JP2012052280A - Woven fabric for air bag and air bag - Google Patents

Woven fabric for air bag and air bag Download PDF

Info

Publication number
JP2012052280A
JP2012052280A JP2011168736A JP2011168736A JP2012052280A JP 2012052280 A JP2012052280 A JP 2012052280A JP 2011168736 A JP2011168736 A JP 2011168736A JP 2011168736 A JP2011168736 A JP 2011168736A JP 2012052280 A JP2012052280 A JP 2012052280A
Authority
JP
Japan
Prior art keywords
fabric
airbag
yarn
woven
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011168736A
Other languages
Japanese (ja)
Other versions
JP6013710B2 (en
Inventor
Tokio Okuno
登起男 奥野
Takeshi Tanaka
剛 田中
Masato Enoki
政人 榎
Fumiaki Ise
史章 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2011168736A priority Critical patent/JP6013710B2/en
Publication of JP2012052280A publication Critical patent/JP2012052280A/en
Application granted granted Critical
Publication of JP6013710B2 publication Critical patent/JP6013710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Bags (AREA)
  • Woven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a woven fabric for an air bag capable of constituting the air bag, which has excellent pressure resistance and can be rapidly developed and has improved restraining performance, while the woven fabric is composed of a low fineness weaving yarn and is light weight and excellent in housing performance.SOLUTION: There is provided a woven fabric for an air bag composed of a synthetic fiber. The woven fabric has a total fiber fineness of de-woven yarns of the woven fabric of 200 to 320 dtex, a drawing resistance of weaving yarns constituting the woven fabric for both warp and weft of 50 to 250 N/cm/cm, a tensile strength of the woven fabric both in a warp direction and in a weft direction of 550 to 800 N/cm, a sum of elongation in a warp direction and in a weft direction at a load of 300 N in a tensile test of 30 to 45%, a bending resistance according to ASTM D4032 of 3.0 to 7.5 N, and a weight per unit area of 130 to 190 g/m.

Description

本発明は、乗り物による事故時に人体の衝撃を吸収し、その保護を図るエアバッグに関するものであり、さらに詳しくは、軽量で、収納性に優れるようなエアバッグ用織物、エアバッグ、およびエアバッグモジュールに関するものである。   TECHNICAL FIELD The present invention relates to an airbag that absorbs and protects the impact of a human body in the event of an accident caused by a vehicle. More specifically, the present invention relates to an airbag fabric, airbag, and airbag that are lightweight and have excellent storage properties. It is about modules.

乗り物の事故における人体への衝撃緩和のために、自動車などの車両へのエアバッグの装着が進んできている。衝突の際、ガス等により膨張し、人体への衝撃を吸収緩和するエアバッグとして、運転席用および助手席用エアバッグに加えて、サイドカーテンエアバッグ、サイドエアバッグ、ニーエアバッグ、リアエアバッグなどが、乗員保護のために実用化されつつある。さらには、歩行者保護のために、車両の外側に膨張するように装着されるエアバッグなど各種のエアバッグの装着が検討されてきている。   In order to reduce the impact on the human body in a vehicle accident, the installation of airbags on vehicles such as automobiles has been progressing. In addition to driver airbags and passenger airbags, side curtain airbags, side airbags, knee airbags, rear airbags are used as airbags that inflate by gas and absorb and reduce the impact on the human body in the event of a collision. Bags and the like are being put into practical use for passenger protection. Furthermore, in order to protect pedestrians, various types of airbags such as airbags that are installed so as to be inflated outside the vehicle have been studied.

一方で、地球環境問題への関心の高まりから、車両の燃費向上の観点でこうした安全装置であるエアバッグモジュールに対しても軽量化が望まれている。また、車両を小型化して燃費やエネルギー効率の向上を図るため、エアバッグモジュールを収納する領域も狭くなっており、エアバッグモジュールに対していっそうの小型化が望まれている。
エアバッグモジュールは、主に、合成繊維から成る織物が袋状に形成されたエアバッグ、エアバッグを展開するガスを発生させるインフレーター、および衝突を検出し展開を制御する装置からなる。このうち、エアバッグはエアバッグ自身を軽量化し、収納を小型化するため、エアバッグ用織物を構成する繊維の繊度を小さくすることで軽量化とコンパクト収納化の提案がなされてきた(例えば特許文献1)。
On the other hand, with increasing interest in global environmental problems, weight reduction is also desired for airbag modules, which are such safety devices, from the viewpoint of improving the fuel efficiency of vehicles. In addition, in order to improve the fuel efficiency and energy efficiency by downsizing the vehicle, the area for storing the airbag module is also narrow, and further downsizing of the airbag module is desired.
The airbag module mainly includes an airbag in which a fabric made of synthetic fibers is formed in a bag shape, an inflator that generates gas for deploying the airbag, and a device that detects a collision and controls the deployment. Among these, in order to reduce the size of the airbag itself and reduce the size of the airbag, proposals have been made for weight reduction and compact storage by reducing the fineness of the fibers constituting the airbag fabric (for example, patents). Reference 1).

しかしながら、近年、新たに車両に搭載されるようになってきた側面衝突用のカーテンエアバッグ、サイドエアバッグなどにおいては、人体と車壁の距離が短く、短時間で展開を完了し、衝撃吸収に備える必要がある。したがって、インフレーターのガス出力を上げ、高圧展開することで高速展開させるようになっており、高圧に耐えるエアバッグが求められている。さらには、側面衝突においては、人体と車壁の距離が短く、よりいっそう拘束特性を向上させることが望まれている。
エアバッグを軽量化し、収納を小型化するためにエアバッグ用織物を構成する繊維の繊度を小さくすると、軽量化と表面の平滑性により高速展開することが出来る(例えば特許文献2)。しかし、繊度を下げるほど高圧展開のガスに耐えられず、織物の強力が低く、破袋に至ることが課題となっている(例えば特許文献3)。
However, in recent years, curtain airbags and side airbags for side collisions, which have been newly installed in vehicles, have a short distance between the human body and the vehicle wall and can be deployed in a short time, absorbing shock. It is necessary to prepare for. Therefore, the gas output of the inflator is increased and high-pressure deployment is performed at high speed, and an air bag that can withstand high pressure is required. Furthermore, in a side collision, the distance between the human body and the vehicle wall is short, and it is desired to further improve the restraint characteristics.
If the fineness of the fibers constituting the airbag fabric is reduced in order to reduce the weight of the airbag and reduce the size of the storage, the airbag can be deployed at a high speed due to weight reduction and surface smoothness (for example, Patent Document 2). However, as the fineness is lowered, it is difficult to withstand the gas of high-pressure deployment, the strength of the fabric is low, and the bag is broken (for example, Patent Document 3).

国際公開第99/022967号パンフレットInternational Publication No. 99/022967 Pamphlet 特開平8−11660号公報JP-A-8-11660 特開2009−167551号公報JP 2009-167551 A

本発明の目的は、低繊度の織糸から構成され、軽量で収納性に優れていながら、耐圧性に優れ、高速展開が可能であり、さらには拘束性能が向上したエアバッグを構成し得るエアバッグ用織物を提供することである。   An object of the present invention is an air bag that is composed of a low-definition woven yarn, is lightweight and excellent in storage property, has excellent pressure resistance, can be deployed at high speed, and can further constitute an airbag with improved restraining performance. It is to provide a bag fabric.

本発明者等は、上記課題を解決するために鋭意研究を重ねた結果、低繊度の織糸から構成される織物であっても、高強力織物であって目開きしにくい織物であることにより、高速高圧ガス破袋が回避され、高圧ガス展開が早まるとともに、さらには人体拘束の時間も早まり、拘束性が改良されることを見いだし、本発明をなすに至った。
すなわち、本発明は、下記のとおりである。
As a result of intensive research to solve the above problems, the present inventors have found that even a woven fabric composed of low-definition woven yarn is a high-strength woven fabric that is difficult to open. It was found that high-speed and high-pressure gas breakage was avoided, the development of high-pressure gas was accelerated, the time for restraining the human body was also accelerated, and the restraint property was improved, and the present invention was made.
That is, the present invention is as follows.

(1)合成繊維からなる織物であって、織物の分解糸の総繊度が200〜320dtex、織物を構成する織糸の引抜抵抗が経緯とも50〜250N/cm/cm、織物の引張強さが経および緯方向ともに550〜800N/cm、引張試験における荷重300Nでの伸び率が経および緯方向の和で30〜45%、ASTM D4032剛軟度が3.0〜7.5N、および単位面積あたり重量が130〜190g/m2であることを特徴とするエアバッグ用織物。
(2)下記の特定縫製で縫合した縫合境界部における100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下であることを特徴とする上記1項に記載のエアバッグ用織物。
特定縫製:織物を2枚、1350dtexの撚り糸を用いて50回/10cmで本縫いする。
(3)織物の分解糸の引張強さが17.5〜30Nであることを特徴とする上記1または2項に記載のエアバッグ用織物。
(4)織物の分解糸のJIS L1017 7.7に規定の一定荷重時伸び率が8〜15%であることを特徴とする上記1〜3項のいずれか一項に記載のエアバッグ用織物。
(5)繊度が200〜320dtexの合成繊維を原糸として用いて織物とすることを特徴とする上記1〜4項のいずれか一項に記載のエアバッグ用織物。
(6)引張強度が9.5〜11.5cN/dtexの合成繊維を原糸として用いて織物とすることを特徴とする上記1〜5項のいずれか一項に記載のエアバッグ用織物。
(7)JIS L1017 7.7に規定の一定荷重時伸び率が8〜12%である合成繊維を原糸として用いて織物とすることを特徴とする上記1〜6項のいずれか一項に記載のエアバッグ用織物。
(8)沸水収縮率が5〜12%である合成繊維を原糸として用いて織物とすることを特徴とする上記1〜7項のいずれか一項に記載のエアバッグ用織物。
(9)糸−糸摩擦力が1.5〜3.0以下である合成繊維を原糸として用いて織物とすることを特徴とする上記1〜8項のいずれか一項に記載のエアバッグ用織物。
(10)合成繊維がポリアミド繊維であり、該ポリアミド繊維が環状ユニマーを全アミド結合に対して0.1〜3.0%含有していることを特徴とする上記1〜9項のいずれか一項に記載のエアバッグ用織物。
(11)上記1〜10項のいずれか一項に記載のエアバッグ用織物を用いてなるエアバッグ。
(12)縫製されたエアバッグであって、縫合境界部における100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下であることを特徴とする上記11項に記載のエアバッグ。
(13)袋織された織物からなるエアバッグであって、膨張部と非膨張部の境界部における100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下であることを特徴とする上記11項に記載のエアバッグ。
(14)上記11〜13項のいずれか一項に記載のエアバッグを用いて構成されるエアバッグモジュール。
(1) A woven fabric composed of synthetic fibers, wherein the total fineness of the woven yarn is 200 to 320 dtex, the pulling resistance of the woven yarn constituting the woven fabric is 50 to 250 N / cm / cm, and the tensile strength of the woven fabric is 550-800 N / cm in both warp and weft directions, elongation at load of 300 N in tensile test is 30-45% in sum of warp and weft directions, ASTM D4032 flexural flexibility is 3.0-7.5 N, and unit area A fabric for an air bag characterized by having a per weight of 130 to 190 g / m 2 .
(2) The fabric for an airbag according to the above item 1, wherein the dynamic air permeability after 100 N / cm load at the stitching boundary portion sewn by the following specific sewing is 2300 mm / s or less at a differential pressure of 50 kPa. .
Specific sewing: Two woven fabrics and a main sewing at 50 times / 10 cm using a 1350 dtex twisted yarn.
(3) The fabric for airbag according to the above 1 or 2, wherein the tensile strength of the decomposed yarn of the fabric is 17.5 to 30N.
(4) The airbag fabric according to any one of the above items 1 to 3, characterized in that the elongation rate under constant load specified in JIS L1017 7.7 of the disassembled yarn of the fabric is 8 to 15%. .
(5) The airbag fabric according to any one of (1) to (4) above, wherein a synthetic fabric having a fineness of 200 to 320 dtex is used as a raw fabric to form a fabric.
(6) The airbag fabric according to any one of 1 to 5 above, wherein a synthetic fabric having a tensile strength of 9.5 to 11.5 cN / dtex is used as a raw fabric.
(7) According to any one of the above items 1 to 6, wherein a synthetic fiber having an elongation rate at a constant load of 8 to 12% as defined in JIS L1017 7.7 is used as a raw yarn. The fabric for an airbag as described.
(8) The airbag fabric according to any one of the above items 1 to 7, wherein a synthetic fabric having a boiling water shrinkage of 5 to 12% is used as a woven fabric.
(9) The airbag according to any one of the above items 1 to 8, wherein a synthetic fiber having a yarn-yarn friction force of 1.5 to 3.0 or less is used as a woven fabric to form a woven fabric. Textiles.
(10) The synthetic fiber is a polyamide fiber, and the polyamide fiber contains 0.1 to 3.0% of cyclic unimers with respect to all amide bonds, The fabric for an air bag according to Item.
(11) An airbag using the airbag fabric according to any one of items 1 to 10.
(12) The airbag according to item 11 above, wherein the air permeability after 100 N / cm load at the stitching boundary portion is 2300 mm / s or less at a differential pressure of 50 kPa. .
(13) An air bag made of a woven cloth, characterized in that the dynamic air permeability after 100 N / cm load at the boundary between the inflated part and the non-inflated part is 2300 mm / s or less at a differential pressure of 50 kPa. The airbag according to Item 11 above.
(14) An airbag module configured using the airbag according to any one of Items 11 to 13.

本発明のエアバッグ用織物は、縫製エアバッグや袋織エアバッグとした場合、軽量で収納性が良く、高圧ガスに耐えて破れることなく展開し、展開時間は短くなるため、短時間で人体拘束のための準備状態を整えることが出来る。さらには、その後、人体が展開したエアバッグに突入する際、すばやく人体を捕捉、拘束し、早期に衝撃吸収することができるという有用な作用を示す。   The airbag fabric of the present invention, when used as a sewing airbag or a bag-woven airbag, is lightweight and easy to store, deploys withstands high-pressure gas without tearing, and shortens the deployment time. Can be ready for. Furthermore, after that, when the human body enters the airbag that has been deployed, the human body can be quickly captured and restrained, and a useful effect can be obtained that can absorb shocks at an early stage.

本発明の実施例におけるサイドカーテンエアバッグの平面図である。It is a top view of the side curtain airbag in the Example of this invention. 本発明の実施例における円形バッグの平面図である。It is a top view of the circular bag in the Example of this invention. 本発明の実施例における袋織組織図である。It is a weave organization chart in the example of the present invention. 引抜抵抗の測定方法を説明する図である。It is a figure explaining the measuring method of drawing resistance. 本発明の実施例におけるインパクター評価の説明図である。It is explanatory drawing of impactor evaluation in the Example of this invention.

以下、本発明について具体的に説明する。
本発明のエアバッグ用織物は合成繊維からなるものである。合成繊維はポリアミドやポリエステルの長繊維が好ましい。特に好ましくは、ポリアミド繊維で、ポリアミド6、ポリアミド6・6、ポリアミド11、ポリアミド12、ポリアミド6・10、ポリアミド6・12、ポリアミド4・6、それらの共重合体およびそれらの混合物からなる繊維が挙げられる。なかでも、主としてポリヘキサメチレンアジパミド繊維からなるポリアミド6・6繊維が好ましい。ポリヘキサメチレンアジパミド繊維とは100%のヘキサメチレンジアミンとアジピン酸とから構成される融点が250℃以上のポリアミド繊維を指す。本発明で用いられるポリアミド6・6繊維は、融点が250℃未満とならない範囲で、ポリヘキサメチレンアジパミドにポリアミド6、ポリアミド6・I、ポリアミド6・10、ポリアミド6・Tなどを共重合、あるいはブレンドしたポリマーからなる繊維でもよい。
Hereinafter, the present invention will be specifically described.
The airbag fabric of the present invention is made of synthetic fibers. The synthetic fiber is preferably a long fiber of polyamide or polyester. Particularly preferably, the fibers are polyamide fibers, polyamide 6, polyamide 6,6, polyamide 11, polyamide 12, polyamide 6,10, polyamide 6,12, polyamide 4,6, a copolymer thereof and a mixture thereof. Can be mentioned. Of these, polyamide 6/6 fibers mainly composed of polyhexamethylene adipamide fibers are preferable. The polyhexamethylene adipamide fiber refers to a polyamide fiber having a melting point of 250 ° C. or higher composed of 100% hexamethylenediamine and adipic acid. Polyamide 6,6 fibers used in the present invention are copolymerized with polyhexamethylene adipamide with polyamide 6, polyamide 6, I, polyamide 6,10, polyamide 6, T, etc. within a range where the melting point is not less than 250 ° C. Alternatively, it may be a fiber made of a blended polymer.

本発明のエアバッグ用織物は、その織物の分解糸の総繊度が200〜320dtexであることが好ましい。織物分解糸の総繊度が200dtex以上であれば、得られるエアバッグは高圧展開に耐える機械物性を満たすようになる。織物分解糸の総繊度が320dtex以下であれば、軽量で収納性の良いエアバッグとなり、展開速度が速まるとともに、早期拘束性にも寄与する。織物分解糸のより好ましい総繊度は220〜280dtexである。織物の製織に用いる原糸も、総繊度は200〜320dtexが好ましい。織物加工の過程では、通常、熱収縮するため、織糸に用いた原糸の総繊度に対して織物を構成する織物分解糸の総繊度は少々異なる値となる。   The airbag fabric of the present invention preferably has a total fineness of disassembled yarn of the fabric of 200 to 320 dtex. If the total fineness of the woven fabric decomposed yarn is 200 dtex or more, the obtained airbag satisfies the mechanical properties that can withstand high-pressure deployment. If the total fineness of the woven fabric decomposed yarn is 320 dtex or less, the air bag is light in weight and has good storage properties, and the deployment speed is increased and also contributes to early restraint. A more preferable total fineness of the fabric-decomposing yarn is 220 to 280 dtex. The raw yarn used for weaving the woven fabric also preferably has a total fineness of 200 to 320 dtex. In the process of weaving, since the heat shrinks normally, the total fineness of the fabric decomposition yarn constituting the fabric is slightly different from the total fineness of the raw yarn used for the woven yarn.

本発明のエアバッグ用織物は、コーティング樹脂またはエラストマーを除いた織物の単位面積当たり重量が130〜190g/m2であることが好ましい。単位面積当たり重量は高圧展開に耐える機械物性を満たすために130g/m2以上であることが好ましい。
本発明では、単位面積当たり重量が190g/m2以下の軽量織物であることが好ましい。より好ましい単位面積当たり重量は150〜180g/m2である。
The airbag fabric of the present invention preferably has a weight per unit area of 130 to 190 g / m 2 excluding the coating resin or elastomer. The weight per unit area is preferably 130 g / m 2 or more in order to satisfy mechanical properties that can withstand high-pressure deployment.
In the present invention, a lightweight woven fabric having a weight per unit area of 190 g / m 2 or less is preferable. A more preferred weight per unit area is 150 to 180 g / m 2 .

本発明のエアバッグ用織物の引張強さは経緯ともに550〜800N/cmであることが好ましい。織物の引張強さが550N/cm以上であれば、高圧ガス展開に耐え、耐バースト性に寄与する。織物の引張強さは構成する織糸の引張強さと織密度に大きく影響されるので、800N/cmより大きくしようとすると織糸の繊度を大きくせざるをえず、軽量性や収納性の面で不利になる。より好ましい織物の引張強さは600〜700N/cmである。   The tensile strength of the airbag fabric of the present invention is preferably 550 to 800 N / cm in terms of the background. When the tensile strength of the woven fabric is 550 N / cm or more, it withstands high-pressure gas development and contributes to burst resistance. Since the tensile strength of the woven fabric is greatly influenced by the tensile strength and the woven density of the woven yarn, it is necessary to increase the fineness of the woven yarn if it is larger than 800 N / cm. It will be disadvantageous. A more preferable tensile strength of the fabric is 600 to 700 N / cm.

織物の分解糸の引張強さは17.5〜30.0Nが好ましい。より好ましい引張強さは18.0〜27.0Nであり、いっそう好ましくは18.5〜25.0Nである。織物分解糸の引張強さが17.5N以上で高いほど織物の引張強さが高くなる。また、30.0Nより大きくしようとすると、織糸の繊度を大きくせざるをえず、軽量性や収納性の面で不利になる。織物の引張強さは概ね織物分解糸の引張強さと織密度によって決まってくるが、基本的にカバーファクターが高く、織り込みの上限に近い高密度織物であるため、織物分解糸の引張強さは相当に支配的である。なお、カバーファクター(CF)は、CF=√(経総繊度(dtex)×経織密度(本/2.54cm))+√(緯総繊度(dtex)×緯織密度(本/2.54cm))であり、2000から2500であることが好ましい。より好ましくは2100から2400である。   As for the tensile strength of the decomposition thread of a textile fabric, 17.5-30.0N is preferable. A more preferred tensile strength is 18.0 to 27.0 N, even more preferably 18.5 to 25.0 N. The higher the tensile strength of the fabric decomposition yarn is 17.5 N or higher, the higher the tensile strength of the fabric. On the other hand, if it is larger than 30.0 N, the fineness of the woven yarn must be increased, which is disadvantageous in terms of lightness and storage. The tensile strength of the woven fabric is generally determined by the tensile strength and woven density of the woven fabric decomposition yarn, but basically the cover factor is high and the high density woven fabric is close to the upper limit of weaving, so the tensile strength of the woven fabric decomposition yarn is It is quite dominant. The cover factor (CF) is CF = √ (total warp fineness (dtex) × warp weave density (main / 2.54 cm)) + √ (total weft fineness (dtex) × weft weave density (main / 2.54 cm) )), Preferably from 2000 to 2500. More preferably, it is 2100 to 2400.

織物の製織に用いる原糸は引張強度が9.5〜11.5cN/dtexであることが好ましい。原糸引張強度が9.5cN/dtex以上で大きいほど織物の引張強度が大きい。より好ましくは9.8cN/dtex以上である。製織に適した安定した品質の原糸が得られる原糸引張強度の上限は11.5cN/dtexである。   The yarn used for weaving the woven fabric preferably has a tensile strength of 9.5 to 11.5 cN / dtex. The higher the original yarn tensile strength is 9.5 cN / dtex or more, the greater the tensile strength of the fabric. More preferably, it is 9.8 cN / dtex or more. The upper limit of the yarn tensile strength for obtaining a yarn of stable quality suitable for weaving is 11.5 cN / dtex.

本発明のエアバッグ用織物は、引張試験における300N荷重での伸び率が経緯方向の和で30〜45%であることが好ましい。この織物特定荷重伸び率の和が45%以下であれば、高圧ガス展開に耐え、耐バースト性が改良される。特に、縫製部の縫い目開きが抑制されることで、縫目通気が抑制され、高圧ガスがエアバッグに突入する際に局部的な縫目通気によって応力集中したり、さらには、熱ガスの通過が集中することで破袋にいたることが防げる。織物中では、織糸にクリンプすなわち織縮みがあり、また、織物の分解糸の引張伸びもあるため、この織物特定荷重伸び率の和は、実質的に30%以上となる。織物の経緯方向それぞれの特定荷重伸び率は、経緯方向で似た値でもよいが、それぞれ15%から30%の範囲で差異があってもよい。   The airbag fabric of the present invention preferably has an elongation at a load of 300 N in the tensile test of 30 to 45% in the sum in the direction of the weft. If the sum of the fabric specific load elongations is 45% or less, it can withstand high-pressure gas development and the burst resistance is improved. In particular, the seam ventilation is suppressed by suppressing the seam opening of the seam, and when high-pressure gas enters the airbag, stress is concentrated due to local seam ventilation, and the passage of hot gas It is possible to prevent the bag from being broken by concentrating. In a woven fabric, the woven yarn has crimp, that is, woven shrinkage, and there is also a tensile elongation of the woven fabric decomposition yarn. Therefore, the sum of the specific load elongations of the fabric is substantially 30% or more. The specific load elongation rate in each weft direction of the woven fabric may be a similar value in the weft direction, but there may be a difference in the range of 15% to 30%.

織物の分解糸は、引張試験におけるJIS L1017 7.7に規定の一定荷重時伸び率が8〜15%であることが好ましい。分解糸の一定荷重時伸び率が15%以下であることが、織物の上記特定荷重伸び率の抑制に寄与する。分解糸の一定荷重時伸び率は、織物を製織する際の原糸の一定荷重時伸び率に由来し、さらに、織物加工の過程での熱収縮により変化するものである。原糸の一定荷重時伸び率を考慮すると、分解糸の一定荷重時伸び率を8%より小さくすることは困難である。織物を製織するための原糸の一定荷重時伸び率は8〜12%が好ましい。原糸の一定荷重時伸び率が12%以下であれば、織物の上記特定荷重伸び率の抑制に寄与する。原糸の他の特性を考慮すると原糸の一定荷重時伸び率は、実質的に8%以上である。   It is preferable that the disintegrated yarn of the woven fabric has a constant load elongation of 8 to 15% as defined in JIS L1017 7.7 in the tensile test. The elongation at constant load of the decomposed yarn of 15% or less contributes to the suppression of the specific load elongation of the fabric. The elongation at constant load of the decomposed yarn is derived from the elongation at constant load of the raw yarn when weaving the fabric, and further changes due to thermal shrinkage in the process of fabric processing. Considering the elongation at constant load of the raw yarn, it is difficult to make the elongation at constant load of the decomposed yarn smaller than 8%. The elongation at constant load of the raw yarn for weaving the fabric is preferably 8 to 12%. If the elongation at constant load of the raw yarn is 12% or less, it contributes to the suppression of the specific load elongation of the fabric. Considering other properties of the raw yarn, the elongation at constant load of the raw yarn is substantially 8% or more.

織物加工の過程での熱収縮の関係から、原糸の沸水収縮率は5〜12%が好ましい。原糸の沸水収縮率が5%以上であれば、熱収縮加工時に緊張処理することで、織糸相互密着の増加による織物の上記特定荷重伸度の抑制に寄与する。より好ましくは6.5%以上であり、一層好ましくは8%以上である。沸水収縮率が低すぎると、織糸密着性が劣り、織物の上記特定荷重伸度を抑えられない。また、原糸の沸水収縮率を12%より大きくすることは、原糸の他の特性を考慮すると困難である。   From the relationship of thermal shrinkage in the process of weaving, the boiling water shrinkage of the raw yarn is preferably 5 to 12%. When the boiling water shrinkage of the raw yarn is 5% or more, the tension treatment is performed during the heat shrinking process, which contributes to the suppression of the specific load elongation of the fabric due to the increase in mutual adhesion of the weaving yarn. More preferably, it is 6.5% or more, and more preferably 8% or more. If the boiling water shrinkage is too low, the weaving yarn adhesion is poor and the specific load elongation of the fabric cannot be suppressed. Also, it is difficult to make the boiling water shrinkage of the raw yarn greater than 12% in consideration of other properties of the raw yarn.

本発明のエアバッグ用織物を織糸方向を合わせて特定の縫製で縫合した際、縫合境界部における100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下であることが好ましい。この特定縫目負荷通気度は、織物を2枚、1350dtexの撚り糸である縫製糸にて50回/10cmで本縫いをし、縫目に荷重を掛けた後、動的通気度を測定し50kPaでの縫目通気量を計測したものである。特定縫目は、緯糸方向に縫った場合に負荷方向は経糸方向となり、経糸負荷通気度となる。また、経糸方向に縫った場合に負荷方向は緯糸方向となり、緯糸負荷通気度となる。本発明では、経緯負荷後のいずれもが縫合境界部における100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下であることが好ましい。この特定縫目負荷通気度は、縫目破断しない中間負荷での縫目開きにおける通気量であり、高圧ガスがエアバッグに突入する際の縫目通気を代表する値と考えられる。この特定縫目負荷通気度が2300mm/s以下で少ないほど耐バースト性がよく、破袋ガス圧が高まる。より好ましくは、2000mm/s以下であり、いっそう好ましくは、1500mm/s以下であり、最も好ましくは900mm/s以下である。特定縫目負荷通気度は、低いほどよく、0mm/sの非通気であることでもよい。しかし、織物を縫い糸が貫通し、引張応力に対して応力集中部となって変形起点となることから、少々の通気量を有することが避けられず、負荷後の通気度が100mm/s以上となることがある。この特定縫目負荷通気度は、織物が引張応力によって目開きすることに抵抗する程度、すなわち、織物特定荷重伸び率が小さいことと、織糸が織物中ですり抜け難い程度、すなわち、引抜抵抗が高いことが相俟って抑制される。さらには、織糸が織り目を覆う効果、例えば、樹脂コーティングの存在や、単糸繊度が小さく数が多いことなども通気度抑制に寄与する。
さらには、上記縫製にかかわらず、エアバッグに縫製された縫合境界部は、直線状の縫合境界部において100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下であることが好ましい。
When the airbag fabric of the present invention is sewn by specific sewing with the weaving direction aligned, the dynamic air permeability after 100 N / cm load at the stitching boundary is preferably 2300 mm / s or less at a differential pressure of 50 kPa. . The specific seam load air permeability is 50 kPa by measuring the dynamic air permeability after applying a load to the seam at 50 times / 10 cm with two woven fabrics and a sewing thread which is a 1350 dtex twist thread. This is a measurement of the seam ventilation rate at When the specific stitch is sewed in the weft direction, the load direction is the warp direction and the warp load air permeability is obtained. Further, when sewing is performed in the warp direction, the load direction is the weft direction, and the weft load air permeability is obtained. In the present invention, it is preferable that the dynamic air permeability after 100 N / cm load at the stitching boundary portion is 2300 mm / s or less at a differential pressure of 50 kPa in any case after the weft load. This specific seam load air permeability is an air flow rate at the seam opening at an intermediate load where the seam is not broken, and is considered to be a value representative of the seam air flow when the high-pressure gas enters the airbag. The smaller the specific stitch load air permeability is 2300 mm / s or less, the better the burst resistance and the higher the bag breaking gas pressure. More preferably, it is 2000 mm / s or less, More preferably, it is 1500 mm / s or less, Most preferably, it is 900 mm / s or less. The lower the specific stitch load air permeability, the better, and it may be non-ventilated at 0 mm / s. However, since the sewing thread penetrates the fabric and becomes a stress concentration part with respect to the tensile stress and becomes a starting point of deformation, it is inevitable to have a small air flow rate, and the air permeability after loading is 100 mm / s or more. May be. The specific seam load air permeability is such that the fabric resists opening due to tensile stress, that is, the specific load elongation of the fabric is small, and that the weaving yarn is not easily pulled through the fabric, that is, the pulling resistance is low. High is combined and suppressed. Furthermore, the effect of the weaving yarn covering the weave, for example, the presence of a resin coating and the fact that the single yarn fineness is small and the number is large also contribute to air permeability control.
Further, regardless of the above-described sewing, the stitching boundary portion sewn on the airbag may have a dynamic air permeability of 2300 mm / s or less at a differential pressure of 50 kPa after loading at 100 N / cm at the straight stitching boundary portion. preferable.

また、本発明のエアバッグ用織物が袋織で製織された場合、膨張部と非膨張部における境界部が直線状の部位において、100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下であることが好ましい。境界部では、境界線が緯糸方向に合致する場合には、負荷を与える方向は経糸方向となり、経糸負荷通気度が評価できる。また、境界線が経糸方向に合致する場合には、負荷を与える方向は緯糸方向となり、緯糸負荷通気度が評価できる。境界部で境界線が直線状となる部位が経緯ともに存在する場合は、経緯負荷後のいずれもが縫合境界部における100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下であることが好ましい。これは、膨張部と非膨張部の境界部が接結部破断しない中間の接結部開きにおける通気量であり、高圧ガスがエアバッグに突入する際の接結部通気度を代表する値と考えられる。この接結部負荷通気度が2300mm/s以下で少ないほど耐バースト性がよく、破袋ガス圧が高まる。   When the airbag fabric of the present invention is woven in a bag weave, the boundary between the inflatable part and the non-inflatable part is linear, and the dynamic air permeability after 100 N / cm load is 2300 mm / It is preferable that it is s or less. In the boundary portion, when the boundary line matches the weft direction, the direction in which the load is applied is the warp direction, and the warp load air permeability can be evaluated. When the boundary line matches the warp direction, the load application direction is the weft direction, and the weft load air permeability can be evaluated. When there is a part where the boundary line is linear at the boundary part, the dynamic air permeability after 100 N / cm load at the stitching boundary part is 2300 mm / s or less at a differential pressure of 50 kPa. Preferably there is. This is the air flow rate at the intermediate joint opening where the boundary between the inflatable part and the non-inflatable part does not break the joint part, and is a value representative of the joint part air permeability when the high pressure gas enters the airbag. Conceivable. The smaller the connection portion load air permeability is 2300 mm / s or less, the better the burst resistance and the higher the bag breaking gas pressure.

本発明のエアバッグ用織物の織糸の引抜抵抗は50〜250N/cm/cmであることが好ましい。この引抜抵抗とは、後述の測定方法に示すように、織物から織糸を引き抜く際に、経糸と緯糸が交差する織交点部を15箇所分引き抜く場合の引抜力の計測から、経緯1cm分の織交点部を引抜く応力を求めたものである。織糸の引抜抵抗が50N/cm/cm以上で大きいほど、織物特定荷重伸び率の和が小さいこととあいまって縫目通気抑制に寄与する。加工技術およびコスト等を考慮すると、引抜抵抗を250N/cm/cmより大きくすることは困難である。   The pull-out resistance of the woven yarn of the airbag fabric of the present invention is preferably 50 to 250 N / cm / cm. This pull-out resistance is, as shown in the measurement method described later, from the measurement of pull-out force when pulling out 15 woven intersection points where warp and weft intersect when pulling out the woven yarn from the woven fabric. The stress for pulling out the weaving intersection is obtained. The greater the pull-out resistance of the weaving yarn is 50 N / cm / cm or more, the smaller the sum of the specific load elongations of the fabric, the more contributing to the suppression of stitch ventilation. Considering the processing technique and cost, it is difficult to make the drawing resistance larger than 250 N / cm / cm.

本発明のエアバッグ用織物を製織する際に用いる原糸の糸−糸摩擦力(F)が1.5〜3.0であることが好ましい。より好ましくは1.8〜2.5である。原糸の糸−糸摩擦力が1.5以上であれば織物の特定荷重伸度の増大を抑制し、引抜抵抗の増大に寄与し、縫目通気を抑止する。原糸の糸−糸摩擦力が3.0以下であれば過剰な織糸拘束で織物の引張り強度を低下させることが無い。ここでいう糸−糸摩擦力は、後述する測定方法に示すように、3回撚り合わせの引抜抵抗を示すものであり、糸条を3回撚り掛けした際の給糸側荷重(T1)を1.4Nに調整して引き取り張力(T2)を計測し、T2とT1の比(T2/T1)を糸−糸摩擦力(F)とした。   The yarn-thread friction force (F) of the raw yarn used when weaving the airbag fabric of the present invention is preferably 1.5 to 3.0. More preferably, it is 1.8-2.5. If the yarn-thread frictional force of the raw yarn is 1.5 or more, the increase in the specific load elongation of the fabric is suppressed, which contributes to an increase in the pulling resistance and suppresses the stitch ventilation. If the yarn-yarn frictional force of the original yarn is 3.0 or less, the tensile strength of the fabric will not be lowered by excessive weaving yarn restraint. The yarn-yarn frictional force here indicates the pulling resistance of three times twisting as shown in the measurement method described later, and the yarn supply side load (T1) when the yarn is twisted three times. The take-up tension (T2) was measured after adjusting to 1.4 N, and the ratio of T2 to T1 (T2 / T1) was defined as the thread-thread friction force (F).

本発明のエアバッグ用織物をASTM D4032に従って測定した剛軟度は3.0〜7.5Nであることが好ましい。剛軟度が7.5N以下であることにより、エアバッグに人体が突入する場合に、人体の曲面を柔軟に覆い、比較的大面積で突入衝撃を受け止め始めるようになる。そのため、突入エネルギーの受け止め時期は早まり、早期拘束型のエアバッグとすることができる。剛軟度は、構成する織糸の総繊度が細ければ概ね小さくなり、構成する織糸の単糸繊度も小さい方が好ましい。織物の単位面積あたり重量にも関係し、織物の単位面積あたり重量が小さいほど、剛軟度は概ね小さい。本発明における上記繊度および単位面積あたり重量を考慮すると、剛軟度を3.0Nより小さくすることは困難である。また、早期拘束は、織物の特定荷重伸度が小さい方が良好であり、織物の特定荷重伸度が小さいことと剛軟度が小さいこととが相俟った相乗効果である。   The bending resistance of the airbag fabric of the present invention, measured according to ASTM D4032, is preferably 3.0 to 7.5N. Since the bending resistance is 7.5 N or less, when the human body enters the airbag, the curved surface of the human body is covered flexibly and starts receiving a rush impact in a relatively large area. Therefore, the time for receiving the rush energy is advanced, and an early restraining airbag can be obtained. The bending resistance is generally small when the total fineness of the constituent yarn is thin, and the single yarn fineness of the constituent yarn is preferably small. It is also related to the weight per unit area of the woven fabric. The smaller the weight per unit area of the woven fabric, the lower the bending resistance. Considering the fineness and weight per unit area in the present invention, it is difficult to make the bending resistance less than 3.0N. In addition, the early restraint is better when the specific load elongation of the fabric is small, and is a synergistic effect in which the specific load elongation of the fabric is small and the bending resistance is small.

本発明に用いる合成繊維は可塑化効果を有する化合物を含有することが好ましい。合成繊維がポリアミド繊維の場合は、ポリアミドオリゴマーを適宜含有することが好ましい。とりわけヘキサメチレンジアミンとアジピン酸が環状にひとつずつ縮合した環状ユニマーを全アミド結合単位に対して0.1〜3.0%含有することが好ましい。いっそう好ましくは0.5〜2.5%である。ここで、環状ユニマーと呼称する化合物を下記式(1)に示す。
ポリアミドオリゴマーの中でも、この環状ユニマーが、低分子量で、かつ、環状であることにより、可塑化効果を有しつつ緩慢に繊維表面にブリードアウトするために有効である。一方で、水処理などで抽出されきってしまうことがないため織物加工上も都合が良い。
The synthetic fiber used in the present invention preferably contains a compound having a plasticizing effect. When the synthetic fiber is a polyamide fiber, it is preferable to appropriately contain a polyamide oligomer. In particular, it is preferable to contain 0.1 to 3.0% of a cyclic unimer obtained by condensing hexamethylenediamine and adipic acid one by one cyclically with respect to all amide bond units. More preferably, it is 0.5 to 2.5%. Here, a compound called a cyclic unimer is represented by the following formula (1).
Among the polyamide oligomers, this cyclic unimer is effective for slowly bleeding out to the fiber surface while having a plasticizing effect because of its low molecular weight and cyclicity. On the other hand, since it is not completely extracted by water treatment etc., it is convenient also in textile processing.

環状ユニマーは、ポリアミド繊維の滑りを改善し、柔軟性を維持する。ポリアミド化合物中の環状ユニマー成分比が0.1%以上であれば、繊維表面に付着して織物に残留する比較的微量の油成分とあいまって、環状ユニマー成分が持続的に緩慢なブリードアウトをする。そのため、高密度織物中で拘束しあって相互に高荷重がかかるような織糸の引張強度や引裂き強度の低下が抑制できる。さらに、可塑化作用で粗硬になることなく柔軟性をよく保っている。したがって、熱経時後に粗硬になることなく、経緯糸が強固に拘束しあう織物であっても熱経時後の引裂き強力を維持することができる。エアバッグによっては、ベントホールを設けてベントホール部のガス放出が衝突エネルギー吸収を制御する機能の一部となるような設計をすることがある。このとき、環境経時後の引裂き強力が維持できていれば、エアバッグのベントホール部からガス流出する際に、基布が裂けてしまうようなことがない。したがって、エアバッグのエネルギー吸収機能を安定して維持することに寄与する。
環状ユニマーを主成分としたオリゴマーは、ポリアミド6・6溶融ポリマーから昇華物粉体として得たオリゴマーを再結晶で精製し、得ることができる。また、ポリアミド繊維を紡糸する際に、繊維中に適宜含有するように添加量制御することができる。
アミド化合物中の環状ユニマー成分比が3.0%以内であれば、高温環境を経た後の織物の織糸引抜抵抗が減少しすぎることなく、エアバッグとしての耐圧性を損なうことがない。
Cyclic unimers improve polyamide fiber slip and maintain flexibility. If the ratio of the cyclic unimer component in the polyamide compound is 0.1% or more, the cyclic unimer component has a slow and slow bleed-out, combined with a relatively small amount of oil component that remains on the fabric and adheres to the fiber surface. To do. For this reason, it is possible to suppress a decrease in the tensile strength and tear strength of the woven yarn that are restrained in the high-density fabric and are subjected to a high load. Further, the plasticity is well maintained without becoming coarse and hard. Therefore, the tear strength after the heat aging can be maintained even if the woven fabric is strongly constrained by the warp yarn without becoming hard after the heat aging. Some airbags may be designed so that vent holes are provided so that gas emission from the vent hole is part of the function of controlling collision energy absorption. At this time, if the tearing strength after environmental aging can be maintained, the base fabric will not be torn when the gas flows out from the vent hole portion of the airbag. Therefore, it contributes to stably maintaining the energy absorption function of the airbag.
An oligomer mainly composed of a cyclic unimer can be obtained by recrystallizing an oligomer obtained as a sublimation powder from a polyamide 6/6 melt polymer. Further, when the polyamide fiber is spun, the amount of addition can be controlled so that it is appropriately contained in the fiber.
If the ratio of the cyclic unimer component in the amide compound is within 3.0%, the resistance to pulling out the woven fabric after passing through a high temperature environment will not be excessively reduced, and the pressure resistance as an airbag will not be impaired.

アミド化合物中の環状ユニマー成分比は織物をNMR溶媒に溶解して13C−NMRスペクトル解析から求めた。例えばポリアミド6・6ポリマーの場合、スペクトル解析は基本的にデイヴィスの提案(R.D.Davis et al.,Macromolecules,33巻(2000),7088‐7092)に従った。ポリアミド6・6ポリマー中のヘキサメチレンジアミン骨格のアミド窒素結合位からβ位にある炭素は、3種のケミカルシフトを示す。すなわち、(1)環状ユニマーの炭素、(2)鎖状ポリアミド中でトランス型コンフォメーションの炭素および環状ユニマーを除く環状ポリアミド中の炭素、(3)鎖状ポリアミド中でシス型コンフォメーションの炭素である。(1)のNMRピーク強度について、(2)と(3)のピーク強度合計を基準にした百分率(%)で求めたものをポリアミド化合物中の環状ユニマー成分比とした。NMRスペクトルで繊維の油剤成分のスペクトルが重なって邪魔になる場合は、繊維の油剤成分を有機溶媒にて抽出して除いてスペクトル比較解析すればよい。 The cyclic unimer component ratio in the amide compound was determined from 13 C-NMR spectrum analysis by dissolving the fabric in an NMR solvent. For example, in the case of polyamide 6.6 polymer, the spectral analysis basically followed the Davis proposal (RD Davis et al., Macromolecules, 33 (2000), 7088-7092). Carbon in the β position from the amide nitrogen bond position of the hexamethylenediamine skeleton in the polyamide 6 · 6 polymer exhibits three types of chemical shifts. That is, (1) carbon in cyclic unimer, (2) carbon in trans-type conformation in chain polyamide and carbon in cyclic polyamide excluding cyclic unimer, (3) carbon in cis-type conformation in chain polyamide. is there. Regarding the NMR peak intensity of (1), what was determined by percentage (%) based on the total peak intensity of (2) and (3) was taken as the cyclic unimer component ratio in the polyamide compound. When the spectrum of the oil component of the fiber overlaps the NMR spectrum, the fiber oil component of the fiber may be extracted with an organic solvent and removed, and the spectra may be compared.

なお、上記する以外に、本発明の効果を損なわない範囲であれば、かかる繊維には原糸の製造工程や加工工程での生産性あるいは特性改善のために通常使用される各種添加剤を含んでいてもよい。例えば熱安定剤、酸化防止剤、光安定剤、平滑剤、帯電防止剤、可塑剤、増粘剤、顔料、難燃剤などを含有する原糸を織糸として用いることができる。   In addition to the above, as long as the effect of the present invention is not impaired, such fibers include various additives that are usually used for improving the productivity or characteristics in the production process and processing process of the raw yarn. You may go out. For example, a raw yarn containing a heat stabilizer, an antioxidant, a light stabilizer, a smoothing agent, an antistatic agent, a plasticizer, a thickener, a pigment, a flame retardant, and the like can be used as the weaving yarn.

本発明の織物は、製織にあたって、経糸などに集束性向上のための糊を用いてもよい。また、経糸集束性向上の油剤成分を付与してもよい。ここで付与された油剤成分は、最終的にエアバッグ用織物にわずかに含有されてもよいが、摩擦抵抗が小さすぎて織糸の引抜抵抗を下げないようにすべきであり、製織後の精練工程で概ね除去することが好ましい。   In the weaving of the woven fabric of the present invention, a glue for improving the converging property may be used for warp. Moreover, you may provide the oil agent component of a warp yarn convergence improvement. The oil component added here may finally be slightly contained in the airbag fabric, but the frictional resistance should be too small so as not to lower the pull-out resistance of the weaving yarn. It is preferable to remove roughly in the scouring step.

本発明のエアバッグ用織物は、繊維をウォータージェット、エアジェット、レピア織機や多相織機などで製織して得ることができる。織物組織としては、平織、綾織、朱子織およびこれらの変化織や組織混合した織物、多軸織などが好ましいが、これらの中でも、機械的特性に優れている点および地薄な点から平織物が特に好ましい。さらに、袋織でバッグ形状に織製してもよい。   The airbag fabric of the present invention can be obtained by weaving fibers with a water jet, an air jet, a rapier loom or a multiphase loom. As the woven fabric structure, plain weave, twill weave, satin weave, woven fabric mixed with these, woven fabric mixed with the structure, multiaxial weaving, etc. are preferable, but among these, the plain weave is excellent in terms of mechanical properties and thin. Is particularly preferred. Further, the bag may be woven into a bag shape.

得られた織物は、経糸糊剤を用いた場合は、精練洗浄される。また、過剰な油剤成分や汚れの除去の精練洗浄をすることができる。精練工程では、温水浴でアルカリ洗浄や界面活性剤洗浄が行われる。この精練工程はできるだけ低温で行い、合成繊維の収縮力発現を抑えておくことが好ましい。また、むしろ、精練せずに織物に仕上げることも好ましい。ウォータージェット織機によって油剤成分が概ね脱落し、油剤成分付着量が適度になった織物を精練せずにエアバッグ用織物に仕上げるのも好ましい。本発明に必要な含有物の量を制御しやすいし、経済的でもある。   The obtained fabric is scoured and washed when a warp paste is used. In addition, scouring and cleaning can be performed to remove excess oil component and dirt. In the scouring process, alkali cleaning and surfactant cleaning are performed in a warm water bath. This scouring step is preferably performed at as low a temperature as possible to suppress the expression of the shrinkage force of the synthetic fiber. Rather, it is also preferable to finish the fabric without scouring. It is also preferable to finish the woven fabric in which the oil component is almost removed by the water jet loom so that the amount of the oil component adherence is moderate to a fabric for an air bag without scouring. It is easy to control the amount of inclusions necessary for the present invention and is economical.

次いで、織物を乾燥し、熱固定を行ってエアバッグ用織物に仕上げることができる。織物の乾燥および熱固定では織物幅方向と経糸方向の送りについてそれぞれ収縮量や張力を制御することが好ましい。たとえば、テンター乾燥機などが用いられる。織物の引張試験における特定荷重伸び率を低く保つためには、加熱処理しながらも収縮するに任せず張力をかけながら加工することが好ましい。加熱温度は高温で十分収縮力を発現させた方が織糸の拘束構造が発達するため、多段の熱処理を行い、最終的に180℃以上とすることが好ましい。また、緊張加熱処理はテンター法など経緯方向に張力制御して緊張加工できる方法が好ましい。特に、経緯とも収縮条件よりも拡張条件が好ましい。経方向送りはオーバーフィードをできるだけ少なく、また、緯方向は幅入れの収縮条件ではなく、逆に、拡張方向の緊張条件が好ましい。経緯の拡張量は、寸法比の経緯合計において、マイナス2%(収縮)以上でプラス5%(拡張)程度までの拡張条件が好ましい。さらには、加熱処理直後も張力をかけながら急速冷却することが好ましい。特に、冷却時には、定長保持では織物がたるむ挙動があり、張力を保持して冷却することで、織糸の相互拘束構造が強固になり、相互に織目を覆うため、境界部の負荷後通気度を下げることに寄与する。冷却においてもテンター法など経緯方向に張力制御して緊張加工できる方法が好ましく、0%を超え5%程度までの拡張条件が好ましい。   The fabric can then be dried and heat set to give an airbag fabric. In the drying and heat setting of the woven fabric, it is preferable to control the shrinkage and the tension for the feeding in the fabric width direction and the warp direction, respectively. For example, a tenter dryer or the like is used. In order to keep the specific load elongation rate in the tensile test of the woven fabric low, it is preferable to carry out processing while applying tension without leaving it to shrink even during heat treatment. When the heating temperature is high and the shrinkage force is sufficiently developed, the weaving yarn restraint structure develops. Therefore, it is preferable to perform a multi-stage heat treatment and finally set the temperature to 180 ° C. or higher. Further, the tension heating treatment is preferably a method such as a tenter method that allows tension processing by controlling the tension in the direction of the weft. In particular, the expansion condition is preferable to the contraction condition for the background. The warp direction feed has as little overfeed as possible, and the weft direction is not a contraction condition for width insertion, but is preferably a tension condition in the expansion direction. The expansion amount of the background is preferably an expansion condition of minus 2% (shrinkage) or more to about 5% (expansion) in the total dimension ratio history. Furthermore, it is preferable to perform rapid cooling while applying tension immediately after the heat treatment. In particular, during cooling, there is a behavior that the fabric sags when holding at a constant length. By holding and cooling the fabric, the mutual restraint structure of the weaving yarn becomes stronger, and the weaves are covered with each other. Contributes to lowering the air permeability. Also in the cooling, a method such as a tenter method in which tension processing can be performed by controlling the tension in the weft direction is preferable, and expansion conditions exceeding 0% to about 5% are preferable.

本発明のエアバッグ用織物は、平滑剤や帯電防止剤を主成分とした整経油剤や製織工程油剤が残留するなどして油剤成分として織物に対して0.01から1.2重量%含有することが好ましい。0.05から1.0重量%含有することがより好ましい。一層好ましくは0.1から0.7重量%である。ここにいう油剤成分とは、有機溶媒ヘキサンにて織物から抽出されるものであり、織物の重量に対する抽出物の重量の百分率である。油剤成分の含有量が0.01重量%以上であれば、織物の引裂き強力を維持、向上させることができる。特に、油剤成分中の界面活性剤成分は、ポリアミド繊維中の環状ユニマーのブリードアウトを助け、ポリアミド繊維の表面において、環状ユニマーと油剤成分が一体となって繊維同士のすべりを適度に促し、引張強度や引裂き強度の維持、向上に寄与する。すなわち、エアバッグ用織物として展開時のガス耐圧性の向上が期待できるため、展開時のバースト防止に寄与する。一方で、油剤成分の織物中含有量を1.2重量%以下とし、付与量と精練除去量から含有量を制御し、織物中の織糸の引抜抵抗を適切に維持することができる。また、織物が燃焼性試験(FMVSS302)において不合格にならないように過剰な油剤成分の含有量にならないように制御することが出来る。   The airbag fabric according to the present invention contains 0.01 to 1.2% by weight as an oil component with respect to the fabric as a warping oil or a weaving process oil mainly containing a smoothing agent or an antistatic agent remains. It is preferable to do. It is more preferable to contain 0.05 to 1.0% by weight. More preferably, it is 0.1 to 0.7% by weight. The oil agent component referred to here is extracted from the fabric with the organic solvent hexane, and is the percentage of the weight of the extract with respect to the weight of the fabric. If the content of the oil component is 0.01% by weight or more, the tear strength of the fabric can be maintained and improved. In particular, the surfactant component in the oil component helps the bleed out of the cyclic unimer in the polyamide fiber, and on the surface of the polyamide fiber, the cyclic unimer and the oil component integrate together to moderately promote the slip between the fibers and pull Contributes to maintaining and improving strength and tear strength. That is, since improvement in gas pressure resistance at the time of deployment as an airbag fabric can be expected, it contributes to prevention of burst at the time of deployment. On the other hand, the content of the oil component in the woven fabric can be 1.2% by weight or less, and the content can be controlled from the applied amount and the scouring removed amount, and the drawing resistance of the woven yarn in the woven fabric can be appropriately maintained. Moreover, it can control so that it may not become content of an excess oil agent component so that a textile fabric may not be rejected in a flammability test (FMVSS302).

本発明のエアバッグ用織物は、樹脂やエラストマーのコーティングを施さずエアバッグに用いられることができる。織物には最終的にカレンダー加工を施しても良いが、引裂き強力の低下を招かぬような注意が必要であり、好ましくはカレンダー加工を施さずに用いることができる。また、本発明のエアバッグ用織物は、さらに樹脂やエラストマーのコーティングを施してエアバッグに用いられることができる。特に、コーティング量が5〜25g/m2程度の軽量コーティングが好ましく、軽量コーティングで非通気性を獲得することができる。 The airbag fabric of the present invention can be used for an airbag without being coated with a resin or an elastomer. The fabric may be finally calendered, but care must be taken not to cause a reduction in tear strength, and the fabric can be preferably used without calendering. The airbag fabric of the present invention can be used for an airbag by further coating with a resin or an elastomer. In particular, a lightweight coating with a coating amount of about 5 to 25 g / m 2 is preferable, and non-breathability can be obtained with the lightweight coating.

本発明のエアバッグ用織物は裁断縫製されて、運転席用エアバッグ、助手席用エアバッグ、後部座席用エアバッグ、側面用エアバッグ、膝部用エアバッグ、カーシート間エアバッグ、側面用カーテン状エアバッグ、後部ウィンドウ用カーテンエアバッグ、歩行者保護エアバッグなどに適宜使用することができる。さらに、上記エアバッグにおいては、インフレーター取り付け口やベントホール部分などに用いられる補強布またはバッグ展開形状を規制する部材を、本発明のエアバッグ用織物とすることができる。またエアバッグの縫製にあたっては、打抜き、溶断、または裁断によって形成された1枚もしくは複数枚のかかるエアバッグ用織物を用い、その周縁部を縫製してエアバッグを形成することができ、さらには周縁部の縫製が、一重または二重の合せ縫製のみで構成されたエアバッグを形成することができる。
また、本発明のエアバッグ用織物は、袋織物として織製され、接結部の外周を裁断されてエアバッグとして使用することができる。
本発明のエアバッグは、上記のエアバッグと火薬や推薬を用いたインフレーターと組み合わせてエアバッグモジュールとすることができる。
The airbag fabric of the present invention is cut and sewn to provide a driver airbag, a passenger airbag, a rear airbag, a lateral airbag, a knee airbag, an inter-car seat airbag, and a lateral airbag. It can be used as appropriate for curtain airbags, rear window curtain airbags, pedestrian protection airbags, and the like. Furthermore, in the airbag, a reinforcing fabric used for an inflator attachment port, a vent hole portion, or the like, or a member that regulates a bag deployment shape can be used as the airbag fabric of the present invention. In the sewing of the airbag, one or a plurality of such airbag fabrics formed by punching, fusing, or cutting can be used to sew the peripheral portion to form the airbag. It is possible to form an airbag in which the peripheral portion is sewn only by single or double stitching.
Further, the airbag fabric of the present invention is woven as a bag fabric, and can be used as an airbag by cutting the outer periphery of the connecting portion.
The airbag of the present invention can be combined with the above-described airbag and an inflator using explosives or propellants to form an airbag module.

次に、実施例および比較例によって本発明をさらに詳細に説明する。しかし、本発明はこれらの実施例のみに限定されるものではない。
実施例中のエアバッグ用織物の特性評価などについては下記の方法にて実施した。なお、JISは1999年度版を用いた。
(1)原糸の繊度、引張強さ、引張伸び率、沸水収縮率:JIS L1013に従って計測した。
(2)原糸の一定荷重時伸び率:JIS L1017 7.7に準じて評価した。
(3)糸−糸摩擦力:糸条を3回撚り掛けして互いに接触させ、給糸側の荷重(T1)を1.4Nに調整して撚り掛けを行い、引き取り張力T2(N)を計測し、T2/T1を摩擦力とした。測定時の引き取り速度は3cm/minとした。
Next, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited only to these examples.
About the characteristic evaluation of the textile fabric for airbags in an Example, it implemented by the following method. The JIS version for 1999 was used.
(1) Fineness of yarn, tensile strength, tensile elongation, boiling water shrinkage: measured according to JIS L1013.
(2) Elongation rate under constant load of raw yarn: Evaluated according to JIS L1017 7.7.
(3) Yarn-yarn frictional force: Twist the yarn three times to bring them into contact with each other, adjust the yarn supply side load (T1) to 1.4 N, twist the yarn, and set the take-up tension T2 (N). Measurement was performed, and T2 / T1 was defined as a frictional force. The take-up speed during the measurement was 3 cm / min.

(4)織物目付け(単位面積当たり重量):10cm×10cmの試料を用い、JIS L1096 附属書3に準じて行なった。
(5)分解糸総繊度:JIS L1096 附属書14に準じて、織物を分解し、経緯の分解糸につき試料長を25cmとして計測した。
(6)分解糸引張り特性:JIS L1013 8.5.1に準じ、20回/25cmの撚り掛けをし、つかみ間隔25cmで引張り速度30cm/minの引張り試験を実施し、分解糸の引張強さ(N)を測定した。分解糸の一定荷重時伸び率(%)は、荷重4.7cN/dtexにおける伸度を求めた。
(7)分解糸クリンプ率:JIS L1096 附属書12に従って得た。
(4) Fabric weight per unit area (weight per unit area): Using a sample of 10 cm × 10 cm, it was performed according to JIS L1096 Annex 3.
(5) Total fineness of disassembled yarn: The woven fabric was disassembled according to JIS L1096 Annex 14, and the measured length of the disassembled yarn was measured with a sample length of 25 cm.
(6) Decomposed yarn tensile properties: according to JIS L1013 8.5.1, twisted 20 times / 25 cm, conducted a tensile test at a pulling rate of 30 cm / min with a grip interval of 25 cm, and the tensile strength of the decomposed yarn (N) was measured. The elongation at constant load (%) of the decomposed yarn was determined by measuring the elongation at a load of 4.7 cN / dtex.
(7) Degraded yarn crimp rate: obtained according to JIS L1096 Annex 12.

(8)織糸引抜抵抗:図4の(a)に引抜抵抗測定試料を示す。織糸引抜抵抗P(N/cm/cm)は、織物を縦4cm×横6cmに切り出し、横方向6cm長の織糸15本分を残して横方向の織糸を除去し、横端より2cm、3cm、4cmの3箇所の縦の織糸をそれぞれ1本ずつの引張り試料とした。次に、図4の(b)に示したように、縦の織糸引張試料1本ずつを25mm長で把持するチャック(21)で把持し、一方、横方向の織糸が残っている織物部について、引抜く縦の織糸を15mm幅でまたぐようにスペーサー(23)を入れてチャック(22)で把持し、引張試験機にて10mm/minの速度で引張って引抜いた時の最大の力f(N)を求めた。この測定を織物の経緯の両方向とも実施した。下記式にて経糸が1cm幅の相当本数で緯糸と1cm幅の相当本数で直交する場合の抵抗値として算出した。緯糸方向についても同様に算出した。
P=f(Dx/2.54)/(15×2.54/Dy)
(ただし、fは測定値(N)、Dxは測定部分の織密度(本/2.54cm)、Dyは測定部分と垂直方向の織密度(本/2.54cm)、Pは引抜抵抗値(N/cm/cm)である。なお、Dx、Dyがほぼ同じ密度であれば平均の密度を代入してもかまわない。)
(8) Pull-out resistance of woven yarn: FIG. 4 (a) shows a pull-out resistance measurement sample. The weaving pull-out resistance P (N / cm / cm) is obtained by cutting the woven fabric into a length of 4 cm × width of 6 cm, removing the weaving yarn in the horizontal direction, leaving 15 woven yarns with a length of 6 cm in the horizontal direction, and 2 cm from the lateral end. Three longitudinal woven yarns of 3 cm and 4 cm were used as one tensile sample. Next, as shown in FIG. 4 (b), each of the longitudinal weaving yarn tensile samples is gripped by a chuck (21) gripping with a length of 25 mm, while the fabric in which the transverse weaving yarn remains. For the part, the spacer (23) is inserted so as to straddle the vertical weaving yarn with a width of 15 mm, and it is gripped by the chuck (22), and is pulled at a speed of 10 mm / min with a tensile tester. The force f (N) was determined. This measurement was carried out in both directions of the fabric background. The resistance value was calculated when the warp yarn was orthogonal to the weft and the equivalent number of 1 cm in the following formula. The same calculation was made for the weft direction.
P = f (Dx / 2.54) / (15 × 2.54 / Dy)
(Where f is the measured value (N), Dx is the weave density of the measurement part (mains / 2.54 cm), Dy is the weave density in the direction perpendicular to the measurement part (mains /2.54 cm), and P is the pulling resistance value ( (N / cm / cm) Note that if Dx and Dy have substantially the same density, an average density may be substituted.)

(9)織物の引張強さと引張伸び率:JIS L1096 8.12.1 A法(ストリップ法)に準じて行なった。織物特定荷重伸び率(%)は、300N/cm荷重における伸度を求めた。
(10)織密度:JIS L1096 附属書11Aに準じ、デンシメータを使用した。
(11)油剤成分:織物試料10gを300mlのn−ヘキサンで8時間ソックスレー抽出した。n−ヘキサン抽出分の乾固重量から試料中の油剤成分量(重量%)を求めた。
(9) Tensile strength and tensile elongation of fabric: JIS L1096 8.12.1 A method (strip method). The fabric specific load elongation (%) was determined by the elongation at a load of 300 N / cm.
(10) Weave density: A densimeter was used according to JIS L1096 Annex 11A.
(11) Oil component: 10 g of fabric sample was Soxhlet extracted with 300 ml of n-hexane for 8 hours. The amount (% by weight) of the oil component in the sample was determined from the dry weight of the n-hexane extract.

(12)環状ユニマー:織物をNMR溶媒に溶解し、13C−NMRにより測定した。溶液は完溶し、pH調整をせず測定した。13C−NMRスペクトルはBRUKER社製のAVANCE(II)400型NMR装置を使用し、以下の条件にて測定した。
NMR条件
試料濃度:100mg/NMR溶媒0.8ミリリットル
NMR溶媒:ヘキサフルオロイソプロパノール−d2
測定温度:25℃
パルス繰り返し間隔:2秒
積算回数:18000回
化学シフト基準:ヘキサフルオロイソプロパノール−d2のメチン炭素のピークトップとなる分岐中心ピークを71.28ppmとした。得られたポリアミド6・6および含有される環状ユニマーについて、窒素結合β位炭素(C2)のピーク帰属を表1に示す。
(12) Cyclic unimer: The woven fabric was dissolved in an NMR solvent and measured by 13 C-NMR. The solution was completely dissolved and measured without adjusting the pH. The 13 C-NMR spectrum was measured using an AVANCE (II) 400 type NMR apparatus manufactured by BRUKER under the following conditions.
NMR condition Sample concentration: 100 mg / NMR solvent 0.8 ml NMR solvent: hexafluoroisopropanol-d2
Measurement temperature: 25 ° C
Pulse repetition interval: 2 seconds Integration frequency: 18000 times Chemical shift criteria: The branching center peak that is the peak top of the methine carbon of hexafluoroisopropanol-d2 was 71.28 ppm. Table 1 shows the peak assignment of nitrogen-bonded β-position carbon (C2) for the obtained polyamide 6 · 6 and the cyclic unimer contained.

環状ユニマー成分比(A)は、それぞれのピークを計算範囲で積算したピーク強度Iから次の式にて百分率を算出した。
A=I(C2)/(I(2)+I(2cis))×100
For the cyclic unimer component ratio (A), the percentage was calculated by the following formula from the peak intensity I obtained by integrating the respective peaks in the calculation range.
A = I (C2) / (I (2) + I (2cis)) × 100

(13)特定縫目負荷通気度:織物から縦38cm×横15cmを2枚切り出し、コート布であればコート面を互いに向かい合わせで、長辺の端より1cmの部分より1350dtexの撚り糸である縫製糸にて50回/10cmで本縫いにて縫製し縫い糸両端を結ぶ。これを、織物の経方向合わせの縫合と緯方向合わせの縫合で試料作成した。その後、A&D社製引っ張り試験機において、100mm/minの速度にて引っ張り、1500Nの荷重をかけ、一旦取り出した後、24時間後に動的通気度を測定した。動的通気度はTEXTEST社製FX3350を用い、充填圧300kPa、充填容量400ccにて測定を実施し、50kPa時の通気度を測定した。袋織では、直線の接結部を15cm含む試料を切り出し、同様に1500Nの引張荷重の後に動的通気度の50kPa通気度を測定した。   (13) Specific seam load air permeability: Cut out 38cm x 15cm in width from the fabric, and if it is a coated fabric, the coated surfaces are facing each other, and the sewing is a 1350 dtex twist thread from the 1 cm portion from the end of the long side The thread is sewn with 50 stitches / 10cm at the main stitch, and both ends of the sewing thread are tied. A sample was prepared by stitching in the warp direction and stitching in the weft direction of the fabric. Thereafter, the tensile tester manufactured by A & D was pulled at a speed of 100 mm / min, a load of 1500 N was applied, and once taken out, the dynamic air permeability was measured 24 hours later. The dynamic air permeability was measured using FX3350 manufactured by TEXTEST, with a filling pressure of 300 kPa and a filling capacity of 400 cc, and the air permeability at 50 kPa was measured. In the bag weaving, a sample containing a straight connecting portion of 15 cm was cut out, and similarly, after a tensile load of 1500 N, a dynamic air permeability of 50 kPa was measured.

(14)剛軟度:ASTM D4032−94にしたがって測定した。
(15)サイドカーテンエアバッグの作製:平織りのエアバッグ用織物では、図1に示す形状で容量24Lのサイドカーテンエアバッグを、縫糸が235dtex/2×3、運針数が5.0針/cmで4mm幅の2列本縫いで縫製した。一方、同様のサイドカーテンエアバッグを袋織で得た。袋をとじる接結部の織組織は、図3に示したように、袋織り→2/2斜子(4本)→袋織り(4本風通を含む)→3/3斜子(6本)→袋織りの順で変化している。袋部の二重織の2枚の織組織のそれぞれは1/1の平織りであり、袋の接結部の外側で膨張しない部分は袋織の二重織を1%ほど部分接結したものである。
サイドカーテンエアバッグにはインナーチューブを挿入し、展開ガスをリア端のガス供給口からフロント膨張部とリア膨張部へ誘導するようにした。インナーチューブはポリアミド6・6繊維700dtex/105fによる経緯38×38本/2.54cmの平織り布で、20g/m2のシリコーンコーティング布を用いた。この布をガス供給口が装入できるような口径で筒状にバイアス縫製した。縫製は1400dtexの縫い糸で、36本/10cmの運針数で7mm幅の2列の二重環縫いで行なった。インナーチューブの先端は開口であり、さらに、縫製部を上側として、リア膨張部のガス供給の切り欠き口を下側に向けて設けた。
(14) Bending softness: Measured according to ASTM D4032-94.
(15) Production of side curtain airbag: For a plain woven fabric for an airbag, a side curtain airbag with a capacity of 24 L in the shape shown in FIG. 1 is used, the sewing thread is 235 dtex / 2 × 3, and the number of stitches is 5.0 stitches / cm. Then, it was sewn by two rows of main stitches having a width of 4 mm. On the other hand, a similar side curtain airbag was obtained by bag weaving. As shown in FIG. 3, the woven structure of the connecting portion that binds the bag is as follows: bag weaving → 2/2 iterator (4) → bag weaving (including 4 air vents) → 3/3 iterator (6 Book) → bag weaving. Each of the two woven structures of the double weave of the bag part is a 1/1 plain weave, and the part that does not expand outside the connecting part of the bag is a part of the double weaving of the bag weaving about 1%. is there.
An inner tube was inserted into the side curtain airbag to guide the deployment gas from the gas supply port at the rear end to the front inflating part and the rear inflating part. The inner tube was a plain weave fabric with a background of 38 × 38 fibers / 2.54 cm made of 700 dtex / 105 f of polyamide 6.6 fiber, and a silicone-coated fabric of 20 g / m 2 was used. The cloth was bias-sewn in a cylindrical shape with such a diameter that the gas supply port could be inserted. Sewing was carried out by a double ring stitch of two rows of 7 mm width with a number of stitches of 36/10 cm with a sewing thread of 1400 dtex. The tip of the inner tube was an opening, and further, the sewing part was provided on the upper side, and the gas supply notch for the rear expansion part was provided on the lower side.

(16)展開速度:上記(15)項に記載したサイドカーテンエアバッグを鉛直方向(図1における上下方向)でロールに巻き上げ、ガス供給口にホースバンドで取り付けて展開に備えた。マイクロシス社製CGSシステムを用い、ガス供給元タンクの圧力6MPa、容量1Lで、オリフィス0.6インチとし、ヘリウムガスをバッグに瞬時供給した。展開が完了するまでの時間を、バッグが完全展開した姿に正対して観測できる位置で高速カメラ撮影し、計測した。展開完了の判定は、バッグの袋部境界線内の面積が最大面積に到達する直前の98%面積に達した時間を展開完了時間として展開速度とした。470dtex織物のケースを100として相対値にて評価した。   (16) Deployment speed: The side curtain airbag described in the above section (15) was wound around a roll in the vertical direction (up and down direction in FIG. 1) and attached to the gas supply port with a hose band to prepare for deployment. Using a CGS system manufactured by Microsys, helium gas was instantaneously supplied to the bag with a gas supply source pressure of 6 MPa, a capacity of 1 L, an orifice of 0.6 inches. The time taken to complete the deployment was measured by shooting with a high-speed camera at a position where the bag could be observed in front of the fully deployed bag. The determination of the completion of deployment was defined as the deployment speed, with the time when the area within the bag boundary line of the bag reached 98% immediately before reaching the maximum area as the deployment completion time. The case of 470 dtex woven fabric was evaluated as a relative value with 100 as the case.

(17)高速バースト圧:平織りのエアバッグ織物では、図2の(a)に示す円形バッグで縫糸が235dtex/2×3、運針数が5.0針/cmの2列本縫いで縫製した。一方、同様の円形バッグを袋織で得た。織組織は上記(15)項に記載のサイドカーテンエアバッグと同様にした。バッグを図2の(b)〜(d)に示すように折畳み、テープで2箇所留めて折畳みを維持し、ガス供給口にホースバンドで取り付けて展開に備えた。マイクロシス社製CGSシステムを用い、ガス供給元タンクは圧力7.5MPa、容量1Lで、オリフィス0.6インチとし、ヘリウムガスをバッグに瞬時供給した。縫目からガスリークが無く展開圧に優れるものは高いバースト圧を示した。展開圧に劣るものは低圧で破袋した。ガスリークが著しいものは展開圧が立たず、破袋にもいたらなかった。   (17) High-speed burst pressure: In a plain-woven airbag fabric, the circular bag shown in FIG. 2 (a) was sewn by two-row main sewing with a sewing thread of 235 dtex / 2 × 3 and a needle movement number of 5.0 stitches / cm. . On the other hand, a similar circular bag was obtained by bag weaving. The woven structure was the same as that of the side curtain airbag described in the above item (15). The bag was folded as shown in FIGS. 2 (b) to 2 (d), held in place at two locations with tape, attached to the gas supply port with a hose band, and prepared for deployment. Using a CGS system manufactured by Microsys, the gas supply tank had a pressure of 7.5 MPa, a capacity of 1 L, an orifice of 0.6 inch, and helium gas was instantaneously supplied to the bag. The one with no gas leak from the seam and excellent in deployment pressure showed high burst pressure. Those inferior to the development pressure were broken at low pressure. The gas leak was remarkable, and there was no development pressure and no bag breakage.

(18)インパクター試験:FMVSS201に準じて実施した。上記(15)項記載のサイドカーテンエアバッグを2.0molストアードガスインフレーターのガス供給口にホースバンドで取り付け、展開させた。側面から展開膨張を観察し、膨張断面積が99%に達した時点に合わせて、ヘッドフォームを衝突させた。すなわち、サイドカーテンエアバッグの運転席保護エリアのクッション中心部に向けてカーテン面に対して垂線方向から、FMVSS201用ヘッドフォーム(重さ4.5kg)を24km/Hrで放出した。ヘッドフォーム内の加速度計により衝撃吸収の加速度(m/s2)の時間経過(msec)を計測した。図5に示した「加速度−時間」曲線の下部面積の中で、減速加速度が検出され始める拘束開始時点から全面積の15%の時点での時間を拘束立ち上がり時間とし、この時間の短さで早期拘束性を評価した。470dtex織物のケースを100として相対値にて示した。
(19)収納性:上記(15)項に記載のサイドカーテンエアバッグを鉛直方向にロールに巻いて外形寸法からロール断面積を出して、470dtex織物のケースを100として、相対値にて比較した。
(20)引裂き強力保持率:引裂き強力をJIS L10968.15.1 A−1により計測し、織物試料を120℃の熱風炉で500時間処理した前後で引裂き強力の保持率(%)を求めた。
(18) Impactor test: performed according to FMVSS201. The side curtain airbag described in (15) above was attached to a gas supply port of a 2.0 mol stored gas inflator with a hose band and developed. The expanded expansion was observed from the side, and the head foam was made to collide with the time when the expanded cross-sectional area reached 99%. That is, the headform for FMVSS201 (weight 4.5 kg) was discharged at 24 km / Hr from the direction perpendicular to the curtain surface toward the center of the cushion in the driver seat protection area of the side curtain airbag. The time course (msec) of acceleration (m / s 2 ) of shock absorption was measured with an accelerometer in the headform. In the area under the “acceleration-time” curve shown in FIG. 5, the time from the start of restraint at which deceleration acceleration is detected to the time of 15% of the total area is defined as the restraint rise time, and this time is short. Early restraint was evaluated. The case of 470 dtex fabric is shown as a relative value with 100 as the case.
(19) Storability: The side curtain airbag described in the above item (15) is wound around a roll in the vertical direction, the roll cross-sectional area is calculated from the outer dimensions, and the case of 470 dtex woven fabric is taken as 100 and compared in relative values. .
(20) Tear strength retention: Tear strength was measured according to JIS L1096815.1 A-1, and the tear strength retention (%) was determined before and after the fabric sample was treated in a 120 ° C. hot air oven for 500 hours. .

[実施例1]
ヘキサメチレンとアジピン酸の中和塩を含む水溶液に、重合触媒の次亜燐酸ナトリウムを加え、連続重合装置にて縮重合し、熱安定剤の沃化銅/沃化カリウム水溶液を添加して後期重合した後に樹脂チップとした。引き続いて固相重合を行い、95.5%硫酸への1g/100ml溶解液で相対粘度ηrが3.1のポリアミド6・6ポリマーを得た。
溶融紡糸の際に環状ユニマーを添加して紡糸し、繊度235dtex、フィラメント数72本のポリアミド6・6繊維を製織用原糸とした。原糸強度は10.0cN/dtexであり、一定荷重時伸び率は8.0%、沸水収縮率は10.3%であった。この原糸を撚糸せず、アクリル系糊付けを施し、ウォータージェットルームにて平織物を得た。次いで、この織物をソーダ灰10g/L含む70℃温水で精練し、次いでピンテンターを用いて経方向に2%のオーバーフィード、緯方向つまり幅方向に0%のストレッチで140℃の2分間、次いで、経方向に2%のオーバーフィード、緯方向つまり幅方向に0%のストレッチで180℃の2分間処理後急冷してヒートセットした。その後、15℃のシリンダー冷却を経て、さらに、常温のピンテンターにて経方向に1%の緊張フィード、緯方向つまり幅方向に1%のストレッチで4分間処理した。このようにして、経糸と緯糸の織密度がともに73.5本/2.54cmのノンコートエアバッグ用織物を得た。
[Example 1]
To the aqueous solution containing the neutralized salt of hexamethylene and adipic acid, sodium hypophosphite as a polymerization catalyst is added, polycondensed in a continuous polymerization apparatus, and an aqueous copper iodide / potassium iodide solution as a heat stabilizer is added. After polymerization, a resin chip was obtained. Subsequently, solid phase polymerization was carried out to obtain a polyamide 6.6 polymer having a relative viscosity ηr of 3.1 in a 1 g / 100 ml solution in 95.5% sulfuric acid.
During melt spinning, a cyclic unimer was added for spinning, and polyamide 6/6 fibers having a fineness of 235 dtex and 72 filaments were used as the weaving raw yarn. The raw yarn strength was 10.0 cN / dtex, the elongation at constant load was 8.0%, and the boiling water shrinkage was 10.3%. This raw yarn was not twisted, but was subjected to acrylic glue and a plain fabric was obtained in a water jet loom. Next, this fabric is scoured with 70 ° C. warm water containing 10 g / L of soda ash, then 2% overfeed in the warp direction using a pin tenter, 140 ° C. for 2 minutes at 0% stretch in the weft or width direction, and then Then, after 2 minutes of treatment at 180 ° C. with 2% overfeed in the warp direction and 0% stretch in the weft direction, that is, the width direction, it was rapidly cooled and heat set. Then, after cooling the cylinder at 15 ° C., it was further treated with a pin tenter at room temperature for 4 minutes with a tension feed of 1% in the warp direction and a stretch of 1% in the weft or width direction. In this way, a non-coated airbag fabric in which the weft density of warps and wefts was 73.5 pieces / 2.54 cm was obtained.

このエアバッグ用織物の織物分解糸(フィラメント糸)につき、総繊度、引張強さ、一定荷重時伸び率、さらに、織糸引抜抵抗、また、織物の引張強さ、特定荷重伸び率、織密度、特定縫目負荷通気度、剛軟度、単位面積当たり重量、油剤含有量、環状ユニマー含有量等を表2に示す。
このエアバッグ用織物からエアバッグを縫製し、展開速度評価、高速バースト圧評価、インパクター試験、収納性評価を行なった。この結果も表2に示す。
展開ガスのロス無く展開速度は速く、高速バースト圧評価では高圧の破袋圧を示し、インパクター試験では早期拘束挙動を示した。
For the fabric disintegrated yarn (filament yarn) of the airbag fabric, the total fineness, tensile strength, elongation at constant load, weaving pull resistance, fabric tensile strength, specific load elongation, weave density Table 2 shows specific seam load air permeability, bending resistance, weight per unit area, oil content, cyclic unimer content, and the like.
An airbag was sewn from the airbag fabric, and the deployment speed evaluation, high-speed burst pressure evaluation, impactor test, and storage performance evaluation were performed. The results are also shown in Table 2.
The deployment speed was high without loss of the deployment gas, the high burst pressure evaluation showed a high bag breaking pressure, and the impactor test showed an early restraining behavior.

[実施例2]
溶融紡糸の際に環状ユニマーを添加しなかったことを除いて、実施例1と同様に実施した。織物の性状と各種評価結果を表2に示す。 展開ガスのロス無く展開速度は速く、高速バースト圧評価では高圧の破袋圧を示し、インパクター試験では早期拘束挙動を示した。
[Example 2]
The same procedure as in Example 1 was performed except that no cyclic unimer was added during melt spinning. Table 2 shows the properties of the fabric and various evaluation results. The deployment speed was high without loss of the deployment gas, the high burst pressure evaluation showed a high bag breaking pressure, and the impactor test showed an early restraining behavior.

[実施例3]
実施例1のヒートセット織物に対して、無溶媒の付加反応型シリコーンをエアナイフコーターで20g/m2塗布し、180℃で2分間の加硫をピンテンターで経方向が1%のオーバーフィード、緯方向が0%ストレッチで行い、この後に、15℃のシリンダー冷却を行った。さらに、常温のピンテンターにて経方向に1%の緊張フィード、緯方向つまり幅方向に1%のストレッチで4分間処理した。こうしてコーティングエアバッグ用織物を得た。織物の性状と各種評価結果を表2に示す。表2では織物の単位面積当たり重量はコーティングを除いた重量を記している。
展開ガスのロス無く展開速度は速く、高速バースト圧評価では高圧の破袋圧を示し、インパクター試験では早期拘束挙動を示した。
[Example 3]
The heat-set fabric of Example 1 was coated with 20 g / m 2 of solvent-free addition-reactive silicone with an air knife coater, vulcanized at 180 ° C. for 2 minutes, and overfeed with a pin tenter in the warp direction of 1%. The direction was 0% stretch, followed by cylinder cooling at 15 ° C. Further, it was treated for 4 minutes by a tension feed of 1% in the warp direction and a stretch of 1% in the weft direction, that is, the width direction, with a pin tenter at room temperature. In this way, the textile fabric for coating airbags was obtained. Table 2 shows the properties of the fabric and various evaluation results. In Table 2, the weight per unit area of the fabric is the weight excluding the coating.
The deployment speed was high without loss of the deployment gas, the high burst pressure evaluation showed a high bag breaking pressure, and the impactor test showed an early restraining behavior.

[実施例4]
実施例1の原糸を用い、撚糸せず、PVA糊付けを施し、エアジェット織機でジャカード織りして袋織エアバッグを得た。次いで、この織物をソーダ灰10g/L含む70℃温水で精練し、次いでピンテンターを用いて経方向に2%のオーバーフィード、緯方向つまり幅方向に0%のストレッチで140℃の2分間、次いで、経方向に2%のオーバーフィード、緯方向つまり幅方向に0%のストレッチで180℃の2分間処理後急冷してヒートセットした。さらに、無溶媒の付加反応型シリコーンをエアナイフコーターで20g/m2塗布し180℃で2分間の加硫をピンテンターで経方向が1%のオーバーフィード、緯方向が0%ストレッチで行い、この後に、15℃のシリンダー冷却を行った。さらに、常温のピンテンターにて経方向に1%の緊張フィード、緯方向つまり幅方向に1%のストレッチで4分間処理した。これを、表裏繰り返してコーティング袋織エアバッグ用織物を得た。織物の性状と各種評価結果を表2に示す。表2では織物の単位面積当たり重量はコーティングを除いた重量を記している。
袋部の平織り物を切り出して縫目負荷通気度を評価しても低通気度で良好であった。また、接結部が直線である部分から試料を切り出て縫目負荷通気度を評価しても、経糸負荷通気度が220mm/s、緯糸負荷通気度が300mm/sで良好な低通気度であった。展開ガスのロス無く展開速度は速く、高速バースト圧評価では高圧の破袋圧を示し、インパクター試験では早期拘束挙動を示した。
[Example 4]
The raw yarn of Example 1 was used, PVA paste was applied without twisting, and jacquard weaving was performed with an air jet loom to obtain a bag-woven airbag. Next, this fabric is scoured with 70 ° C. warm water containing 10 g / L of soda ash, then 2% overfeed in the warp direction using a pin tenter, 140 ° C. for 2 minutes at 0% stretch in the weft or width direction, and then Then, after 2 minutes of treatment at 180 ° C. with 2% overfeed in the warp direction and 0% stretch in the weft direction, that is, the width direction, it was rapidly cooled and heat set. Furthermore, solvent-free addition-reactive silicone was applied at 20 g / m 2 with an air knife coater, and vulcanized at 180 ° C. for 2 minutes with a pin tenter with overfeed of 1% in the warp direction and 0% stretch in the weft direction. And 15 ° C. cylinder cooling. Further, it was treated for 4 minutes by a tension feed of 1% in the warp direction and a stretch of 1% in the weft direction, that is, the width direction, with a pin tenter at room temperature. This was repeated upside down to obtain a coated bag woven airbag fabric. Table 2 shows the properties of the fabric and various evaluation results. In Table 2, the weight per unit area of the fabric is the weight excluding the coating.
Even when the plain weave of the bag portion was cut out and the seam load air permeability was evaluated, the air permeability was good at a low air permeability. Moreover, even when a sample is cut out from a portion where the connecting portion is a straight line and the seam load air permeability is evaluated, the warp load air permeability is 220 mm / s, the weft load air permeability is 300 mm / s, and the low air permeability is good. Met. The deployment speed was high without loss of the deployment gas, the high burst pressure evaluation showed a high bag breaking pressure, and the impactor test showed an early restraining behavior.

[実施例5]
繊度235dtex、フィラメント数36本の製織用原糸としたことを除いて、実施例1と同様に平織物を得た。得られた平織物に実施例3と同様にコーティングして、コーティングエアバッグ用織物を得た。織物の性状と各種評価結果を表2に示す。表2では織物の単位面積当たり重量はコーティングを除いた重量を記している。
展開ガスのロス無く展開速度は速く、高速バースト圧評価では高圧の破袋圧を示し、インパクター試験では早期拘束挙動を示した。
[Example 5]
A plain woven fabric was obtained in the same manner as in Example 1 except that the yarn was used for weaving with a fineness of 235 dtex and a filament count of 36. The obtained plain fabric was coated in the same manner as in Example 3 to obtain a coated airbag fabric. Table 2 shows the properties of the fabric and various evaluation results. In Table 2, the weight per unit area of the fabric is the weight excluding the coating.
The deployment speed was high without loss of the deployment gas, the high burst pressure evaluation showed a high bag breaking pressure, and the impactor test showed an early restraining behavior.

[比較例1]
製織原糸として強度が8.6cN/dtexの表2に示すポリアミド6・6繊維を用いて実施例1と同様に実施した。織物の性状と各種評価結果を表2に示す。
展開速度試験では縫目ガスリークのため展開が遅い。高速バースト試験では織物強力不足で耐圧が低かった。インパクター試験では拘束時間が遅めであった。
[Comparative Example 1]
It implemented similarly to Example 1 using the polyamide 6.6 fiber shown in Table 2 whose intensity | strength is 8.6 cN / dtex as a woven yarn. Table 2 shows the properties of the fabric and various evaluation results.
Deployment speed test is slow due to seam gas leak. In the high-speed burst test, the pressure resistance was low due to insufficient fabric strength. In the impactor test, the restraint time was late.

[比較例2]
製織原糸として強度が9.6cN/dtexの表2に示す繊維を用いて実施例1と同様に実施した。織物の性状と各種評価結果を表2に示す。
展開速度試験では縫目ガスリークのため展開が遅い。高速バースト試験では織物強力は十分であるが、ガスリークによる破袋で耐圧が低かった。インパクター試験では拘束時間が遅めであった。
[Comparative Example 2]
It implemented like Example 1 using the fiber shown in Table 2 whose intensity | strength is 9.6 cN / dtex as a weaving raw yarn. Table 2 shows the properties of the fabric and various evaluation results.
Deployment speed test is slow due to seam gas leak. In the high-speed burst test, the fabric strength was sufficient, but the pressure resistance was low due to bag breakage due to gas leak. In the impactor test, the restraint time was late.

[比較例3]
織密度を68本/2.54cmとした以外は実施例1と同様に実施した。織物の性状と各種評価結果を表2に示す。
展開速度試験ではコーティング織物だが低織密度による縫目ガスリークのため展開がやや遅い。高速バースト試験では、原糸に由来する縫目開きの抵抗があるものの、織物強力不足で耐圧が低かった。インパクター試験では拘束時間が遅めであった。
[Comparative Example 3]
The same operation as in Example 1 was performed except that the weave density was 68 pieces / 2.54 cm. Table 2 shows the properties of the fabric and various evaluation results.
In the unfolding speed test, it is a coated fabric, but unfolding is somewhat slow due to seam gas leak due to low weaving density. In the high-speed burst test, although there was resistance to stitch opening derived from the raw yarn, the pressure resistance was low due to insufficient fabric strength. In the impactor test, the restraint time was late.

[比較例4]
製織原糸として従来の高強力糸タイプである沸水収縮率が4.0%の繊維を用いたことを除いて、実施例1と同様に実施した。織物の性状と各種評価結果を表2に示す。
展開速度試験では、縫目ガスリークのため展開が遅い。高速バースト試験では、縫目ガスリークが多すぎて破袋限界試験にならなかった。インパクター試験では拘束時間が遅めであった。
[Comparative Example 4]
This was carried out in the same manner as in Example 1 except that a fiber having a boiling water shrinkage of 4.0%, which is a conventional high-strength yarn type, was used as the weaving raw yarn. Table 2 shows the properties of the fabric and various evaluation results.
In the deployment speed test, deployment is slow due to seam gas leaks. In the high-speed burst test, there were too many seam gas leaks, and the bag breakage limit test was not achieved. In the impactor test, the restraint time was late.

[比較例5]
熱セット条件が、ピンテンターを用いて経方向に5%のオーバーフィード、緯方向つまり幅方向に5%の幅入れリラックスで140℃の2分間、次いで、経方向に2%のオーバーフィード、緯方向つまり幅方向に2%の幅入れリラックスで180℃の2分間処理でヒートセットした後、振落としで受け箱に受け取るような緩冷却をした以外は、実施例1と同様に実施した。織物の性状と各種評価結果を表2に示す。
展開速度試験では、クリンプが大きく縫目ガスリークのため展開が遅い。高速バースト試験では、縫目ガスリークが多すぎて破袋限界試験にならなかった。インパクター試験では拘束時間が遅めであった。
[Comparative Example 5]
The heat setting conditions were 5% overfeed in the warp direction using a pin tenter, 2 minutes of 140 ° C for 2 minutes at 140 ° C with 5% width relaxation in the weft direction or width direction, then 2% overfeed in the warp direction, weft direction In other words, it was carried out in the same manner as in Example 1 except that it was heat-set by treatment at 180 ° C. for 2 minutes with a 2% width insertion relaxation in the width direction, and then gently cooled to be received in a receiving box by shaking off. Table 2 shows the properties of the fabric and various evaluation results.
In the unfolding speed test, the unfolding is slow due to the large crimp and seam gas leak. In the high-speed burst test, there were too many seam gas leaks, and the bag breakage limit test was not achieved. In the impactor test, the restraint time was late.

[比較例6]
整経時に整経油剤を常温でキスロール方式で原糸に対して油剤付着率1.5重量%付与したことを除いて、実施例1と同様に実施した。整経油剤は鉱物油27部、天然油脂28部、脂肪酸エステル28部、高級アルコール12部、アニオン活性剤5部からなる。経糸の摩擦は1.2で低かった。この原糸を撚糸せず、エアジェットルームにて平織物を得た。次いで、この織物を精練せず、ピンテンターを用いて経方向に2%のオーバーフィード、緯方向つまり幅方向に0%のストレッチで140℃の2分間、次いで、経方向に2%のオーバーフィード、緯方向つまり幅方向に0%のストレッチで180℃の2分間処理後急冷してヒートセットしてノンコートエアバッグ用織物を得た。織物の性状と各種評価結果を表2に示す。
展開速度試験では、目開き抵抗が少なく縫目ガスリークのため展開が遅い。高速バースト試験では、縫目ガスリークが多すぎて破袋限界試験にならなかった。インパクター試験では拘束時間が遅めであった。
[Comparative Example 6]
It was carried out in the same manner as in Example 1 except that a warping oil was applied to the raw yarn by a kiss roll method at room temperature at a normal temperature. The warping oil comprises 27 parts of mineral oil, 28 parts of natural fats and oils, 28 parts of fatty acid ester, 12 parts of higher alcohol, and 5 parts of an anionic activator. The warp friction was 1.2, which was low. A plain woven fabric was obtained in an air jet loom without twisting the raw yarn. Next, this fabric was not scoured, using a pin tenter, 2% overfeed in the warp direction, 0% stretch in the weft or width direction for 2 minutes at 140 ° C., then 2% overfeed in the warp direction, After being treated at 180 ° C. for 2 minutes with a stretch of 0% in the weft direction, that is, in the width direction, it was quenched and heat-set to obtain a non-coated airbag fabric. Table 2 shows the properties of the fabric and various evaluation results.
In the unfolding speed test, the unfolding resistance is low and the unfolding is slow due to a gas leak. In the high-speed burst test, there were too many seam gas leaks, and the bag breakage limit test was not achieved. In the impactor test, the restraint time was late.

[比較例7]
製織原糸として繊度が470dtexでフィラメント数が72本の表2に示すポリアミド6・6繊維を用いたことを除いて、実施例1と同様に実施した。高速展開試験の展開時間とインパクター試験の早期拘束時間ではこの評価値を100とした。織物の性状と各種評価結果を表2に示す。
展開速度試験では展開時間が遅い。高速バースト圧は良好である。しかし、インパクター試験は拘束時間が相対的に非常に遅かった。収納性も軽量性も大きく劣っている。
[Comparative Example 7]
The same procedure as in Example 1 was performed except that polyamide 6 · 6 fibers shown in Table 2 having a fineness of 470 dtex and 72 filaments were used as the weaving raw yarn. This evaluation value was set to 100 in the deployment time of the high-speed deployment test and the early restraint time of the impactor test. Table 2 shows the properties of the fabric and various evaluation results.
The deployment speed is slow in the deployment speed test. High speed burst pressure is good. However, the impactor test was relatively very slow in restraint time. Both storage and light weight are greatly inferior.

[実施例6]
環状ユニマーを添加する際に、織物中の環状ユニマー含有量が0.08%となるようにしたこと以外は実施例1と同様に実施した。
熱経時前後の引裂き強力保持率は80%であった。その他、織物の性状と各種評価結果を表2に示す。
[Example 6]
It was carried out in the same manner as in Example 1 except that the cyclic unimer content in the woven fabric was 0.08% when the cyclic unimer was added.
The tear strength retention before and after thermal aging was 80%. In addition, the properties of the fabric and various evaluation results are shown in Table 2.

[比較例8]
環状ユニマーを添加する際に、織物中の環状ユニマー含有量が3.6%となるようにしたこと以外は実施例1と同様に実施した。引抜抵抗が少なく、目開きしやすい織物となっている。エアバッグを形成する評価を実施しなかったが、それらを除いて織物の性状と各種評価結果を表2に示す。
[Comparative Example 8]
The same procedure as in Example 1 was performed except that the cyclic unimer content in the woven fabric was 3.6% when the cyclic unimer was added. The fabric has little pulling resistance and is easy to open. Although evaluation which forms an airbag was not implemented, the property of a textile fabric and various evaluation results are shown in Table 2 except for them.

本発明は、衝撃吸収のエアバッグに用いられ、とりわけ、乗り物衝突事故における衝撃吸収で乗員安全を図るエアバッグとして好適である。   INDUSTRIAL APPLICABILITY The present invention is used for an impact absorbing airbag, and is particularly suitable as an airbag for occupant safety by absorbing impact in a vehicle collision accident.

1 サイドカーテンエアバッグ
2 袋境界部
3 インナーチューブ
4 インフレーター取付部
5 保護エリア中心部位
6 接合部
21 チャック
22 チャック
23 スペーサー
31 開口部
32 開口部
DESCRIPTION OF SYMBOLS 1 Side curtain airbag 2 Bag boundary part 3 Inner tube 4 Inflator attachment part 5 Protection area center part 6 Joint part 21 Chuck 22 Chuck 23 Spacer 31 Opening part 32 Opening part

Claims (14)

合成繊維からなる織物であって、織物の分解糸の総繊度が200〜320dtex、織物を構成する織糸の引抜抵抗が経緯とも50〜250N/cm/cm、織物の引張強さが経および緯方向ともに550〜800N/cm、引張試験における荷重300Nでの伸び率が経および緯方向の和で30〜45%、ASTM D4032剛軟度が3.0〜7.5N、および単位面積あたり重量が130〜190g/m2であることを特徴とするエアバッグ用織物。 A woven fabric composed of synthetic fibers, the total fineness of the disassembled yarn of the woven fabric is 200 to 320 dtex, the pulling resistance of the woven yarn constituting the woven fabric is 50 to 250 N / cm / cm, and the tensile strength of the woven fabric is 550 to 800 N / cm in both directions, elongation at load of 300 N in tensile test is 30 to 45% in the sum of warp and weft directions, ASTM D4032 flexural flexibility is 3.0 to 7.5 N, and weight per unit area is airbag fabric, which is a 130~190g / m 2. 下記の特定縫製で縫合した縫合境界部における100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下であることを特徴とする請求項1に記載のエアバッグ用織物。
特定縫製:織物を2枚、1350dtexの撚り糸を用いて50回/10cmで本縫いする。
The fabric for an airbag according to claim 1, wherein a dynamic air permeability after loading of 100 N / cm at a stitching boundary portion sewn by the following specific sewing is 2300 mm / s or less at a differential pressure of 50 kPa.
Specific sewing: Two woven fabrics and a main sewing at 50 times / 10 cm using a 1350 dtex twisted yarn.
織物の分解糸の引張強さが17.5〜30Nであることを特徴とする請求項1または2に記載のエアバッグ用織物。   3. The airbag fabric according to claim 1, wherein the tensile strength of the decomposed yarn of the fabric is 17.5 to 30 N. 4. 織物の分解糸のJIS L1017 7.7に規定の一定荷重時伸び率が8〜15%であることを特徴とする請求項1〜3のいずれか一項に記載のエアバッグ用織物。   The fabric for airbag according to any one of claims 1 to 3, wherein an elongation rate under a constant load as defined in JIS L1017 7.7 of the disassembled yarn of the fabric is 8 to 15%. 繊度が200〜320dtexの合成繊維を原糸として用いて織物とすることを特徴とする請求項1〜4のいずれか一項に記載のエアバッグ用織物。   The airbag fabric according to any one of claims 1 to 4, wherein a synthetic fabric having a fineness of 200 to 320 dtex is used as a raw yarn to form a fabric. 引張強度が9.5〜11.5cN/dtexの合成繊維を原糸として用いて織物とすることを特徴とする請求項1〜5のいずれか一項に記載のエアバッグ用織物。   The fabric for an airbag according to any one of claims 1 to 5, wherein a synthetic fabric having a tensile strength of 9.5 to 11.5 cN / dtex is used as a raw yarn to form a fabric. JIS L1017 7.7に規定の一定荷重時伸び率が8〜12%である合成繊維を原糸として用いて織物とすることを特徴とする請求項1〜6のいずれか一項に記載のエアバッグ用織物。   The air according to any one of claims 1 to 6, wherein a synthetic fiber having an elongation rate at a constant load of 8 to 12% as defined in JIS L1017 7.7 is used as a raw yarn. Fabric for bags. 沸水収縮率が5〜12%である合成繊維を原糸として用いて織物とすることを特徴とする請求項1〜7のいずれか一項に記載のエアバッグ用織物。   The fabric for an airbag according to any one of claims 1 to 7, wherein a synthetic fabric having a boiling water shrinkage of 5 to 12% is used as a raw yarn. 糸−糸摩擦力が1.5〜3.0以下である合成繊維を原糸として用いて織物とすることを特徴とする請求項1〜8のいずれか一項に記載のエアバッグ用織物。   The fabric for an airbag according to any one of claims 1 to 8, wherein a synthetic fabric having a yarn-thread friction force of 1.5 to 3.0 or less is used as a raw fabric. 合成繊維がポリアミド繊維であり、該ポリアミド繊維が環状ユニマーを全アミド結合に対して0.1〜3.0%含有していることを特徴とする請求項1〜9のいずれか一項に記載のエアバッグ用織物。   The synthetic fiber is a polyamide fiber, and the polyamide fiber contains 0.1 to 3.0% of a cyclic unimer with respect to the total amide bond. Fabric for airbags. 請求項1〜10のいずれか一項に記載のエアバッグ用織物を用いてなるエアバッグ。   The airbag which uses the textile fabric for airbags as described in any one of Claims 1-10. 縫製されたエアバッグであって、縫合境界部における100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下であることを特徴とする請求項11に記載のエアバッグ。   The airbag according to claim 11, wherein the air permeability after a load of 100 N / cm at a stitching boundary portion is 2300 mm / s or less at a differential pressure of 50 kPa. 袋織された織物からなるエアバッグであって、膨張部と非膨張部の境界部における100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下であることを特徴とする請求項11に記載のエアバッグ。   An air bag made of a woven fabric, wherein the dynamic air permeability after 100 N / cm load at the boundary between the inflatable part and the non-inflatable part is 2300 mm / s or less at a differential pressure of 50 kPa. 11. The airbag according to 11. 請求項11〜13のいずれか一項に記載のエアバッグを用いて構成されるエアバッグモジュール。   The airbag module comprised using the airbag as described in any one of Claims 11-13.
JP2011168736A 2010-08-02 2011-08-01 Airbag fabrics and airbags Active JP6013710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011168736A JP6013710B2 (en) 2010-08-02 2011-08-01 Airbag fabrics and airbags

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010173936 2010-08-02
JP2010173936 2010-08-02
JP2011168736A JP6013710B2 (en) 2010-08-02 2011-08-01 Airbag fabrics and airbags

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016186240A Division JP2017002457A (en) 2010-08-02 2016-09-23 Fabric for air bag and air bag

Publications (2)

Publication Number Publication Date
JP2012052280A true JP2012052280A (en) 2012-03-15
JP6013710B2 JP6013710B2 (en) 2016-10-25

Family

ID=45905903

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011168736A Active JP6013710B2 (en) 2010-08-02 2011-08-01 Airbag fabrics and airbags
JP2016186240A Pending JP2017002457A (en) 2010-08-02 2016-09-23 Fabric for air bag and air bag

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016186240A Pending JP2017002457A (en) 2010-08-02 2016-09-23 Fabric for air bag and air bag

Country Status (1)

Country Link
JP (2) JP6013710B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100895B2 (en) 2010-08-23 2012-12-19 旭化成せんい株式会社 Airbag base fabric
JP2013023784A (en) * 2011-07-21 2013-02-04 Asahi Kasei Fibers Corp Base cloth for air bag
WO2013168728A1 (en) * 2012-05-11 2013-11-14 東洋紡株式会社 Airbag base fabric that is unlikely to bottom at impact
WO2014115864A1 (en) 2013-01-28 2014-07-31 東レ株式会社 Airbag fabric and airbag
WO2014123090A1 (en) * 2013-02-06 2014-08-14 旭化成せんい株式会社 Fabric for airbag and fabric roll
KR20160029826A (en) 2013-08-19 2016-03-15 아사히 가세이 셍이 가부시키가이샤 Fabric for airbag
EP3034686A1 (en) 2013-08-13 2016-06-22 Asahi Kasei Fibers Corporation Coated woven fabric
JP2016148133A (en) * 2015-02-06 2016-08-18 住商エアバッグ・システムズ株式会社 Hollow weave air bag
US10308209B2 (en) 2014-05-28 2019-06-04 Asahi Kasei Kabushiki Kaisha Base fabric for airbag and airbag
WO2021193966A1 (en) * 2020-03-26 2021-09-30 旭化成株式会社 Base cloth for material and manufacturing method therefor
WO2022080432A1 (en) * 2020-10-13 2022-04-21 旭化成株式会社 Airbag base fabric and method for manufacturing same
CN115142171A (en) * 2017-09-29 2022-10-04 东洋纺株式会社 Airbag base fabric and airbag including the same
WO2023171130A1 (en) * 2022-03-07 2023-09-14 東レ株式会社 Coated fabric for airbag

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108528380A (en) * 2017-03-03 2018-09-14 Ihc有限公司 Joint seal curtain airbag cushion

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811660A (en) * 1994-06-29 1996-01-16 Teijin Ltd Fabrics for noncoated side air bag
JPH09309396A (en) * 1996-05-24 1997-12-02 Toyobo Co Ltd Non-coated fabric foundation for air bag
JPH11349681A (en) * 1998-06-09 1999-12-21 Toray Ind Inc Purification of nylon resin
JP2001277972A (en) * 2000-03-31 2001-10-10 Toyobo Co Ltd Hollow weave air bag
JP2002321585A (en) * 2001-04-25 2002-11-05 Toyobo Co Ltd Hollow weave air bag for side protection
JP2003171842A (en) * 2001-12-10 2003-06-20 Toray Ind Inc Air bag base fabric and air bag
JP2004100056A (en) * 2002-09-06 2004-04-02 Toyobo Co Ltd Hollow woven air bag base fabric and hollow woven air bag using the same
JP2004339449A (en) * 2003-05-19 2004-12-02 Mitsubishi Gas Chem Co Inc Polyamide resin and its production process
JP2006249655A (en) * 2000-04-07 2006-09-21 Asahi Kasei Chemicals Corp Coated fabric and air bag
JP2006256474A (en) * 2005-03-17 2006-09-28 Toray Ind Inc Airbag base cloth and manufacturing method thereof
JP2009167551A (en) * 2008-01-15 2009-07-30 Seiren Co Ltd Woven fabric for airbag
JP4378349B2 (en) * 2003-09-29 2009-12-02 旭化成せんい株式会社 High density bag weave base fabric
JP2010047036A (en) * 2008-08-19 2010-03-04 Toray Ind Inc Base cloth for airbag and method of manufacturing the same
JP2010100988A (en) * 2008-03-10 2010-05-06 Toray Ind Inc Base cloth for air bag, raw yarn for air bag, and method for production of the raw yarn

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811660A (en) * 1994-06-29 1996-01-16 Teijin Ltd Fabrics for noncoated side air bag
JPH09309396A (en) * 1996-05-24 1997-12-02 Toyobo Co Ltd Non-coated fabric foundation for air bag
JPH11349681A (en) * 1998-06-09 1999-12-21 Toray Ind Inc Purification of nylon resin
JP2001277972A (en) * 2000-03-31 2001-10-10 Toyobo Co Ltd Hollow weave air bag
JP2006249655A (en) * 2000-04-07 2006-09-21 Asahi Kasei Chemicals Corp Coated fabric and air bag
JP2002321585A (en) * 2001-04-25 2002-11-05 Toyobo Co Ltd Hollow weave air bag for side protection
JP2003171842A (en) * 2001-12-10 2003-06-20 Toray Ind Inc Air bag base fabric and air bag
JP2004100056A (en) * 2002-09-06 2004-04-02 Toyobo Co Ltd Hollow woven air bag base fabric and hollow woven air bag using the same
JP2004339449A (en) * 2003-05-19 2004-12-02 Mitsubishi Gas Chem Co Inc Polyamide resin and its production process
JP4378349B2 (en) * 2003-09-29 2009-12-02 旭化成せんい株式会社 High density bag weave base fabric
JP2006256474A (en) * 2005-03-17 2006-09-28 Toray Ind Inc Airbag base cloth and manufacturing method thereof
JP2009167551A (en) * 2008-01-15 2009-07-30 Seiren Co Ltd Woven fabric for airbag
JP2010100988A (en) * 2008-03-10 2010-05-06 Toray Ind Inc Base cloth for air bag, raw yarn for air bag, and method for production of the raw yarn
JP2010047036A (en) * 2008-08-19 2010-03-04 Toray Ind Inc Base cloth for airbag and method of manufacturing the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100895B2 (en) 2010-08-23 2012-12-19 旭化成せんい株式会社 Airbag base fabric
EP2610377B1 (en) 2010-08-23 2016-02-10 Asahi Kasei Fibers Corporation Base fabric for airbag
JP2013023784A (en) * 2011-07-21 2013-02-04 Asahi Kasei Fibers Corp Base cloth for air bag
CN104284815A (en) * 2012-05-11 2015-01-14 东洋纺株式会社 Airbag base fabric that is unlikely to bottom at impact
WO2013168728A1 (en) * 2012-05-11 2013-11-14 東洋紡株式会社 Airbag base fabric that is unlikely to bottom at impact
JP5413761B1 (en) * 2012-05-11 2014-02-12 東洋紡株式会社 Airbag base fabric that is difficult to bottom out in the event of a collision
US9279200B2 (en) 2012-05-11 2016-03-08 Toyobo Co., Ltd. Base fabric for air bag which hardly causes “bottoming” upon collision
KR20150110601A (en) 2013-01-28 2015-10-02 도레이 카부시키가이샤 Airbag fabric and airbag
WO2014115864A1 (en) 2013-01-28 2014-07-31 東レ株式会社 Airbag fabric and airbag
US9834167B2 (en) 2013-01-28 2017-12-05 Toray Industries, Inc. Airbag fabric and airbag
CN104271823A (en) * 2013-02-06 2015-01-07 旭化成纤维株式会社 Fabric for airbag and fabric roll
WO2014123090A1 (en) * 2013-02-06 2014-08-14 旭化成せんい株式会社 Fabric for airbag and fabric roll
EP3034686B1 (en) * 2013-08-13 2019-06-05 Asahi Kasei Kabushiki Kaisha Coated woven fabric
EP3034686A1 (en) 2013-08-13 2016-06-22 Asahi Kasei Fibers Corporation Coated woven fabric
KR20160029826A (en) 2013-08-19 2016-03-15 아사히 가세이 셍이 가부시키가이샤 Fabric for airbag
US10773681B2 (en) 2014-05-28 2020-09-15 Asahi Kasei Kabushiki Kaisha Base fabric for airbag and airbag
US10308209B2 (en) 2014-05-28 2019-06-04 Asahi Kasei Kabushiki Kaisha Base fabric for airbag and airbag
WO2017061595A1 (en) * 2015-02-06 2017-04-13 住商エアバッグ・システムズ株式会社 Hollow weave airbag
US10688956B2 (en) 2015-02-06 2020-06-23 Sumisho Airbag Systems Co., Ltd. Hollow weave airbag
JP2016148133A (en) * 2015-02-06 2016-08-18 住商エアバッグ・システムズ株式会社 Hollow weave air bag
CN115142171A (en) * 2017-09-29 2022-10-04 东洋纺株式会社 Airbag base fabric and airbag including the same
WO2021193966A1 (en) * 2020-03-26 2021-09-30 旭化成株式会社 Base cloth for material and manufacturing method therefor
JPWO2021193966A1 (en) * 2020-03-26 2021-09-30
CN115349037A (en) * 2020-03-26 2022-11-15 旭化成株式会社 Base cloth for materials and method for producing the same
US11987910B2 (en) 2020-03-26 2024-05-21 Asahi Kasei Kabushiki Kaisha Base cloth for material and manufacturing method therefor
WO2022080432A1 (en) * 2020-10-13 2022-04-21 旭化成株式会社 Airbag base fabric and method for manufacturing same
EP4230789A4 (en) * 2020-10-13 2024-07-10 Asahi Chemical Ind Airbag base fabric and method for manufacturing same
WO2023171130A1 (en) * 2022-03-07 2023-09-14 東レ株式会社 Coated fabric for airbag

Also Published As

Publication number Publication date
JP6013710B2 (en) 2016-10-25
JP2017002457A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6013710B2 (en) Airbag fabrics and airbags
JP5100895B2 (en) Airbag base fabric
KR102522870B1 (en) Base fabric for airbag, airbag and manufacturing method of base fabric for airbag
JP5969999B2 (en) Polyamide fiber and airbag fabric
US9834167B2 (en) Airbag fabric and airbag
CN104060366B (en) high-density fabric
JPWO2016158858A1 (en) Coated base fabric for airbag, airbag, and method for producing coated base fabric for airbag
JP2010203023A (en) Woven fabric for air bag and air bag
JP6105192B2 (en) Airbag fabric
WO2024048153A1 (en) Airbag fabric
JP2013023784A (en) Base cloth for air bag
CN107529565B (en) Fabric
US11987910B2 (en) Base cloth for material and manufacturing method therefor
JP7385755B2 (en) Airbag patch
US20230278519A1 (en) Textile for Hollow Weave Airbag
CN101858005A (en) Fabrics for air pocket and production method thereof
JP2010047872A (en) Ground fabric for air-bag, and method for producing the same
JP2005281933A (en) Base fabric for air bag and air bag and method for making the same
JP2015160586A (en) air bag
JP2006160102A (en) Airbag cover and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160923

R150 Certificate of patent or registration of utility model

Ref document number: 6013710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350