WO2012132328A1 - Low-expansion glass and tempered glass - Google Patents

Low-expansion glass and tempered glass Download PDF

Info

Publication number
WO2012132328A1
WO2012132328A1 PCT/JP2012/001942 JP2012001942W WO2012132328A1 WO 2012132328 A1 WO2012132328 A1 WO 2012132328A1 JP 2012001942 W JP2012001942 W JP 2012001942W WO 2012132328 A1 WO2012132328 A1 WO 2012132328A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
low expansion
alkali metal
expansion glass
Prior art date
Application number
PCT/JP2012/001942
Other languages
French (fr)
Japanese (ja)
Inventor
大正 和田
淳史 倉知
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2013507152A priority Critical patent/JP5890393B2/en
Publication of WO2012132328A1 publication Critical patent/WO2012132328A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Definitions

  • the present invention relates to a low expansion glass and a tempered glass obtained by chemically strengthening the low expansion glass.
  • a borosilicate glass called Pyrex (registered trademark of Corning) is known as the most versatile and inexpensive low expansion glass. This glass is a SiO 2 81% by mass percentage, B 2 O 3 and 13% Al 2 O 3 2%, including 4% Na 2 O, the average linear expansion coefficient of up to 350 ° C. from room temperature to about 33 ⁇ 10 ⁇ 7 / ° C.
  • Low expansion glass is often bonded to silicon by anodic bonding.
  • glass and silicon are brought into contact and heated to about 300 to 450 ° C., while applying a high voltage of about several hundred to 1 kV with silicon as the anode side,
  • the alkali metal ions are moved to the cathode side and electrostatically and chemically strong bonds are formed at the interface between the glass and silicon to bond the two.
  • Patent Document 1 describes a glass for a silicon pedestal containing no alkali metal. It is described that the deterioration of the element due to migration of alkali metal can be prevented as an effect due to the absence of alkali metal.
  • Patent Document 2 describes an anodic bonding glass that does not contain Na 2 O and contains a relatively large amount of Li 2 O. It is described that the anodic bonding between glass and silicon can be performed at a low temperature (less than 300 ° C.) as an effect by containing a relatively large amount of Li 2 O. Moreover, does not contain any Na 2 O, it is described that can suppress the increase in the linear expansion coefficient and volume resistivity of the glass.
  • Patent Document 3 describes a glass that defines the ratio of Li 2 O to Al 2 O 3 .
  • the composition so that the value of (Li 2 O / Al 2 O 3 ) is 0.9 or more, it has a low average linear expansion coefficient while containing a relatively large amount of Li 2 O, and heat It is described that a glass capable of melting at a relatively low temperature can be obtained without devitrification even in the inter-processing.
  • Patent Document 4 describes a composition of low expansion glass suitable for a photoresist mask.
  • Patent Document 1 does not contain an alkali metal. Therefore, the number of ions that move when glass and a silicon wafer are bonded by an anodic bonding method is small. In this case, since the Si—O—Si covalent bond is unlikely to form between silicon and glass, there is a concern that the bonding strength is insufficient. It is also predicted that the joining process will take a long time.
  • glass When using glass as an electronic component, it is important not only that silicon and glass can be reliably bonded by an anodic bonding method, but also the characteristics of the glass itself.
  • One important characteristic of glass is the dielectric loss tangent (tan ⁇ ). As the dielectric loss tangent of glass increases, signal loss (delay) in the high frequency band (mainly the GHz band) increases.
  • the dielectric loss tangent of glass is preferably less than 0.0050, for example, when measured at 25 ° C. and 1 GHz. Corning's glass has a dielectric loss tangent of about 0.0054, and development of glass having a dielectric loss tangent superior to this is expected.
  • the dielectric loss tangent decreases as the alkali metal content decreases.
  • the content of Li 2 O contained in the glass described in Patent Document 3 is adjusted to 1.40% by weight or less
  • the dielectric loss tangent of the glass when measured under the conditions of 25 ° C. and 1 GHz is 0.00. May be less than 0050.
  • Al 2 O 3 is a component that forms a glass skeleton, and is also a component that improves the mobility of an alkali metal by taking four-coordination. Therefore, if the content of Al 2 O 3 is too small, the alkali metal mobility is lowered, and the anodic bondability is deteriorated.
  • Patent Document 4 Since the glass described in Patent Document 4 contains an appropriate amount (1.8 to 3.5% by weight in the examples) of Na 2 O, it is presumed that anodic bonding is possible. However, according to the knowledge of the present inventors, when Na 2 O is used alone, the dielectric loss tangent of the glass tends to be excessive.
  • the present invention has been made paying attention to such a conventional problem, and an object of the present invention is to provide a low expansion glass capable of anodic bonding and having a low dielectric loss tangent.
  • anodic bondability includes not only the bonding strength but also the meaning of ease of anodic bonding. The ease of forming anodic bonding will be described later in detail.
  • alkali metals have the property of increasing the dielectric loss tangent of glass. That is, for glass containing an alkali metal, anodic bondability and dielectric loss tangent are essentially in a trade-off relationship.
  • the present inventors have closely investigated the relationship between the type of alkali metal, the content of alkali metal, and the dielectric loss tangent of glass in the high frequency band (GHz band). As a result, it was found that Li has a lower ability to increase the dielectric loss tangent of glass compared to other alkali metals such as Na and K. As a result, the following present invention has been completed.
  • the present invention Displayed in mol%, SiO 2 : 55 to 75%, B 2 O 3 : 5 to 17%, Al 2 O 3 : 5 to 15%, MgO: 0 to 10%, CaO: 0 to 10%, SrO: 0-5% BaO: 0 to 1%, ZnO: 0 to 6%, Li 2 O: 0.6-4%, Na 2 O: 0 to 1%, K 2 O: 0 to 1%, SnO 2 : 0 to 1% Fe 2 O 3 : 0 to 5%, TiO 2 : 0-30%, and CeO 2 : 0-10%, Including The total content of alkali metal oxides is 5 mol% or less, displayed in mol%, the content of Li 2 O, well above the total content of alkali metal oxides other than Li 2 O, Provided is a low expansion glass having a dielectric loss tangent of less than 0.0050 at measurement conditions of 25 ° C. and 1 GHz.
  • the alkali metal is brought into contact with a molten salt containing a monovalent cation having an ionic radius larger than that of the alkali metal ion contained in the low expansion glass. Ions are exchanged with the monovalent cation to provide a tempered glass having a compressive stress layer formed on the surface.
  • Li 2 O is the most contained as the alkali metal oxide. Accordingly, the dielectric loss tangent of the glass is smaller than when only the same amount of alkali metal oxide other than Li 2 O is contained. Further, (total content) The content of alkali metal oxides but is relatively small, other components such as Al 2 O 3 is properly adjusted. Therefore, even if the content of the alkali metal oxide is small, for example, the mobility of the alkali metal when forming the anodic bonding is sufficiently high. Therefore, the low expansion glass of the present invention has excellent anodic bonding properties. Thus, according to the present invention, it is possible to provide a low expansion glass having not only excellent anodic bonding properties but also low dielectric loss tangent.
  • a tempered glass in which a compression stress layer is formed on the surface by ion-exchange of alkali metal ions contained in the low expansion glass with monovalent cations having a larger ion radius. Can do.
  • SiO 2 is an essential component for forming a glass network.
  • SiO 2 is also a component that enhances the durability, particularly acid resistance, of the glass. Therefore, the content of SiO 2 is too small acid resistance of the glass may be insufficient. Therefore, the lower limit of the content of SiO 2 is 55%.
  • the lower limit of the content of SiO 2 is preferably 60%, more preferably 63%.
  • the upper limit of the content of SiO 2 is 75%.
  • the upper limit of the content of SiO 2 is preferably 72%, and more preferably 70%.
  • the range of the content of SiO 2 can be specified by any combination of these upper and lower limits.
  • B 2 O 3 is an essential component that forms a glass network. If the content of B 2 O 3 is too small, the devitrification temperature is significantly increased, and the meltability of the glass may be significantly decreased. In addition, the productivity of glass may be affected. Therefore, the lower limit of the content of B 2 O 3 is 5%. The lower limit of the content of B 2 O 3 is preferably 7%, and more preferably 9%. On the other hand, if the content of B 2 O 3 is too large, the durability of the glass may be insufficient. Therefore, the upper limit of the content of B 2 O 3 is 17%. The upper limit of the content of B 2 O 3 is preferably 13%. The range of the content of B 2 O 3 can be specified by any combination of these upper and lower limits.
  • Al 2 O 3 is an essential component that plays a role of forming a glass network and a role of modifying the glass network. If the content of Al 2 O 3 is too small, phase separation may occur. Further, as described above, when the content of Al 2 O 3 is too small, the mobility of the alkali metal is lowered, and the anodic bondability may be greatly deteriorated. Therefore, the lower limit of the content of Al 2 O 3 is 5%. The lower limit for the content of Al 2 O 3 is preferably 8%. On the other hand, if the content of Al 2 O 3 is too large, the linear expansion coefficient and the devitrification temperature may be significantly increased. Therefore, the upper limit of the content of Al 2 O 3 is 15%. The upper limit of the content of Al 2 O 3 is preferably 13%, and more preferably 12%. The range of the content of Al 2 O 3 can be specified by any combination of these upper and lower limits.
  • Al 2 O 3 is contained in the low-expansion glass of the present invention more than Li 2 O, regardless of whether it is expressed in mol% or mass%.
  • Alkaline earth metal oxides that is, MgO, CaO, SrO, and BaO are optional components that modify the glass network and are components that improve the meltability of the glass. If the content of the alkaline earth metal oxide is too large, the linear expansion coefficient may be significantly increased. Therefore, the upper limit of the content of MgO is, for example, 10%, preferably 7%, more preferably 5%.
  • the upper limit of the content of CaO is, for example, 10%, preferably 8%, more preferably 7%.
  • the upper limit of the content of SrO is, for example, 5%, preferably 3%, more preferably 2%.
  • the upper limit of the content of BaO is, for example, 1%, preferably 0.5%.
  • the low expansion glass of the present embodiment may not substantially contain BaO.
  • substantially free means not intentionally included unless, for example, it is inevitably mixed with industrial raw materials. Specifically, it means a content of less than 0.1%, preferably less than 0.01%.
  • MgO may be contained, for example, 1% or more, preferably 2% or more.
  • CaO may be contained, for example, 1% or more, preferably 2.5% or more, more preferably 3% or more.
  • the upper limit of the total content of CaO and SrO is, for example, 9%, preferably 7%, more preferably 6%.
  • ZnO ZnO is an optional component having the same effect as the alkaline earth metal oxide, and is generally also a component that improves glass forming ability. When there is too much content of ZnO, devitrification temperature may rise significantly. Therefore, the upper limit of the ZnO content is 6%, preferably 2.5%.
  • the total content of MgO, CaO, SrO, BaO and ZnO is, for example, 5 to 13%, preferably 7 to 13%, more preferably in consideration of the linear expansion coefficient, meltability, anodic bondability, and the like. It may be adjusted to a range of 9 to 11%.
  • the ranges of the contents of MgO, CaO, SrO, BaO and ZnO can be specified by any combination of the above upper limit and lower limit, respectively.
  • Alkali metal oxide is an essential component that improves anodic bonding. At the time of anodic bonding, alkali metal ions move to the cathode, thereby causing a covalent bond between non-crosslinked oxygen ions in the glass and silicon at the interface.
  • the alkali metal oxide is a component that modifies the glass network, and has an effect of appropriately cutting the glass network, lowering the melting temperature of the glass, and keeping the viscosity of the glass melt low. On the other hand, if the content of the alkali metal oxide is too large, the linear expansion coefficient and the dielectric loss tangent may be significantly increased.
  • Li 2 O has a relatively low ability to increase the dielectric loss tangent of glass. Therefore, if Li 2 O is mainly used as the alkali metal oxide, a glass having both excellent anodic bonding properties and low dielectric loss tangent can be provided. Since Li + has a high mobility during anodic bonding, the use of Li 2 O as an essential alkali metal oxide is preferable.
  • the total content of alkali metal oxides is set to 5% or less.
  • the content of Li 2 O is limited to a range of 0.6 to 4%.
  • the content of Li 2 O is expressed in mol% and exceeds the total content of alkali metal oxides other than Li 2 O.
  • the total content of alkali metal oxides is preferably 3% or less.
  • the upper limit of the content of Li 2 O is preferably 3%, more preferably 2%.
  • the lower limit of the content of Li 2 O is preferably 1%.
  • the range of the content of Li 2 O can be specified by any combination of these upper and lower limits.
  • At least one selected from Na 2 O and K 2 O may be contained as an optional component.
  • the upper limit of the content of Na 2 O is, for example, 1%, preferably 0.5%, more preferably 0.25%.
  • the upper limit of the content of K 2 O is, for example, 1%, preferably 0.5%.
  • the low expansion glass of this embodiment may contain 0.05% or more of at least one selected from Na 2 O and K 2 O.
  • the content of Na 2 O and the content of K 2 O are each smaller than the content of Li 2 O.
  • Na 2 O may be contained in the low expansion glass at a ratio of 0.1% or more.
  • K 2 O may be contained in the low expansion glass at a ratio of 0.1% or more.
  • the range of the content of Na 2 O and K 2 O can be specified by any combination of the above upper limit and lower limit, respectively.
  • the ratio of the content of Li 2 O to the total content of Na 2 O and K 2 O can be a value greater than 2.
  • the upper limit of the ratio (Li 2 O / (Na 2 O + K 2 O)) is 80.
  • the content of Li 2 O is 4%, and the content of Na 2 O or K 2 O is 0.05%.
  • the mixed alkali effect is prominent when the ratio of two types of alkali components is 1: 1.
  • the mixed alkali effect is considered to be a phenomenon based on alkali movement.
  • the alkali in the glass only deforms or vibrates, so it is unrelated to the movement of the alkali.
  • SnO 2 Since SnO 2 has a clarification action, it may be contained in the low expansion glass at a ratio of 0.05% or more, preferably 0.1% or more, for example. However, if the SnO 2 content is too large, devitrification and phase separation may occur. Therefore, the upper limit of the content of SnO 2 is, for example, 1%, preferably 0.2%. The range of the content of SnO 2 can be specified by any combination of these upper and lower limits.
  • Fe 2 O 3 , TiO 2 , CeO 2 Fe is present in the glass in the state of Fe 2+ or Fe 3+ .
  • Fe 3+ is a component that improves the ultraviolet absorption characteristics of glass
  • Fe 2+ is a component that improves the heat ray absorption characteristics. Therefore, Fe is not essential, but may be used as a component for adjusting the optical properties of the glass. Moreover, Fe may be inevitably mixed by industrial raw materials.
  • Fe, expressed as Fe 2 O 3 may be contained in the low expansion glass at a ratio of 0.01% or more, preferably 0.5% or more, for example. However, if Fe is excessively contained, the low expansion glass may be excessively colored, or the difficulty in producing the low expansion glass may increase.
  • the upper limit of the Fe content is expressed as Fe 2 O 3 , for example, 5.0%, preferably 2.0%, more preferably 1.0%.
  • the low expansion glass may be processed with a laser.
  • the low expansion glass is required to have a property of absorbing a laser.
  • a small amount of Fe facilitates laser absorption and facilitates processing using a laser, such as drilling.
  • TiO 2 and / or CeO 2 may be contained in the low expansion glass. That is, the low expansion glass of the present embodiment may include at least one selected from the group consisting of Fe 2 O 3 , TiO 2 and CeO 2 as a laser absorption component. Since Fe has a clarification action and is extremely inexpensive, the use of Fe 2 O 3 as a laser absorbing component is preferred.
  • the content of the laser absorbing components Fe 2 O 3 , TiO 2 and CeO 2 ) so that the absorption coefficient of the low expansion glass with respect to a laser having a specific wavelength ⁇ of 535 nm or less is 50 cm ⁇ 1 or less.
  • the absorption coefficient is preferably in the range of 3 to 20 cm ⁇ 1 , more preferably 3 to 10 cm ⁇ 1 .
  • Examples of the laser for processing the low expansion glass include Nd: YAG laser harmonics, Nd: YVO 4 laser harmonics, and Nd: YLF laser harmonics.
  • the harmonic is, for example, a second harmonic, a third harmonic, or a fourth harmonic.
  • the wavelength of the second harmonic of these lasers is in the vicinity of 532 to 535 nm
  • the wavelength of the third harmonic is in the vicinity of 355 to 357 nm
  • the wavelength of the fourth harmonic is in the vicinity of 266 to 268 nm. is there.
  • the lower limit of the content of TiO 2 is, for example, 1%, preferably 3%.
  • the lower limit of the CeO 2 content is, for example, 0.2%, preferably 0.5%.
  • the upper limit of the content of TiO 2 is, for example, 30%, preferably 20%, more preferably 10%.
  • the upper limit of the content of CeO 2 is, for example, 10%, preferably 5%, more preferably 2%.
  • the range of the content of Fe 2 O 3 , TiO 2 and CeO 2 can be specified by any combination of the above upper limit and lower limit, respectively.
  • the absorption coefficient based on these components is represented by “12.5X + Y + 5.9Z”.
  • the maximum value of (X + Y + Z) that satisfies 3 ⁇ (12.5X + Y + 5.9Z) ⁇ 50 is 30 (mol%), and the minimum value is 0.3 (mol%).
  • the low expansion glass of the present invention may consist essentially of the components described above. Moreover, the low expansion glass of this invention does not need to contain substantially components other than an above-described component. Furthermore, the low expansion glass of this invention may consist of an above-described component.
  • a generally known fining agent for example, a chloride such as NaCl, a fluoride such as CaF 2 , arsenous acid, antimony oxide or the like may be added in a small amount to the raw material.
  • the component of the fining agent may remain in the low expansion glass as long as it does not significantly affect the characteristics such as dielectric loss tangent and bonding strength.
  • substances having a large environmental load such as arsenous acid and antimony oxide, are not substantially contained.
  • MEMS Micro Electro Mechanical Systems
  • the use of devices called MEMS produced by making full use of semiconductor technology has been expanded mainly in the fields of automobiles, mobile phones, biochemistry, and the like. Acceleration sensors, pressure sensors, etc. have already been applied to automobiles and the like, and the application range has expanded to optical MEMS, such as optical waveguide sensors and optical switching devices.
  • optical MEMS such as optical waveguide sensors and optical switching devices.
  • the low expansion glass of the present invention can be widely used for applications such as an electronic substrate, an electrically insulating substrate, a pedestal for supporting silicon (silicon wafer).
  • the low expansion glass preferably has a dielectric loss tangent of less than 0.0050 under the measurement conditions of an air temperature of 25 ° C. and a frequency of 1 GHz.
  • the lower limit of the dielectric loss tangent is not particularly limited, but a dielectric loss tangent less than 0.001 is unrealistic.
  • the low expansion glass of the present embodiment has a devitrification temperature in the range of 950 to 1150 ° C., for example, by having the composition in the above range.
  • the devitrification temperature is low, the glass can be produced stably.
  • it is not essential that the devitrification temperature is within the above range.
  • the low expansion glass of this embodiment preferably has an average coefficient of linear expansion in the range of 32 ⁇ 10 ⁇ 7 / ° C. to 40 ⁇ 10 ⁇ 7 / ° C. when measured in the range of 25 to 450 ° C. Yes. If the average linear expansion coefficient is within this range, the problem of residual stress after anodic bonding is unlikely to occur, and the strength of anodic bonding between glass and silicon is easily ensured. In addition, the low expansion glass of the present embodiment is less likely to be warped or damaged due to stress at the bonded portion even when bonded to silicon or the like by a method other than anodic bonding.
  • the low expansion glass of this embodiment is less likely to cause a problem due to thermal stress even when a silicon thin film is formed on the surface and a circuit such as a thin film transistor is further formed.
  • the average linear expansion coefficient can be obtained by measuring the elongation of a sample between 25 ° C. and 450 ° C. with a differential thermal dilatometer and dividing the elongation by the value of temperature change.
  • the low expansion glass of the present invention can be chemically strengthened, and the tempered glass of the present invention can be obtained by chemically strengthening the low expansion glass of the present invention.
  • Chemical strengthening is a technique for forming a compressive stress layer on the glass surface by replacing alkali metal ions contained on the glass surface with monovalent cations having a larger radius.
  • the tempered glass of the present invention can be used, for example, as a circuit board material. Specifically, a through-hole is provided in tempered glass, one surface is bonded to silicon, and a conductive wiring material containing a metal such as copper, aluminum, or silver is connected to silicon through the through-hole from the other surface.
  • a usage pattern for wiring is conceivable. In such a usage pattern, since the metal generally has a large coefficient of linear expansion, there is a possibility that breakage may occur due to the thermal stress difference between the low expansion glass of the present invention and the wiring material. However, according to the tempered glass of the present invention, the risk of breakage due to the thermal stress difference with the wiring material can be reduced by the compressive stress layer formed on the surface. Moreover, if the tempered glass of this invention is used as a glass substrate of the panel part of a touch panel display, for example, since the surface of the tempered glass is strengthened by the compression stress layer, the protective glass of a touch panel display may be made unnecessary.
  • the chemical strengthening of the low expansion glass of the present invention can be performed by bringing the low expansion glass into contact with a molten salt containing a monovalent cation having an ionic radius larger than that of the alkali metal ion contained in the low expansion glass.
  • the alkali metal ion contained in the low expansion glass of the present invention is substituted with a monovalent cation having a larger ion radius, and a compressive stress layer is formed on the surface.
  • lithium ions or sodium ions contained in the low expansion glass of the present invention are replaced with monovalent cations having a larger ion radius.
  • a molten salt of sodium nitrate or potassium nitrate, or a mixed salt thereof can be used as the molten salt.
  • a molten salt of potassium nitrate from the viewpoint of imparting a high compressive stress to the compressive stress layer.
  • the 50% fracture load described later is preferably 1500 gf (gram force) or more, more preferably 1700 gf or more, and further preferably 1800 gf or more.
  • the depth of the compressive stress layer formed on the tempered glass of the present invention is preferably 5 ⁇ m or more.
  • the compressive stress applied to the outermost surface is preferably 200 MPa or more.
  • the lower limit of the content of Al 2 O 3 is 5% as described above, and preferably 8%.
  • CaO and SrO have the ability to bind alkali metals. Therefore, when there is too much content of these, chemical strengthening property may fall. Therefore, the upper limit of the total content of CaO and SrO is, for example, 9%, preferably 7%, more preferably 6%, as described above.
  • the alkali metal oxide is a component that improves chemical strengthening properties.
  • Alkali metal ions contained in the glass derived from the alkali metal oxide are components that improve the glass strength by applying compressive stress to the surface by exchanging with monovalent cations having a larger ion radius. Since Li + easily moves during chemical strengthening, it is preferable to use Li 2 O as an essential component among alkali metal oxides. When the total content of alkali metal oxides and the content of Li 2 O satisfy the above conditions, chemical strengthenability can be ensured. From the viewpoint of improving chemical strengthenability, the content of Li 2 O is preferably 1 to 4%, more preferably 1.2 to 3.5%, and even more preferably 1.5 to 3%.
  • sodium ions have a larger ionic radius than lithium ions, and the compressive stress on the glass surface generated by exchange with potassium ions in the molten salt is smaller than lithium ions. Further, sodium ions do not generate compressive stress when exchanged with sodium ions in the molten salt. The ionic radius of potassium ions is larger than that of sodium ions, and no compression stress is generated by exchange with potassium ions in the molten salt. Potassium ions, on the other hand, lower the compressive stress when exchanged with sodium ions in the molten salt, and in some cases generate tensile stress.
  • the ratio of Li 2 O is greater than 2 in Li 2 O / (Na 2 O + K 2 O).
  • the alkali metal oxide that coexists with Li 2 O is preferably Na 2 O rather than K 2 O.
  • a batch was obtained by weighing and mixing oxides, carbonates, nitrates, sulfates and the like as glass raw materials so that the composition shown in Example 1 of Table 1 was obtained.
  • the obtained batch was put in a platinum crucible and heated in an electric furnace set with an atmospheric temperature of 1400 to 1650 ° C. to melt the batch.
  • the molten glass was kept for 4 to 5 hours in the crucible with proper stirring. Thereafter, molten glass was poured into a carbon or stainless steel mold and gradually cooled to 25 ° C. Thereby, the glass sample of Example 1 was obtained.
  • glass samples of Examples 2 to 23 and Comparative Examples 1 to 9 were obtained.
  • the devitrification temperature of the glass of an Example and a comparative example was measured with the following method. Glass crushed to a particle size of 1.0 to 2.8 mm was placed in a platinum boat and heated in an electric furnace with a temperature gradient (900 to 1400 ° C.) for 24 hours. The devitrification temperature was determined from the maximum temperature of the electric furnace corresponding to the crystal appearance position. The results are shown in Tables 1 to 3. Note that the temperature in the electric furnace is determined in advance, and the glass placed in a predetermined place is heated at a temperature corresponding to the place. The devitrification temperature is a temperature at which crystals start to grow and grow in the molten glass.
  • the measured anodic bonding current does not directly represent the strength of the anodic bonding.
  • those skilled in the art often measure the anodic bonding current as an indicator of anodic bonding properties. This is because a large anodic bonding current means that the mobility of alkali metal is high, which means that anodic bonding can be easily performed and high-strength anodic bonding can be formed.
  • the bonding speed is very slow (anodic bonding process). It takes a long time) and poor bonding may occur.
  • Example 1 The glass samples of Example 1, Example 8, and Example 23 shown in Tables 1 and 2 were cut into a shape of 130 mm ⁇ 70 mm ⁇ 0.7 mm.
  • the cut glass sample was immersed in a molten salt of potassium nitrate at 480 ° C. for 8 hours for chemical strengthening to obtain a strengthened glass sample.
  • the 50% breaking load was measured for the tempered glass sample and the glass sample not subjected to chemical strengthening by the following method.
  • a micro Vickers hardness tester (MVK-G2 manufactured by Akashi Co., Ltd.) is used for any five locations on the surface of the glass sample using a diamond indenter (a square pyramid indenter with a facing angle of 136 °)
  • a 300 gf load was applied for 15 seconds to create a square impression.
  • About the sample glass which added the load it left still for 5 minutes except the load. Thereafter, it was observed with an optical microscope whether cracks were generated on the extended line connecting the center of the square of the indentation and the vertex of the square.
  • the presence or absence of cracks was confirmed at each vertex of the five indentations, and the fracture probability P was determined by dividing the number of cracks generated by the total number of vertices of 20.
  • the load applied to the glass sample was changed to 500 gf, 1000 gf, and 2000 gf, and the fracture probability P of the glass sample with respect to each load was similarly determined.
  • a fracture load with a fracture probability P of 50% was obtained by linear interpolation from the respective fracture probabilities, and was set as the 50% fracture load of the glass sample. The results are shown in Table 4.
  • Example 8 contained 3% Li 2 O and exhibited a dielectric loss tangent of 0.0049.
  • Comparative Example 1 contained 1.5% Na 2 O and exhibited a dielectric loss tangent of 0.0057.
  • Comparative Example 2 contained 1.5% K 2 O and exhibited a dielectric loss tangent of 0.0059. That is, Example 8 exhibited a dielectric loss tangent smaller than those of Comparative Examples 1 and 2 even though it contained twice the molar amount of alkali metal oxide as Comparative Examples 1 and 2. This suggests that Li 2 O can be advantageously used as the alkali metal oxide in order to avoid an excessive increase in the dielectric loss tangent of the glass.
  • Examples 11 and 18 have the same composition except for alkali metal oxides.
  • Example 11 contains 1.5% Li 2 O as the alkali metal oxide.
  • Example 18 contains 1.25% Li 2 O and 0.25% Na 2 O as the alkali metal oxide. That is, the content of the alkali metal oxide of Example 11 is equal to the content of the alkali metal oxide of Example 18. Nevertheless, the dielectric loss tangent of Example 11 was 0.0034, the dielectric loss tangent of Example 18 was 0.0032, and the dielectric loss tangent of Example 18 was 0.0002 smaller than that of Example 11.
  • Examples 11, 13, and 14 have substantially the same composition except for the content of Al 2 O 3 .
  • the anodic bonding current increased. This suggests that Al 2 O 3 has a function of increasing alkali metal mobility.
  • Comparative Example 3 contains 1.5% Li 2 O and 1.5% Na 2 O.
  • Comparative Example 4 contains 1.5% Li 2 O and 1.5% K 2 O. That is, Comparative Examples 3 and 4 each contain the same molar amount of alkali metal oxide as Example 8. And the comparative example 3 showed the dielectric loss tangent of 0.0049. This value is equal to the dielectric loss tangent of Example 8. Comparative Example 4 showed a dielectric loss tangent of 0.0052. This value is smaller than the dielectric loss tangent (0.0059) of Comparative Example 2 containing K 2 O alone as an alkali metal oxide.
  • the absorption coefficients of Examples 1, 2, and 19 to 22 at a wavelength of 355 nm were measured, and were found to be 1.39 cm ⁇ 1 , 1.61 cm ⁇ 1 , 8.77 cm ⁇ 1 , 3.87 cm ⁇ 1 , 3.93 cm ⁇ , respectively. 1 and 6.46 cm ⁇ 1 .
  • the absorption coefficient was calculated according to the following method. A test piece of 20 mm ⁇ 20 mm ⁇ 3 mm was cut out from each glass sample. Using these test pieces, transmittance and reflectance at a wavelength of 355 nm were measured. The absorption coefficient was calculated from the measured transmittance, reflectance, and test piece thickness (3 mm).
  • the tempered glass samples obtained by chemically strengthening the glass samples of Example 1, Example 8 and Example 23 have a considerably larger 50% fracture load than the glass samples not subjected to chemical strengthening. The value is shown. Further, the 50% fracture load of the tempered glass sample obtained by chemically strengthening the glass sample of Example 8 having a Li 2 O content higher than that of Example 1 is the tempered glass obtained by chemically strengthening the glass sample of Example 1. It was larger than that of the sample. This suggests that the strength of the tempered glass as the Li 2 O content in the low-expansion glass is large becomes high. Further, in the tempered glass sample of Example 23, a compressive stress layer depth that was not observed in the tempered glass sample of Example 8 was observed. This suggests that the compressive stress layer is deepened by allowing Na 2 O to coexist with Li 2 O.
  • the low expansion glass and tempered glass of the present invention can be widely used for applications such as an electronic substrate, an electrically insulating substrate, a pedestal for supporting silicon (silicon wafer).

Abstract

This low-expansion glass comprises, in mol%, 55 to 75% of SiO2, 5 to 17% of B2O3, 5 to 15% of Al2O3, 0 to 10% of MgO, 0 to 10% of CaO, 0 to 5% of SrO, 0 to 1% of BaO, 0 to 6% of ZnO, 0.6 to 4% of Li2O, 0 to 1% of Na2O, 0 to 1% of K2O, 0 to 1% of SnO2, 0 to 5% of Fe2O3, 0 to 30% of TiO2 and 0 to 10% of CeO2. The total content of alkali metal oxides is up to 5mol%, while the content of Li2O exceeds the total content of alkali metal oxides other than Li2O, each content being expressed in terms of mol%. Further, the low-expansion glass exhibits a dielectric loss tangent of less than 0.0050 as determined under the condition of 25°C and 1GHz.

Description

低膨張ガラス及び強化ガラスLow expansion glass and tempered glass
 本発明は、低膨張ガラス及びその低膨張ガラスに化学強化を施した強化ガラスに関する。 The present invention relates to a low expansion glass and a tempered glass obtained by chemically strengthening the low expansion glass.
 最も汎用性のある安価な低膨張ガラスとして、パイレックス(コーニング社の登録商標)と呼ばれる硼珪酸ガラスが知られている。このガラスは、質量百分率でSiOを81%、Bを13%、Alを2%、NaOを4%含み、室温から350℃までの平均線膨張係数は約33×10-7/℃である。 A borosilicate glass called Pyrex (registered trademark of Corning) is known as the most versatile and inexpensive low expansion glass. This glass is a SiO 2 81% by mass percentage, B 2 O 3 and 13% Al 2 O 3 2%, including 4% Na 2 O, the average linear expansion coefficient of up to 350 ° C. from room temperature to about 33 × 10 −7 / ° C.
 低膨張ガラスは、しばしば、陽極接合法によってシリコンと接合される。陽極接合法とは、ガラスとシリコンとを接触させ、300~450℃程度に加熱しつつ、シリコンを陽極側として数百~1kV程度の高電圧を印加し、ガラス内の易移動陽イオン(主にアルカリ金属イオン)を陰極側に移動させ、ガラスとシリコンとの界面において静電的かつ化学的に強固な結合を生じさせて両者を接合する方法である。 低 Low expansion glass is often bonded to silicon by anodic bonding. In the anodic bonding method, glass and silicon are brought into contact and heated to about 300 to 450 ° C., while applying a high voltage of about several hundred to 1 kV with silicon as the anode side, In this method, the alkali metal ions are moved to the cathode side and electrostatically and chemically strong bonds are formed at the interface between the glass and silicon to bond the two.
 他の低膨張ガラスとして、特許文献1には、アルカリ金属を含まないシリコン台座用ガラスが記載されている。アルカリ金属が含まれていないことによる効果として、アルカリ金属のマイグレーションによる素子の劣化を防止できることが記載されている。 As another low expansion glass, Patent Document 1 describes a glass for a silicon pedestal containing no alkali metal. It is described that the deterioration of the element due to migration of alkali metal can be prevented as an effect due to the absence of alkali metal.
 特許文献2には、NaOを含まず、比較的多量のLiOを含む陽極接合用ガラスが記載されている。比較的多量のLiOが含まれていることによる効果として、低温(300℃未満)でガラスとシリコンとの陽極接合が可能となることが記載されている。また、NaOが含まれていないので、ガラスの線膨張係数及び体積抵抗率の増大を抑制できることが記載されている。 Patent Document 2 describes an anodic bonding glass that does not contain Na 2 O and contains a relatively large amount of Li 2 O. It is described that the anodic bonding between glass and silicon can be performed at a low temperature (less than 300 ° C.) as an effect by containing a relatively large amount of Li 2 O. Moreover, does not contain any Na 2 O, it is described that can suppress the increase in the linear expansion coefficient and volume resistivity of the glass.
 特許文献3には、Alに対するLiOの比率を規定したガラスが記載されている。(LiO/Al)の値が0.9以上となるように組成を調整することにより、比較的多量のLiOを含有しながらも低い平均線膨張係数を有し、熱間加工においても失透が生じず、比較的低温での溶融が可能なガラスが得られる旨記載されている。 Patent Document 3 describes a glass that defines the ratio of Li 2 O to Al 2 O 3 . By adjusting the composition so that the value of (Li 2 O / Al 2 O 3 ) is 0.9 or more, it has a low average linear expansion coefficient while containing a relatively large amount of Li 2 O, and heat It is described that a glass capable of melting at a relatively low temperature can be obtained without devitrification even in the inter-processing.
 特許文献4には、フォトレジストマスクに好適な低膨張ガラスの組成が記載されている。 Patent Document 4 describes a composition of low expansion glass suitable for a photoresist mask.
特許第3153710号明細書Japanese Patent No. 3153710 特許第3762157号明細書Japanese Patent No. 3762157 特開2010-228969号公報JP 2010-228969 A 特開昭61-53130号公報JP 61-53130 A
 特許文献1に記載されたガラスは、アルカリ金属を含んでいない。そのため、陽極接合法でガラスとシリコンウェーハとを接合する際に移動するイオンの数が少ない。この場合、シリコンとガラスとの間でSi-O-Siの共有結合が生じにくいので、接合強度の不足が懸念される。また、接合工程に長い時間を要することも予測される。 The glass described in Patent Document 1 does not contain an alkali metal. Therefore, the number of ions that move when glass and a silicon wafer are bonded by an anodic bonding method is small. In this case, since the Si—O—Si covalent bond is unlikely to form between silicon and glass, there is a concern that the bonding strength is insufficient. It is also predicted that the joining process will take a long time.
 電子部品としてガラスを使用する場合、陽極接合法によってシリコンとガラスとを確実に接合できることが重要なのはもちろんのこと、ガラス自体の特性も重要である。ガラスの重要な特性の1つとして、誘電正接(tanδ)が挙げられる。ガラスの誘電正接の増大に伴い、高周波帯(主にGHz帯)での信号損失(遅延)が増大する。ガラスの誘電正接は、25℃及び1GHzの条件で測定したとき、例えば0.0050未満であることが好ましい。コーニング社のガラスの誘電正接は約0.0054であり、これよりも優れた誘電正接を有するガラスの開発が期待されている。 When using glass as an electronic component, it is important not only that silicon and glass can be reliably bonded by an anodic bonding method, but also the characteristics of the glass itself. One important characteristic of glass is the dielectric loss tangent (tan δ). As the dielectric loss tangent of glass increases, signal loss (delay) in the high frequency band (mainly the GHz band) increases. The dielectric loss tangent of glass is preferably less than 0.0050, for example, when measured at 25 ° C. and 1 GHz. Corning's glass has a dielectric loss tangent of about 0.0054, and development of glass having a dielectric loss tangent superior to this is expected.
 特許文献2に記載されたガラスは、比較的多量のアルカリ金属(詳細にはLi)を含んでいるので、その誘電正接は大きい。 Since the glass described in Patent Document 2 contains a relatively large amount of alkali metal (specifically, Li), its dielectric loss tangent is large.
 本発明者らの知見によれば、アルカリ金属の含有量を減らせば誘電正接も減少する。例えば、特許文献3に記載されたガラスに含まれたLiOの含有量を1.40重量%以下に調整すれば、25℃及び1GHzの条件で測定したときのガラスの誘電正接が0.0050未満となる可能性がある。しかし、(LiO/Al)≧0.9の要件を満足するためには、Alの含有量を1.26重量%以下に減らす必要がある。Alはガラスの骨格を形成する成分であるとともに、4配位をとってアルカリ金属の移動度を向上させる成分でもある。従って、Alの含有量が少なすぎると、アルカリ金属の移動度が下がり、陽極接合性の悪化を招く。 According to the knowledge of the present inventors, the dielectric loss tangent decreases as the alkali metal content decreases. For example, if the content of Li 2 O contained in the glass described in Patent Document 3 is adjusted to 1.40% by weight or less, the dielectric loss tangent of the glass when measured under the conditions of 25 ° C. and 1 GHz is 0.00. May be less than 0050. However, in order to satisfy the requirement of (Li 2 O / Al 2 O 3 ) ≧ 0.9, it is necessary to reduce the content of Al 2 O 3 to 1.26% by weight or less. Al 2 O 3 is a component that forms a glass skeleton, and is also a component that improves the mobility of an alkali metal by taking four-coordination. Therefore, if the content of Al 2 O 3 is too small, the alkali metal mobility is lowered, and the anodic bondability is deteriorated.
 特許文献4に記載されたガラスは、適量(実施例では1.8~3.5重量%)のNaOを含んでいることから、陽極接合可能と推測される。しかし、本発明者らの知見によれば、NaOを単独で使用するとガラスの誘電正接が過大となりやすい。 Since the glass described in Patent Document 4 contains an appropriate amount (1.8 to 3.5% by weight in the examples) of Na 2 O, it is presumed that anodic bonding is possible. However, according to the knowledge of the present inventors, when Na 2 O is used alone, the dielectric loss tangent of the glass tends to be excessive.
 本発明は、このような従来の問題点に着目してなされたものであり、陽極接合可能であり、かつ低誘電正接を有する低膨張ガラスを提供することを目的とする。 The present invention has been made paying attention to such a conventional problem, and an object of the present invention is to provide a low expansion glass capable of anodic bonding and having a low dielectric loss tangent.
 本明細書で「陽極接合性」の用語は、接合強度だけでなく、陽極接合の形成しやすさの意味も含む。陽極接合の形成しやすさについては、詳細に後述する。 In this specification, the term “anodic bondability” includes not only the bonding strength but also the meaning of ease of anodic bonding. The ease of forming anodic bonding will be described later in detail.
 先に説明したように、優れた陽極接合性を確保するためには、適量のアルカリ金属が不可欠である。しかし、アルカリ金属は、ガラスの誘電正接を高める性質を持っている。つまり、アルカリ金属を含むガラスにとって、陽極接合性と誘電正接は、本質的にトレードオフの関係にある。 As described above, an appropriate amount of alkali metal is indispensable to ensure excellent anodic bonding properties. However, alkali metals have the property of increasing the dielectric loss tangent of glass. That is, for glass containing an alkali metal, anodic bondability and dielectric loss tangent are essentially in a trade-off relationship.
 こうした知見のもとで、本発明者らは、アルカリ金属の種類、アルカリ金属の含有量及び高周波帯(GHz帯)におけるガラスの誘電正接の関係を綿密に調べた。その結果、Liは、Na、K等の他のアルカリ金属に比べて、ガラスの誘電正接を高める能力が低いことを突き止めた。その結果、以下の本発明を完成させるに至った。 Based on these findings, the present inventors have closely investigated the relationship between the type of alkali metal, the content of alkali metal, and the dielectric loss tangent of glass in the high frequency band (GHz band). As a result, it was found that Li has a lower ability to increase the dielectric loss tangent of glass compared to other alkali metals such as Na and K. As a result, the following present invention has been completed.
 すなわち、本発明は、
 mol%で表示して、
 SiO:55~75%、
 B:5~17%、
 Al:5~15%、
 MgO:0~10%、
 CaO:0~10%、
 SrO:0~5%、
 BaO:0~1%、
 ZnO:0~6%、
 LiO:0.6~4%、
 NaO:0~1%、
 KO:0~1%、
 SnO:0~1%、
 Fe:0~5%、
 TiO:0~30%、及び
 CeO:0~10%、
を含み、
 アルカリ金属酸化物の含有量の合計が5mol%以下であり、
 mol%で表示して、LiOの含有量が、LiO以外のアルカリ金属酸化物の含有量の合計を上回っており、
 25℃及び1GHzの測定条件において、0.0050未満の誘電正接を有する、低膨張ガラスを提供する。
That is, the present invention
Displayed in mol%,
SiO 2 : 55 to 75%,
B 2 O 3 : 5 to 17%,
Al 2 O 3 : 5 to 15%,
MgO: 0 to 10%,
CaO: 0 to 10%,
SrO: 0-5%
BaO: 0 to 1%,
ZnO: 0 to 6%,
Li 2 O: 0.6-4%,
Na 2 O: 0 to 1%,
K 2 O: 0 to 1%,
SnO 2 : 0 to 1%
Fe 2 O 3 : 0 to 5%,
TiO 2 : 0-30%, and CeO 2 : 0-10%,
Including
The total content of alkali metal oxides is 5 mol% or less,
displayed in mol%, the content of Li 2 O, well above the total content of alkali metal oxides other than Li 2 O,
Provided is a low expansion glass having a dielectric loss tangent of less than 0.0050 at measurement conditions of 25 ° C. and 1 GHz.
 また、本発明は別の側面から、前記低膨張ガラスを、前記低膨張ガラスに含まれるアルカリ金属イオンよりもイオン半径の大きい一価の陽イオンを含む溶融塩に接触させることにより、前記アルカリ金属イオンを前記一価の陽イオンとイオン交換して、表面に圧縮応力層が形成された強化ガラスを提供する。 In another aspect of the present invention, the alkali metal is brought into contact with a molten salt containing a monovalent cation having an ionic radius larger than that of the alkali metal ion contained in the low expansion glass. Ions are exchanged with the monovalent cation to provide a tempered glass having a compressive stress layer formed on the surface.
 本発明によれば、アルカリ金属酸化物としてLiOが最も多く含まれている。従って、LiO以外のアルカリ金属酸化物のみが同じ量含まれている場合に比べて、ガラスの誘電正接は小さい。また、アルカリ金属酸化物の含有量(含有量の合計)は比較的少ないものの、Al等の他の成分が適切に調整されている。そのため、アルカリ金属酸化物の含有量が少なかったとしても、例えば、陽極接合を形成する際のアルカリ金属の移動度は十分に高い。従って、本発明の低膨張ガラスは、優れた陽極接合性を有する。このように、本発明によれば、優れた陽極接合性を有するだけでなく、低誘電正接を有する低膨張ガラスを提供できる。また、本発明によれば、前記低膨張ガラスに含まれるアルカリ金属イオンをよりイオン半径の大きい一価の陽イオンとイオン交換して、表面に圧縮応力層が形成された強化ガラスを提供することができる。 According to the present invention, Li 2 O is the most contained as the alkali metal oxide. Accordingly, the dielectric loss tangent of the glass is smaller than when only the same amount of alkali metal oxide other than Li 2 O is contained. Further, (total content) The content of alkali metal oxides but is relatively small, other components such as Al 2 O 3 is properly adjusted. Therefore, even if the content of the alkali metal oxide is small, for example, the mobility of the alkali metal when forming the anodic bonding is sufficiently high. Therefore, the low expansion glass of the present invention has excellent anodic bonding properties. Thus, according to the present invention, it is possible to provide a low expansion glass having not only excellent anodic bonding properties but also low dielectric loss tangent. In addition, according to the present invention, there is provided a tempered glass in which a compression stress layer is formed on the surface by ion-exchange of alkali metal ions contained in the low expansion glass with monovalent cations having a larger ion radius. Can do.
 以下、低膨張ガラスの各成分の含有量の範囲を規定する理由について説明する。特に断りのない限り、含有量(含有率)を表す数値は、mol%表示である。 Hereinafter, the reason for prescribing the range of the content of each component of the low expansion glass will be described. Unless otherwise specified, the numerical value representing the content (content rate) is expressed in mol%.
(SiO
 SiOは、ガラス網目を形成する必須成分である。SiOは、また、ガラスの耐久性、特に耐酸性を高める成分である。そのため、SiOの含有量が少なすぎるとガラスの耐酸性が不足する可能性がある。従って、SiOの含有量の下限は55%である。SiOの含有量の下限は60%であることが好ましく、63%であることがより好ましい。他方、SiOの含有量が多すぎるとガラスの熔解性が大幅に低下する可能性がある。従って、SiOの含有量の上限は75%である。SiOの含有量の上限は72%であることが好ましく、70%であることがより好ましい。SiOの含有量の範囲は、これらの上限及び下限の任意の組み合わせで特定されうる。
(SiO 2 )
SiO 2 is an essential component for forming a glass network. SiO 2 is also a component that enhances the durability, particularly acid resistance, of the glass. Therefore, the content of SiO 2 is too small acid resistance of the glass may be insufficient. Therefore, the lower limit of the content of SiO 2 is 55%. The lower limit of the content of SiO 2 is preferably 60%, more preferably 63%. On the other hand, if the content of SiO 2 is too large melting properties of the glass may be reduced significantly. Therefore, the upper limit of the content of SiO 2 is 75%. The upper limit of the content of SiO 2 is preferably 72%, and more preferably 70%. The range of the content of SiO 2 can be specified by any combination of these upper and lower limits.
(B
 Bは、ガラス網目を形成する必須成分である。Bの含有量が少なすぎると失透温度が大幅に上昇するとともに、ガラスの熔解性が大幅に低下する可能性がある。また、ガラスの生産性に影響が出る可能性もある。従って、Bの含有量の下限は5%である。Bの含有量の下限は7%であることが好ましく、9%であることがより好ましい。他方、Bの含有量が多すぎるとガラスの耐久性が不足する可能性がある。従って、Bの含有量の上限は17%である。Bの含有量の上限は13%であることが好ましい。Bの含有量の範囲は、これらの上限及び下限の任意の組み合わせで特定されうる。
(B 2 O 3 )
B 2 O 3 is an essential component that forms a glass network. If the content of B 2 O 3 is too small, the devitrification temperature is significantly increased, and the meltability of the glass may be significantly decreased. In addition, the productivity of glass may be affected. Therefore, the lower limit of the content of B 2 O 3 is 5%. The lower limit of the content of B 2 O 3 is preferably 7%, and more preferably 9%. On the other hand, if the content of B 2 O 3 is too large, the durability of the glass may be insufficient. Therefore, the upper limit of the content of B 2 O 3 is 17%. The upper limit of the content of B 2 O 3 is preferably 13%. The range of the content of B 2 O 3 can be specified by any combination of these upper and lower limits.
(Al
 Alは、ガラス網目を形成する役割及びガラス網目を修飾する役割を果たす必須成分である。Alの含有量が少なすぎると分相が生じる可能性がある。また、先に説明したように、Alの含有量が少なすぎると、アルカリ金属の移動度が下がり、陽極接合性が大幅に悪化する可能性がある。従って、Alの含有量の下限は5%である。Alの含有量の下限は8%であることが好ましい。他方、Alの含有量が多すぎると線膨張係数及び失透温度の大幅な上昇を招く可能性がある。従って、Alの含有量の上限は15%である。Alの含有量の上限は13%であることが好ましく、12%であることがより好ましい。Alの含有量の範囲は、これらの上限及び下限の任意の組み合わせで特定されうる。
(Al 2 O 3 )
Al 2 O 3 is an essential component that plays a role of forming a glass network and a role of modifying the glass network. If the content of Al 2 O 3 is too small, phase separation may occur. Further, as described above, when the content of Al 2 O 3 is too small, the mobility of the alkali metal is lowered, and the anodic bondability may be greatly deteriorated. Therefore, the lower limit of the content of Al 2 O 3 is 5%. The lower limit for the content of Al 2 O 3 is preferably 8%. On the other hand, if the content of Al 2 O 3 is too large, the linear expansion coefficient and the devitrification temperature may be significantly increased. Therefore, the upper limit of the content of Al 2 O 3 is 15%. The upper limit of the content of Al 2 O 3 is preferably 13%, and more preferably 12%. The range of the content of Al 2 O 3 can be specified by any combination of these upper and lower limits.
 なお、Alは、mol%及び質量%のいずれで表示したとしても、LiOよりも多く本発明の低膨張ガラスに含まれる。 Al 2 O 3 is contained in the low-expansion glass of the present invention more than Li 2 O, regardless of whether it is expressed in mol% or mass%.
(アルカリ土類金属酸化物)
 アルカリ土類金属酸化物、すなわち、MgO、CaO、SrO及びBaOは、ガラス網目を修飾する任意成分であり、ガラスの熔融性を向上させる成分である。アルカリ土類金属酸化物の含有量が多すぎると、線膨張係数の大幅な上昇を招く可能性がある。従って、MgOの含有量の上限は、例えば10%であり、好ましくは7%、より好ましくは5%である。CaOの含有量の上限は、例えば10%であり、好ましくは8%、より好ましくは7%である。SrOの含有量の上限は、例えば5%であり、好ましくは3%、より好ましくは2%である。BaOの含有量の上限は、例えば1%であり、好ましくは0.5%である。特に、BaOは、環境に対する負荷が大きいので、本実施形態の低膨張ガラスは、BaOを実質的に含んでいなくてもよい。
(Alkaline earth metal oxide)
Alkaline earth metal oxides, that is, MgO, CaO, SrO, and BaO are optional components that modify the glass network and are components that improve the meltability of the glass. If the content of the alkaline earth metal oxide is too large, the linear expansion coefficient may be significantly increased. Therefore, the upper limit of the content of MgO is, for example, 10%, preferably 7%, more preferably 5%. The upper limit of the content of CaO is, for example, 10%, preferably 8%, more preferably 7%. The upper limit of the content of SrO is, for example, 5%, preferably 3%, more preferably 2%. The upper limit of the content of BaO is, for example, 1%, preferably 0.5%. In particular, since BaO has a large load on the environment, the low expansion glass of the present embodiment may not substantially contain BaO.
 「実質的に含まない」とは、例えば工業用原料により不可避的に混入する場合を除き、意図的に含ませないことを意味する。具体的には、0.1%未満、好ましくは0.01%未満の含有率を意味する。 “Substantially free” means not intentionally included unless, for example, it is inevitably mixed with industrial raw materials. Specifically, it means a content of less than 0.1%, preferably less than 0.01%.
 他方、適切な量のMgO及びCaOは、ガラスの熔融性を向上させる効果とともに、失透温度を下げる効果をもたらす。従って、MgOは、例えば1%以上、好ましくは2%以上含まれていてもよい。同様に、CaOは、例えば1%以上、好ましくは2.5%以上、より好ましくは3%以上含まれていてもよい。 On the other hand, appropriate amounts of MgO and CaO bring about the effect of lowering the devitrification temperature as well as the effect of improving the meltability of the glass. Therefore, MgO may be contained, for example, 1% or more, preferably 2% or more. Similarly, CaO may be contained, for example, 1% or more, preferably 2.5% or more, more preferably 3% or more.
 なお、CaO及びSrOは、アルカリ金属を強く束縛する能力を有する。そのため、これらの含有量が多すぎると、陽極接合性の大幅な低下を招く可能性がある。また、CaO及びSrOは線膨張係数を変化させる能力も大きいため、これらの含有量が多すぎると線膨張係数を所望の範囲に調整することが困難となる可能性がある。従って、CaO及びSrOの含有量の合計の上限は、例えば9%であり、好ましくは7%、より好ましくは6%である。 Note that CaO and SrO have the ability to strongly bind alkali metals. Therefore, when there is too much these content, there exists a possibility of causing the significant fall of anodic bondability. In addition, since CaO and SrO have a large ability to change the linear expansion coefficient, if the content thereof is too large, it may be difficult to adjust the linear expansion coefficient to a desired range. Therefore, the upper limit of the total content of CaO and SrO is, for example, 9%, preferably 7%, more preferably 6%.
(ZnO)
 ZnOは、アルカリ土類金属酸化物と同様の効果を持つ任意成分であり、一般に、ガラス形成能を向上させる成分でもある。ZnOの含有量が多すぎると、失透温度が大幅に上昇する可能性がある。従って、ZnOの含有量の上限は6%であり、好ましくは2.5%である。
(ZnO)
ZnO is an optional component having the same effect as the alkaline earth metal oxide, and is generally also a component that improves glass forming ability. When there is too much content of ZnO, devitrification temperature may rise significantly. Therefore, the upper limit of the ZnO content is 6%, preferably 2.5%.
 なお、線膨張係数、熔融性及び陽極接合性等を考慮して、MgO、CaO、SrO、BaO及びZnOの含有量の合計は、例えば5~13%、好ましくは7~13%、より好ましくは9~11%の範囲に調整されていてもよい。 The total content of MgO, CaO, SrO, BaO and ZnO is, for example, 5 to 13%, preferably 7 to 13%, more preferably in consideration of the linear expansion coefficient, meltability, anodic bondability, and the like. It may be adjusted to a range of 9 to 11%.
 MgO、CaO、SrO、BaO及びZnOの含有量の範囲は、それぞれ、上記した上限及び下限の任意の組み合わせで特定されうる。 The ranges of the contents of MgO, CaO, SrO, BaO and ZnO can be specified by any combination of the above upper limit and lower limit, respectively.
(アルカリ金属酸化物)
 アルカリ金属酸化物は、陽極接合性を向上させる必須成分である。陽極接合の際には、アルカリ金属イオンが陰極へ移動することによって、界面においてガラス中の非架橋酸素イオンとシリコンとの共有結合が引き起こされる。また、アルカリ金属酸化物は、ガラス網目を修飾する成分であり、ガラス網目を適度に切断し、ガラスの熔融温度を下げ、ガラス融液の粘性を低く抑える効果がある。他方、アルカリ金属酸化物の含有量が多すぎると、線膨張係数及び誘電正接が大幅に上昇する可能性がある。
(Alkali metal oxide)
Alkali metal oxide is an essential component that improves anodic bonding. At the time of anodic bonding, alkali metal ions move to the cathode, thereby causing a covalent bond between non-crosslinked oxygen ions in the glass and silicon at the interface. The alkali metal oxide is a component that modifies the glass network, and has an effect of appropriately cutting the glass network, lowering the melting temperature of the glass, and keeping the viscosity of the glass melt low. On the other hand, if the content of the alkali metal oxide is too large, the linear expansion coefficient and the dielectric loss tangent may be significantly increased.
 ここで、全てのアルカリ金属酸化物が誘電正接を高める能力を等しく有しているわけではない。アルカリ金属酸化物の中でも、LiOは、ガラスの誘電正接を高める能力が相対的に低い。従って、アルカリ金属酸化物として主にLiOを使用すれば、優れた陽極接合性と低誘電正接とを兼ね備えたガラスを提供できる。Liは、陽極接合の際の移動度も高いので、必須のアルカリ金属酸化物としてのLiOの使用は好ましい。 Here, not all alkali metal oxides have the same ability to increase the dielectric loss tangent. Among alkali metal oxides, Li 2 O has a relatively low ability to increase the dielectric loss tangent of glass. Therefore, if Li 2 O is mainly used as the alkali metal oxide, a glass having both excellent anodic bonding properties and low dielectric loss tangent can be provided. Since Li + has a high mobility during anodic bonding, the use of Li 2 O as an essential alkali metal oxide is preferable.
 具体的には、まず、アルカリ金属酸化物の含有量の合計を5%以下とする。併せて、LiOの含有量を0.6~4%の範囲に制限する。LiOの含有量は、mol%で表示して、LiO以外のアルカリ金属酸化物の含有量の合計を上回っている。これらの条件を満たすことにより、優れた陽極接合性を確保できるとともに、誘電正接が高くなりすぎることを防止できる。 Specifically, first, the total content of alkali metal oxides is set to 5% or less. In addition, the content of Li 2 O is limited to a range of 0.6 to 4%. The content of Li 2 O is expressed in mol% and exceeds the total content of alkali metal oxides other than Li 2 O. By satisfying these conditions, it is possible to ensure excellent anodic bondability and prevent the dielectric loss tangent from becoming too high.
 また、アルカリ金属酸化物の含有量の合計は、3%以下であることが好ましい。LiOの含有量の上限は、好ましくは3%であり、より好ましくは2%である。LiOの含有量の下限は、好ましくは1%である。LiOの含有量の範囲は、これらの上限及び下限の任意の組み合わせで特定されうる。 The total content of alkali metal oxides is preferably 3% or less. The upper limit of the content of Li 2 O is preferably 3%, more preferably 2%. The lower limit of the content of Li 2 O is preferably 1%. The range of the content of Li 2 O can be specified by any combination of these upper and lower limits.
 LiO以外のアルカリ金属酸化物として、NaO及びKOから選ばれる少なくとも1つが任意成分として含まれていてもよい。NaOの含有量の上限は、例えば1%であり、好ましくは0.5%であり、より好ましくは0.25%である。KOの含有量の上限は、例えば1%であり、好ましくは0.5%である。 As an alkali metal oxide other than Li 2 O, at least one selected from Na 2 O and K 2 O may be contained as an optional component. The upper limit of the content of Na 2 O is, for example, 1%, preferably 0.5%, more preferably 0.25%. The upper limit of the content of K 2 O is, for example, 1%, preferably 0.5%.
 本実施形態の低膨張ガラスは、NaO及びKOから選ばれる少なくとも1つを0.05%以上含んでいてもよい。NaOの含有量及びKOの含有量は、それぞれ、LiOの含有量よりも少ない。NaOは、0.1%以上の比率で低膨張ガラスに含まれていてもよい。同様に、KOは、0.1%以上の比率で低膨張ガラスに含まれていてもよい。後述する実施例から本発明者らが得た知見によれば、少量のNaO及び/又はKOがLiOとともに低膨張ガラスに含まれていると、誘電正接の上昇を抑制しつつ、優れた陽極接合性を低膨張ガラスに付与できる。 The low expansion glass of this embodiment may contain 0.05% or more of at least one selected from Na 2 O and K 2 O. The content of Na 2 O and the content of K 2 O are each smaller than the content of Li 2 O. Na 2 O may be contained in the low expansion glass at a ratio of 0.1% or more. Similarly, K 2 O may be contained in the low expansion glass at a ratio of 0.1% or more. According to the knowledge obtained by the present inventors from the examples described later, when a small amount of Na 2 O and / or K 2 O is contained in the low expansion glass together with Li 2 O, an increase in dielectric loss tangent is suppressed. However, excellent anodic bondability can be imparted to the low expansion glass.
 NaO及びKOの含有量の範囲は、それぞれ、上記した上限及び下限の任意の組み合わせで特定されうる。 The range of the content of Na 2 O and K 2 O can be specified by any combination of the above upper limit and lower limit, respectively.
 別の観点から、NaO及びKOから選ばれる少なくとも1つが低膨張ガラスに含まれているとき、NaO及びKOの含有量の合計に対するLiOの含有量の比率(LiO/(NaO+KO))は2よりも大きい値でありうる。これにより、上記した効果をより十分に享受できる。一例として、比率(LiO/(NaO+KO))の上限は80である。このとき、LiOの含有量が4%、NaO又はKOの含有量が0.05%である。 From another point of view, when at least one selected from Na 2 O and K 2 O is contained in the low expansion glass, the ratio of the content of Li 2 O to the total content of Na 2 O and K 2 O ( Li 2 O / (Na 2 O + K 2 O)) can be a value greater than 2. Thereby, the above-described effects can be fully enjoyed. As an example, the upper limit of the ratio (Li 2 O / (Na 2 O + K 2 O)) is 80. At this time, the content of Li 2 O is 4%, and the content of Na 2 O or K 2 O is 0.05%.
 当業者に知られているように、異種のアルカリイオンをガラス中に混合させることにより、ガラスの性質が加成性から大きくずれる。この現象は、「混合アルカリ効果」と呼ばれている。 As known to those skilled in the art, by mixing different types of alkali ions in the glass, the properties of the glass greatly deviate from the additivity. This phenomenon is called “mixed alkali effect”.
 しかし、本発明者らは、少量のNaO及び/又はKOがLiOとともに低膨張ガラスに含まれているときに誘電正接の上昇が加成性からずれる現象は、通常の混合アルカリ効果とは異なるものであり、高周波帯に特有の現象ではないかと考えている。その理由は次の通りである。 However, the present inventors have found that when a small amount of Na 2 O and / or K 2 O is contained together with Li 2 O in a low expansion glass, the phenomenon in which the increase in dielectric loss tangent deviates from additivity is the usual mixing. It is different from the alkali effect and is considered to be a phenomenon peculiar to the high frequency band. The reason is as follows.
 一般に、混合アルカリ効果は、2種類のアルカリ成分の比率が1:1のときに顕著に現れる。しかし、後述する実施例から明らかなように、誘電正接の上昇を抑制する効果は、LiO:NaO=5:1のときに有利に得られている。また、混合アルカリ効果は、アルカリの移動に基づく現象であると考えられている。これに対し、1GHzの周波数において、ガラス中のアルカリは変形したり振動したりするだけなので、アルカリの移動とは無関係である。 In general, the mixed alkali effect is prominent when the ratio of two types of alkali components is 1: 1. However, as will be apparent from the examples described later, the effect of suppressing the increase in dielectric loss tangent is obtained advantageously when Li 2 O: Na 2 O = 5: 1. The mixed alkali effect is considered to be a phenomenon based on alkali movement. On the other hand, at a frequency of 1 GHz, the alkali in the glass only deforms or vibrates, so it is unrelated to the movement of the alkali.
(SnO
 SnOは、清澄作用を有するので、例えば0.05%以上、好ましくは0.1%以上の比率で低膨張ガラスに含まれていてもよい。ただし、SnOの含有量が多すぎると失透及び分相が生じる可能性がある。従って、SnOの含有量の上限は、例えば1%であり、好ましくは0.2%である。SnOの含有量の範囲は、これらの上限及び下限の任意の組み合わせで特定されうる。
(SnO 2 )
Since SnO 2 has a clarification action, it may be contained in the low expansion glass at a ratio of 0.05% or more, preferably 0.1% or more, for example. However, if the SnO 2 content is too large, devitrification and phase separation may occur. Therefore, the upper limit of the content of SnO 2 is, for example, 1%, preferably 0.2%. The range of the content of SnO 2 can be specified by any combination of these upper and lower limits.
(Fe、TiO、CeO
 通常、Feは、Fe2+又はFe3+の状態でガラス中に存在する。Fe3+はガラスの紫外線吸収特性を高める成分であり、Fe2+は熱線吸収特性を高める成分である。従って、Feは必須ではないが、ガラスの光学特性を調整するための成分として使用してもよい。また、Feは、工業用原料により不可避的に混入する場合がある。Feは、Feで表示して、例えば0.01%以上、好ましくは0.5%以上の比率で低膨張ガラスに含まれていてもよい。しかし、Feが過剰に含まれていると、低膨張ガラスが過度に着色したり、低膨張ガラスの製造の困難性が高まったりする可能性がある。なぜなら、Feは、赤外線を良く吸収し、ガラス融液の温度の不均一さを増長する可能性があるからである。従って、Feの含有量の上限は、Feで表示して、例えば5.0%であり、2.0%であることが好ましく、より好ましくは1.0%である。
(Fe 2 O 3 , TiO 2 , CeO 2 )
Usually, Fe is present in the glass in the state of Fe 2+ or Fe 3+ . Fe 3+ is a component that improves the ultraviolet absorption characteristics of glass, and Fe 2+ is a component that improves the heat ray absorption characteristics. Therefore, Fe is not essential, but may be used as a component for adjusting the optical properties of the glass. Moreover, Fe may be inevitably mixed by industrial raw materials. Fe, expressed as Fe 2 O 3 , may be contained in the low expansion glass at a ratio of 0.01% or more, preferably 0.5% or more, for example. However, if Fe is excessively contained, the low expansion glass may be excessively colored, or the difficulty in producing the low expansion glass may increase. This is because Fe absorbs infrared rays well and may increase the temperature non-uniformity of the glass melt. Therefore, the upper limit of the Fe content is expressed as Fe 2 O 3 , for example, 5.0%, preferably 2.0%, more preferably 1.0%.
 本実施形態の低膨張ガラスを電子部品として使用する場合、レーザーでその低膨張ガラスを加工する可能性がある。この場合、低膨張ガラスには、レーザーを吸収する性質が要求される。微量のFeは、レーザーの吸収を助長し、レーザーを用いた加工、例えば孔開け加工を容易にする。同様の目的で、TiO及び/又はCeOが低膨張ガラスに含まれていてもよい。すなわち、本実施形態の低膨張ガラスは、Fe、TiO及びCeOからなる群より選ばれる少なくとも1つをレーザー吸収成分として含んでいてもよい。Feは清澄作用を有し、かつ極めて安価なので、レーザー吸収成分としてのFeの使用は好ましい。 When using the low expansion glass of this embodiment as an electronic component, the low expansion glass may be processed with a laser. In this case, the low expansion glass is required to have a property of absorbing a laser. A small amount of Fe facilitates laser absorption and facilitates processing using a laser, such as drilling. For the same purpose, TiO 2 and / or CeO 2 may be contained in the low expansion glass. That is, the low expansion glass of the present embodiment may include at least one selected from the group consisting of Fe 2 O 3 , TiO 2 and CeO 2 as a laser absorption component. Since Fe has a clarification action and is extremely inexpensive, the use of Fe 2 O 3 as a laser absorbing component is preferred.
 例えば、535nm以下の特定の波長λのレーザーに対する低膨張ガラスの吸収係数が50cm-1以下となるように、レーザー吸収成分(Fe、TiO及びCeO)の含有量を調整することができる。吸収係数は、好ましくは3~20cm-1、より好ましくは3~10cm-1の範囲にある。 For example, adjusting the content of the laser absorbing components (Fe 2 O 3 , TiO 2 and CeO 2 ) so that the absorption coefficient of the low expansion glass with respect to a laser having a specific wavelength λ of 535 nm or less is 50 cm −1 or less. Can do. The absorption coefficient is preferably in the range of 3 to 20 cm −1 , more preferably 3 to 10 cm −1 .
 低膨張ガラスを加工するためのレーザーとしては、Nd:YAGレーザーの高調波、Nd:YVOレーザーの高調波、Nd:YLFレーザーの高調波が挙げられる。高調波は、例えば、第2高調波、第3高調波又は第4高調波である。これらのレーザーの第2高調波の波長は、532~535nmの近傍にあり、第3高調波の波長は、355~357nmの近傍にあり、第4高調波の波長は、266~268nmの近傍にある。これらのレーザーを用いることによって、低膨張ガラスを安価に加工できる。 Examples of the laser for processing the low expansion glass include Nd: YAG laser harmonics, Nd: YVO 4 laser harmonics, and Nd: YLF laser harmonics. The harmonic is, for example, a second harmonic, a third harmonic, or a fourth harmonic. The wavelength of the second harmonic of these lasers is in the vicinity of 532 to 535 nm, the wavelength of the third harmonic is in the vicinity of 355 to 357 nm, and the wavelength of the fourth harmonic is in the vicinity of 266 to 268 nm. is there. By using these lasers, low expansion glass can be processed at low cost.
 上記の観点を考慮に入れて、TiOの含有量の下限は、例えば1%、好ましくは3%である。CeOの含有量の下限は、例えば0.2%、好ましくは0.5%である。ただし、これらが過剰に含まれていると失透及び分相が生じる可能性がある。従って、TiOの含有量の上限は、例えば30%であり、好ましくは20%、より好ましくは10%である。同様に、CeOの含有量の上限は、例えば10%、好ましくは5%、より好ましくは2%である。 Taking the above viewpoint into consideration, the lower limit of the content of TiO 2 is, for example, 1%, preferably 3%. The lower limit of the CeO 2 content is, for example, 0.2%, preferably 0.5%. However, if these are excessively contained, devitrification and phase separation may occur. Therefore, the upper limit of the content of TiO 2 is, for example, 30%, preferably 20%, more preferably 10%. Similarly, the upper limit of the content of CeO 2 is, for example, 10%, preferably 5%, more preferably 2%.
 Fe、TiO及びCeOの含有量の範囲は、それぞれ、上記した上限及び下限の任意の組み合わせで特定されうる。 The range of the content of Fe 2 O 3 , TiO 2 and CeO 2 can be specified by any combination of the above upper limit and lower limit, respectively.
 なお、Fe、TiO及びCeOの1molあたりの吸収係数は、それぞれ、12.5cm-1、1.0cm-1及び5.9cm-1である。Fe、TiO及びCeOの含有量をそれぞれX、Y、Zとすると、これらの成分に基づく吸収係数は、「12.5X+Y+5.9Z」で表される。3<(12.5X+Y+5.9Z)<50を満たす(X+Y+Z)の最大値は30(mol%)であり、最小値は0.3(mol%)となる。 The absorption coefficient per 1mol of Fe 2 O 3, TiO 2 and CeO 2, respectively, 12.5 cm -1, is 1.0 cm -1 and 5.9 cm -1. When the contents of Fe 2 O 3 , TiO 2 and CeO 2 are X, Y and Z, respectively, the absorption coefficient based on these components is represented by “12.5X + Y + 5.9Z”. The maximum value of (X + Y + Z) that satisfies 3 <(12.5X + Y + 5.9Z) <50 is 30 (mol%), and the minimum value is 0.3 (mol%).
 本発明の低膨張ガラスは、実質的に上記した成分からなっていてもよい。また、本発明の低膨張ガラスは、上記した成分以外の成分を実質的に含まなくてもよい。さらに、本発明の低膨張ガラスは、上記した成分からなっていてもよい。 The low expansion glass of the present invention may consist essentially of the components described above. Moreover, the low expansion glass of this invention does not need to contain substantially components other than an above-described component. Furthermore, the low expansion glass of this invention may consist of an above-described component.
(その他の成分)
 低膨張ガラスを製造するために、一般に知られている清澄剤、例えば、NaCl等の塩化物、CaF等のフッ化物、亜ヒ酸、酸化アンチモン等を原料中に少量添加してもよい。清澄剤の成分は、誘電正接、接合強度等の特性に大きな影響を及ぼさない限り、低膨張ガラスに残留していてもよい。ただし、環境に対する負荷が大きい物質、例えば亜ヒ酸及び酸化アンチモンは、それぞれ、実質的に含まれていないことが好ましい。
(Other ingredients)
In order to produce a low expansion glass, a generally known fining agent, for example, a chloride such as NaCl, a fluoride such as CaF 2 , arsenous acid, antimony oxide or the like may be added in a small amount to the raw material. The component of the fining agent may remain in the low expansion glass as long as it does not significantly affect the characteristics such as dielectric loss tangent and bonding strength. However, it is preferable that substances having a large environmental load, such as arsenous acid and antimony oxide, are not substantially contained.
(誘電正接)
 近年、半導体技術を駆使して作られるMEMS(Micro Electro Mechanical Systems:微小電気機械システム)と呼ばれるデバイスの利用が、自動車、携帯電話、生化学分野等を中心に拡大している。加速度センサ、圧力センサ等が既に自動車等に適用されているほか、光導波路センサ、光スイッチングデバイス等の光MEMSについても応用範囲が広がっている。MEMSの構成部品の1つとして、本発明の低膨張ガラスは、電子基板、電気的絶縁基板、シリコン(シリコンウェーハ)を支持する台座等の用途に広く使用されうる。
(Dielectric loss tangent)
In recent years, the use of devices called MEMS (Micro Electro Mechanical Systems) produced by making full use of semiconductor technology has been expanded mainly in the fields of automobiles, mobile phones, biochemistry, and the like. Acceleration sensors, pressure sensors, etc. have already been applied to automobiles and the like, and the application range has expanded to optical MEMS, such as optical waveguide sensors and optical switching devices. As one of the components of MEMS, the low expansion glass of the present invention can be widely used for applications such as an electronic substrate, an electrically insulating substrate, a pedestal for supporting silicon (silicon wafer).
 低膨張ガラスを用いたデバイスは、しばしば、高周波信号を取り扱う。従って、低膨張ガラスは、気温25℃及び周波数1GHzの測定条件において、0.0050未満の誘電正接を有していることが好ましい。誘電正接の下限は特に限定されないが、0.001未満の誘電正接は非現実的である。 デ バ イ ス Devices using low expansion glass often handle high frequency signals. Therefore, the low expansion glass preferably has a dielectric loss tangent of less than 0.0050 under the measurement conditions of an air temperature of 25 ° C. and a frequency of 1 GHz. The lower limit of the dielectric loss tangent is not particularly limited, but a dielectric loss tangent less than 0.001 is unrealistic.
(失透温度)
 本実施形態の低膨張ガラスは、上記した範囲の組成を有することにより、例えば950~1150℃の範囲に失透温度を有する。失透温度が低い場合、ガラスを安定して製造できる。もちろん、失透温度が上記範囲に収まっていることは必須ではない。
(Devitrification temperature)
The low expansion glass of the present embodiment has a devitrification temperature in the range of 950 to 1150 ° C., for example, by having the composition in the above range. When the devitrification temperature is low, the glass can be produced stably. Of course, it is not essential that the devitrification temperature is within the above range.
(平均線膨張係数)
 本実施形態の低膨張ガラスは、25~450℃の範囲で測定したときに、好ましくは、32×10-7/℃~40×10-7/℃の範囲の平均線膨張係数を有している。この範囲内の平均線膨張係数を有していると、陽極接合後の残留応力の問題が生じにくく、ガラスとシリコンとの陽極接合の強度を確保しやすい。また、本実施形態の低膨張ガラスは、陽極接合以外の方法でシリコン等と接合した場合においても、反りや接合部の応力による破損を起こしにくい。また、本実施形態の低膨張ガラスは、表面にシリコン薄膜を形成し、薄膜トランジスタなどの回路をさらに形成した場合にも熱応力による問題を生じにくい。なお、平均線膨張係数は、示差熱膨張計によって25~450℃の間の試料の伸び率を測定し、この伸び率を温度変化の値で割ることによって求めることができる。
(Average linear expansion coefficient)
The low expansion glass of this embodiment preferably has an average coefficient of linear expansion in the range of 32 × 10 −7 / ° C. to 40 × 10 −7 / ° C. when measured in the range of 25 to 450 ° C. Yes. If the average linear expansion coefficient is within this range, the problem of residual stress after anodic bonding is unlikely to occur, and the strength of anodic bonding between glass and silicon is easily ensured. In addition, the low expansion glass of the present embodiment is less likely to be warped or damaged due to stress at the bonded portion even when bonded to silicon or the like by a method other than anodic bonding. Moreover, the low expansion glass of this embodiment is less likely to cause a problem due to thermal stress even when a silicon thin film is formed on the surface and a circuit such as a thin film transistor is further formed. The average linear expansion coefficient can be obtained by measuring the elongation of a sample between 25 ° C. and 450 ° C. with a differential thermal dilatometer and dividing the elongation by the value of temperature change.
(化学強化)
 本発明の低膨張ガラスは化学強化を行うことができ、本発明の低膨張ガラスに化学強化を施すことで本発明の強化ガラスを得ることができる。化学強化は、ガラス表面に含まれるアルカリ金属イオンをより半径の大きい一価の陽イオンで置換することにより、ガラス表面に圧縮応力層を形成する技術である。
(Chemical enhancement)
The low expansion glass of the present invention can be chemically strengthened, and the tempered glass of the present invention can be obtained by chemically strengthening the low expansion glass of the present invention. Chemical strengthening is a technique for forming a compressive stress layer on the glass surface by replacing alkali metal ions contained on the glass surface with monovalent cations having a larger radius.
 本発明の強化ガラスは、例えば、回路基板用材料として用いることができる。具体的には、強化ガラスに貫通孔を設け、一方の面をシリコンと接合し、他方の面からその貫通口を介してシリコンに銅、アルミ、銀などの金属を含む導電性の配線材料を配線する使用形態が考えられる。このような使用形態においては、金属は一般に線膨張係数が大きいため、本発明の低膨張ガラスと配線材料との熱応力差に起因する破損が生じるおそれがある。しかし、本発明の強化ガラスによれば、表面に形成された圧縮応力層により配線材料との熱応力差に起因する破損のおそれを低減することができる。また、本発明の強化ガラスを、例えばタッチパネルディスプレイのパネル部分のガラス基板として用いれば、強化ガラスの表面は圧縮応力層によって強化されているので、タッチパネルディスプレイの保護ガラスを不要にできる場合がある。 The tempered glass of the present invention can be used, for example, as a circuit board material. Specifically, a through-hole is provided in tempered glass, one surface is bonded to silicon, and a conductive wiring material containing a metal such as copper, aluminum, or silver is connected to silicon through the through-hole from the other surface. A usage pattern for wiring is conceivable. In such a usage pattern, since the metal generally has a large coefficient of linear expansion, there is a possibility that breakage may occur due to the thermal stress difference between the low expansion glass of the present invention and the wiring material. However, according to the tempered glass of the present invention, the risk of breakage due to the thermal stress difference with the wiring material can be reduced by the compressive stress layer formed on the surface. Moreover, if the tempered glass of this invention is used as a glass substrate of the panel part of a touch panel display, for example, since the surface of the tempered glass is strengthened by the compression stress layer, the protective glass of a touch panel display may be made unnecessary.
 本発明の低膨張ガラスに対する化学強化は、低膨張ガラスに含まれるアルカリ金属イオンよりもイオン半径の大きい一価の陽イオンを含む溶融塩に低膨張ガラスを接触させることにより行うことができる。これにより、本発明の低膨張ガラスに含まれるアルカリ金属イオンが、よりイオン半径の大きい一価の陽イオンで置換されて表面に圧縮応力層が形成される。具体的には、本発明の低膨張ガラスに含まれるリチウムイオン又はナトリウムイオンが、よりイオン半径の大きい一価の陽イオンで置換される。溶融塩としては、硝酸ナトリウム又は硝酸カリウムの溶融塩、あるいはこれらの混合塩を用いることができる。硝酸カリウムの溶融塩を用いることが、圧縮応力層に高い圧縮応力を付与する観点からは、好ましい。また、上記の使用形態で本発明の強化ガラスを用いる場合、予め貫通孔を形成した低膨張ガラスに対して化学強化を行うことが好ましい。ただし、化学強化を行った後に強化ガラスに貫通孔を形成するようにしてもよい。 The chemical strengthening of the low expansion glass of the present invention can be performed by bringing the low expansion glass into contact with a molten salt containing a monovalent cation having an ionic radius larger than that of the alkali metal ion contained in the low expansion glass. Thereby, the alkali metal ion contained in the low expansion glass of the present invention is substituted with a monovalent cation having a larger ion radius, and a compressive stress layer is formed on the surface. Specifically, lithium ions or sodium ions contained in the low expansion glass of the present invention are replaced with monovalent cations having a larger ion radius. As the molten salt, a molten salt of sodium nitrate or potassium nitrate, or a mixed salt thereof can be used. It is preferable to use a molten salt of potassium nitrate from the viewpoint of imparting a high compressive stress to the compressive stress layer. Moreover, when using the tempered glass of this invention by said usage form, it is preferable to chemically strengthen with respect to the low expansion glass in which the through-hole was formed previously. However, you may make it form a through-hole in tempered glass after performing chemical strengthening.
 本発明の強化ガラスは、後述する50%破壊荷重が1500gf(グラムフォース)以上であることが好ましく、1700gf以上がより好ましく、1800gf以上がさらに好ましい。 In the tempered glass of the present invention, the 50% fracture load described later is preferably 1500 gf (gram force) or more, more preferably 1700 gf or more, and further preferably 1800 gf or more.
 本発明の強化ガラスに形成される圧縮応力層の深さは5μm以上が好ましい。また最表面に付与される圧縮応力は200MPa以上が好ましい。 The depth of the compressive stress layer formed on the tempered glass of the present invention is preferably 5 μm or more. The compressive stress applied to the outermost surface is preferably 200 MPa or more.
 本発明の低膨張ガラスに含まれうる上記成分と化学強化性との関係について以下に述べる。Alの含有量が少なすぎるとアルカリ金属の移動度が下がり、化学強化性が低下する可能性がある。従って、Alの含有量の下限は、上記の通り、5%であり、8%であることが好ましい。 The relationship between the above components that can be contained in the low expansion glass of the present invention and the chemical strengthening property will be described below. When the content of Al 2 O 3 is too small decreases the mobility of the alkali metals, the chemical reinforcing may be reduced. Therefore, the lower limit of the content of Al 2 O 3 is 5% as described above, and preferably 8%.
 CaO及びSrOは、アルカリ金属を束縛する能力を有する。従って、これらの含有量が多すぎると、化学強化性が低下する可能性がある。従って、CaO及びSrOの含有量の合計の上限は上記の通り、例えば9%であり、好ましくは7%、より好ましくは6%である。 CaO and SrO have the ability to bind alkali metals. Therefore, when there is too much content of these, chemical strengthening property may fall. Therefore, the upper limit of the total content of CaO and SrO is, for example, 9%, preferably 7%, more preferably 6%, as described above.
 アルカリ金属酸化物は、化学強化性を向上させる成分である。アルカリ金属酸化物に由来するガラスに含まれるアルカリ金属イオンが、よりイオン半径の大きい一価の陽イオンと交換されることで表面に圧縮応力が付与され、ガラス強度を向上させる成分である。Liは化学強化の際に移動しやすいため、アルカリ金属酸化物の中でもLiOを必須成分とすることが好ましい。アルカリ金属酸化物の含有量の合計及びLiOの含有量が上記の条件を満たすことにより、化学強化性を確保することができる。化学強化性の向上の観点からは、LiOの含有量は、1~4%が好ましく、1.2~3.5%がより好ましく、1.5~3%がさらに好ましい。 The alkali metal oxide is a component that improves chemical strengthening properties. Alkali metal ions contained in the glass derived from the alkali metal oxide are components that improve the glass strength by applying compressive stress to the surface by exchanging with monovalent cations having a larger ion radius. Since Li + easily moves during chemical strengthening, it is preferable to use Li 2 O as an essential component among alkali metal oxides. When the total content of alkali metal oxides and the content of Li 2 O satisfy the above conditions, chemical strengthenability can be ensured. From the viewpoint of improving chemical strengthenability, the content of Li 2 O is preferably 1 to 4%, more preferably 1.2 to 3.5%, and even more preferably 1.5 to 3%.
 また、化学強化の際に交換されるナトリウムイオン、カリウムイオンの拡散速度を高め、圧縮応力層の深さを増やすことができるので、LiOとともに他のアルカリ金属酸化物(NaO、KO)を含むことが好ましい。圧縮応力層の深さを増やす観点からは、NaO、KOから選ばれる少なくとも一つを0.05%以上含むことが好ましい。 Further, since the diffusion rate of sodium ions and potassium ions exchanged during chemical strengthening can be increased and the depth of the compressive stress layer can be increased, other alkali metal oxides (Na 2 O, K) can be used together with Li 2 O. 2 O). From the viewpoint of increasing the depth of the compressive stress layer, it is preferable to include 0.05% or more of at least one selected from Na 2 O and K 2 O.
 一方で、ナトリウムイオンは、リチウムイオンよりもイオン半径が大きく、溶融塩中のカリウムイオンとの交換で発生するガラス表面の圧縮応力はリチウムイオンよりも小さい。またナトリウムイオンは、溶融塩中のナトリウムイオンとの交換では圧縮応力を発生させない。カリウムイオンのイオン半径はナトリウムイオンよりもさらに大きく、溶融塩中のカリウムイオンとの交換では圧縮応力を発生させない。カリウムイオンは、溶融塩中のナトリウムイオンとの交換では逆に圧縮応力を低下させ、場合によっては引っ張り応力を発生させてしまう。従って、十分な圧縮応力を発生させる観点からは、LiOの比率がLiO/(NaO+KO)で2よりも大きいことが好ましく。LiOと共存するアルカリ金属酸化物はKOよりもNaOが好ましい。 On the other hand, sodium ions have a larger ionic radius than lithium ions, and the compressive stress on the glass surface generated by exchange with potassium ions in the molten salt is smaller than lithium ions. Further, sodium ions do not generate compressive stress when exchanged with sodium ions in the molten salt. The ionic radius of potassium ions is larger than that of sodium ions, and no compression stress is generated by exchange with potassium ions in the molten salt. Potassium ions, on the other hand, lower the compressive stress when exchanged with sodium ions in the molten salt, and in some cases generate tensile stress. Therefore, from the viewpoint of generating a sufficient compressive stress, preferably the ratio of Li 2 O is greater than 2 in Li 2 O / (Na 2 O + K 2 O). The alkali metal oxide that coexists with Li 2 O is preferably Na 2 O rather than K 2 O.
 以下、本発明を実施例により説明するが、本発明は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 表1の実施例1に示す組成が得られるように、ガラス原料である酸化物、炭酸塩、硝酸塩、硫酸塩等を秤量及び混合してバッチを得た。得られたバッチを白金製るつぼに入れ、雰囲気温度を1400~1650℃に設定した電気炉で加熱し、バッチを熔融させた。熔融ガラスをるつぼ内で適宜撹拌しながら、4~5時間保持した。その後、カーボン製又はステンレス製の鋳型に熔融ガラスを流し込み、25℃まで徐冷した。これにより、実施例1のガラス試料を得た。同様の方法で、実施例2~23及び比較例1~9のガラス試料を得た。 A batch was obtained by weighing and mixing oxides, carbonates, nitrates, sulfates and the like as glass raw materials so that the composition shown in Example 1 of Table 1 was obtained. The obtained batch was put in a platinum crucible and heated in an electric furnace set with an atmospheric temperature of 1400 to 1650 ° C. to melt the batch. The molten glass was kept for 4 to 5 hours in the crucible with proper stirring. Thereafter, molten glass was poured into a carbon or stainless steel mold and gradually cooled to 25 ° C. Thereby, the glass sample of Example 1 was obtained. In the same manner, glass samples of Examples 2 to 23 and Comparative Examples 1 to 9 were obtained.
(失透温度)
 実施例及び比較例のガラスの失透温度を以下の方法で測定した。1.0~2.8mmの粒径に粉砕したガラスを白金ボートに入れ、温度勾配(900~1400℃)のついた電気炉にて24時間加熱した。結晶の出現位置に対応する電気炉の最高温度から失透温度を求めた。結果を表1~3に示す。なお、電気炉における温度は、予め測定して求めており、所定の場所に置かれたガラスは、その場所に対応した温度で加熱される。失透温度は、熔融ガラス中に結晶が生成し、成長しはじめる温度である。
(Devitrification temperature)
The devitrification temperature of the glass of an Example and a comparative example was measured with the following method. Glass crushed to a particle size of 1.0 to 2.8 mm was placed in a platinum boat and heated in an electric furnace with a temperature gradient (900 to 1400 ° C.) for 24 hours. The devitrification temperature was determined from the maximum temperature of the electric furnace corresponding to the crystal appearance position. The results are shown in Tables 1 to 3. Note that the temperature in the electric furnace is determined in advance, and the glass placed in a predetermined place is heated at a temperature corresponding to the place. The devitrification temperature is a temperature at which crystals start to grow and grow in the molten glass.
(平均線膨張係数の算出)
 線膨張係数を測定するために、5.0mmの直径及び18.0mmの長さを有する円柱状の試験片を各ガラス試料から切り出した。示差熱膨張計を用いて各試験片の熱膨張率を測定し、25~450℃の平均線膨張係数を計算した。結果を表1~3に示す。
(Calculation of average linear expansion coefficient)
In order to measure the linear expansion coefficient, a cylindrical test piece having a diameter of 5.0 mm and a length of 18.0 mm was cut from each glass sample. The coefficient of thermal expansion of each test piece was measured using a differential thermal dilatometer, and the average coefficient of linear expansion from 25 to 450 ° C. was calculated. The results are shown in Tables 1 to 3.
(誘電正接の測定)
 誘電正接を測定するために、1.4mm×1.4mm×80.0mmの寸法を有する角柱状の試験片を各ガラス試料から切り出した。ネットワークアナライザ(Agilent Technologies社製E8361A)及び空洞共振器を用いて、試験片の誘電正接(tanδ)を測定した。測定周波数は1GHz、測定温度は25℃、湿度は50%であった。結果を表1~3に示す。
(Measurement of dielectric loss tangent)
In order to measure the dielectric loss tangent, a prismatic test piece having a size of 1.4 mm × 1.4 mm × 80.0 mm was cut from each glass sample. The dielectric loss tangent (tan δ) of the test piece was measured using a network analyzer (E8361A manufactured by Agilent Technologies) and a cavity resonator. The measurement frequency was 1 GHz, the measurement temperature was 25 ° C., and the humidity was 50%. The results are shown in Tables 1 to 3.
(陽極接合電流の測定)
 各ガラス試料から、50mm×50mmの広さの平坦な表面を有するガラス基板を切り出した。次に、ガラス基板と同じ寸法のシリコンウェーハをガラス基板に重ね合わせ、400℃に加熱したカーボン電極にガラス基板及びシリコンウェーハを接触させた。ガラス基板及びシリコンウェーハを十分に加熱した後、ガラス基板とシリコンウェーハとの間に1000Vの電圧を印加した(ガラス基板側が陰極)。そして、電圧の印加を開始してから5分が経過するまでの期間にガラス基板とシリコンウェーハとの間に流れた電流を測定した。ただし、電流値は、カーボン電極の寸法によって変化するので、得られた電流値を単位面積当たりの電流値に換算した。さらに、得られた電流値を単位時間当たりの電流値に換算した。結果を表1~3に示す。
(Measurement of anodic bonding current)
From each glass sample, a glass substrate having a flat surface with a width of 50 mm × 50 mm was cut out. Next, a silicon wafer having the same dimensions as the glass substrate was superimposed on the glass substrate, and the glass substrate and the silicon wafer were brought into contact with a carbon electrode heated to 400 ° C. After sufficiently heating the glass substrate and the silicon wafer, a voltage of 1000 V was applied between the glass substrate and the silicon wafer (the glass substrate side is the cathode). And the electric current which flowed between the glass substrate and the silicon wafer in the period until 5 minutes pass after starting the application of a voltage was measured. However, since the current value varies depending on the dimensions of the carbon electrode, the obtained current value was converted to a current value per unit area. Furthermore, the obtained current value was converted into a current value per unit time. The results are shown in Tables 1 to 3.
 測定された陽極接合電流は、陽極接合の強度を直接表しているわけではない。しかし、当業者は、しばしば、陽極接合性の指標として陽極接合電流を測定する。なぜなら、陽極接合電流が大きいことは、アルカリ金属の移動度が高いことを意味し、ひいては陽極接合を容易に実施できること及び高強度の陽極接合を形成できることを意味するからである。本発明者らの知見によれば、上記した条件で陽極接合電流を測定及び換算して得られた値が2μA/mm・min以下の場合に、接合速度が非常に遅かったり(陽極接合工程に時間がかかる)、接合不良が起きたりする。 The measured anodic bonding current does not directly represent the strength of the anodic bonding. However, those skilled in the art often measure the anodic bonding current as an indicator of anodic bonding properties. This is because a large anodic bonding current means that the mobility of alkali metal is high, which means that anodic bonding can be easily performed and high-strength anodic bonding can be formed. According to the knowledge of the present inventors, when the value obtained by measuring and converting the anodic bonding current under the above-described conditions is 2 μA / mm 2 · min or less, the bonding speed is very slow (anodic bonding process). It takes a long time) and poor bonding may occur.
(化学強化)
 表1、表2に示す実施例1、実施例8及び実施例23のガラス試料を130mm×70mm×0.7mmの形状に切り出した。切り出したこのガラス試料を、480℃の硝酸カリウムの溶融塩に8時間浸漬して化学強化を行い、強化ガラス試料を得た。
(Chemical enhancement)
The glass samples of Example 1, Example 8, and Example 23 shown in Tables 1 and 2 were cut into a shape of 130 mm × 70 mm × 0.7 mm. The cut glass sample was immersed in a molten salt of potassium nitrate at 480 ° C. for 8 hours for chemical strengthening to obtain a strengthened glass sample.
 強化ガラス試料及び化学強化を行っていないガラス試料について以下の方法で50%破壊荷重を測定した。温度25℃、湿度60%の環境下で、マイクロビッカース硬度計(株式会社アカシ製 MVK-G2)でダイヤモンド圧子(対面角136°の四角錐圧子)を用いてガラス試料表面の任意の5箇所について300gfの荷重を15秒間加え、四角形の圧痕跡をつけた。荷重を加えた試料ガラスについて、荷重を除いて5分間静置した。その後、圧痕跡の四角形の中心と四角形の頂点とを結ぶ線分の延長線上にクラックが発生していないか光学顕微鏡により観察した。5つの圧痕跡の各頂点についてクラックの有無を確認し、発生したクラックの数を全体の頂点の数20個で除して破壊確率Pを求めた。ガラス試料に加える荷重を、500gf、1000gf、2000gfに変更して同様にしてそれぞれの荷重に対するガラス試料の破壊確率Pを求めた。破壊確率P=50%を跨いで隣接する2つの荷重について、それぞれの破壊確率から線形補完により破壊確率Pが50%となる破壊荷重を求め、ガラス試料の50%破壊荷重とした。結果を表4に示す。 The 50% breaking load was measured for the tempered glass sample and the glass sample not subjected to chemical strengthening by the following method. In an environment with a temperature of 25 ° C and a humidity of 60%, a micro Vickers hardness tester (MVK-G2 manufactured by Akashi Co., Ltd.) is used for any five locations on the surface of the glass sample using a diamond indenter (a square pyramid indenter with a facing angle of 136 °) A 300 gf load was applied for 15 seconds to create a square impression. About the sample glass which added the load, it left still for 5 minutes except the load. Thereafter, it was observed with an optical microscope whether cracks were generated on the extended line connecting the center of the square of the indentation and the vertex of the square. The presence or absence of cracks was confirmed at each vertex of the five indentations, and the fracture probability P was determined by dividing the number of cracks generated by the total number of vertices of 20. The load applied to the glass sample was changed to 500 gf, 1000 gf, and 2000 gf, and the fracture probability P of the glass sample with respect to each load was similarly determined. With respect to two loads adjacent to each other across the fracture probability P = 50%, a fracture load with a fracture probability P of 50% was obtained by linear interpolation from the respective fracture probabilities, and was set as the 50% fracture load of the glass sample. The results are shown in Table 4.
 また、実施例23について化学強化を行って得られた強化ガラス試料について、最表面の圧縮応力及び圧縮応力層の深さを折原製作所製表面応力計「FSM-6000」を用いて測定した。この測定結果を表4に併せて示す。 Further, with respect to the tempered glass sample obtained by performing chemical strengthening on Example 23, the compressive stress on the outermost surface and the depth of the compressive stress layer were measured using a surface stress meter “FSM-6000” manufactured by Orihara Seisakusho. The measurement results are also shown in Table 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~3に示すように、アルカリ金属酸化物として主にLiOを含む実施例1~23は、いずれも低い誘電正接(0.0050未満)を示した。また、測定を行った限りにおいて、各実施例は、2μA/mm・min以上の陽極接合電流、32×10-7/℃~40×10-7/℃の範囲の平均線膨張係数、及び十分に低い失透温度を示した。 As shown in Tables 1 to 3, Examples 1 to 23 mainly containing Li 2 O as an alkali metal oxide all exhibited low dielectric loss tangents (less than 0.0050). In addition, as long as the measurement was performed, each example had an anode junction current of 2 μA / mm 2 · min or more, an average linear expansion coefficient in the range of 32 × 10 −7 / ° C. to 40 × 10 −7 / ° C., and A sufficiently low devitrification temperature was exhibited.
 実施例8は、3%のLiOを含み、0.0049の誘電正接を示した。比較例1は、1.5%のNaOを含み、0.0057の誘電正接を示した。比較例2は、1.5%のKOを含み、0.0059の誘電正接を示した。すなわち、実施例8は、比較例1及び2の2倍のモル量のアルカリ金属酸化物を含んでいるにも拘らず、比較例1及び2よりも小さい誘電正接を示した。このことは、ガラスの誘電正接が高くなりすぎるのを避けるために、アルカリ金属酸化物としてLiOを有利に使用できることを示唆している。 Example 8 contained 3% Li 2 O and exhibited a dielectric loss tangent of 0.0049. Comparative Example 1 contained 1.5% Na 2 O and exhibited a dielectric loss tangent of 0.0057. Comparative Example 2 contained 1.5% K 2 O and exhibited a dielectric loss tangent of 0.0059. That is, Example 8 exhibited a dielectric loss tangent smaller than those of Comparative Examples 1 and 2 even though it contained twice the molar amount of alkali metal oxide as Comparative Examples 1 and 2. This suggests that Li 2 O can be advantageously used as the alkali metal oxide in order to avoid an excessive increase in the dielectric loss tangent of the glass.
 実施例11及び18は、アルカリ金属酸化物を除き、互いに同一の組成を有する。実施例11は、アルカリ金属酸化物として、1.5%のLiOを含む。実施例18は、アルカリ金属酸化物として、1.25%のLiO及び0.25%のNaOを含む。つまり、実施例11のアルカリ金属酸化物の含有量は、実施例18のアルカリ金属酸化物の含有量に等しい。それにも拘らず、実施例11の誘電正接は0.0034、実施例18の誘電正接は0.0032であり、実施例18の誘電正接は実施例11のそれよりも0.0002小さかった。このことは、少量のNaOがLiOとともに低膨張ガラスに含まれていると、誘電正接の上昇を抑制しつつ、優れた陽極接合性を低膨張ガラスに付与できることを示唆している。同様の現象は、実施例1及び2の間でも見られた。また、少量のKOを使用した場合にも同様の現象が現れると予測される。 Examples 11 and 18 have the same composition except for alkali metal oxides. Example 11 contains 1.5% Li 2 O as the alkali metal oxide. Example 18 contains 1.25% Li 2 O and 0.25% Na 2 O as the alkali metal oxide. That is, the content of the alkali metal oxide of Example 11 is equal to the content of the alkali metal oxide of Example 18. Nevertheless, the dielectric loss tangent of Example 11 was 0.0034, the dielectric loss tangent of Example 18 was 0.0032, and the dielectric loss tangent of Example 18 was 0.0002 smaller than that of Example 11. This suggests that when a small amount of Na 2 O is contained in the low expansion glass together with Li 2 O, it is possible to impart excellent anodic bondability to the low expansion glass while suppressing an increase in dielectric loss tangent. . A similar phenomenon was seen between Examples 1 and 2. Moreover, it is predicted that the same phenomenon appears when a small amount of K 2 O is used.
 なお、この現象は、NaO及びKOの含有量の合計に対するLiOの含有量の比率(LiO/(NaO+KO))が2よりも大きいときに顕著に現れると予測される。例えば、実施例16の当該比率は2であり、実施例16の誘電正接は0.0034であり、実施例11の誘電正接に等しい。実施例16において、少量のKOが適量のLiOとともに含まれていることによって誘電正接の上昇を抑制する効果が現れているのかどうか、明らかではない。 This phenomenon appears remarkably when the ratio of the content of Li 2 O to the total content of Na 2 O and K 2 O (Li 2 O / (Na 2 O + K 2 O)) is greater than 2. It is predicted. For example, the ratio of Example 16 is 2, the dielectric loss tangent of Example 16 is 0.0034, and is equal to the dielectric loss tangent of Example 11. In Example 16, it is not clear whether a small amount of K 2 O is contained together with an appropriate amount of Li 2 O, so that the effect of suppressing the increase in dielectric loss tangent appears.
 実施例11、13及び14は、Alの含有量を除き、概ね同じ組成を有する。Alの含有量の増加に伴い、陽極接合電流が増加した。このことは、Alがアルカリ金属の移動度を高める機能を有していることを示唆している。 Examples 11, 13, and 14 have substantially the same composition except for the content of Al 2 O 3 . With the increase in the content of Al 2 O 3 , the anodic bonding current increased. This suggests that Al 2 O 3 has a function of increasing alkali metal mobility.
 比較例3は、1.5%のLiO及び1.5%のNaOを含む。比較例4は、1.5%のLiO及び1.5%のKOを含む。すなわち、比較例3及び4は、それぞれ、実施例8と同じモル量のアルカリ金属酸化物を含む。そして、比較例3は、0.0049の誘電正接を示した。この値は、実施例8の誘電正接に等しい。また、比較例4は、0.0052の誘電正接を示した。この値は、アルカリ金属酸化物としてKOを単独で含む比較例2の誘電正接(0.0059)よりも小さい。 Comparative Example 3 contains 1.5% Li 2 O and 1.5% Na 2 O. Comparative Example 4 contains 1.5% Li 2 O and 1.5% K 2 O. That is, Comparative Examples 3 and 4 each contain the same molar amount of alkali metal oxide as Example 8. And the comparative example 3 showed the dielectric loss tangent of 0.0049. This value is equal to the dielectric loss tangent of Example 8. Comparative Example 4 showed a dielectric loss tangent of 0.0052. This value is smaller than the dielectric loss tangent (0.0059) of Comparative Example 2 containing K 2 O alone as an alkali metal oxide.
 上記の事実は、NaO又はKOをLiOと併用した場合、NaO又はKOを単独で使用した場合の誘電正接を基準として、より小さい誘電正接を得ることができることを示唆している。しかし、比較例3の平均線膨張係数は、実施例8の平均線膨張係数よりも大きかった。また、比較例3の失透温度は、実施例8の失透温度よりも低かった。さらに、比較例4の誘電正接は、好ましい誘電正接の基準値(0.0050)を上回っていた他、比較例3と同様に、大きい平均線膨張係数及び低い失透温度を示した。 The above fact is that when Na 2 O or K 2 O is used in combination with Li 2 O, a smaller dielectric loss tangent can be obtained with reference to the dielectric loss tangent when Na 2 O or K 2 O is used alone. It suggests. However, the average linear expansion coefficient of Comparative Example 3 was larger than the average linear expansion coefficient of Example 8. Moreover, the devitrification temperature of Comparative Example 3 was lower than the devitrification temperature of Example 8. Further, the dielectric loss tangent of Comparative Example 4 was higher than the preferable dielectric loss tangent reference value (0.0050), and similarly to Comparative Example 3, it showed a large average linear expansion coefficient and a low devitrification temperature.
 波長355nmにおける実施例1、2及び19~22の吸収係数を測定したところ、それぞれ、1.39cm-1、1.61cm-1、8.77cm-1、3.87cm-1、3.93cm-1及び6.46cm-1であった。なお、吸収係数は、以下の方法に従って算出した。各ガラス試料から20mm×20mm×3mmの試験片を切り出した。それらの試験片を用いて、波長355nmにおける透過率及び反射率を測定した。測定された透過率、反射率及び試験片の厚さ(3mm)から吸収係数を算出した。 The absorption coefficients of Examples 1, 2, and 19 to 22 at a wavelength of 355 nm were measured, and were found to be 1.39 cm −1 , 1.61 cm −1 , 8.77 cm −1 , 3.87 cm −1 , 3.93 cm , respectively. 1 and 6.46 cm −1 . The absorption coefficient was calculated according to the following method. A test piece of 20 mm × 20 mm × 3 mm was cut out from each glass sample. Using these test pieces, transmittance and reflectance at a wavelength of 355 nm were measured. The absorption coefficient was calculated from the measured transmittance, reflectance, and test piece thickness (3 mm).
 表4に示すように、実施例1、実施例8及び実施例23のガラス試料に化学強化を行った強化ガラス試料は、化学強化を行っていないガラス試料に比べて50%破壊荷重がかなり大きな値を示した。また、LiOの含有量が実施例1より多い実施例8のガラス試料に化学強化を行った強化ガラス試料の50%破壊荷重は、実施例1のガラス試料に化学強化を行った強化ガラス試料のそれよりも大きかった。このことは、低膨張ガラスに含まれるLiOの含有量が多いほど強化ガラスの強度が高くなることを示唆している。また、実施例23の強化ガラス試料では、実施例8の強化ガラス試料では観測されなかった圧縮応力層深さが観測された。このことは、NaOをLiOと共存させることで圧縮応力層が深くなったことを示唆している。 As shown in Table 4, the tempered glass samples obtained by chemically strengthening the glass samples of Example 1, Example 8 and Example 23 have a considerably larger 50% fracture load than the glass samples not subjected to chemical strengthening. The value is shown. Further, the 50% fracture load of the tempered glass sample obtained by chemically strengthening the glass sample of Example 8 having a Li 2 O content higher than that of Example 1 is the tempered glass obtained by chemically strengthening the glass sample of Example 1. It was larger than that of the sample. This suggests that the strength of the tempered glass as the Li 2 O content in the low-expansion glass is large becomes high. Further, in the tempered glass sample of Example 23, a compressive stress layer depth that was not observed in the tempered glass sample of Example 8 was observed. This suggests that the compressive stress layer is deepened by allowing Na 2 O to coexist with Li 2 O.
 本発明の低膨張ガラス及び強化ガラスは、電子基板、電気的絶縁基板、シリコン(シリコンウェーハ)を支持する台座等の用途に広く使用されうる。 The low expansion glass and tempered glass of the present invention can be widely used for applications such as an electronic substrate, an electrically insulating substrate, a pedestal for supporting silicon (silicon wafer).

Claims (11)

  1.  mol%で表示して、
     SiO:55~75%、
     B:5~17%、
     Al:5~15%、
     MgO:0~10%、
     CaO:0~10%、
     SrO:0~5%、
     BaO:0~1%、
     ZnO:0~6%、
     LiO:0.6~4%、
     NaO:0~1%、
     KO:0~1%、
     SnO:0~1%、
     Fe:0~5%、
     TiO:0~30%、及び
     CeO:0~10%、
    を含み、
     アルカリ金属酸化物の含有量の合計が5mol%以下であり、
     mol%で表示して、LiOの含有量が、LiO以外のアルカリ金属酸化物の含有量の合計を上回っており、
     25℃及び1GHzの測定条件において、0.0050未満の誘電正接を有する、低膨張ガラス。
    Displayed in mol%,
    SiO 2 : 55 to 75%,
    B 2 O 3 : 5 to 17%,
    Al 2 O 3 : 5 to 15%,
    MgO: 0 to 10%,
    CaO: 0 to 10%,
    SrO: 0-5%
    BaO: 0 to 1%,
    ZnO: 0 to 6%,
    Li 2 O: 0.6-4%,
    Na 2 O: 0 to 1%,
    K 2 O: 0 to 1%,
    SnO 2 : 0 to 1%
    Fe 2 O 3 : 0 to 5%,
    TiO 2 : 0-30%, and CeO 2 : 0-10%,
    Including
    The total content of alkali metal oxides is 5 mol% or less,
    displayed in mol%, the content of Li 2 O, well above the total content of alkali metal oxides other than Li 2 O,
    A low expansion glass having a dielectric loss tangent of less than 0.0050 under measurement conditions of 25 ° C. and 1 GHz.
  2.  LiOの含有量が1~4mol%の範囲にある、請求項1に記載の低膨張ガラス。 The low expansion glass according to claim 1, wherein the content of Li 2 O is in the range of 1 to 4 mol%.
  3.  mol%で表示して、NaO及びKOから選ばれる少なくとも1つを0.05%以上含む、請求項1に記載の低膨張ガラス。 The low expansion glass according to claim 1, comprising 0.05% or more of at least one selected from Na 2 O and K 2 O, expressed in mol%.
  4.  NaO及びKOから選ばれる少なくとも1つを含み、
     NaO及びKOの含有量の合計に対するLiOの含有量の比率(LiO/(NaO+KO))が2よりも大きい、請求項1に記載の低膨張ガラス。
    Including at least one selected from Na 2 O and K 2 O;
    The low expansion glass according to claim 1, wherein a ratio of the content of Li 2 O to the total content of Na 2 O and K 2 O (Li 2 O / (Na 2 O + K 2 O)) is greater than 2.
  5.  mol%で表示して、MgO、CaO、SrO、BaO及びZnOの含有量の合計が5~13%の範囲にある、請求項1に記載の低膨張ガラス。 The low expansion glass according to claim 1, wherein the total content of MgO, CaO, SrO, BaO and ZnO is in the range of 5 to 13%, expressed in mol%.
  6.  mol%で表示して、CaO及びSrOの含有量の合計が9%以下である、請求項1に記載の低膨張ガラス。 The low-expansion glass according to claim 1, wherein the total content of CaO and SrO is 9% or less, expressed in mol%.
  7.  Fe、TiO及びCeOからなる群より選ばれる少なくとも1つをレーザー吸収成分として含み、
     535nm以下の特定の波長λのレーザーに対する当該低膨張ガラスの吸収係数が50cm-1以下となるように、前記レーザー吸収成分の含有量が調整されている、請求項1に記載の低膨張ガラス。
    Including at least one selected from the group consisting of Fe 2 O 3 , TiO 2 and CeO 2 as a laser absorption component,
    The low expansion glass according to claim 1, wherein the content of the laser absorbing component is adjusted so that the absorption coefficient of the low expansion glass with respect to a laser having a specific wavelength λ of 535 nm or less is 50 cm -1 or less.
  8.  25~450℃における平均線膨張係数が32~40×10-7/℃の範囲にある、請求項1に記載の低膨張ガラス。 2. The low expansion glass according to claim 1, wherein the average linear expansion coefficient at 25 to 450 ° C. is in the range of 32 to 40 × 10 −7 / ° C.
  9.  請求項1~8のいずれか1項に記載の低膨張ガラスを、前記低膨張ガラスに含まれるアルカリ金属イオンよりもイオン半径の大きい一価の陽イオンを含む溶融塩に接触させることにより、前記アルカリ金属イオンを前記一価の陽イオンとイオン交換して、表面に圧縮応力層が形成された強化ガラス。 Contacting the low expansion glass according to any one of claims 1 to 8 with a molten salt containing a monovalent cation having an ionic radius larger than that of an alkali metal ion contained in the low expansion glass, Tempered glass having a compressive stress layer formed on the surface by ion exchange of alkali metal ions with the monovalent cation.
  10.  前記溶融塩が硝酸カリウムである、請求項9に記載の強化ガラス。 The tempered glass according to claim 9, wherein the molten salt is potassium nitrate.
  11.  前記圧縮応力層の圧縮応力が200MPa以上である、請求項9に記載の強化ガラス。 The tempered glass according to claim 9, wherein the compressive stress of the compressive stress layer is 200 MPa or more.
PCT/JP2012/001942 2011-03-31 2012-03-21 Low-expansion glass and tempered glass WO2012132328A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507152A JP5890393B2 (en) 2011-03-31 2012-03-21 Low expansion glass, tempered glass, and method for producing tempered glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-080044 2011-03-31
JP2011080044 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132328A1 true WO2012132328A1 (en) 2012-10-04

Family

ID=46930114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001942 WO2012132328A1 (en) 2011-03-31 2012-03-21 Low-expansion glass and tempered glass

Country Status (2)

Country Link
JP (1) JP5890393B2 (en)
WO (1) WO2012132328A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104150765A (en) * 2013-08-27 2014-11-19 东旭集团有限公司 High-silicon high-aluminum cover plate glass for touch screen
CN105502933A (en) * 2015-12-29 2016-04-20 江苏建达恩电子科技有限公司 Glass tube for smart sensor and manufacturing method thereof
WO2016129254A1 (en) * 2015-02-10 2016-08-18 日本板硝子株式会社 Glass for laser processing, and method for producing glass with hole using said glass for laser processing
WO2017217496A1 (en) * 2016-06-17 2017-12-21 日本板硝子株式会社 Glass plate for laser processing
WO2018025883A1 (en) * 2016-08-05 2018-02-08 旭硝子株式会社 Glass substrate, semiconductor device, and display device
JPWO2017038075A1 (en) * 2015-08-31 2018-06-14 日本板硝子株式会社 Manufacturing method of glass with microstructure
CN110040982A (en) * 2019-05-14 2019-07-23 深圳市东丽华科技有限公司 Chemically reinforced glass and the preparation method and application thereof with combined stress advantage
CN110240419A (en) * 2019-06-06 2019-09-17 深圳市东丽华科技有限公司 Lithium aluminosilicate glass, lithium aluminium chemistry of silicones strengthened glass and the preparation method and application thereof
JP2020092270A (en) * 2014-10-03 2020-06-11 日本板硝子株式会社 Glass substrate with conductive portion
EP3636605A4 (en) * 2017-06-05 2021-03-10 AGC Inc. Tempered glass
CN112759255A (en) * 2016-09-13 2021-05-07 Agc株式会社 Glass substrate for high-frequency device and circuit substrate for high-frequency device
CN112777931A (en) * 2021-01-12 2021-05-11 成都光明光电股份有限公司 Low dielectric constant glass
CN113423670A (en) * 2018-12-12 2021-09-21 康宁股份有限公司 Ion-exchangeable lithium-containing aluminosilicate glasses
CN114873911A (en) * 2019-01-18 2022-08-09 康宁股份有限公司 Low dielectric loss glass for electronic devices
WO2022168963A1 (en) * 2021-02-05 2022-08-11 日本板硝子株式会社 Glass composition and glass fiber and method for producing same
WO2023287499A3 (en) * 2021-06-01 2023-05-11 Corning Incorporated Glass compositions having improved uv absorption and methods of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072433A (en) * 1999-09-02 2001-03-21 Asahi Techno Glass Corp Glass for anodic joining
JP2010228969A (en) * 2009-03-27 2010-10-14 Ohara Inc Glass
JP2012020892A (en) * 2010-07-13 2012-02-02 Asahi Glass Co Ltd Cover glass for solid-state imaging device
JP2012036074A (en) * 2010-07-12 2012-02-23 Nippon Electric Glass Co Ltd Glass plate
JP2012051773A (en) * 2010-09-02 2012-03-15 Nippon Electric Glass Co Ltd Glass for resin composite substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072433A (en) * 1999-09-02 2001-03-21 Asahi Techno Glass Corp Glass for anodic joining
JP2010228969A (en) * 2009-03-27 2010-10-14 Ohara Inc Glass
JP2012036074A (en) * 2010-07-12 2012-02-23 Nippon Electric Glass Co Ltd Glass plate
JP2012020892A (en) * 2010-07-13 2012-02-02 Asahi Glass Co Ltd Cover glass for solid-state imaging device
JP2012051773A (en) * 2010-09-02 2012-03-15 Nippon Electric Glass Co Ltd Glass for resin composite substrate

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104150765A (en) * 2013-08-27 2014-11-19 东旭集团有限公司 High-silicon high-aluminum cover plate glass for touch screen
JP2020092270A (en) * 2014-10-03 2020-06-11 日本板硝子株式会社 Glass substrate with conductive portion
TWI675019B (en) * 2015-02-10 2019-10-21 日商日本板硝子股份有限公司 glass substrate
WO2016129254A1 (en) * 2015-02-10 2016-08-18 日本板硝子株式会社 Glass for laser processing, and method for producing glass with hole using said glass for laser processing
CN107207325A (en) * 2015-02-10 2017-09-26 日本板硝子株式会社 Laser Processing glass and the manufacture method using its glass with hole
JPWO2016129254A1 (en) * 2015-02-10 2018-01-25 日本板硝子株式会社 Glass for laser processing and method for producing glass with holes using the same
US20180029924A1 (en) * 2015-02-10 2018-02-01 Nippon Sheet Glass Company, Limited Glass for laser processing and method for producing perforated glass using same
US10717670B2 (en) 2015-02-10 2020-07-21 Nippon Sheet Glass Company, Limited Glass for laser processing and method for producing perforated glass using same
TWI659937B (en) * 2015-02-10 2019-05-21 日商日本板硝子股份有限公司 Laser processing glass and manufacturing method of holed glass using the same
JPWO2017038075A1 (en) * 2015-08-31 2018-06-14 日本板硝子株式会社 Manufacturing method of glass with microstructure
CN105502933A (en) * 2015-12-29 2016-04-20 江苏建达恩电子科技有限公司 Glass tube for smart sensor and manufacturing method thereof
WO2017217496A1 (en) * 2016-06-17 2017-12-21 日本板硝子株式会社 Glass plate for laser processing
WO2018025883A1 (en) * 2016-08-05 2018-02-08 旭硝子株式会社 Glass substrate, semiconductor device, and display device
CN109562979B (en) * 2016-08-05 2021-11-16 Agc株式会社 Glass substrate, semiconductor device, and display device
US11554983B2 (en) 2016-08-05 2023-01-17 AGC Inc. Glass substrate, semiconductor device, and display device
CN109562979A (en) * 2016-08-05 2019-04-02 Agc株式会社 Glass substrate, semiconductor device and display device
CN112759255A (en) * 2016-09-13 2021-05-07 Agc株式会社 Glass substrate for high-frequency device and circuit substrate for high-frequency device
JP2022159373A (en) * 2016-09-13 2022-10-17 Agc株式会社 Glass substrate for high frequency device, and circuit board substrate for high frequency device
JP7415237B2 (en) 2016-09-13 2024-01-17 Agc株式会社 Glass substrates for high frequency devices and circuit boards for high frequency devices
EP3636605A4 (en) * 2017-06-05 2021-03-10 AGC Inc. Tempered glass
CN115572060A (en) * 2017-06-05 2023-01-06 Agc株式会社 Tempered glass
CN113423670B (en) * 2018-12-12 2024-04-09 康宁股份有限公司 Ion exchangeable lithium-containing aluminosilicate glasses
CN113423670A (en) * 2018-12-12 2021-09-21 康宁股份有限公司 Ion-exchangeable lithium-containing aluminosilicate glasses
CN114873911A (en) * 2019-01-18 2022-08-09 康宁股份有限公司 Low dielectric loss glass for electronic devices
CN110040982A (en) * 2019-05-14 2019-07-23 深圳市东丽华科技有限公司 Chemically reinforced glass and the preparation method and application thereof with combined stress advantage
CN110040982B (en) * 2019-05-14 2021-08-27 重庆鑫景特种玻璃有限公司 Chemically strengthened glass with composite stress advantage and preparation method and application thereof
CN110240419A (en) * 2019-06-06 2019-09-17 深圳市东丽华科技有限公司 Lithium aluminosilicate glass, lithium aluminium chemistry of silicones strengthened glass and the preparation method and application thereof
CN112777931A (en) * 2021-01-12 2021-05-11 成都光明光电股份有限公司 Low dielectric constant glass
WO2022168963A1 (en) * 2021-02-05 2022-08-11 日本板硝子株式会社 Glass composition and glass fiber and method for producing same
WO2023287499A3 (en) * 2021-06-01 2023-05-11 Corning Incorporated Glass compositions having improved uv absorption and methods of making the same

Also Published As

Publication number Publication date
JP5890393B2 (en) 2016-03-22
JPWO2012132328A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5890393B2 (en) Low expansion glass, tempered glass, and method for producing tempered glass
JP5444846B2 (en) Glass plate for display device
KR101677389B1 (en) Chemically tempered glass
KR101930681B1 (en) Glass for chemical reinforcement
JP5621239B2 (en) GLASS PLATE FOR DISPLAY DEVICE, PLATE GLASS FOR DISPLAY DEVICE, AND METHOD FOR PRODUCING THE SAME
KR20110138149A (en) Glass and glass plate for display device
WO2016104446A1 (en) Glass and chemically strengthened glass
KR20120118409A (en) Method for producing chemically tempered glass, and glass for chemical tempering
JPWO2015088010A1 (en) Chemically strengthened glass, chemically strengthened glass, and method for producing chemically strengthened glass
KR20130023101A (en) Glass composition, glass obtained therefrom, and preparation process and use of the glass
CN106132888A (en) Chemical enhanced glass and chemically reinforced glass and the manufacture method of chemically reinforced glass
CN112368249A (en) Glass-based articles with improved stress distribution
JP6222390B2 (en) Glass for chemical strengthening
KR20100086005A (en) Glass composition for substrate
JP2002029775A (en) Nonalkali glass
KR20120130695A (en) Method for producing chemically tempered glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764456

Country of ref document: EP

Kind code of ref document: A1