JP2012062260A - Aluminum complex with fluorinated dibenzoyl methanide ligand - Google Patents

Aluminum complex with fluorinated dibenzoyl methanide ligand Download PDF

Info

Publication number
JP2012062260A
JP2012062260A JP2010206274A JP2010206274A JP2012062260A JP 2012062260 A JP2012062260 A JP 2012062260A JP 2010206274 A JP2010206274 A JP 2010206274A JP 2010206274 A JP2010206274 A JP 2010206274A JP 2012062260 A JP2012062260 A JP 2012062260A
Authority
JP
Japan
Prior art keywords
aluminum complex
fluorine
complex
ligand
dibenzoyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010206274A
Other languages
Japanese (ja)
Other versions
JP5798309B2 (en
Inventor
Akiko Hori
顕子 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitasato Institute
Original Assignee
Kitasato Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitasato Institute filed Critical Kitasato Institute
Priority to JP2010206274A priority Critical patent/JP5798309B2/en
Publication of JP2012062260A publication Critical patent/JP2012062260A/en
Application granted granted Critical
Publication of JP5798309B2 publication Critical patent/JP5798309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum complex including ligands of novel fluorinated dibenzoyl methanide capable of controlling a light emission wavelength by selecting the positions of fluorination and the number thereof.SOLUTION: A tris aluminum complex has fluorinated dibenzoyl methanide ligands, in each of which an optional number of benzene ring hydrogen atoms of dibenzoyl methane as a basic skeleton represented by general formula (II) are replaced with fluorine atoms.

Description

本発明は、フッ素置換ジベンゾイルメタニドを配位子とする発光特性を有し、低濃度分散型のEL素子として有用な新規なアルミニウム錯体に関する。   The present invention relates to a novel aluminum complex having a light emission characteristic having a fluorine-substituted dibenzoylmethanide as a ligand and useful as a low concentration dispersion type EL device.

本発明者は、先にジベンゾイルメタン−金属(白金、銅、パラジウム)錯体またはその誘導体とビス(ペンタフルオロベンゾイル)メタン−金属(白金、銅、パラジウム)錯体またはその誘導体とを含む錯体クラスター、及び錯体結晶について特許出願をしている(特開2009−023918号公報;特許文献1)。
また、本発明者らは、トリス(ペンタフルオロジベンゾイル)メタン−アルミニウム錯体及びその錯体を出発原料とするビス(ペンタフルオロジベンゾイル)メタン−金属(コバルト、ニッケル、銅)錯体の合成と結晶構造について報告している(「Synthesis and Crystal Structures of Fluorinated β-Diketonate Metal(Al3+, Co2+, Ni2+, and Cu2+) Complexes」(Bull. Chem.,Soc. Jpn. Vol. 82, No. 1, 96-98 (2009);非特許文献1)。
The inventor previously prepared a complex cluster containing a dibenzoylmethane-metal (platinum, copper, palladium) complex or a derivative thereof and a bis (pentafluorobenzoyl) methane-metal (platinum, copper, palladium) complex or a derivative thereof, And a patent application for the complex crystal (Japanese Patent Laid-Open No. 2009-023918; Patent Document 1).
In addition, the present inventors also synthesized and crystal structure of tris (pentafluorodibenzoyl) methane-aluminum complex and bis (pentafluorodibenzoyl) methane-metal (cobalt, nickel, copper) complex starting from the complex. (“Synthesis and Crystal Structures of Fluorinated β-Diketonate Metal (Al 3+ , Co 2+ , Ni 2+ , and Cu 2+ ) Complexes” (Bull. Chem., Soc. Jpn. Vol. 82 , No. 1, 96-98 (2009); Non-Patent Document 1).

特開2009−023918号公報JP 2009-023918 A

「Synthesis and Crystal Structures of Fluorinated β-Diketonate Metal(Al3+, Co2+, Ni2+, and Cu2+) Complexes」(Bull. Chem.,Soc. Jpn. Vol. 82, No. 1, 96-98 (2009))"Synthesis and Crystal Structures of Fluorinated β-Diketonate Metal (Al3 +, Co2 +, Ni2 +, and Cu2 +) Complexes" (Bull. Chem., Soc. Jpn. Vol. 82, No. 1, 96-98 (2009))

本発明者は、トリス(ジベンゾイル)メタン−アルミニウム錯体について、ベンゾイル基の水素原子の任意の数をフッ素原子に置換した錯体を合成し、それら錯体中のフッ素原子の置換位置及び数とその発光スペクトルとの関係について調べた。その結果、フッ素置換の位置及び数を選択することにより、発光波長を制御(微調節)できることを確認した。   The present inventor synthesizes a tris (dibenzoyl) methane-aluminum complex in which any number of hydrogen atoms in the benzoyl group is substituted with fluorine atoms, and the position and number of fluorine atoms in the complex and the emission spectrum thereof. We investigated the relationship with. As a result, it was confirmed that the emission wavelength can be controlled (finely adjusted) by selecting the position and number of fluorine substitutions.

本発明は、下記の新規なトリス(フッ素原子置換ジベンゾイル)メタン−アルミニウム錯体を提供する。   The present invention provides the following novel tris (fluorine atom-substituted dibenzoyl) methane-aluminum complex.

1.一般式(I)

Figure 2012062260
(式中、R11、R12、R13、R14、R15、R21、R22、R23、R24、及びR25は、それぞれフッ素原子または水素原子を表わす。)
で示されるアルミニウム錯体。
2.一般式(I)において、R12、R14、R22及びR24がフッ素原子であり、R11、R13、R15、R21、R23及びR25が水素原子である、前項1に記載のアルミニウム錯体。
3.一般式(I)において、R11、R15、R21及びR25がフッ素原子であり、R12、R13、R14、R22、R23及びR24が水素原子である、前項1に記載のアルミニウム錯体。
4.一般式(I)において、R11、R13、R15、R21、R23及びR25がフッ素原子であり、R12、R14、R22及びR24が水素原子である、前項1に記載のアルミニウム錯体。
5.一般式(I)において、R12、R13、R14、R22、R23及びR24がフッ素原子であり、R11、R15、R21及びR15が水素原子である、前項1に記載のアルミニウム錯体。
6.一般式(I)において、R11、R12、R14、R15、R21、R22、R24及びR25がフッ素原子であり、R13及びR23が水素原子である、前項1に記載のアルミニウム錯体。
7.前項1〜6のいずれかに記載のアルミニウム錯体を含む発光材料。
8.前項7に記載の発光材料を含むEL素子。 1. General formula (I)
Figure 2012062260
(In the formula, R 11 , R 12 , R 13 , R 14 , R 15 , R 21 , R 22 , R 23 , R 24 , and R 25 each represent a fluorine atom or a hydrogen atom.)
An aluminum complex represented by
2. In the general formula (I), R 12 , R 14 , R 22 and R 24 are fluorine atoms, and R 11 , R 13 , R 15 , R 21 , R 23 and R 25 are hydrogen atoms. The aluminum complex described.
3. In the general formula (I), R 11 , R 15 , R 21 and R 25 are fluorine atoms, and R 12 , R 13 , R 14 , R 22 , R 23 and R 24 are hydrogen atoms. The aluminum complex described.
4). In the general formula (I), R 11 , R 13 , R 15 , R 21 , R 23 and R 25 are fluorine atoms, and R 12 , R 14 , R 22 and R 24 are hydrogen atoms. The aluminum complex described.
5. In the general formula (I), R 12 , R 13 , R 14 , R 22 , R 23 and R 24 are fluorine atoms, and R 11 , R 15 , R 21 and R 15 are hydrogen atoms. The aluminum complex described.
6). In the general formula (I), R 11 , R 12 , R 14 , R 15 , R 21 , R 22 , R 24 and R 25 are fluorine atoms, and R 13 and R 23 are hydrogen atoms. The aluminum complex described.
7). A light emitting material containing the aluminum complex according to any one of 1 to 6 above.
8). 8. An EL device comprising the light emitting material according to item 7.

本発明は、フッ素置換ジベンゾイルメタニドを配位子とする新規なアルミニウム錯体を提供したものである。
本発明のアルミニウム錯体は、フッ素の置換位置及び数が変わることで、その発光波長が段階的に変化し、溶液では白色、固体では白色から黄色の強い発光を示す。フッ素置換化合物はフッ素間の反発作用、フッ素を介した作用(CH・F間の作用やアニオン・π電子相互作用など)により分子間で相互に影響を及ぼすことが知られている。従って、フッ素置換ジベンゾイルメタニドを配位子とする本発明のアルミニウム錯体(発光材料)は、フッ素を置換していないものに比べて、有機ポリマーなどに塗布、混入して使用する場合に、フッ素効果により優れた分散性及び溶解性を示し、ポリマーの炭化水素鎖中に効率的に分散させることができるため、低濃度分散型のEL素子として有用である。
The present invention provides a novel aluminum complex having a fluorine-substituted dibenzoylmethanide as a ligand.
In the aluminum complex of the present invention, the emission wavelength changes stepwise by changing the substitution position and the number of fluorine, and the solution emits white light from a solution, and emits strong white to yellow light from a solid. Fluorine-substituted compounds are known to influence each other between molecules due to the repulsive action between fluorine and the action via fluorine (CH-F action, anion-pi-electron interaction, etc.). Therefore, the aluminum complex (light-emitting material) of the present invention having a fluorine-substituted dibenzoylmethanide as a ligand is applied to an organic polymer or the like, compared to those not substituted with fluorine. Since it exhibits excellent dispersibility and solubility due to the fluorine effect and can be efficiently dispersed in the hydrocarbon chain of the polymer, it is useful as a low concentration dispersion type EL device.

実施例1のアルミニウム錯体の電子吸収スペクトルである。2 is an electronic absorption spectrum of the aluminum complex of Example 1. 実施例2のアルミニウム錯体の電子吸収スペクトルである。2 is an electronic absorption spectrum of the aluminum complex of Example 2. 実施例3のアルミニウム錯体の電子吸収スペクトルである。2 is an electronic absorption spectrum of the aluminum complex of Example 3. 実施例4のアルミニウム錯体の電子吸収スペクトルである。4 is an electronic absorption spectrum of the aluminum complex of Example 4. 実施例5のアルミニウム錯体の電子吸収スペクトルである。7 is an electronic absorption spectrum of the aluminum complex of Example 5. 実施例1のアルミニウム錯体の発光スペクトルである。2 is an emission spectrum of the aluminum complex of Example 1. 実施例2のアルミニウム錯体の発光スペクトルである。2 is an emission spectrum of the aluminum complex of Example 2. 実施例3のアルミニウム錯体の発光スペクトルである。2 is an emission spectrum of the aluminum complex of Example 3. 実施例4のアルミニウム錯体の発光スペクトルである。4 is an emission spectrum of the aluminum complex of Example 4. 実施例5のアルミニウム錯体の発光スペクトルである。7 is an emission spectrum of the aluminum complex of Example 5.

以下、本発明について具体的に説明する。
本発明に係るアルミニウム錯体は、下記一般式(I)

Figure 2012062260
(式中、R11、R12、R13、R14、R15、R21、R22、R23、R24、及びR25は、それぞれフッ素原子または水素原子を表わす。)。
で示される。 Hereinafter, the present invention will be specifically described.
The aluminum complex according to the present invention has the following general formula (I):
Figure 2012062260
(Wherein R 11 , R 12 , R 13 , R 14 , R 15 , R 21 , R 22 , R 23 , R 24 , and R 25 each represents a fluorine atom or a hydrogen atom).
Indicated by

すなわち、本発明のアルミニウム錯体は、一般式(II)で示されるジベンゾイルメタン(DBM)

Figure 2012062260
を基本骨格とし、水素原子の任意の数がフッ素原子で置換されたジベンゾイルメタニドを配位子とする。 That is, the aluminum complex of the present invention is dibenzoylmethane (DBM) represented by the general formula (II).
Figure 2012062260
And dibenzoylmethanide in which any number of hydrogen atoms are replaced by fluorine atoms as ligands.

本発明のアルミニウム錯体において、ジベンゾイルメタン骨格の(フッ素置換)フェニル基の具体例としては、以下の(1)〜(6)で示されるものが挙げられる。

Figure 2012062260
In the aluminum complex of the present invention, specific examples of the (fluorine-substituted) phenyl group of the dibenzoylmethane skeleton include those represented by the following (1) to (6).
Figure 2012062260

上記一般式(I)で示される本発明のアルミニウム錯体の具体例としては、(i)R12、R14、R22及びR24がフッ素原子で、R11、R13、R15、R21、R23及びR25が水素原子であるもの(錯体3aと略記する。)、(ii)R11、R15、R21及びR25がフッ素原子で、R12、R13、R14、R22、R23及びR24が水素原子であるもの(錯体3bと略記する。)、(iii)R11、R13、R15、R21、R23及びR25がフッ素原子で、R12、R14、R22及びR24が水素原子であるもの(錯体4aと略記する。)、(iv)R12、R13、R14、R22、R23及びR24がフッ素原子で、R11、R15、R21及びR15が水素原子であるもの(4bと略記する。)、(v)R11、R12、R14、R15、R21、R22、R24及びR25がフッ素原子で、R13及びR23が水素原子であるもの(錯体5と略記する。)。 Specific examples of the aluminum complex of the present invention represented by the general formula (I) include (i) R 12 , R 14 , R 22 and R 24 are fluorine atoms, and R 11 , R 13 , R 15 , R 21. , R 23 and R 25 are hydrogen atoms (abbreviated as complex 3a), (ii) R 11 , R 15 , R 21 and R 25 are fluorine atoms, R 12 , R 13 , R 14 , R 22 , R 23 and R 24 are hydrogen atoms (abbreviated as complex 3b), (iii) R 11 , R 13 , R 15 , R 21 , R 23 and R 25 are fluorine atoms, R 12 , R 14 , R 22 and R 24 are hydrogen atoms (abbreviated as complex 4a), (iv) R 12 , R 13 , R 14 , R 22 , R 23 and R 24 are fluorine atoms, R 11 , R 15 , R 21 and R 15 are hydrogen atoms (abbreviated as 4b), (v) R 11 , R 12 , R 14 , R 15 , R 21 , R 22 , R 24 and R 25 are A fluorine atom, R 1 3 and R 23 are hydrogen atoms (abbreviated as complex 5).

[アルミニウム錯体の製造方法]
本発明のアルミニウム錯体のうち、(i)〜(iv)の錯体は、以下の通り二段階の工程により合成することが出来る。まず、上記(2)〜(5)で示されるいずれか1つのフッ素置換フェニル基に対応するフッ素置換ベンゾイルクロリドを、室温〜50℃、好ましくは約45℃の温度で塩化アルミニウムのテトラクロロエタン等の溶液に加え、その後室温に戻し、酢酸ビニルを加え反応させることにより対応するフッ素置換ジベンゾイル配位子が生成する(第1工程)。得られた配位子を、次に塩化アルミニウムのアルコール溶液、好ましくはメタノールに加えて反応させることで目的とするアルミニウム錯体を製造することができる(第2工程)。
[Method for producing aluminum complex]
Among the aluminum complexes of the present invention, the complexes (i) to (iv) can be synthesized by a two-step process as follows. First, a fluorine-substituted benzoyl chloride corresponding to any one of the fluorine-substituted phenyl groups represented by the above (2) to (5) is used at room temperature to 50 ° C, preferably about 45 ° C, such as tetrachloroethane of aluminum chloride. It adds to a solution and returns to room temperature after that, The corresponding fluorine substitution dibenzoyl ligand is produced | generated by making vinyl acetate add and react (1st process). The obtained ligand is then reacted by adding it to an alcohol solution of aluminum chloride, preferably methanol, to produce the target aluminum complex (second step).

また、(v)の錯体は、上記(6)で示されるフッ素置換フェニル基に対応するフッ素置換ベンゾイルクロリドを、室温〜50℃、好ましくは約45℃の温度で塩化アルミニウムのテトラクロロエタン等の溶液に加え、その後室温に戻し、酢酸ビニルを加え反応させる一段階で製造することができる。すなわち、(v)の錯体の場合には、対応するフッ素置換ジベンゾイル配位子を単離することはできないが、これはフッ素置換量が増えると、配位子の安定性が低下するためと考えられる。   The complex of (v) is a solution of fluorine-substituted benzoyl chloride corresponding to the fluorine-substituted phenyl group represented by (6) above in a solution such as tetrachloroethane of aluminum chloride at a temperature of room temperature to 50 ° C., preferably about 45 ° C. In addition, the temperature can be returned to room temperature, and vinyl acetate can be added and reacted in one step. That is, in the case of the complex of (v), the corresponding fluorine-substituted dibenzoyl ligand cannot be isolated, but this is thought to be because the stability of the ligand decreases as the amount of fluorine substitution increases. It is done.

本発明の対応するフッ素置換ジベンゾイル配位子の製造方法で使用する原料のモル比は、特に制限されないが、フッ素置換ベンゾイルクロリド1モルに対して、塩化アルミニウム1モル、酢酸ビニル1モルが好ましい。アルミニウム錯体の製造方法で使用する原料のモル比は、特に制限されないが、配位子1モルに対して、塩化アルミニウムは0.1〜5モルが妥当であり、特に0.35モルが好ましく、酢酸ビニルは1モルが好ましい。   The molar ratio of the raw materials used in the production method of the corresponding fluorine-substituted dibenzoyl ligand of the present invention is not particularly limited, but 1 mol of aluminum chloride and 1 mol of vinyl acetate are preferable with respect to 1 mol of fluorine-substituted benzoyl chloride. The molar ratio of the raw materials used in the method for producing an aluminum complex is not particularly limited, but 0.1 to 5 mol is appropriate for aluminum chloride with respect to 1 mol of the ligand, and 0.35 mol is particularly preferable. One mole of vinyl acetate is preferred.

本発明の対応するフッ素置換ジベンゾイル配位子の製造方法で使用する溶媒としては、原料を溶解するものであれば特に制限されないが、例えばクロロホルム、ジクロロメタン、1,2,2−テトラクロロエタンが挙げられ、溶媒の沸点が高い点から1,1,2,2−テトラクロロエタン好ましい。配位子と塩化アルミニウムの反応は、原料を溶解するものであれば特に制限されないが、アルコールやジクロロメタンなどのハロゲン溶媒が溶解性に優れている。特に、メタノールが濃縮などの取り扱いが容易で好ましい。   The solvent used in the method for producing the corresponding fluorine-substituted dibenzoyl ligand of the present invention is not particularly limited as long as it dissolves the raw material, and examples thereof include chloroform, dichloromethane, and 1,2,2-tetrachloroethane. In view of the high boiling point of the solvent, 1,1,2,2-tetrachloroethane is preferred. The reaction between the ligand and aluminum chloride is not particularly limited as long as it dissolves the raw material, but a halogen solvent such as alcohol or dichloromethane is excellent in solubility. In particular, methanol is preferable because it is easy to handle such as concentration.

反応温度は、適宜選択できるが、配位子の合成においては室温〜80℃、特に30〜50℃程度が好ましい。室温より低い場合は反応速度が遅いため不利であり、50℃より高い場合は配位子のオルト位のフッ素が外れて環化反応が起こるため、不要な副生成物が生じる。   Although reaction temperature can be selected suitably, in the synthesis | combination of a ligand, room temperature-80 degreeC, Especially about 30-50 degreeC is preferable. When the temperature is lower than room temperature, the reaction rate is slow, which is disadvantageous. When the temperature is higher than 50 ° C., fluorine at the ortho position of the ligand is removed to cause a cyclization reaction, thereby generating unnecessary by-products.

反応終了後は、常法により溶媒を除去、残留物を抽出し、精製する。得られた錯体はNMR(核磁気共鳴法)及びSI−MSにより、一般式(I)で示される各アルミニウム錯体であることが確認できる。   After completion of the reaction, the solvent is removed by a conventional method, and the residue is extracted and purified. The obtained complex can be confirmed to be each aluminum complex represented by the general formula (I) by NMR (nuclear magnetic resonance method) and SI-MS.

本発明のアルミニウム錯体は、発光特性を有する。発光特性は、分光蛍光光度計を用いて測定した電子吸光スペクトルより確認できる。   The aluminum complex of the present invention has luminescent properties. The emission characteristics can be confirmed from an electron absorption spectrum measured using a spectrofluorometer.

本発明のアルミニウム錯体の電子吸光スペクトルより、上記任意に選択したR11〜R15、R21〜R25、すなわちジベンゾイルメタニド配位子におけるフェニル基の2〜6位のフッ素の置換位置及び数により発光波長が異なることが確認された。 From the electron absorption spectrum of the aluminum complex of the present invention, R 11 to R 15 , R 21 to R 25 , which are arbitrarily selected from the above, that is, the substitution position of fluorine at the 2-6 position of the phenyl group in the dibenzoylmethanide ligand and It was confirmed that the emission wavelength differs depending on the number.

具体的には、R11〜R15、R21〜R25が上記(i)のアルミニウム錯体(錯体3a)と、R11〜R15、R21〜R25が上記(v)のアルミニウム錯体(錯体5)の発光挙動を比較すると、最大吸収波長はそれぞれ353及び332nmであり、発光帯ピークはそれぞれ420及び411nmである。このように、本発明のアルミニウム錯体では、ジベンゾイルメタニド配位子におけるフッ素の置換位置及び数を選択することにより発光波長の微調整をすることが可能である。 Specifically, R 11 to R 15 and R 21 to R 25 are the aluminum complex (complex 3a) of the above (i), and R 11 to R 15 and R 21 to R 25 are the aluminum complex of the above (v) ( Comparing the emission behavior of the complex 5), the maximum absorption wavelengths are 353 and 332 nm, respectively, and the emission band peaks are 420 and 411 nm, respectively. As described above, in the aluminum complex of the present invention, the emission wavelength can be finely adjusted by selecting the substitution position and number of fluorine in the dibenzoylmethanide ligand.

以下、実施例を挙げて本発明を説明するが、本発明は下記の例に限定されるものではない。
なお、実施例のアルミニウム錯体について、NMRは、ブルカー株式会社製のAVANCE−III400を使用し、SI−MSは日立株式会社製のM−2500を使用し、元素分析はパーキンエルマー株式会社製のPE−2400を使用して測定した。
また、電子吸収スペクトル及び発光スペクトルは日本分光株式会社製のJASCO−V−660及びFP−6500を使用して測定した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to the following example.
In addition, about the aluminum complex of an Example, NMR uses AVANCE-III400 made from Bruker, SI-MS uses M-2500 made from Hitachi, and elemental analysis is PE made from Perkin Elmer Co., Ltd. -2400.
Moreover, the electronic absorption spectrum and the emission spectrum were measured using JASCO-V-660 and FP-6500 manufactured by JASCO Corporation.

実施例1:アルミニウム錯体3a
窒素雰囲気下、300mlの反応容器に塩化アルミニウム(0.026 mol)のテトラクロロエタン溶液(20ml)を入れ、45℃に温めた後、3,5−ジフルオロベンゾイルクロリド(0.026 mol)を加えた。室温まで冷却後、酢酸ビニル(0.026 mol)をゆっくりと加え、その後、35℃で10時間撹拌した。反応混合物を10%希塩酸溶液に移し、水蒸気蒸留により溶媒を除去した。残留物をジエチルエーテルで抽出し、シリカゲルカラムで精製し、無色の結晶(収率55%)を得た。TLC(薄層クロマトグラフィ)、NMR及びSI−MS分析より原料となる対応するフッ素置換配位子の生成を確認した。得られた配位子(3.7 mmol)を15mlの反応溶液に加え、メタノール(15ml)を加えて溶かした後、ナトリウムメトキシド(3.7 mmol)のメタノール溶液(5ml)及び塩化アルミニウム(1.2 mmol)のメタノール溶液(10ml)を加えて、2時間室温で撹拌した。反応混合物の溶媒を濃縮除去し、クロロホルムで抽出し、カラムクロマトグラフィーで精製し、黄色の結晶(収率85%)を得た。
1H NMR (400 MHz, CDCl3, TMS(内部標準物質)): δ7.50-7.45 (m, 12H, PhH), 7.00-6.93 (m, 6H, PhH), 6.78 (s, 3H). SI-MS: 617 (M-3a) m/z. IR (KBr disk, cm-1): 1564, 1543, 1524, 1458, 1387, 1348, 1315, 1125, 990, 789. 元素分析: Calcd for C45H21AlF12O6 (%): C 59.22, H 2.32; found: C 59.10, H 2.11.
アセトニトリル溶液として測定した電子吸収スペクトルは353nmに最大吸収を示し(図1)、353nmで励起したところ420nm付近にピークを有する発光帯を示した(図6)。
Example 1: Aluminum complex 3a
Under a nitrogen atmosphere, a tetrachloroethane solution (20 ml) of aluminum chloride (0.026 mol) was placed in a 300 ml reaction vessel, warmed to 45 ° C., and 3,5-difluorobenzoyl chloride (0.026 mol) was added. After cooling to room temperature, vinyl acetate (0.026 mol) was slowly added, and then stirred at 35 ° C. for 10 hours. The reaction mixture was transferred to a 10% dilute hydrochloric acid solution and the solvent was removed by steam distillation. The residue was extracted with diethyl ether and purified with a silica gel column to obtain colorless crystals (yield 55%). The production | generation of the corresponding fluorine substitution ligand used as a raw material was confirmed from TLC (thin layer chromatography), NMR, and SI-MS analysis. The obtained ligand (3.7 mmol) was added to 15 ml of the reaction solution, methanol (15 ml) was added and dissolved, and then a solution of sodium methoxide (3.7 mmol) in methanol (5 ml) and aluminum chloride (1.2 mmol). Methanol solution (10 ml) was added and stirred at room temperature for 2 hours. The solvent of the reaction mixture was concentrated and removed, extracted with chloroform, and purified by column chromatography to obtain yellow crystals (yield 85%).
1 H NMR (400 MHz, CDCl 3 , TMS (internal standard)): δ7.50-7.45 (m, 12H, PhH), 7.00-6.93 (m, 6H, PhH), 6.78 (s, 3H). SI -MS: 617 (M-3a) m / z.IR (KBr disk, cm -1 ): 1564, 1543, 1524, 1458, 1387, 1348, 1315, 1125, 990, 789. Elemental analysis: Calcd for C 45 H 21 AlF 12 O 6 (%): C 59.22, H 2.32; found: C 59.10, H 2.11.
The electron absorption spectrum measured as an acetonitrile solution showed a maximum absorption at 353 nm (FIG. 1) and an emission band having a peak near 420 nm when excited at 353 nm (FIG. 6).

実施例2: アルミニウム錯体3b
3,5−ジフルオロベンゾイルクロリドの代わりに、2,6−ジフルオロベンゾイルクロリドを用いた以外は、実施例1と同様の方法でそれぞれ配位子である無色の結晶(収率80%)及びアルミニウム錯体の無色の結晶(収率91%)を得た。TLC、NMR及びSI−MS分析よりアルミニウム錯体3bの生成を確認した。
1H NMR (400 MHz, CDCl3, TMS(内部標準物質)): δ7.28 (t, J = 8.4 Hz, 6H, PhH), δ6.86 (t, J = 8.4 Hz, 12H, PhH),6.32 (s, 3H, CH). SI-MS: 617 (M-3b) m/z. IR (KBr disk, cm-1): 1626, 1597, 1560, 1525, 1473, 1423, 1389, 1315, 1003. 元素分析: Calcd for C45H21AlF12O6 (%): C 59.22, H 2.32; found: C 59.01, H 2.22.
アセトニトリル溶液として測定した電子吸収スペクトルは329nmに最大吸収を示し(図2)、329nmで励起したところ423nm付近にピークを有する発光帯を示した(図7)。
Example 2: Aluminum complex 3b
Colorless crystals (yield 80%) and an aluminum complex as ligands in the same manner as in Example 1 except that 2,6-difluorobenzoyl chloride was used instead of 3,5-difluorobenzoyl chloride. Of colorless crystals (yield 91%) was obtained. Formation of aluminum complex 3b was confirmed by TLC, NMR and SI-MS analysis.
1 H NMR (400 MHz, CDCl 3 , TMS (internal standard)): δ7.28 (t, J = 8.4 Hz, 6H, PhH), δ6.86 (t, J = 8.4 Hz, 12H, PhH), 6.32 (s, 3H, CH) .SI-MS: 617 (M-3b) m / z.IR (KBr disk, cm -1 ): 1626, 1597, 1560, 1525, 1473, 1423, 1389, 1315, 1003 Elemental analysis: Calcd for C 45 H 21 AlF 12 O 6 (%): C 59.22, H 2.32; found: C 59.01, H 2.22.
The electron absorption spectrum measured as an acetonitrile solution showed maximum absorption at 329 nm (FIG. 2), and when excited at 329 nm, showed an emission band having a peak near 423 nm (FIG. 7).

実施例3:アルミニウム錯体4a
3,5−ジフルオロベンゾイルクロリドの代わりに、2,4,6−トリフルオロベンゾイルクロリドを用いた以外は、実施例1と同様の方法でそれぞれ配位子である無色の結晶(収率62%)及びアルミニウム錯体無色の結晶(収率95%)を得た。TLC、NMR及びSI−MS分析よりアルミニウム錯体4aの生成を確認した。
1H NMR (400 MHz, CDCl3, TMS(内部標準物質)): δ6.64 (t, J = 8.4 Hz, 12H, PhH), 6.224 (s, 3H, CH). SI-MS: 689 (M-4a) m/z. IR (KBr disk, cm-1): 1640, 1607, 1568, 1528, 1458, 1408, 1387, 1348, 1123, 1080, 1036, 1001, 843. 元素分析: Calcd for C45H15AlF18O6 (%): C 52.96, H 1.48; found: C 52.82, H 1.37.
アセトニトリル溶液として測定した電子吸収スペクトルは331nmに最大吸収を示し(図3)、331nmで励起したところ405nm付近にピークを有する発光帯を示した(図8)。
Example 3: Aluminum complex 4a
Colorless crystals as ligands (62% yield) respectively in the same manner as in Example 1 except that 2,4,6-trifluorobenzoyl chloride was used instead of 3,5-difluorobenzoyl chloride. And an aluminum complex colorless crystal (yield 95%) was obtained. The formation of aluminum complex 4a was confirmed by TLC, NMR and SI-MS analysis.
1 H NMR (400 MHz, CDCl 3 , TMS (internal standard)): δ6.64 (t, J = 8.4 Hz, 12H, PhH), 6.224 (s, 3H, CH) .SI-MS: 689 (M -4a) m / z. IR (KBr disk, cm -1 ): 1640, 1607, 1568, 1528, 1458, 1408, 1387, 1348, 1123, 1080, 1036, 1001, 843. Elemental analysis: Calcd for C 45 H 15 AlF 18 O 6 (%): C 52.96, H 1.48; found: C 52.82, H 1.37.
The electron absorption spectrum measured as an acetonitrile solution showed a maximum absorption at 331 nm (FIG. 3) and an emission band having a peak near 405 nm when excited at 331 nm (FIG. 8).

実施例4:アルミニウム錯体4b
3,5−ジフルオロベンゾイルクロリドの代わりに、3,4,5−トリフルオロベンゾイルクロリドを用いた以外は、実施例1と同様の方法でそれぞれ配位子である無色の結晶(収率50%)及びアルミニウム錯体の黄色の結晶(収率61%)を得た。TLC、NMR及びSI−MS分析よりアルミニウム錯体4bの生成を確認した。
1H NMR (400 MHz, CDCl3, TMS(内部標準物質)): δ7.60 (t, J = 7.4 Hz, 12H, PhH), 6.70 (s, 3H, CH). SI-MS: 690 (M-4b) m/z. IR (KBr disk, cm-1): 1568, 1497, 1462, 1371, 1343, 1230, 1047, 787, 621. 元素分析: Calcd for C45H15AlF18O6 (%): C 52.96, H 1.48; found: C 53.00, H 1.22.
アセトニトリル溶液として測定した電子吸収スペクトルは352nmに最大吸収を示し(図4)、352nmで励起したところ417nm付近にピークを有する発光帯を示した(図9)。
Example 4: Aluminum complex 4b
Colorless crystals as ligands (50% yield) in the same manner as in Example 1 except that 3,4,5-trifluorobenzoyl chloride was used instead of 3,5-difluorobenzoyl chloride. And yellow crystals of aluminum complex (61% yield) were obtained. Formation of aluminum complex 4b was confirmed by TLC, NMR and SI-MS analysis.
1 H NMR (400 MHz, CDCl 3 , TMS (internal standard)): δ7.60 (t, J = 7.4 Hz, 12H, PhH), 6.70 (s, 3H, CH). SI-MS: 690 (M -4b) m / z.IR (KBr disk, cm -1 ): 1568, 1497, 1462, 1371, 1343, 1230, 1047, 787, 621.Elemental analysis: Calcd for C 45 H 15 AlF 18 O 6 (% ): C 52.96, H 1.48; found: C 53.00, H 1.22.
The electron absorption spectrum measured as an acetonitrile solution showed maximum absorption at 352 nm (FIG. 4), and when excited at 352 nm, showed an emission band having a peak near 417 nm (FIG. 9).

実施例5:アルミニウム錯体5
3,5−ジフルオロベンゾイルクロリドの代わりに、2,3,5,6−テトラフルオロベンゾイルクロリドを用いた場合は一段階でアルミニウム錯体が生成した。窒素雰囲気下、300mlの反応容器に塩化アルミニウム(0.026 mmol)のテトラクロロエタン溶液(20ml)を入れ、45℃に温めた後、2,3,5,6−ジフルオロベンゾイルクロリド(0.026 mmol)を加えた。室温まで冷却後、酢酸ビニル(0.026 mmol)をゆっくりと加え、その後、35℃で10時間撹拌した。反応混合物を10%希塩酸溶液に移し、水蒸気蒸留により溶媒を除去した。残留物をジエチルエーテルで抽出し、シリカゲルカラムで精製し、目的のアルミニウム錯体の無色の結晶(収率66%)を得た。TLC(薄層クロマトグラフィ)、NMR及びSI−MS分析よりアルミニウム錯体の生成を確認した。
1H NMR (400 MHz, CDCl3, TMS(内部標準物質)): δ7.18-7.10 (m, 6H, PhH), 6.34 (s, 1H, CH) (s). SI-MS: 761 (M-5) m/z. IR (KBr disk, cm-1): 1587, 1528, 1506, 1435, 1383, 1319, 1277, 1179, 1001, 941, 635. 元素分析: Calcd for C45H9AlF24O6 (%): C 47.89, H 0.80; found: C 47.68, H 1.06。
アセトニトリル溶液として測定した電子吸収スペクトルは332nmに最大吸収を示し(図5)、332nmで励起したところ411nm付近にピークを有する発光帯を示した(図10)。
Example 5: Aluminum complex 5
When 2,3,5,6-tetrafluorobenzoyl chloride was used instead of 3,5-difluorobenzoyl chloride, an aluminum complex was formed in one step. Under a nitrogen atmosphere, a 300 ml reaction vessel was charged with a solution of aluminum chloride (0.026 mmol) in tetrachloroethane (20 ml), warmed to 45 ° C., and 2,3,5,6-difluorobenzoyl chloride (0.026 mmol) was added. . After cooling to room temperature, vinyl acetate (0.026 mmol) was slowly added and then stirred at 35 ° C. for 10 hours. The reaction mixture was transferred to a 10% dilute hydrochloric acid solution and the solvent was removed by steam distillation. The residue was extracted with diethyl ether and purified with a silica gel column to obtain colorless crystals of the target aluminum complex (yield 66%). Formation of an aluminum complex was confirmed by TLC (thin layer chromatography), NMR and SI-MS analysis.
1 H NMR (400 MHz, CDCl 3 , TMS (internal standard)): δ7.18-7.10 (m, 6H, PhH), 6.34 (s, 1H, CH) (s). SI-MS: 761 (M -5) m / z. IR (KBr disk, cm -1 ): 1587, 1528, 1506, 1435, 1383, 1319, 1277, 1179, 1001, 941, 635. Elemental analysis: Calcd for C 45 H 9 AlF 24 O 6 (%): C 47.89, H 0.80; found: C 47.68, H 1.06.
The electron absorption spectrum measured as an acetonitrile solution showed a maximum absorption at 332 nm (FIG. 5) and an emission band having a peak near 411 nm when excited at 332 nm (FIG. 10).

本発明の発光特性を有するフッ素置換ジベンゾイルメタニドを配位子とするアルミニウム錯体は、配位子のフッ素置換の位置または数を選択することにより、発光波長の微調整をすることができ、EL素子を指向した発光材料として有用である。   The aluminum complex having a fluorine-substituted dibenzoylmethanide having a luminescent property of the present invention as a ligand can finely adjust the emission wavelength by selecting the position or number of fluorine substitution of the ligand, It is useful as a light emitting material directed to an EL element.

Claims (8)

一般式(I)
Figure 2012062260
(式中、R11、R12、R13、R14、R15、R21、R22、R23、R24、及びR25は、それぞれフッ素原子または水素原子を表わす。)
で示されるアルミニウム錯体。
Formula (I)
Figure 2012062260
(In the formula, R 11 , R 12 , R 13 , R 14 , R 15 , R 21 , R 22 , R 23 , R 24 , and R 25 each represent a fluorine atom or a hydrogen atom.)
An aluminum complex represented by
一般式(I)において、R12、R14、R22及びR24がフッ素原子であり、R11、R13、R15、R21、R23及びR25が水素原子である、請求項1に記載のアルミニウム錯体。 In the general formula (I), R 12 , R 14 , R 22 and R 24 are fluorine atoms, and R 11 , R 13 , R 15 , R 21 , R 23 and R 25 are hydrogen atoms. The aluminum complex described in 1. 一般式(I)において、R11、R15、R21及びR25がフッ素原子であり、R12、R13、R14、R22、R23及びR24が水素原子である、請求項1に記載のアルミニウム錯体。 In the general formula (I), R 11 , R 15 , R 21 and R 25 are fluorine atoms, and R 12 , R 13 , R 14 , R 22 , R 23 and R 24 are hydrogen atoms. The aluminum complex described in 1. 一般式(I)において、R11、R13、R15、R21、R23及びR25がフッ素原子であり、R12、R14、R22及びR24が水素原子である、請求項1に記載のアルミニウム錯体。 In the general formula (I), R 11 , R 13 , R 15 , R 21 , R 23 and R 25 are fluorine atoms, and R 12 , R 14 , R 22 and R 24 are hydrogen atoms. The aluminum complex described in 1. 一般式(I)において、R12、R13、R14、R22、R23及びR24がフッ素原子であり、R11、R15、R21及びR15が水素原子である、請求項1に記載のアルミニウム錯体。 In the general formula (I), R 12 , R 13 , R 14 , R 22 , R 23 and R 24 are fluorine atoms, and R 11 , R 15 , R 21 and R 15 are hydrogen atoms. The aluminum complex described in 1. 一般式(I)において、R11、R12、R14、R15、R21、R22、R24及びR25がフッ素原子であり、R13及びR23が水素原子である、請求項1に記載のアルミニウム錯体。 2. In the general formula (I), R 11 , R 12 , R 14 , R 15 , R 21 , R 22 , R 24 and R 25 are fluorine atoms, and R 13 and R 23 are hydrogen atoms. The aluminum complex described in 1. 請求項1〜6のいずれかに記載のアルミニウム錯体を含む発光材料。   The luminescent material containing the aluminum complex in any one of Claims 1-6. 請求項7に記載の発光材料を含むEL素子。   An EL device comprising the light emitting material according to claim 7.
JP2010206274A 2010-09-15 2010-09-15 Aluminum complex with fluorine-substituted dibenzoylmethanide as a ligand Expired - Fee Related JP5798309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010206274A JP5798309B2 (en) 2010-09-15 2010-09-15 Aluminum complex with fluorine-substituted dibenzoylmethanide as a ligand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010206274A JP5798309B2 (en) 2010-09-15 2010-09-15 Aluminum complex with fluorine-substituted dibenzoylmethanide as a ligand

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014260305A Division JP2015120914A (en) 2014-12-24 2014-12-24 Luminescent material comprising aluminum complex containing fluorine-substituted dibenzoylmethanide as ligands, and organic el element

Publications (2)

Publication Number Publication Date
JP2012062260A true JP2012062260A (en) 2012-03-29
JP5798309B2 JP5798309B2 (en) 2015-10-21

Family

ID=46058356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010206274A Expired - Fee Related JP5798309B2 (en) 2010-09-15 2010-09-15 Aluminum complex with fluorine-substituted dibenzoylmethanide as a ligand

Country Status (1)

Country Link
JP (1) JP5798309B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102924A2 (en) * 2001-06-15 2002-12-27 Elam-T Limited Electroluminescent devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102924A2 (en) * 2001-06-15 2002-12-27 Elam-T Limited Electroluminescent devices

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6014048943; Journal of Polymer Science, Polymer Chemistry Edition Vol.20, No.11, p.3155-3165 (1982). *
JPN6014048945; 配位化合物の光化学討論会講演要旨集 Vol.21st., p.88-89 (2008). *
JPN6014048947; 日本化学会講演予稿集 Vol.90th., No.4, p.1093 (2010). *

Also Published As

Publication number Publication date
JP5798309B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
TWI549927B (en) Novel spirobifluorene compounds
JP5164902B2 (en) Method for synthesizing 9-aryl-10-iodoanthracene derivative and method for synthesizing luminescent material
JPWO2018084189A1 (en) Method for producing iridium complex, iridium complex and light emitting material comprising the compound
TWI287039B (en) Organic luminous material and method for producing organic material
JP6968373B2 (en) Naftbiscarcogenaziazole derivative and its manufacturing method
JP5283494B2 (en) Method for producing fluorene derivative
JP5798309B2 (en) Aluminum complex with fluorine-substituted dibenzoylmethanide as a ligand
JP2015120914A (en) Luminescent material comprising aluminum complex containing fluorine-substituted dibenzoylmethanide as ligands, and organic el element
JP7355004B2 (en) Method for producing aniline derivatives
KR20100046044A (en) Method for producing norbornene derivative
JP7023176B2 (en) Method for producing 9- (1-naphthyl) -9H-carbazole derivative
JP5006718B2 (en) Process for producing perylene derivatives and precursors thereof
JP2009126828A (en) Fluorine-substituted pyrazole compound and method for producing the same
WO2011013732A1 (en) INDACENE DERIVATIVE AND METHOD FOR PRODUCING SAME, AND CARBON-BRIDGED p-PHENYLENE VINYLENE DERIVATIVE AND METHOD FOR PRODUCING SAME
JP4660721B2 (en) Azobenzene derivative compound, particle and method for producing the same
JP3353046B2 (en) Method for producing organic compound using organic bismuth compound
WO2019151419A1 (en) Polycarbonyl compound, derivative thereof, and production method therefor
JP5178098B2 (en) Alicyclic vinyl ether compounds
JP2021178811A (en) Production method of aromatic ether compound or aromatic sulfhydryl compound
JP5734703B2 (en) Bisbinaphthylacetylene compound, process for producing the same, luminescent material for electroluminescent element, and fluorescent pigment
JP5794570B2 (en) Method for producing arylamines
KR20090003829A (en) Method for producing coenzyme q10
JP2008174519A (en) Method for producing symmetrical biphenyl compound using tetrahydrofuran as solvent
JP2005047825A (en) Fluorinated biphenyldiamine compound
JP2018150345A (en) Method of producing iridium complex compound, and iridium complex compound obtained by the production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150724

AA91 Notification that invitation to amend document was cancelled

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20150804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150821

R150 Certificate of patent or registration of utility model

Ref document number: 5798309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees