JP2012069977A - Light emitting device and method for manufacturing the same - Google Patents

Light emitting device and method for manufacturing the same Download PDF

Info

Publication number
JP2012069977A
JP2012069977A JP2011244796A JP2011244796A JP2012069977A JP 2012069977 A JP2012069977 A JP 2012069977A JP 2011244796 A JP2011244796 A JP 2011244796A JP 2011244796 A JP2011244796 A JP 2011244796A JP 2012069977 A JP2012069977 A JP 2012069977A
Authority
JP
Japan
Prior art keywords
substrate
emitting device
light emitting
led
led element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011244796A
Other languages
Japanese (ja)
Inventor
Megumi Horiuchi
恵 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2011244796A priority Critical patent/JP2012069977A/en
Publication of JP2012069977A publication Critical patent/JP2012069977A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

PROBLEM TO BE SOLVED: To provide a reliable, long-life light emitting device using an LED element with low manufacturing cost which meets the strong demands for long life, high reliability, low cost, energy saving, etc.SOLUTION: An LED element 1 is mounted on a substrate 2, and a resin layer 3 or a glass layer 3 in which a fluorescent substance is mixed is formed around the LED element. In a light emitting device 10 which converts the wavelength of light from the LED element and emits the light, the substrate 2 is an inorganic material substrate, on which the LED element 1 is flip-chip mounted. The periphery of the LED element is covered by a wavelength conversion layer formed by the resin layer 3 or the glass layer 3 in which the fluorescent substance is mixed, and the periphery of the LED element mounting region on the inorganic material substrate is covered and sealed with a glass cap 5.

Description

本発明はLED素子を用いた発光装置及びその製造方法に関し、特に気密封止構造により高信頼性を実現した発光装置及びその製造方法に関する。   The present invention relates to a light emitting device using an LED element and a method for manufacturing the same, and more particularly to a light emitting device that achieves high reliability by an airtight sealing structure and a method for manufacturing the same.

近年、LED素子を用いた発光装置が普及するにいたり、車載用、大型テレビ、ノートPC等の需要が急速に拡大している。これに伴ってLED素子を用いた発光装置に対する長寿命、高信頼性、省エネ等の要望が強くなっており、これを実現するための新しい技術開発が望まれている。   In recent years, as light-emitting devices using LED elements become widespread, demands for in-vehicle use, large-sized televisions, notebook PCs, and the like are rapidly expanding. Along with this, demands for long life, high reliability, energy saving, and the like for light emitting devices using LED elements have become strong, and new technology development for realizing this has been desired.

上記要望に対して色々な新しい技術開発が行われているが、例えば特許文献1には熱膨張に対する信頼性を高めるために、LED素子と熱膨張係数が近似している無機材質のサブマウント基板に実装したLED素子の周囲を蛍光粒子を混入した樹脂層で被覆し、その周囲に樹脂性のレンズを接着して封止した発光装置が記載されている。   Various new technical developments have been made to meet the above requirements. For example, Patent Document 1 discloses a submount substrate made of an inorganic material whose thermal expansion coefficient is close to that of an LED element in order to increase reliability against thermal expansion. A light emitting device is described in which the LED element mounted on is covered with a resin layer mixed with fluorescent particles, and a resinous lens is adhered and sealed around the resin layer.

以下図10により特許文献1に記載された発光装置について説明する。図10において発光装置100はLED110と、LED110をフリップチップ実装したサブマウント基板120と、LED110の周囲に形成された蛍光粒子を含有した樹脂層130と、このサブマウント基板120をさらに固定した支持体140と、この支持体140の上面でLED110及びサブマウント基板120を覆うレンズ150とを備える。そしてサブマウント基板120と支持体140とは共晶層を介して固定されており、またレンズ150は接着層170により支持体140に固着されている。   Hereinafter, the light emitting device described in Patent Document 1 will be described with reference to FIG. In FIG. 10, the light emitting device 100 includes an LED 110, a submount substrate 120 on which the LED 110 is flip-chip mounted, a resin layer 130 containing fluorescent particles formed around the LED 110, and a support on which the submount substrate 120 is further fixed. 140 and a lens 150 that covers the LED 110 and the submount substrate 120 on the upper surface of the support 140. The submount substrate 120 and the support 140 are fixed via a eutectic layer, and the lens 150 is fixed to the support 140 by an adhesive layer 170.

また支持体140にはこれを貫通するスルーホール電極141が設けられており、支持体140の上面でスルーホール電極141にワイヤー160にてワイヤーボンディングされることにより、サブマウント基板120は支持体140の裏面に設けられた出力電極142と電気的に接続されている。また、レンズ150はLED110の光を外部に効率良く取り出すために、曲面を形成している。   The support 140 is provided with a through-hole electrode 141 penetrating therethrough. The submount substrate 120 is bonded to the through-hole electrode 141 with a wire 160 on the upper surface of the support 140 so that the submount substrate 120 is supported by the support 140. Are electrically connected to an output electrode 142 provided on the back surface of the substrate. The lens 150 has a curved surface in order to efficiently extract the light from the LED 110 to the outside.

上記構成において、発光装置100は例えばLED110として青色LEDを使用し、樹脂層130としてYAG蛍光体を混入した波長変換樹脂層を使用した場合には、擬似白色発光装置として使用することができる。   In the above configuration, when the light emitting device 100 uses, for example, a blue LED as the LED 110 and a wavelength conversion resin layer mixed with a YAG phosphor as the resin layer 130, the light emitting device 100 can be used as a pseudo white light emitting device.

特開2007−243076号公報(図1参照)Japanese Patent Laying-Open No. 2007-243076 (see FIG. 1)

上記するように特許文献1に示す発光装置は、LED素子と熱膨張率が近似している無機材質のサブマウント基板にLED素子をフリップチップ実装し、その周囲に樹脂層を設けているため、放熱性や熱ひずみ等の温度特性に優れ、またレンズを用いて気密封止することによって長寿命、高信頼性を図っていることは事実だが、まだ十分とはいえないものである。   As described above, the light emitting device shown in Patent Document 1 is such that the LED element is flip-chip mounted on an inorganic material sub-mount substrate whose thermal expansion coefficient is close to that of the LED element, and a resin layer is provided around the LED element. It is true that it has excellent temperature characteristics such as heat dissipation and thermal strain, and has a long life and high reliability by hermetically sealing with a lens, but it is still not sufficient.

まず、気密封止を行うレンズが樹脂製であり、この樹脂レンズを接着剤を用いて固着しているが、このように樹脂製のレンズや接着剤を用いた封止構造は気密性が弱く、長時間の間には気密性が損なわれてしまい、期待する長寿命、高信頼性を維持することは困難である。また、LED素子を実装したサブマウント基板を第2の基板である支持体に接着してからレンズによる封止を行っているので、構造が大きくなり、小型化の期待に添えないものである。   First, the lens for hermetic sealing is made of resin, and this resin lens is fixed using an adhesive. However, the sealing structure using a resin lens or adhesive is weak in airtightness. The airtightness is lost for a long time, and it is difficult to maintain the expected long life and high reliability. Further, since the submount substrate on which the LED element is mounted is bonded to the support that is the second substrate and then sealed by the lens, the structure becomes large and the expectation of miniaturization cannot be met.

本発明の目的は、上記問題点を解決し、十分な長寿命、高信頼性を達成すると共に、小型、薄型化を達成することができるLED素子を用いた発光装置を提供することにある。   An object of the present invention is to provide a light-emitting device using an LED element that can solve the above-described problems, achieve a sufficiently long life and high reliability, and can achieve a reduction in size and thickness.

上記目的を達成するための本発明の構成は、基板上にLED素子を実装し、該LED素子の周囲に蛍光物質を混入した波長変換層を形成して、前記LED素子の発光を波長変換して出射する発光装置において、前記LEDの上面及び側面を覆う形状に成型した蛍光体混入の蛍光体キャップを設け、前記基板上に前記LED素子をフリップチップ実装し、前記LED素子に前記蛍光体キャップを直接的に被せたことを特徴とする。   In order to achieve the above object, the configuration of the present invention is such that an LED element is mounted on a substrate, a wavelength conversion layer mixed with a fluorescent material is formed around the LED element, and light emission of the LED element is wavelength-converted. In the light emitting device that emits light, a phosphor cap mixed with a phosphor molded into a shape covering the upper surface and the side surface of the LED is provided, the LED element is flip-chip mounted on the substrate, and the phosphor cap is mounted on the LED element. It is characterized by being directly covered.

上記構成によれば、LED素子の周囲にだけに蛍光体層を設けると、蛍光体の節約や方位角に依存する発光色ムラが減少することが知られているが、この手法として塗布法、電気泳動法、スクリーン印圧法等いろいろ提案されているが、本発明のように成型法によりLEDの上面と側面に一定厚さを有する蛍光体キャップを作成することによって、方位角に依存する発光色ムラが極度に減少し、さらに蛍光体キャップを被せるだけで良いため、製造工程を短縮できる効果を有する。   According to the above configuration, it is known that when the phosphor layer is provided only around the LED element, emission color unevenness that depends on phosphor saving and azimuth angle is reduced. Various methods such as electrophoresis and screen printing have been proposed, but by forming phosphor caps with a certain thickness on the top and side of the LED by molding as in the present invention, the emission color depends on the azimuth angle. Unevenness is extremely reduced, and it is only necessary to cover the phosphor cap, so that the manufacturing process can be shortened.

前記基板が無機材質基板であると良い。   The substrate is preferably an inorganic material substrate.

前記蛍光体キャップが樹脂成型キャップであると良い。   The phosphor cap is preferably a resin molded cap.

前記蛍光体キャップを被せたLEDを、さらにガラス蓋で密封すると良い。
前記無機材質基板と前記ガラス蓋とは、熱膨張係数が近似しいていると良い。
The LED covered with the phosphor cap may be further sealed with a glass lid.
The inorganic material substrate and the glass lid are preferably close in thermal expansion coefficient.

本発明の発光装置の製造方法は、複数のLEDをフリップチップ実装するための電極を備えた大判基板を用意する大型基板工程と、前記大型基板の各電極に複数のLEDをフリップチップ実装するLED実装工程と、前記LEDの上面及び側面を覆う形状に蛍光体混入の蛍光体キャップを成型する蛍光体キャップ成型工程と、前記蛍光体キャップを各LEDに被せる蛍光体キャップ被覆工程と、前記大判基板を切断分離して個々の発光装置を作成する切断分離工程を有することを特徴とする。   The method for manufacturing a light emitting device of the present invention includes a large substrate process for preparing a large substrate having electrodes for flip chip mounting of a plurality of LEDs, and an LED for flip chip mounting a plurality of LEDs on each electrode of the large substrate. A mounting step, a phosphor cap molding step for molding a phosphor cap containing phosphor in a shape covering the upper surface and side surfaces of the LED, a phosphor cap coating step for covering each LED with the phosphor cap, and the large substrate It is characterized by having a cutting / separating step of cutting and separating each of the light emitting devices to produce individual light emitting devices.

前記大判基板が無機材質基板であると良い。   The large substrate is preferably an inorganic material substrate.

平板ガラスに複数の凹部を形成し、接着面にAu層を設けたガラス蓋を準備するガラス蓋加工工程と、真空若しくは不活性ガス雰囲気中で、前記ガラス蓋と前記大判基板をAuSn共晶により接合するガラス蓋接合工程とを、さらに備えると良い。   A glass lid processing step for preparing a glass lid in which a plurality of recesses are formed in a flat glass and an Au layer is provided on an adhesive surface; and in a vacuum or an inert gas atmosphere, the glass lid and the large substrate are made of AuSn eutectic. A glass lid joining step for joining may be further provided.

上記の如く本発明の製造方法によれば、蛍光体成型工程によって、形状精度が良く、組み立て性の良い蛍光体キャップを作成して製造を行うため、方位角に依存する発光色ムラが極度に減少し、製造工程を短縮できる製造方法が可能となる。さらに無機材質基板とガラス蓋による密閉によって信頼性の高い発光装置の量産ができる。   As described above, according to the manufacturing method of the present invention, a phosphor cap having a good shape accuracy and good assemblability is produced and manufactured by the phosphor molding step, and thus the emission color unevenness depending on the azimuth is extremely high. The production method can be reduced and the production process can be shortened. Furthermore, a highly reliable light emitting device can be mass-produced by sealing with an inorganic material substrate and a glass lid.

以上のように本発明においては、LED素子を実装する基板及び気密封止する蓋体にいずれも無機材質を使用し、その間を共晶接合することによって長寿命、高信頼性を達成し、さらにLED素子を実装する基板上に直接気密封止するための蓋体を固着することによって、発光装置の小型、薄型化を達成できる効果を有する。   As described above, in the present invention, an inorganic material is used for both the substrate on which the LED element is mounted and the lid for hermetically sealing, and a long life and high reliability are achieved by eutectic bonding between them. By fixing a lid for hermetic sealing directly on the substrate on which the LED element is mounted, the light emitting device can be reduced in size and thickness.

本発明の第1実施形態における発光装置の断面図である。It is sectional drawing of the light-emitting device in 1st Embodiment of this invention. 図1に示す発光装置の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the light-emitting device shown in FIG. 図1示す発光装置に用いられるガラス蓋の加工工程を示す工程図である。It is process drawing which shows the process process of the glass cover used for the light-emitting device shown in FIG. 図1に示す発光装置の製造工程を示す工程図であり、各要素の断面を示している。It is process drawing which shows the manufacturing process of the light-emitting device shown in FIG. 1, and has shown the cross section of each element. 本発明における無機材質基板とガラス蓋との特性及び組み合わせを示す特性表である。It is a characteristic table | surface which shows the characteristic and combination of the inorganic material board | substrate and glass cover in this invention. 本発明の第2実施形態におけるガラス蓋を同時に複数個作成するための大判平板ガラスの斜視図である。It is a perspective view of the large sized flat glass for producing simultaneously the glass cover in 2nd Embodiment of this invention. 本発明の第2実施形態における無機材質基板を同時に複数個作成するための大判基板の斜視図である。It is a perspective view of the large format board | substrate for producing several inorganic material board | substrates simultaneously in 2nd Embodiment of this invention. 本発明の第2実施形態における大判発光装置の斜視図である。It is a perspective view of the large format light-emitting device in 2nd Embodiment of this invention. 図8に示す大判発光装置を切断分離した発光装置の斜視図である。It is the perspective view of the light-emitting device which cut | disconnected and separated the large sized light-emitting device shown in FIG. 従来技術における発光装置の断面図である。It is sectional drawing of the light-emitting device in a prior art.

以下、本発明の実施形態の発光装置について図面により説明する。図1〜図4は本発明の第1実施形態における発光装置及びガラス蓋を示すものであり、図1は発光装置の断面図、図2は図1に示す発光装置の製造工程を示す工程図、図3は図1に示す発光装置に用いられるガラス蓋の加工工程を示す工程図である。   Hereinafter, light emitting devices according to embodiments of the present invention will be described with reference to the drawings. 1 to 4 show a light emitting device and a glass cover according to a first embodiment of the present invention, FIG. 1 is a cross-sectional view of the light emitting device, and FIG. 2 is a process diagram showing a manufacturing process of the light emitting device shown in FIG. FIG. 3 is a process diagram showing a processing step of a glass lid used in the light emitting device shown in FIG.

図1は発光装置10の断面図であり、無機材質基板2の上面側には配線パターン2a、裏面には出力電極2bが形成されており、上面側の配線パターン2aと裏面の出力電極2bとはスルーホール2cによって接続されている。そして無機材質基板2の配線パターン2aにはLED1がフリップチップ実装(以後FC実装と略記する)されており、このLED1の周囲は蛍光粒子を混入した樹脂層またはガラス層よりなる波長変換層3が被覆されている。さらに無機材質基板2の上面側におけるLED素子1の実装領域の周囲に形成された接着層2dにより、ガラス蓋5を接合密封することにより発光装置10が完成する。   FIG. 1 is a cross-sectional view of a light emitting device 10, in which a wiring pattern 2 a is formed on the upper surface side of the inorganic material substrate 2, and an output electrode 2 b is formed on the back surface, and the wiring pattern 2 a on the upper surface side and the output electrode 2 b on the back surface are formed. Are connected by a through hole 2c. The LED 1 is flip-chip mounted (hereinafter abbreviated as FC mounting) on the wiring pattern 2 a of the inorganic material substrate 2, and the wavelength conversion layer 3 made of a resin layer or a glass layer mixed with fluorescent particles is provided around the LED 1. It is covered. Further, the light emitting device 10 is completed by bonding and sealing the glass lid 5 with the adhesive layer 2d formed around the mounting area of the LED element 1 on the upper surface side of the inorganic material substrate 2.

次に図2により、発光装置10の製造工程を説明する。まず基板工程においては無機材質基板2としてはAIN(窒化アルミ)、Al2O3(酸化アルミ)、Si(シリコン)等の材質基板を使用し、この無機材質基板2にはLED素子1をFC実装するためのAuSn電極、ガラス蓋5を接着するための接着層5dとしてAuSn層を形成しておく。また、LED素子工程としては、LED素子1にFC実装するためのAuバンプを形成しておく。FC実装工程においては300℃の加圧条件下において、AuSnの共晶接合によってFC実装をおこなう。波長変換層被覆工程においては、蛍光体成形工程において作成したシリコン樹脂成形によって作成した蛍光体混入の蛍光体キャップをLED素子1に被せるか、またはディスペンサーやスキージーによりLED素子1に直接被覆を行うことによって波長変換層3を形成する。   Next, a manufacturing process of the light emitting device 10 will be described with reference to FIG. First, in the substrate process, a material substrate such as AIN (aluminum nitride), Al2O3 (aluminum oxide), Si (silicon) or the like is used as the inorganic material substrate 2, and the LED element 1 is mounted on the inorganic material substrate 2 by FC. An AuSn layer is formed as an adhesive layer 5 d for adhering the AuSn electrode and the glass lid 5. As the LED element process, Au bumps for FC mounting on the LED element 1 are formed in advance. In the FC mounting process, FC mounting is performed by eutectic bonding of AuSn under a pressurized condition of 300 ° C. In the wavelength conversion layer coating step, the phosphor element-mixed phosphor cap created by the silicon resin molding created in the phosphor molding step is covered on the LED element 1, or the LED element 1 is directly coated with a dispenser or squeegee. Thus, the wavelength conversion layer 3 is formed.

ガラス蓋加工工程においては平板ガラスにサンドブラスト加工によって凹部を形成し、接着面にAuの接着層を設けたガラス蓋5を作成する。ガラス蓋接合工程においては無機材質基板2に形成した接着層AuSnと、ガラス蓋5に形成した接着層Auにより、300℃の加圧条件下においてAuSnの共晶接合によって無機材質基板2とガラス蓋5とを接着する。なおこのガラス蓋接着工程を真空中、または不活性ガス中で行うことにより、封止されたケース内部を真空または不活性ガス雰囲気にして、LED素子1及び有機材質であるシリコン樹脂によって形成された波長変換層3の劣化を防止することができる。最後に特性測定工程において完成した発光装置10の電気的特性及び色度測定を行いその結果に従ってランク分けを行う。   In the glass lid processing step, a concave portion is formed on the flat glass by sandblasting, and a glass lid 5 is prepared in which an adhesive layer of Au is provided on the adhesive surface. In the glass lid bonding step, the inorganic material substrate 2 and the glass lid are formed by eutectic bonding of AuSn under a pressure condition of 300 ° C. with the adhesive layer AuSn formed on the inorganic material substrate 2 and the adhesive layer Au formed on the glass lid 5. 5 is bonded. The glass lid bonding step is performed in vacuum or in an inert gas so that the sealed case is made in a vacuum or an inert gas atmosphere, and is formed of the LED element 1 and a silicon resin that is an organic material. Deterioration of the wavelength conversion layer 3 can be prevented. Finally, the electrical characteristics and chromaticity of the completed light emitting device 10 are measured in the characteristic measurement step, and ranking is performed according to the result.

次に図3によりガラス蓋5の製造工程を説明する。まず工程Aは平板ガラス50にガラス蓋5の凹部5aに対応するマスク15を取り付ける。次に工程Bにおいてサンド粒子25を高圧で噴射することにより凹部5aを形成する。なお、サンド粒子25の噴射によって形成される凹部5aの内部の形状は、コーナーには丸みが形成され、内面全体には梨地模様が形成される。このときのマスクとしては樹脂レジストやメタルマスクが使用され、サンド粒径、噴射速度、噴射時間を調整することにより凹部5aの形状は任意に形成することができる。また1枚の大型平板ガラス50に複数の凹部5aに対応した開口15aを有するマスク15を用いて同時に複数の凹部5aを形成することが出来る(本実施形態では2個の凹部を同時形成した例を示している)。   Next, the manufacturing process of the glass lid 5 will be described with reference to FIG. First, in step A, a mask 15 corresponding to the concave portion 5 a of the glass lid 5 is attached to the flat glass 50. Next, in step B, the sand particles 25 are jetted at a high pressure to form the recesses 5a. In addition, as for the internal shape of the recessed part 5a formed by the injection | pouring of the sand particle 25, a roundness is formed in a corner and a satin pattern is formed in the whole inner surface. As the mask at this time, a resin resist or a metal mask is used, and the shape of the recess 5a can be arbitrarily formed by adjusting the sand particle size, the spraying speed, and the spraying time. In addition, a plurality of recesses 5a can be simultaneously formed on a single large flat glass 50 using a mask 15 having openings 15a corresponding to the plurality of recesses 5a (in this embodiment, two recesses are simultaneously formed). Is shown).

次に工程Cにおいて、ダイヤモンドブレードやレーザースクライバを用いて切断することにより、個々のガラス蓋5に分離される。上記工程で作成されたガラス蓋5は無機材質基板2に接合される接合面5bと上面5cとは平板ガラスの平板面を用いることによって平坦面が得られ、また凹部5aの内部は光拡散効果のある梨地模様が形成される。なお、ガラス蓋5に拡散性を持たせずに、透過性を良くしたい場合には、サンドブラスト加工を行ったガラス蓋の凹部5aの内面をガラスエッチングすることによって透過性の良いガラス蓋を得ることができる。
さらに工程(D)において接合面5bにAuの接着層5dを形成することによりガラス蓋5が完成する。
Next, in step C, each glass lid 5 is separated by cutting with a diamond blade or a laser scriber. In the glass lid 5 produced in the above process, a flat surface is obtained by using a flat surface of a flat glass for the bonding surface 5b and the upper surface 5c bonded to the inorganic material substrate 2, and the inside of the recess 5a has a light diffusion effect. A satin pattern is formed. If the glass lid 5 does not have diffusibility and it is desired to improve the permeability, a glass lid with good permeability can be obtained by performing glass etching on the inner surface of the concave portion 5a of the glass lid that has been sandblasted. Can do.
Further, in step (D), an Au adhesive layer 5d is formed on the bonding surface 5b, whereby the glass lid 5 is completed.

図4も発光装置10の製造工程を示すもので、各要素の断面を示している。すなわち基板工程Aでは無機材質基板2に配線パターン2a、スルーホ−ル2c、出力電極2b、ガラス蓋5を接合するための接着層2dとしてAuSn層が形成されている。FC実装工程Bでは無機材質基板2の配線パターン2aにLED1がFC実装される。波長変換層被覆工程CではLED1の周囲に波長変換層3として、シリコン樹脂成形によって作成した蛍光体キャップを被せて被覆する。ガラス蓋接合工程Dにおいては、図3で作成されたガラス蓋5の接合面5bに形成されたAuの接着層5dと、無機材質基板2に形成されたAuSnの接着層2dとによるAuSnの共晶接合を行うことにより発光装置10が完成する。なお、このガラス蓋接合工程Dを真空中または不活性ガス雰囲気中で行うことで、気密封止による信頼性がさらに増すことは前述の通りである。   FIG. 4 also shows a manufacturing process of the light emitting device 10 and shows a cross section of each element. That is, in the substrate process A, an AuSn layer is formed as an adhesive layer 2d for bonding the wiring pattern 2a, the through hole 2c, the output electrode 2b, and the glass lid 5 to the inorganic material substrate 2. In the FC mounting process B, the LED 1 is FC mounted on the wiring pattern 2 a of the inorganic material substrate 2. In the wavelength conversion layer covering step C, the LED 1 is covered with a phosphor cap formed by silicon resin molding around the LED 1 as the wavelength conversion layer 3. In the glass lid bonding step D, the AuSn joint layer 5d formed on the bonding surface 5b of the glass lid 5 created in FIG. 3 and the AuSn adhesive layer 2d formed on the inorganic material substrate 2 are shared. The light emitting device 10 is completed by performing crystal bonding. As described above, the reliability of the hermetic sealing is further increased by performing the glass lid bonding step D in a vacuum or in an inert gas atmosphere.

次に無機材質基板2とガラス蓋5との組み合わせについて説明する。図5は無機材質基板2とガラス蓋5との特性及び組み合わせを示す特性表であり、無機材質基板2の3種類を表1に、またガラス蓋5の3種類を表2に示し、表1及び表2の間に設けた矢印は組み合わせを示している。すなわち表1には無機材質基板2の基板材料としてAIN(窒化アルミ)、Si(シリコン)、Al2O3(酸化アルミ)の3種類について熱伝導率、線膨張係数を示しており、また表2にはガラス蓋5のガラス材料としてホウケイ酸ガラス(1)、ホウケイ酸ガラス(2)、ホウケイ酸クラウンガラスの3種類について線膨張係数を示している。   Next, the combination of the inorganic material substrate 2 and the glass lid 5 will be described. FIG. 5 is a characteristic table showing the characteristics and combinations of the inorganic material substrate 2 and the glass lid 5. Table 1 shows three types of the inorganic material substrate 2, and Table 3 shows three types of the glass lid 5. And the arrow provided between Table 2 has shown the combination. That is, Table 1 shows thermal conductivity and linear expansion coefficient for three kinds of substrate materials of the inorganic material substrate 2: AIN (aluminum nitride), Si (silicon), and Al2O3 (aluminum oxide). As the glass material of the glass lid 5, linear expansion coefficients are shown for three types of borosilicate glass (1), borosilicate glass (2), and borosilicate crown glass.

表1及び表2について線膨張係数に着目すると、無機材質基板2の基板材料ではAINが44[×10−7/℃]、Siが30[×10−7/℃]、Al2O3が74[×10−7/℃]でるのに対し、ガラス蓋5のガラス材料であるホウケイ酸ガラス(1)が47[×10−7/℃]、ホウケイ酸ガラス(2)が33[×10−7/℃]、ホウケイ酸クラウンガラスが74[×10−7/℃]であることがわかる。これらの各3種類の材料の関係を見ると、矢印で示す如く無機材質基板2の基板材料であるAINが線膨張係数44[×10−7/℃]に対して、ガラス蓋のガラス材料であるホウケイ酸ガラス(1)が47[×10−7/℃]で近似した値を示しており、また基板材料Siの線膨張係数が30[×10−7/℃]であるのに対し、ガラス材料のホウケイ酸ガラス(2)が33[×10−7/℃]と近似しており、同様に基板材料Al2O3の線膨張係数が74[×10−7/℃]でるのに対しガラス材料のホウケイ酸クラウンガラスの線膨張係数が74[×10−7/℃]と近似している。   Focusing on the linear expansion coefficient in Tables 1 and 2, the substrate material of the inorganic substrate 2 is AIN of 44 [× 10 −7 / ° C.], Si of 30 [× 10 −7 / ° C.], and Al 2 O 3 of 74 [× 10-7 / ° C], whereas borosilicate glass (1), which is a glass material of the glass lid 5, is 47 [× 10-7 / ° C], and borosilicate glass (2) is 33 [× 10-7 / ° C]. [° C.] and borosilicate crown glass is 74 [× 10 −7 / ° C.]. Looking at the relationship between each of these three types of materials, as indicated by the arrows, the AIN, which is the substrate material of the inorganic material substrate 2, is a glass material for the glass lid with respect to a linear expansion coefficient of 44 [× 10−7 / ° C.]. A certain borosilicate glass (1) shows an approximate value of 47 [× 10 −7 / ° C.], and the linear expansion coefficient of the substrate material Si is 30 [× 10 −7 / ° C.], The glass material borosilicate glass (2) approximates to 33 [× 10 −7 / ° C.], and similarly the linear expansion coefficient of the substrate material Al 2 O 3 is 74 [× 10 −7 / ° C.], but the glass material. The linear expansion coefficient of borosilicate crown glass is approximately 74 [× 10 −7 / ° C.].

図2で説明したように、無機材質基板2とガラス蓋5とをAuSn共晶接合を行う場合には300℃の高温となるため、無機材質基板2とガラス蓋5との線膨張係数が異なると線膨張係数の差によって割れや欠けのトラブルが発生するので、この無機材質基板2とガラス蓋5との線膨張係数はできるだけ近似した材料を選定する必要がある。この意味において表1,表2に示す如く矢印によって示されている材料の組み合わせが望ましいことがわかる。また表2に示すガラス材料で、市場で入手可能な材料としてホウケイ酸ガラス(1)としては「VIDREX」(株式会社ビートレックスの商品名)があり、またホウケイ酸ガラス(2)としては「パイレックス(登録商標)」(コーニング社の商品名)がこの特性を有するものである。   As described with reference to FIG. 2, when the AuSn eutectic bonding is performed between the inorganic material substrate 2 and the glass lid 5, since the temperature is high at 300 ° C., the linear expansion coefficients of the inorganic material substrate 2 and the glass lid 5 are different. Therefore, it is necessary to select a material that approximates the linear expansion coefficient of the inorganic material substrate 2 and the glass lid 5 as much as possible. In this sense, it can be seen that combinations of materials indicated by arrows as shown in Tables 1 and 2 are desirable. Further, among the glass materials shown in Table 2, as a material available on the market, there is “VIDREX” (product name of Beatrex Co., Ltd.) as borosilicate glass (1), and “Pyrex” as borosilicate glass (2). (Registered trademark) "(trade name of Corning) has this characteristic.

次に図6〜図9により本発明の第2実施形態における集合基板方式によるECMの製造方法及び構成を説明する。図6は図3に示すガラス蓋5を同時に複数個作成するための大判の平板ガラス50の斜視図であり、大判の平板ガラス50には図3に示すサンドブラスト加工によってガラス蓋5の凹部5aが、複数個整列して形成されている。   Next, the manufacturing method and configuration of the ECM by the collective substrate system in the second embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a perspective view of a large flat glass 50 for simultaneously producing a plurality of glass lids 5 shown in FIG. 3. The large flat glass 50 has a recess 5a of the glass lid 5 by sandblasting shown in FIG. Are formed in a line.

図7は図4に示す無機材質基板2を同時に複数個作成するための大判基板20の斜視図であり、図4(C)に示す状態、すなわち無機材質基板2に各パターンを形成後、LED1をFC実装し、さらに波長変換層3を設けた状態の発光部分1aが複数個整列して形成されている。そして、図7の複数個整列して形成された発光部分1aは、図6の複数個整列して形成されたガラス蓋5の凹部5aに、その配置位置及び個数が同じになっている。   FIG. 7 is a perspective view of a large-sized substrate 20 for simultaneously producing a plurality of inorganic material substrates 2 shown in FIG. 4. The state shown in FIG. 4C, that is, after each pattern is formed on the inorganic material substrate 2, the LED 1 is formed. A plurality of light emitting portions 1a in a state of being mounted with FC and further provided with a wavelength conversion layer 3 are formed in alignment. 7 are arranged in the same position and number as the concave portions 5a of the glass lid 5 formed in a plurality of alignment in FIG.

図8は大判発光装置10Lの斜視図であり、大判基板20の上面側に大判の平板ガラス50を反転させて積層一体化した状態を示している。従って平板ガラス50の上面側にはガラス蓋5にける凹部5aの底の部分、すなわち発光窓部分を点線で示している。この完成した大判発光装置10LをX及びYの切断ラインに従ってダイヤモンドブレードやレーザースクライバを用いて切断することにより、個々の発光装置10が完成する。   FIG. 8 is a perspective view of the large format light emitting device 10L, and shows a state in which the large format flat glass 50 is reversed and laminated and integrated on the upper surface side of the large format substrate 20. Therefore, on the upper surface side of the flat glass 50, the bottom portion of the recess 5a in the glass lid 5, that is, the light emission window portion is indicated by a dotted line. The completed large format light emitting device 10L is cut using a diamond blade or a laser scriber in accordance with the X and Y cutting lines, whereby each light emitting device 10 is completed.

図9はこの完成した発光装置10の斜視図であり、無機材質基板2にガラス蓋5が接合一体化され、ガラス蓋5にける凹部5aの底の発光窓部分から、波長変換層3を通してLED1の発光が行われる。   FIG. 9 is a perspective view of the completed light emitting device 10, in which a glass lid 5 is joined and integrated with the inorganic material substrate 2, and the LED 1 is passed through the wavelength conversion layer 3 from the light emitting window portion at the bottom of the recess 5 a in the glass lid 5. Is emitted.

上記の如く、集合基板方式によるECMの製造方法において、ガラス蓋5を構成するのに大判の平板ガラス50を使用し、面精度の優れた平板ガラス50にサンドブラスト加工によって凹部を形成しているため、市販の平板ガラスを用いて面精度の優れた接合面5bと、拡散性に優れた内面を有する凹部aとを同時に形成することができ、価格が安く、光学的特性に優れたガラス蓋を量産的に得ることが可能となる。また、無機材質基板2として利用可能な基板材料AIN、Si、Al2O3に対し、ガラス蓋5のガラス材料としては市販されている平板ガラス材料から無機材質基板2の基板材料と線膨張係数が近似したものを選択または指定して使用することができるため、調達コストの面で有利である。   As described above, in the ECM manufacturing method using the collective substrate method, the large flat glass 50 is used to form the glass lid 5, and the concave portions are formed by sandblasting on the flat glass 50 having excellent surface accuracy. It is possible to simultaneously form a bonding surface 5b having excellent surface accuracy and a concave portion a having an inner surface excellent in diffusibility using a commercially available flat glass, and a glass lid that is inexpensive and excellent in optical characteristics can be formed. It can be obtained in mass production. Moreover, the substrate material AIN, Si, Al2O3 that can be used as the inorganic material substrate 2 is similar to the substrate material of the inorganic material substrate 2 from the commercially available flat glass material as the glass material of the glass lid 5. Since it can be used by selecting or specifying, it is advantageous in terms of procurement cost.

以上、本発明における発光装置について、実施形態では青色LEDとYAG蛍光体の組み合わせに付いて記載したがこれに限定されるものではなく、近紫外LEDと各色蛍光体の組み合わせ等にも適用可能であり、また本発明における無機材質基板と平板ガラスのサンドブラスト加工によるガラス蓋の組み合わせは、LED以外の素子の封止にも有効である。   As described above, the light emitting device according to the present invention has been described with respect to the combination of the blue LED and the YAG phosphor in the embodiment, but is not limited thereto, and can be applied to a combination of a near ultraviolet LED and each color phosphor. In addition, the combination of the inorganic material substrate and the glass lid by sandblasting flat glass in the present invention is also effective for sealing elements other than LEDs.

1 LED
1a 発光部分
2 無機材質基板
2a 配線パターン
2b 出力電極
2c スルーホール
2d 接着層
3 波長変換層
5 ガラス蓋
5a 凹部
5b 接合面
5c 上面
5d 接着層
10 発光装置
10L 大判発光装置
15 マスク
15a 開口
20 大判基板
25 サンド粒子
50 平板ガラス
1 LED
DESCRIPTION OF SYMBOLS 1a Light emission part 2 Inorganic material board | substrate 2a Wiring pattern 2b Output electrode 2c Through hole 2d Adhesive layer 3 Wavelength conversion layer 5 Glass cover 5a Recessed part 5b Bonding surface 5c Upper surface 5d Adhesion layer 10 Light-emitting device 10L Large format light emitting device 15 Mask 15a Opening 20 Large format substrate 25 Sand particles 50 Flat glass

Claims (8)

基板上にLED素子を実装し、該LED素子の周囲に蛍光物質を混入した波長変換層を形成して、前記LED素子の発光を波長変換して出射する発光装置において、前記LEDの上面及び側面を覆う形状に成型した蛍光体混入の蛍光体キャップを設け、前記基板上に前記LED素子をフリップチップ実装し、前記LED素子に前記蛍光体キャップを直接的に被せたことを特徴とする発光装置。   In a light-emitting device that mounts an LED element on a substrate, forms a wavelength conversion layer mixed with a fluorescent material around the LED element, and converts the wavelength of the emitted light from the LED element to emit light, the upper surface and side surfaces of the LED A phosphor cap mixed with a phosphor molded into a shape covering the LED, the LED element is flip-chip mounted on the substrate, and the phosphor cap is directly covered on the LED element . 前記基板が無機材質基板であることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the substrate is an inorganic material substrate. 前記蛍光体キャップが樹脂成型キャップであることを特徴とする請求項1又は2に記載の発光装置。   The light emitting device according to claim 1, wherein the phosphor cap is a resin molded cap. 前記蛍光体キャップを被せたLEDを、さらにガラス蓋で密封したことを特徴とする請求項1から3の何れか1項に記載の発光装置。   The light emitting device according to any one of claims 1 to 3, wherein the LED covered with the phosphor cap is further sealed with a glass lid. 前記無機材質基板と前記ガラス蓋とは、熱膨張係数が近似しいていることを特徴とする請求項4に記載の発光装置。 The light emitting device according to claim 4, wherein the inorganic material substrate and the glass lid have similar thermal expansion coefficients. 複数のLEDをフリップチップ実装するための電極を備えた大判基板を用意する大型基板工程と、前記大型基板の各電極に複数のLEDをフリップチップ実装するLED実装工程と、前記LEDの上面及び側面を覆う形状に蛍光体混入の蛍光体キャップを成型する蛍光体キャップ成型工程と、前記蛍光体キャップを各LEDに被せる蛍光体キャップ被覆工程と、前記大判基板を切断分離して個々の発光装置を作成する切断分離工程を有することを特徴とする発光装置の製造方法。   A large substrate process for preparing a large substrate having electrodes for flip chip mounting a plurality of LEDs, an LED mounting process for flip chip mounting a plurality of LEDs on each electrode of the large substrate, and the upper and side surfaces of the LEDs A phosphor cap molding process for molding a phosphor cap mixed with a phosphor into a shape covering the phosphor, a phosphor cap coating process for covering each LED with the phosphor cap, and cutting and separating the large-sized substrate to obtain individual light emitting devices. A method for manufacturing a light-emitting device, comprising a cutting and separating step to be created. 前記大判基板が無機材質基板であることを特徴とする請求項6に記載の発光装置の製造方法。   The method for manufacturing a light-emitting device according to claim 6, wherein the large-sized substrate is an inorganic material substrate. 平板ガラスに複数の凹部を形成し、接着面にAu層を設けたガラス蓋を準備するガラス蓋加工工程と、真空若しくは不活性ガス雰囲気中で、前記ガラス蓋と前記大判基板をAuSn共晶により接合するガラス蓋接合工程とを、さらに備えることを特徴とする請求項7に記載の発光装置の製造方法。


A glass lid processing step for preparing a glass lid in which a plurality of recesses are formed in a flat glass and an Au layer is provided on an adhesive surface; and in a vacuum or an inert gas atmosphere, the glass lid and the large substrate are made of AuSn eutectic. The method for manufacturing a light emitting device according to claim 7, further comprising a glass lid bonding step of bonding.


JP2011244796A 2011-11-08 2011-11-08 Light emitting device and method for manufacturing the same Pending JP2012069977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011244796A JP2012069977A (en) 2011-11-08 2011-11-08 Light emitting device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011244796A JP2012069977A (en) 2011-11-08 2011-11-08 Light emitting device and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009017171A Division JP2010177375A (en) 2009-01-28 2009-01-28 Light-emitting device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2012069977A true JP2012069977A (en) 2012-04-05

Family

ID=46166780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011244796A Pending JP2012069977A (en) 2011-11-08 2011-11-08 Light emitting device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012069977A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060245A (en) * 2012-09-18 2014-04-03 Mitsubishi Electric Corp Semiconductor device
JP2015057826A (en) * 2013-09-16 2015-03-26 エルジー イノテック カンパニー リミテッド Light emitting device package
JP2016529552A (en) * 2013-08-16 2016-09-23 キユーデイー・ビジヨン・インコーポレーテツド Method for making optical component, optical component, and product including optical component
KR101762223B1 (en) 2016-03-23 2017-07-27 주식회사 베이스 Manufacturing method for led chip encapsulation member comprising phosphor
JP2017220664A (en) * 2016-06-06 2017-12-14 行政院原子能委員會核能研究所 Package structure of ultraviolet light-emitting diode part
WO2019039440A1 (en) * 2017-08-23 2019-02-28 日本碍子株式会社 Transparent sealing member and optical component
KR20190032562A (en) 2016-09-01 2019-03-27 니기소 가부시키가이샤 Optical semiconductor device and manufacturing method of optical semiconductor device
US10811570B2 (en) 2018-01-31 2020-10-20 Nikkiso Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264843A (en) * 1995-03-08 1996-10-11 Siemens Ag Optoelectronic converter
JP2004079467A (en) * 2002-08-22 2004-03-11 Nippon Sheet Glass Co Ltd Sealing plate for el element, and mother glass substrate for forming multiple sealing plate
JP2006032387A (en) * 2004-07-12 2006-02-02 Asahi Rubber:Kk Led lamp
JP2006074036A (en) * 2004-09-01 2006-03-16 Shogen Koden Kofun Yugenkoshi Semiconductor light emitting device and manufacturing method of the same
JP2006295246A (en) * 2005-04-05 2006-10-26 Matsushita Electric Ind Co Ltd Electronic component and manufacturing method thereof
JP2006313886A (en) * 2005-04-08 2006-11-16 Nichia Chem Ind Ltd Light emitting device with silicone resin layer formed by screen printing
WO2007094221A1 (en) * 2006-02-16 2007-08-23 Tokuyama Corporation Metallized ceramic board incorporating lead and package
JP2007235085A (en) * 2006-02-03 2007-09-13 Hitachi Chem Co Ltd Method of manufacturing package substrate for packaging optical semiconductor element and method of manufacturing optical semiconductor device using the same
JP2007234968A (en) * 2006-03-02 2007-09-13 Nichia Chem Ind Ltd Light emitting device and manufacturing method of same
JP2007258228A (en) * 2006-03-20 2007-10-04 Ngk Insulators Ltd Diffusion plate for use of light emitting diode element, its structure, and light emitting diode device
JP2008060166A (en) * 2006-08-29 2008-03-13 Nichia Chem Ind Ltd Semiconductor device, and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264843A (en) * 1995-03-08 1996-10-11 Siemens Ag Optoelectronic converter
JP2004079467A (en) * 2002-08-22 2004-03-11 Nippon Sheet Glass Co Ltd Sealing plate for el element, and mother glass substrate for forming multiple sealing plate
JP2006032387A (en) * 2004-07-12 2006-02-02 Asahi Rubber:Kk Led lamp
JP2006074036A (en) * 2004-09-01 2006-03-16 Shogen Koden Kofun Yugenkoshi Semiconductor light emitting device and manufacturing method of the same
JP2006295246A (en) * 2005-04-05 2006-10-26 Matsushita Electric Ind Co Ltd Electronic component and manufacturing method thereof
JP2006313886A (en) * 2005-04-08 2006-11-16 Nichia Chem Ind Ltd Light emitting device with silicone resin layer formed by screen printing
JP2007235085A (en) * 2006-02-03 2007-09-13 Hitachi Chem Co Ltd Method of manufacturing package substrate for packaging optical semiconductor element and method of manufacturing optical semiconductor device using the same
WO2007094221A1 (en) * 2006-02-16 2007-08-23 Tokuyama Corporation Metallized ceramic board incorporating lead and package
JP2007234968A (en) * 2006-03-02 2007-09-13 Nichia Chem Ind Ltd Light emitting device and manufacturing method of same
JP2007258228A (en) * 2006-03-20 2007-10-04 Ngk Insulators Ltd Diffusion plate for use of light emitting diode element, its structure, and light emitting diode device
JP2008060166A (en) * 2006-08-29 2008-03-13 Nichia Chem Ind Ltd Semiconductor device, and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060245A (en) * 2012-09-18 2014-04-03 Mitsubishi Electric Corp Semiconductor device
JP2016529552A (en) * 2013-08-16 2016-09-23 キユーデイー・ビジヨン・インコーポレーテツド Method for making optical component, optical component, and product including optical component
JP2015057826A (en) * 2013-09-16 2015-03-26 エルジー イノテック カンパニー リミテッド Light emitting device package
KR101762223B1 (en) 2016-03-23 2017-07-27 주식회사 베이스 Manufacturing method for led chip encapsulation member comprising phosphor
WO2017164461A1 (en) * 2016-03-23 2017-09-28 주식회사 베이스 Led chip sealing member comprising phosphor, led chip package comprising same, and manufacturing method thereof
JP2017220664A (en) * 2016-06-06 2017-12-14 行政院原子能委員會核能研究所 Package structure of ultraviolet light-emitting diode part
KR20190032562A (en) 2016-09-01 2019-03-27 니기소 가부시키가이샤 Optical semiconductor device and manufacturing method of optical semiconductor device
US10840414B2 (en) 2016-09-01 2020-11-17 Nikkiso Co., Ltd. Optical semiconductor apparatus and method of manufacturing optical semiconductor apparatus
WO2019039440A1 (en) * 2017-08-23 2019-02-28 日本碍子株式会社 Transparent sealing member and optical component
US11195980B2 (en) 2017-08-23 2021-12-07 Ngk Insulators, Ltd. Transparent sealing member and optical component
US10811570B2 (en) 2018-01-31 2020-10-20 Nikkiso Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2010177375A (en) Light-emitting device and manufacturing method of the same
JP2012069977A (en) Light emitting device and method for manufacturing the same
US9484509B2 (en) Lighting device and method of manufacturing the same
US8310023B2 (en) Light emitting diode package and fabrication method thereof
JP6515515B2 (en) Manufacturing method of light emitting device
JP4279388B2 (en) Optical semiconductor device and method for forming the same
JP5500904B2 (en) Method for manufacturing light emitting device
US7355284B2 (en) Semiconductor light emitting devices including flexible film having therein an optical element
US8334585B2 (en) LED package and fabrication method thereof
JP3979424B2 (en) Light emitting device
JP5256848B2 (en) Semiconductor device
WO2013168802A1 (en) Led module
JP2006106479A (en) Translucent member, optical device, and optical device assembling method
US10096585B2 (en) Method of manufacturing light emitting element and light emitting device including forming resin film including phosphor containing layer
JP2007207921A (en) Method for manufacturing surface-mounting optical semiconductor device
JP7436907B2 (en) Manufacturing method of semiconductor device
US20160190397A1 (en) Led package structure and the manufacturing method of the same
JP2002094123A (en) Surface-mounted light emitting diode and its manufacturing method
JP4590994B2 (en) Light emitting device and manufacturing method thereof
JP2019220672A (en) Method of manufacturing semiconductor device
JP5200471B2 (en) Light emitting device and manufacturing method thereof
KR20190084907A (en) The structures of LED package for transparent LED display
JP5347681B2 (en) Light emitting device
JP5350970B2 (en) Method for manufacturing light emitting device
JP2009004659A (en) Light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140715