドロ(岡山県児島湖より採取)が3.4質量%存在した懸濁液200リットルを用い、上記(1)で得られたファイバーロッドを図8に示すように平面寸法が300mm×300mmに重ね合わせたものを固液分離用繊維集合体3、上記(2)で得られた転着布を7として用いて乾燥方法により固液分離試験を行った。結果を表1に示す。なお図5中、乾燥ローラー11の表面温度は120℃とし、さらに送風ファン13にて風速15m/minの風を与えることにより乾燥を促進した。またタンク1、被濾過液のストック部2、オーバーフローストック部4、被濾過水循環ポンプ9は実施例1と同じものを使用した。
(4)表1に示すように、連続して4時間固液分離処理を行った時点での回収量は114リットルであり、4時間処理後の減容率は43%と非常に高いものであった。
[Example 3]
(1) 70 mass parts of flat cross-sectional PVA fibers having a cross-sectional aspect ratio of vertical / horizontal = 1/4, and 30 parts by mass of heat-sealing fiber [“PN720” manufactured by Kuraray Co., Ltd.] In accordance with the method described in Kaihei 3-122646, a fiber rod having a square cross section, a square side of 50 mm, a height of 100 mm, and a density of 0.08 g / cm 3 was produced.
(2) On the other hand, the transfer cloth was produced by cutting a nonwoven fabric produced in the same manner as in Example 1 to a length of 10 m and then sewing it.
(3) As shown in FIG. 7, the solid-liquid separation fiber assembly is immersed in the liquid to be treated up to 50 mm below the liquid surface, and 3 sludges (collected from Kojima Lake, Okayama Prefecture) are used as the object to be treated by the method shown in FIG. Using 200 liters of the suspension present at 4% by mass, the fiber rod obtained in (1) above was superposed on a plane dimension of 300 mm × 300 mm as shown in FIG. 3. Using the transfer cloth obtained in (2) above as 7, a solid-liquid separation test was performed by a drying method. The results are shown in Table 1. In addition, in FIG. 5, the surface temperature of the drying roller 11 was 120 degreeC, and also drying was accelerated | stimulated by giving the wind of wind speed 15m / min with the ventilation fan 13. FIG. The tank 1, the stock portion 2 of the liquid to be filtered, the overflow stock portion 4, and the filtered water circulation pump 9 were the same as those in Example 1.
(4) As shown in Table 1, the recovery amount at the time when the solid-liquid separation process was continuously performed for 4 hours was 114 liters, and the volume reduction rate after the 4-hour process was as high as 43%. there were.

[実施例4]
被処理液が市販のサラダ油3000ppmを界面活性剤で乳濁させた乳濁水を使用する以外は実施例3と同様の方法で固液分離試験を行った。結果を表1に示す。表1に示すように、連続して4時間固液分離処理を行った時点での被処理液残量118リットルであり、4時間処理後の減容率は41%と非常に高いものであった。また、表1には掲載していないが、被処理液残量118リットル中のサラダ油濃度は5100ppmと処理前よりも高くなっているにもかかわらず、被処理液中のサラダ油の絶対量は処理前後で変わらず0.6kgであった。すなわち乾燥により水のみが蒸発するので、サラダ油のみを濃縮することが可能となった。
[Example 4]
A solid-liquid separation test was performed in the same manner as in Example 3 except that the liquid to be treated was an emulsion in which 3000 ppm of commercially available salad oil was emulsified with a surfactant. The results are shown in Table 1. As shown in Table 1, the amount of liquid to be treated was 118 liters when the solid-liquid separation treatment was continuously performed for 4 hours, and the volume reduction rate after the treatment for 4 hours was 41%, which was very high. It was. Although not listed in Table 1, the absolute amount of salad oil in the liquid to be treated is 5100 ppm, which is higher than that before the treatment, even though the concentration of the salad oil in 118 liters of the liquid to be treated is higher than before treatment. It was 0.6 kg without changing before and after. That is, since only water evaporates by drying, only salad oil can be concentrated.

[比較例1]
図4の固液分離用繊維集合体3として、不織布の密度が0.02g/cmであること以外は実施例1と同様の試験を行ったが、その吸い上げ長は15mmと大変少なく、従って液面から50mmの高さにある転着布7まで液が供給されないため、固液分離ができなかった。
[Comparative Example 1]
As the solid-liquid separation fiber assembly 3 in FIG. 4, the same test as in Example 1 was conducted except that the density of the nonwoven fabric was 0.02 g / cm 3 , but the suction length was very small at 15 mm. Since no liquid was supplied to the transfer cloth 7 at a height of 50 mm from the liquid level, solid-liquid separation could not be performed.

[比較例2]
図4の固液分離用繊維集合体3として、PVA系繊維の代わりにレギュラーポリエステル繊維を使用した以外は実施例1と同様の試験を実施したが、レギュラーポリエステル繊維は水への濡れ性が悪いため、その吸い上げ長は20mmと大変少なく転着布7まで液が供給されないため、固液分離ができなかった。
[Comparative Example 2]
As the solid-liquid separation fiber assembly 3 in FIG. 4, a test similar to Example 1 was performed except that regular polyester fibers were used instead of PVA fibers, but the regular polyester fibers had poor water wettability. Therefore, the suction length is as very small as 20 mm, and no liquid is supplied to the transfer cloth 7, so that solid-liquid separation cannot be performed.

本発明の固液分離システムにより低コストでかつ容易に処理水の濃縮が可能であり、しかも水以外の成分が混合あるいは溶解した、あらゆる水に適応可能である。   The solid-liquid separation system of the present invention can be easily concentrated at low cost and can be applied to any water in which components other than water are mixed or dissolved.

毛管現象で吸い上がった液の自重濾過を示す概略図。Schematic which shows the self-weight filtration of the liquid sucked up by capillary action. 毛管現象で吸い上がった液の加圧回収を示す概略図。Schematic which shows the pressure collection | recovery of the liquid sucked up by capillary action. 毛管現象で吸い上がった液の減圧回収を示す概略図。Schematic which shows the pressure reduction collection | recovery of the liquid sucked up by capillary action. 毛管現象で吸い上がった液を加圧回収する固液分離システムの一例を示す図。The figure which shows an example of the solid-liquid separation system which pressurizes and collects the liquid sucked up by the capillary phenomenon. 毛管現象で吸い上がった液を乾燥する固液分離システムの一例を示す図。The figure which shows an example of the solid-liquid separation system which dries the liquid sucked up by capillary action. 実施例1における固液分離用繊維集合体3の構造を示す図。The figure which shows the structure of the fiber assembly 3 for solid-liquid separation in Example 1. FIG. 実施例1における固液分離用繊維集合体3の処理液への浸漬状態を示す図。The figure which shows the immersion state to the process liquid of the fiber assembly 3 for solid-liquid separation in Example 1. FIG. 実施例3における固液分離用繊維集合体3の構造を示す図。The figure which shows the structure of the fiber assembly 3 for solid-liquid separation in Example 3. FIG.

符号の説明Explanation of symbols

1 被濾過液
2 被濾過液ストック部
3 固液分離用繊維集合体
4 オーバーフローストック部
5 プレスローラー
6 回収水受け皿
7 転着布
8 回収水
9 被濾過水循環ポンプ
11 吸い上げ水乾燥ローラー
11 囲い部屋
12 蒸気放出口
13 送風ファン
DESCRIPTION OF SYMBOLS 1 Filtrate 2 Filtrate stock part 3 Solid-liquid separation fiber assembly 4 Overflow stock part 5 Press roller 6 Collected water tray 7 Transfer cloth 8 Collected water 9 Filtrated water circulation pump 11 Suction water drying roller 11 Enclosure room 12 Steam discharge port 13 Blower fan

Claims (6)

ポリビニルアルコール系繊維を含む繊維集合体を用いてなる、毛管現象を利用した固液分離システム。   A solid-liquid separation system using capillary action, using a fiber assembly containing polyvinyl alcohol fibers. 繊維集合体として、ポリビニルアルコール系繊維が20〜100質量%含まれていることを特徴とする請求項1記載の固液分離システム。   The solid-liquid separation system according to claim 1, wherein the fiber assembly contains 20 to 100% by mass of polyvinyl alcohol fiber. ポリビニルアルコール系繊維が異型断面を有する請求項1または2記載の固液分離システム。   The solid-liquid separation system according to claim 1 or 2, wherein the polyvinyl alcohol fiber has an atypical cross section. ポリビニルアルコール系繊維を含む集合体が、密度0.03〜1.0g/cmの布帛状物である請求項1〜3のいずれか1項記載の固液分離システム。 The solid-liquid separation system according to any one of claims 1 to 3 , wherein the aggregate containing polyvinyl alcohol fibers is a cloth-like product having a density of 0.03 to 1.0 g / cm 3 . ポリビニルアルコール系繊維を含む繊維集合体の一端を、被除去物を含む液体に浸漬し、毛管現象により液体のみを吸い上げせしめ、吸い上げた液体を、該液体の自重濾過あるいは繊維集合体を加圧/減圧することにより搾液し、繊維集合体から液体のみを回収することを特徴とする請求項1〜4のいずれか1項記載の固液分離システム。   One end of a fiber assembly containing polyvinyl alcohol fibers is immersed in a liquid containing an object to be removed, and only the liquid is sucked up by capillary action. The sucked liquid is subjected to self-weight filtration of the liquid or pressurization / The solid-liquid separation system according to any one of claims 1 to 4, wherein the liquid is squeezed by reducing the pressure and only the liquid is recovered from the fiber assembly. ポリビニルアルコール系繊維を含む繊維集合体の一端を被除去物を含む液体に浸漬し、毛管現象により液体のみを吸い上げせしめ、液体に浸漬されていない部分を乾燥することで、被除去物のみを濃縮させる請求項1〜5のいずれか1項記載の固液分離システム。
Immerse one end of the fiber assembly containing polyvinyl alcohol fiber in the liquid containing the object to be removed, suck up only the liquid by capillary action, and dry only the part not immersed in the liquid, thereby concentrating only the object to be removed. The solid-liquid separation system according to any one of claims 1 to 5.
JP2003371431A 2003-10-31 2003-10-31 Solid/liquid separation system Pending JP2005131562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371431A JP2005131562A (en) 2003-10-31 2003-10-31 Solid/liquid separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371431A JP2005131562A (en) 2003-10-31 2003-10-31 Solid/liquid separation system

Publications (1)

Publication Number Publication Date
JP2005131562A true JP2005131562A (en) 2005-05-26

Family

ID=34648089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371431A Pending JP2005131562A (en) 2003-10-31 2003-10-31 Solid/liquid separation system

Country Status (1)

Country Link
JP (1) JP2005131562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071296A (en) * 2010-08-31 2012-04-12 Swing Corp Dehydration aid for sludge, method and apparatus for dehydrating sludge
GB2604675B (en) * 2020-09-28 2023-10-25 Ibm Improving speech recognition transcriptions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071296A (en) * 2010-08-31 2012-04-12 Swing Corp Dehydration aid for sludge, method and apparatus for dehydrating sludge
GB2604675B (en) * 2020-09-28 2023-10-25 Ibm Improving speech recognition transcriptions

Similar Documents

Publication Publication Date Title
Goetz et al. All cellulose electrospun water purification membranes nanotextured using cellulose nanocrystals
JP6064902B2 (en) Separation membrane element and separation membrane module
Yanan et al. Ultrafiltration enhanced with activated carbon adsorption for efficient dye removal from aqueous solution
ES2904833T3 (en) Hydrophilized vinylidene fluoride-based porous hollow fiber membrane and manufacturing method thereof
Wang et al. Controllable Janus porous membrane with liquids manipulation for diverse intelligent energy-free applications
Barroso-Solares et al. Oil removal from water–oil emulsions using magnetic nanocomposite fibrous mats
Hu et al. Restructuring the surface of polyurethane resin enforced filter media to separate surfactant stabilized oil-in-water emulsions via coalescence
US4371441A (en) Process and apparatus for the separation of immiscible liquid mixtures
WO2015046250A1 (en) Filter membrane, filter unit, filter system, and filtration method
JP2014184398A (en) Oily water separation filter, oily water separation method and oil separator using oily water separation filter
CN107915862A (en) A kind of preparation method of the sponge in the paper fiber regulation and control aperture for water-oil separating
JP2005131562A (en) Solid/liquid separation system
US4358380A (en) Method of reproducing water-soluble cutting agents
CN112387132A (en) Preparation method of oil-water separation membrane based on multi-scale cellulose nanofiber
WO2018203764A2 (en) Multi-layered membrane for separating oil from water
JPWO2020090649A1 (en) Polyvinyl alcohol fiber
JP2004202438A (en) Porous membrane
WO2019049757A1 (en) Fibers based on poly(vinyl alcohol)
JPH07116418A (en) Water area purifying apparatus and method
JP2000005597A (en) Oil absorbing material
US20200108351A1 (en) Multi-layered membrane for oil/water separation
CN105682779B (en) Flat bellows for handling waste water
CN208869458U (en) A kind of filter membrane for sewage treatment
JP3421846B2 (en) Method for filtering suspension containing concrete or stone sludge
JP2010264383A (en) Sludge thickening method