JP2012050961A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas Download PDF

Info

Publication number
JP2012050961A
JP2012050961A JP2010197850A JP2010197850A JP2012050961A JP 2012050961 A JP2012050961 A JP 2012050961A JP 2010197850 A JP2010197850 A JP 2010197850A JP 2010197850 A JP2010197850 A JP 2010197850A JP 2012050961 A JP2012050961 A JP 2012050961A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
upper layer
alumina
lower layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010197850A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsubara
宏幸 松原
Hideyoshi Ikeda
英恵 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010197850A priority Critical patent/JP2012050961A/en
Publication of JP2012050961A publication Critical patent/JP2012050961A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a catalytic performance in a catalyst using Pd without increasing a hydrogen sulfide discharge.SOLUTION: The catalyst for purifying exhaust gas, provided with a catalyst layer having the bilayer consisting of an upper layer and a lower layer provided on a catalyst carrier perpendicular to an exhaust gas flow direction, is composed of: a front part on an exhaust gas upstream side in which the upper layer consists of a composite oxide of Zr and Ce and an alumina which support Rh, and the lower layer consists of a composite oxide of Zr and Ce and an alumina which support Pd; and a rear part on an exhaust gas downstream side that consists of the composite oxide of Zr and Ce and an alumina which support Rh. A basic substance is added only to the front part, and additionally, the length of the upper layer part in the exhaust gas flow direction is shorter than the length of the lower layer part in the exhaust gas direction.

Description

本発明は、排気ガス流路に配置される、排ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purifying catalyst disposed in an exhaust gas passage.

自動車用エンジン等の内燃機関から排出される排気ガスには一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOX)等が含まれ、これらの有害物質は、一般に、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属を触媒成分とする排気ガス浄化用触媒によって浄化される。 Exhaust gas emitted from internal combustion engines such as automobile engines includes carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO x ), etc. These harmful substances are generally platinum ( It is purified by an exhaust gas purifying catalyst having a noble metal such as Pt), palladium (Pd) or rhodium (Rh) as a catalyst component.

このような触媒において、温度安定性を向上させ、低温域における触媒活性度を高くするため、触媒層を2層以上にわけ、例えば触媒担体上にRhを担持させた上層とPdを担持させた下層を設けた触媒が提案されている(特許文献1〜4参照)。   In such a catalyst, in order to improve temperature stability and increase catalyst activity in a low temperature range, the catalyst layer is divided into two or more layers, for example, an upper layer supporting Rh on a catalyst carrier and Pd. A catalyst provided with a lower layer has been proposed (see Patent Documents 1 to 4).

特表2009−541041号公報Special table 2009-541041 特開2009−220100号公報JP 2009-220100 A 特開平10−296085号公報Japanese Patent Laid-Open No. 10-296085 特開平09−085091号公報Japanese Patent Laid-Open No. 09-085091

このような従来の排ガス浄化用触媒では、排ガス中の硫黄成分が、燃料リッチ雰囲気において触媒上で還元され、H2Sとなり腐乱臭を発する。またPdを用いる触媒においては、活性を促進するために塩基性物質を添加することが知られているが、この塩基性物質は硫黄の吸着を促進するため、活性を促進するための背反点となる。このため、Pdを用いる触媒において、硫化水素排出量を増加させることなく、触媒性能を向上させることが望まれている。 In such a conventional exhaust gas purifying catalyst, the sulfur component in the exhaust gas is reduced on the catalyst in a fuel-rich atmosphere and becomes H 2 S to generate a odor. In addition, in the catalyst using Pd, it is known that a basic substance is added to promote the activity. However, since this basic substance promotes the adsorption of sulfur, the trade-off point for promoting the activity is Become. For this reason, in the catalyst using Pd, it is desired to improve the catalyst performance without increasing the hydrogen sulfide discharge amount.

上記問題点を解決するために本発明によれば、排ガス流れ方向に対して垂直に、触媒担体上に設けられた上層及び下層の2層構造の触媒層を備えた排ガス浄化用触媒であって、前記上層がRhを担持したZrとCeの複合酸化物とアルミナからなり、前記下層がPdを担持したZrとCeの複合酸化物とアルミナからなる排ガス上流側の前段部とRhを担持したZrとCeの複合酸化物とアルミナからなる排ガス下流側の後段部からなり、前記前段部にのみ塩基性物質が添加されており、さらに前記上層部の排ガス流れ方向の長さが前記下層部の排ガス方向の長さよりも短いことを特徴とする排ガス浄化用触媒が提供される。   In order to solve the above problems, according to the present invention, there is provided an exhaust gas purification catalyst comprising a catalyst layer having a two-layer structure of an upper layer and a lower layer provided on a catalyst carrier perpendicular to the exhaust gas flow direction. The upper layer is composed of a composite oxide of Zr and Ce supporting Rh and alumina, and the lower layer is composed of a composite oxide of Zr and Ce supporting Pd and alumina and an upstream side of the exhaust gas upstream of Zr and Rr. A basic substance is added only to the front part, and the length of the upper layer part in the exhaust gas flow direction is the exhaust gas of the lower part part. An exhaust gas-purifying catalyst characterized by being shorter than the length in the direction is provided.

本発明の排ガス浄化用触媒の構成を示す略図である。1 is a schematic diagram showing the configuration of an exhaust gas purifying catalyst of the present invention. 下層前段部中の塩基性物質の量に対するNOx浄化性能の関係を示すグラフである。It is a graph which shows the relationship of the NOx purification performance with respect to the quantity of the basic substance in a lower layer front part. 上層における塩基性の有無によるNOx浄化性能の関係を示すグラフである。It is a graph which shows the relationship of the NOx purification performance by the presence or absence of basicity in an upper layer. SO2を触媒に吸着させた後、Sを還元した際の、硫化水素排出量を示すグラフである。After the SO 2 is adsorbed on the catalyst, when obtained by reducing the S, is a graph showing hydrogen sulfide emission.

本発明の排ガス浄化用触媒1は、その基本的構成を図1に示すように、排ガス流れ方向に対して垂直に、触媒担体2上に設けられた上層及び下層の2層構造の触媒層を備えた排ガス浄化用触媒であって、前記上層5がRhを担持したZrとCeの複合酸化物とアルミナからなり、前記下層がPdを担持したZrとCeの複合酸化物とアルミナからなる排ガス上流側の前段部3とRhを担持したZrとCeの複合酸化物とアルミナからなる排ガス下流側の後段部4からなり、前記前段部3にのみ塩基性物質が添加されており、さらに前記上層部の排ガス方向の長さが前記下層部の排ガス方向の長さよりも短いことを特徴とするものである。   As shown in FIG. 1, the exhaust gas-purifying catalyst 1 of the present invention has an upper layer and a lower layer two-layer catalyst layer provided on the catalyst carrier 2 so as to be perpendicular to the exhaust gas flow direction. An exhaust gas purification catalyst provided, wherein the upper layer 5 is made of a composite oxide of Zr and Ce carrying Rh and alumina, and the lower layer is made of an exhaust gas upstream made of a composite oxide of Zr and Ce carrying Pd and alumina. The front stage part 3 and the rear stage part 4 on the downstream side of the exhaust gas comprising a composite oxide of Zr and Ce supporting Rh and alumina, and a basic substance is added only to the front stage part 3, and the upper layer part The length in the exhaust gas direction is shorter than the length of the lower layer in the exhaust gas direction.

触媒担体2としては、排ガス浄化用触媒において一般に用いられている担体を用いることができ、ハニカム状のモノリス型担体が好ましく、その材質としてはコージェライト等を用いることができる。   As the catalyst carrier 2, a carrier generally used in an exhaust gas purification catalyst can be used, and a honeycomb monolith type carrier is preferable, and cordierite or the like can be used as the material thereof.

上層5は、ZrとCeの複合酸化物とアルミナからなる母材にRhを担持させてなるものである。この母材として従来は一般にアルミナが用いられているが、CeとZrの複合酸化物酸素吸蔵放出能を有し、触媒反応において有効な雰囲気を保持するために添加されている。上層におけるZrとCeの複合酸化物におけるZrとCeの割合は、Ce/Zrのモル比を0.1〜10とすることが好ましい。   The upper layer 5 is formed by supporting Rh on a base material made of a composite oxide of Zr and Ce and alumina. Conventionally, alumina is generally used as the base material, but it is added in order to maintain an effective atmosphere in the catalytic reaction, having an oxygen storage / release ability of a complex oxide of Ce and Zr. As for the ratio of Zr and Ce in the composite oxide of Zr and Ce in the upper layer, the molar ratio of Ce / Zr is preferably 0.1 to 10.

下層は排ガス上流側の前段部3と排ガス下流側の後段部4からなる。この後段部4は上層5と同様の構成であり、すなわちZrとCeの複合酸化物とアルミナからなる母材にRhを担持させてなるものである。前段部3は、ZrとCeの複合酸化物とアルミナからなる母材にPdを担持させてなるものである。前段部におけるZrとCeの複合酸化物におけるZrとCeの割合は、Ce/Zrのモル比を0.1〜10とすることが好ましい。   The lower layer includes a front stage 3 on the exhaust gas upstream side and a rear stage 4 on the exhaust gas downstream side. The rear stage portion 4 has the same configuration as that of the upper layer 5, that is, Rh is supported on a base material made of a composite oxide of Zr and Ce and alumina. The front stage 3 is formed by supporting Pd on a base material made of a composite oxide of Zr and Ce and alumina. The ratio of Zr and Ce in the composite oxide of Zr and Ce in the front stage is preferably such that the Ce / Zr molar ratio is 0.1-10.

この前段部3にはPdの活性を促進させるために塩基性物質が添加されている。この塩基性物質としては、アルカリ金属、アルカリ土類金属、希土類元素等の化合物を用いることができる。この塩基性物質の添加量は2.0×10-2モル/Pd量(g)とすることが好ましい。 A basic substance is added to the front part 3 in order to promote the activity of Pd. As this basic substance, compounds such as alkali metals, alkaline earth metals, and rare earth elements can be used. The addition amount of the basic substance is preferably 2.0 × 10 −2 mol / Pd amount (g).

上記前段部と後段部は、排ガス流れ方向の長さの比が1:3〜3:1であることが好ましい。   It is preferable that the ratio of the length in the exhaust gas flow direction of the front stage part and the rear stage part is 1: 3 to 3: 1.

本発明の排ガス浄化用触媒においては、触媒層を2層構造とし、下層の前段部にPdと塩基性物質を配置することにより、硫化水素の排出量を悪化させることなく触媒性能を向上させることが可能となる。これは、下層後段に塩基性物質をおかないことで、硫化水素の脱離しやすい温度に塩基性物質が曝されないためであると考えられる。   In the exhaust gas purifying catalyst of the present invention, the catalyst layer has a two-layer structure, and Pd and a basic substance are arranged in the front part of the lower layer, thereby improving the catalyst performance without deteriorating the hydrogen sulfide emission amount. Is possible. This is considered to be because the basic substance is not exposed to a temperature at which hydrogen sulfide is easily desorbed by not placing the basic substance in the lower stage of the lower layer.

本発明の排ガス浄化用触媒は、従来より行われている一般的な方法により製造することができる。例えば、アルミナ及びCeとZrの複合酸化物の各粉末を混合し、これに塩基性物質の塩の水溶液を加え、乾燥、焼成を行うことによって母材を形成する。この母材とPdの硝酸塩水溶液とを混合し、蒸発乾固させることにより母材にPdを担持させ、更に焼成を行うことによりPd触媒を得る。このPdの硝酸塩に代えてRhの硝酸塩を用い、母材に塩基性物質を添加しないで同じ方法によりRh触媒を得ることができる。このPd触媒にバインダと水を加え、Pd触媒スラリーを調製し、担体上の所定の部位に塗布し、乾燥することにより、下層の前段部を形成する。次いでRh触媒のスラリーを同様にして調製し、後段部を形成し、さらに上層を形成することにより、本発明の排ガス浄化用触媒が得られる。   The exhaust gas-purifying catalyst of the present invention can be produced by a conventional method conventionally performed. For example, alumina and a composite oxide of Ce and Zr are mixed, an aqueous solution of a salt of a basic substance is added thereto, dried and fired to form a base material. This base material and a Pd nitrate aqueous solution are mixed and evaporated to dryness to support Pd on the base material, followed by firing to obtain a Pd catalyst. An Rh catalyst can be obtained by the same method using Rh nitrate instead of Pd nitrate without adding a basic substance to the base material. A binder and water are added to the Pd catalyst to prepare a Pd catalyst slurry, which is applied to a predetermined portion on the carrier and dried, thereby forming a lower-stage front part. Next, the slurry for the Rh catalyst is prepared in the same manner, the rear stage is formed, and the upper layer is further formed, whereby the exhaust gas purifying catalyst of the present invention is obtained.

実施例1(下層への塩基性付与の効果)
下層コート用の材料として、CeO2−ZrO2粉末、La23添加Al23、BaSO4を用いて、Pdに対して塩基性物質を振り、3種類のPd触媒スラリーを調製した。得られたPd触媒スラリーを触媒前段側半分に塗布した。また、上層コート用の材料として、CeO2−ZrO2粉末、Al23を用いて、Rh触媒スラリーを調製し、このスラリーを、上記Pd触媒スラリーの塗布後乾燥した触媒基材に対し、一面に塗布した。こうして得られた図1に示す触媒について、エンジン排ガス条件を酸化雰囲気、還元雰囲気に振った条件で高温で触媒劣化耐久を実施し、排ガス雰囲気を燃料リッチ(A/F=14.1)にしたときのNOx排出量を測定した。下層前段部中の塩基性物質の量に対するNOx排出量の関係を図2に示す。この結果より、下層の前段部に塩基性物質をPd量あたり2.0×10-2モル以上添加することによって、NOx浄化能が向上した。
Example 1 (Effect of imparting basicity to the lower layer)
As a material for the lower layer coating, CeO 2 —ZrO 2 powder, La 2 O 3 added Al 2 O 3 and BaSO 4 were used, and a basic substance was shaken against Pd to prepare three types of Pd catalyst slurries. The obtained Pd catalyst slurry was applied to the catalyst front half. Further, as the material for the upper layer coating, CeO 2 —ZrO 2 powder, Al 2 O 3 was used to prepare an Rh catalyst slurry, and this slurry was applied to the catalyst substrate dried after application of the Pd catalyst slurry. It was applied on one side. The catalyst shown in FIG. 1 thus obtained was subjected to catalyst deterioration durability at high temperatures under conditions where the engine exhaust gas conditions were changed to an oxidizing atmosphere and a reducing atmosphere, and the exhaust gas atmosphere was made rich in fuel (A / F = 14.1). NOx emissions were measured. FIG. 2 shows the relationship of the NOx emission amount with respect to the basic substance amount in the lower layer front stage. From these results, the NOx purification ability was improved by adding 2.0 × 10 −2 mol or more of the basic substance per Pd amount to the lower part of the front stage.

実施例2(上層への塩基性付与の影響)
実施例1と同様にし、下層中の塩基性物質の量が3.9×10-2モルである触媒を調製し、これとは別に、さらに上層のAl23をLa23添加Al23に変え、上層にも塩基性を付与させた触媒を調製し、実施例1と同様にして触媒劣化耐久を実施し、排ガス雰囲気を燃料リッチ(A/F=14.1)にしたときのNOx浄化温度を測定した。この結果を図3に示すが、上層に塩基性を付与することにより、触媒性能が悪化することがわかる。これは、塩基性がRhの還元性を悪化させるため、Rhの性能が低下するためであると考えられる。
Example 2 (Effect of imparting basicity to the upper layer)
In the same manner as in Example 1, a catalyst in which the amount of the basic substance in the lower layer was 3.9 × 10 −2 mol was prepared. Separately, the upper layer Al 2 O 3 was further replaced with La 2 O 3 -added Al 2 O. Change to 3 and prepare a catalyst with basicity added to the upper layer, perform catalyst deterioration durability in the same way as in Example 1, and purify NOx when exhaust gas atmosphere is fuel rich (A / F = 14.1) The temperature was measured. This result is shown in FIG. 3, and it can be seen that the catalyst performance is deteriorated by imparting basicity to the upper layer. This is considered to be because the basicity deteriorates the reducibility of Rh, so that the performance of Rh is lowered.

実施例3(上層及び下層における塩基性の影響)
実施例1と同様にし、上層及び下層のそれぞれに塩基性を付与したもしくは付与しない触媒を調製した。この触媒について(具体的な方法を追加してください)によりSO2を触媒に吸着させた後、高負荷停止したSを還元した際の、硫化水素排出量を測定した。この結果を図4に示す。下層への塩基性付与による硫化水素排出量は悪化がみられないが、上層への塩基性付与では大幅に悪化した。これは、上層のコート層が長いため、硫化水素が脱離しやすい温度に曝されやすいためであると考えられる。
Example 3 (Effect of basicity in upper layer and lower layer)
In the same manner as in Example 1, a catalyst with or without imparting basicity to each of the upper layer and the lower layer was prepared. With respect to this catalyst (add a specific method), after SO 2 was adsorbed on the catalyst, the amount of hydrogen sulfide discharged when S stopped at high load was reduced was measured. The result is shown in FIG. The amount of hydrogen sulfide discharged by imparting basicity to the lower layer was not deteriorated, but was greatly deteriorated by imparting basicity to the upper layer. This is presumably because the upper coat layer is long and therefore it is easily exposed to a temperature at which hydrogen sulfide is easily desorbed.

Claims (1)

排ガス流れ方向に対して垂直に、触媒担体上に設けられた上層及び下層の2層構造の触媒層を備えた排ガス浄化用触媒であって、前記上層がRhを担持したZrとCeの複合酸化物とアルミナからなり、前記下層がPdを担持したZrとCeの複合酸化物とアルミナからなる排ガス上流側の前段部とRhを担持したZrとCeの複合酸化物とアルミナからなる排ガス下流側の後段部からなり、前記前段部にのみ塩基性物質が添加されており、さらに前記上層部の排ガス流れ方向の長さが前記下層部の排ガス方向の長さよりも短いことを特徴とする排ガス浄化用触媒。   An exhaust gas purifying catalyst comprising an upper layer and a lower layer catalyst layer provided on a catalyst carrier in a direction perpendicular to the exhaust gas flow direction, wherein the upper layer is a composite oxidation of Zr and Ce carrying Rh And a lower stage of the upstream portion of the exhaust gas upstream of the composite oxide of Zr and Ce supporting Pd and alumina and the composite oxide of Zr and Ce supporting Rh and the alumina of the lower layer. For exhaust gas purification, comprising a rear stage part, wherein a basic substance is added only to the front stage part, and the length of the upper layer part in the exhaust gas flow direction is shorter than the length of the lower layer part in the exhaust gas direction catalyst.
JP2010197850A 2010-09-03 2010-09-03 Catalyst for purifying exhaust gas Pending JP2012050961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197850A JP2012050961A (en) 2010-09-03 2010-09-03 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197850A JP2012050961A (en) 2010-09-03 2010-09-03 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JP2012050961A true JP2012050961A (en) 2012-03-15

Family

ID=45904967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197850A Pending JP2012050961A (en) 2010-09-03 2010-09-03 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JP2012050961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112371118A (en) * 2020-11-27 2021-02-19 中自环保科技股份有限公司 Efficient automobile exhaust treatment catalyst and preparation method thereof
JP2022039147A (en) * 2020-08-28 2022-03-10 トヨタ自動車株式会社 Exhaust gas purification unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022039147A (en) * 2020-08-28 2022-03-10 トヨタ自動車株式会社 Exhaust gas purification unit
JP7235417B2 (en) 2020-08-28 2023-03-08 トヨタ自動車株式会社 Exhaust gas purifier
CN112371118A (en) * 2020-11-27 2021-02-19 中自环保科技股份有限公司 Efficient automobile exhaust treatment catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5386121B2 (en) Exhaust gas purification catalyst device and exhaust gas purification method
JP5807782B2 (en) Exhaust gas purification catalyst
JP6213508B2 (en) Catalytic converter
JP6246192B2 (en) Three-way catalyst system
JP5337930B2 (en) Exhaust purification method
JP2010005590A (en) Catalyst for purifying exhaust gas
CN113646085B (en) Exhaust gas purifying catalyst
JP2006326495A (en) Exhaust-gas cleaning catalyst
JP5218092B2 (en) Exhaust gas purification catalyst
JP2015039667A (en) Catalytic converter
EP3632537A1 (en) Exhaust gas purification catalyst device
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP7255459B2 (en) Exhaust gas purification catalyst
JP4923412B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
WO2014171443A1 (en) Exhaust-gas purification catalyst
JP4412299B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6775052B2 (en) Exhaust gas purification catalyst
JP2012050961A (en) Catalyst for purifying exhaust gas
JP2006289301A (en) Catalyst for clarifying exhaust gas
JP5328133B2 (en) Exhaust gas purification catalyst
JP2007090254A (en) Double layered structure catalyst for cleaning exhaust gas and control method of internal combustion engine
JP4222064B2 (en) Exhaust gas purification catalyst
JP2005205302A (en) Exhaust gas cleaning catalyst and apparatus for combustion engine
JP4503314B2 (en) Exhaust gas purification catalyst