JP4222064B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP4222064B2
JP4222064B2 JP2003059258A JP2003059258A JP4222064B2 JP 4222064 B2 JP4222064 B2 JP 4222064B2 JP 2003059258 A JP2003059258 A JP 2003059258A JP 2003059258 A JP2003059258 A JP 2003059258A JP 4222064 B2 JP4222064 B2 JP 4222064B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nox
purification rate
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003059258A
Other languages
Japanese (ja)
Other versions
JP2004267843A (en
Inventor
誠治 三好
啓司 山田
明秀 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2003059258A priority Critical patent/JP4222064B2/en
Publication of JP2004267843A publication Critical patent/JP2004267843A/en
Application granted granted Critical
Publication of JP4222064B2 publication Critical patent/JP4222064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、排気ガス浄化用触媒に関するものである。
【0002】
【従来の技術】
エンジンの排気ガスを浄化するための触媒としては、理論空燃比付近で排気ガス中のHC、CO及びNOxを同時にかつ極めて有効に浄化できる三元触媒が知られている。また、空燃比リーンでは排気ガスに含まれるNOxをBa等のNOx吸蔵材に吸蔵し、理論空燃比又は空燃比リッチでは吸蔵していたNOxを貴金属上に移動させ、これを排気ガスに含まれるHC、CO及びH2のような還元ガスと反応させてN2に還元浄化すると共に、還元ガスをも酸化浄化する、いわゆるリーンNOx浄化触媒も知られている。
【0003】
そして、一般にこれらの触媒には、酸化数が変化して酸素の貯蔵及び放出を行う酸素吸蔵材が構成成分として含まれており、通常CeO2やCeO2−ZrO2複酸化物が使用されている。これらの酸化物は、三元触媒においては酸素の貯蔵又は放出により理論空燃比からのずれを補正する役割を果たし、また、リーンNOx浄化触媒においては、排気ガスに大量に含まれる酸素を吸収することで、貴金属の近傍を一時的に還元雰囲気にすることによりNOxの吸蔵を促進する役割と、リーンNOx触媒が三元触媒として機能する際に上記の三元触媒における機能と同じ役割を果たす。
【0004】
このよう役割を果たす酸素吸蔵材に関しては近年、複合酸化物成分やその結晶形態に言及した多くの文献が見られ、CeO−ZrO−SrO系複合酸化物の酸素吸蔵材もその一つとして知られている(下記特許文献1参照)。
【0005】
なお、酸素吸蔵材としてのCeO−ZrO−SrO系複合酸化物が提案された特許文献1は当出願人によるものであり、本文献1には、「酸素吸蔵材として働く複酸化物は、Ce及びZrに加えてSrを含むので、触媒が高温度雰囲気に長時間晒されても酸素吸蔵機能が大きく低下することがなく、耐熱劣化性に優れた触媒を得ることができる」、旨が記載されている。
【0006】
特許文献1には、上記のような効果が得られる理由は明確ではないとしながらも、分析の結果から、Srの存在がCeO−ZrOのみの複酸化物よりも高結晶性、微粒子化、メゾポアの拡大、硫黄被毒防止に寄与しており、高い温度域にまで酸素吸蔵機能を維持することが可能となっていると考えられる、としている。
【0007】
さらに、上記Ce−Zr−Sr複酸化物(CeO−ZrO−SrO系複合酸化物)は、通常の排気ガス温度350℃前後でエンジンの空燃比をストイキ又はリッチにしたときの酸素放出量がそれほど多くないため、NOx吸蔵材に吸収されているNOxを放出させて還元浄化するために空燃比をストイキ又はリッチに維持する時間を短くすることができ、あるいはリッチ度合を低くすることができること、即ち、CeO−ZrO−SrO系複合酸化物を酸素吸蔵材とすることにより、燃料消費量を低減できる効果があることも記載している。
【0008】
そして、本文献1において、酸素吸蔵材としてのCeO−ZrO−SrO系複合酸化物は、貴金属やNOx吸蔵材と共に内側触媒層として担体上に被覆配置され、その内側触媒層上には貴金属とゼオライトとを有する外側触媒層とが備えられた排気ガス浄化用触媒として用いられることが開示されている。
【0009】
しかしながら、本文献1には、自動車の排気ガス浄化用触媒、とりわけ、リーンNOx触媒、または三元触媒が置かれる温度条件、即ち、低温度域(例えば、市街地等での低速走行時)から高温度域(例えば、高速道路等での高速走行時)の広い温度範囲に渡って、常に高いNOx浄化率を得るために必要なCeO−ZrO−SrO系複合酸化物の含有量が特定されていない。したがって、本文献1に記載の触媒は、自動車の排気ガス浄化用触媒としては、様々な運転条件の下で幅広く変化する排気ガス温度条件に対して常に高いNOx浄化率を得られない可能性がある。
【0010】
また、本発明者等は、特許文献1に記載の内側触媒層と外側触媒層を設けた触媒(以下、従来触媒と称す)について、450℃の高温度でのA/F(空燃比)とリッチNOx浄化率との関係を調べ、図9のような結果を得た。
【0011】
同図によれば、従来触媒は、リッチ(λ≦1)になるに従ってNOx浄化率が上がることが分かる。しかしながら、逆に言えば、NOx浄化率を上げるためには還元剤を供給してリッチ状態にする必要があり、それに伴って燃料消費量の増加を招くという問題がある。
【0012】
【特許文献1】
特開2001−310131号公報
【0013】
【発明が解決しようとする課題】
以上より、本発明は、酸素吸蔵材としてのCeO−ZrO−SrO系複合酸化物が貴金属やNOx吸蔵材と共に担体に被覆される触媒層を有する排気ガス浄化用触媒において、低温度域から高温度域まで高いNOx浄化率を得ると共に、エンジンの低燃費化に寄与できる排気ガス浄化用触媒を提供することを課題とする。
【0014】
【課題を解決するための手段】
本発明に関わる排気ガス浄化用触媒の第一の構成は、排気ガス中のNOxを過剰酸素の存在下で吸収し、排気ガスの酸素濃度が低下すると吸収したNOxを放出するNOx吸収材と、CeO−ZrO−SrO系複合酸化物と、触媒貴金属と、アルミナとを含む触媒層が触媒担体に被覆されるとともに、火花点火式エンジンの排気ガス流路に配置される排気ガス浄化用触媒であって、触媒は排気ガスの流れ方向に沿って上流側に配設された上流側触媒と排気ガスの流れ方向に沿って下流側に配設された下流側触媒とから成り、上流側触媒における複合酸化物は20g/L以上、140g/L以下の含有量とされ、下流側触媒における複合酸化物は140g/L以上、280g/L以下の含有量とされているものである。
【0015】
第一の構成によれば、通常の火花点火式エンジンでは、排気ガス流路に配置される排気ガス浄化用触媒において上流側(入口側)に配置される触媒は下流側(出口側)に配置される触媒よりも高温であるため、上流側に高温でNOx浄化率が高い特性を示すようにその含有量が20g/L以上、140g/L以下に特定されたCeO−ZrO−SrO系複合酸化物を含む触媒を配置する一方、その下流側に低温でNOx浄化率が高い特性を示すようにその含有量が140g/L以上、280g/L以下に特定されたCeO−ZrO−SrO系複合酸化物を含む触媒を配置することにより、排気ガス浄化用触媒が低温度であっても、或いは高温度であっても常に高いNOx浄化率を維持することができる。
【0016】
また、上流側触媒は高温時のλ≦1のA/F条件下において従来触媒よりもNOx浄化率が高いため、過度にリッチパージしてNOx浄化率を高める必要が無い。したがって、燃料消費量を抑えることが可能となる。
【0017】
これについて少し詳しく説明すると、酸素吸収剤であるCeO−ZrO−SrO系複合酸化物からの酸素放出量が多い場合は、ストイキ又はリッチにしてNOxを浄化するための排気ガス中の還元成分(HC、CO、H2 等)を多くしても、その還元成分が放出された酸素と反応して消費される量も多くなる。そのため、NOxを還元浄化するためにはより多くの還元成分が必要になる。つまり、ストイキまたはリッチに維持する時間を長くするか、リッチ度合を高くする必要がある。これに対して、本発明におけるCeO−ZrO−SrO系複合酸化物はその含有量と温度との関係から、上流側触媒に含有されるCeO−ZrO−SrO系複合酸化物は酸素放出量が少ないように20g/L以上、140g/L以下に設定してあるから、還元成分の消費量が少ない。そのために、NOxを還元浄化するためにストイキ又はリッチに維持する時間を短くし又はリッチ度合を低くすることができ、その結果、燃料消費量も少なくなる。
【0018】
本発明に関わる第二の構成は、排気ガス中のNOxを過剰酸素の存在下で吸収し、排気ガスの酸素濃度が低下すると吸収したNOxを放出するNOx吸収材と、CeO−ZrO−SrO系複合酸化物と、触媒貴金属と、アルミナとを含む触媒層が触媒担体に被覆されるとともに、火花点火式エンジンの排気ガス流路に配置される排気ガス浄化用触媒であって、触媒は高温活性触媒と低温活性触媒の2つの触媒が排気ガスの流れ方向に対して並列に配置され、触媒の入口前方に設けられた温度検出装置によって検出された排気ガス温度に基づいて高温活性触媒または低温活性触媒へ排気ガス経路を切換える切換手段が備えられているとともに、高温活性触媒における複合酸化物は20g/L以上、140g/L以下の含有量とされ、低温活性触媒における複合酸化物は140g/L以上、280g/L以下の含有量とされているものである。
【0019】
第二の構成によれば、触媒の入口前方に設けられた温度検出装置によって検出された排気ガス温度に基づいて高温活性触媒または低温活性触媒へ排気ガス経路を切換える切換手段が備えられており、排気ガス温度が所定温度以上である場合には高温活性触媒に排気ガスが流れ込むように切換手段が切換えられ、この高温活性触媒は高温でNOx浄化率が高い特性を示すようにその含有量が20g/L以上、140g/L以下に特定されたCeO−ZrO−SrO系複合酸化物を含む触媒を配置する一方、排気ガス温度が所定温度以下である場合には低温活性触媒に排気ガスが流れ込むように切換手段が切換えられ、この低温活性触媒は低温でNOx浄化率が高い特性を示すようにその含有量が140g/L以上、280g/L以下に特定されたCeO−ZrO−SrO系複合酸化物を含む触媒を配置することにより、排気ガス浄化用触媒が低温度であっても、或いは高温度であっても常に高いNOx浄化率を維持することができる。
【0020】
また、上記第一の構成の上流触媒と同様に、高温活性触媒は高温時のλ≦1のA/F条件下において従来触媒よりもNOx浄化率が高いため、過度にリッチパージしてNOx浄化率を高める必要が無い。したがって、燃料消費量を抑えることが可能となる。
【0021】
【発明の効果】
以上説明したように、本発明は、酸素吸蔵材としてのCeO−ZrO−SrO系複合酸化物が貴金属やNOx吸蔵材と共に担体に被覆される触媒層を有する排気ガス浄化用触媒において、低温度域から高温度域まで高いNOx浄化率を得ると共に、エンジンの低燃費化に寄与できる排気ガス浄化用触媒を提供することができる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態について、図1〜図8に基づいて説明する。
【0023】
なお、本発明の実施の形態の説明において、「低温(低温度)」、「高温(高温度)」等の記載がある。「低温(低温度)」と「高温(高温度)」とは、相対比較を表すもので、特定の基準の温度が設定され、それに基づいた「低温(低温度)」、「高温(高温度)」という意味ではない。何故ならば、本発明の主旨は、触媒中のCeO−ZrO−SrO系複合酸化物の含有量によってNOx浄化率が高くなる温度領域が低温度域であったり、高温度域であったりと変化することに着目し、低温度の排気ガス温度が流れる部位には低温度でNOx浄化率が高くなるような上記複合酸化物の含有量の触媒を配置し、且つ高温度の排気ガス温度が流れる部位には高温度でNOx浄化率が高くなるような上記複合酸化物の含有量の触媒を配置するものであり、幾多の車種に応じて2つの触媒における複合酸化物の夫々の含有量が設定可能であり、その組合せに準じて基準となる温度は多数に変化するためである。
【0024】
(触媒の構成)
図1は本発明の実施形態に係る排気ガス浄化用触媒Cの構造を示す。触媒Cは、例えば耐熱性に優れた担体材料であるコージェライトからなるモノリス状の担体1を備え、その担体1のセル2内壁面上には、後で詳細に説明する、NOx吸収材と、CeO−ZrO−SrO系複合酸化物(以下、複合酸化物と称す)と、触媒貴金属と、アルミナとを含む触媒層3が形成されている。
【0025】
触媒層3は、貴金属成分(例えばPt、Rh)と、NOx吸蔵材としてのBa、K、Sr及びMgと、貴金属及びNOx吸蔵材が担持された母材と、この母材粉末を結合し担体に保持するバインダとを備えている。ここで、母材は、アルミナと複合酸化物との混合物で形成されている。
【0026】
(触媒Cの製法)
触媒Cの基本的な製法は次の通りである。
【0027】
まず、母材(アルミナと複合酸化物との混合物)、バインダ及び水を混合してスラリーを形成し、このスラリーをモノリス担体にウォッシュコートし、乾燥及び焼成を行なうことによって、コート層を形成する。
【0028】
続いて、貴金属成分の溶液と、NOx吸蔵材であるBa成分、K成分、Sr成分及びMg成分の各溶液との混合溶液を調製する。そして、その混合溶液をコート層に含浸させ、乾燥及び焼成を行なう。
【0029】
(触媒Cの使用形態)
触媒Cは、例えば図2に示すように、車両用のリーン燃焼エンジン4の排気ガスを排出するための排気通路5に配設された触媒コンバータ7内に配置されている。触媒コンバータ7の配設部位は車両の床下部位に相当する。
【0030】
詳細には、触媒Cは、例えば図3又は図4に示す形態とされている。まず、図3に示している形態について説明する。図3から分かるように、触媒Cはエンジンからの排気ガスが流れ込む上流側(排気ガス温度が高い側)触媒C1と、上流側触媒C1に直列にその後方に配設される下流側(排気ガス温度が低い側)触媒C2とから成っている。
【0031】
そして、上流側触媒C1と下流側触媒C2との間にはクリアランスが設定されているとともに、上流側触媒C1と下流側触媒C2の外周面は断熱材で覆われた状態で触媒コンバータ7内に配置されている。
【0032】
一方、図4に示している触媒Cの形態は、低温度域で浄化率の高い触媒C3と高温度域で浄化率の高い触媒C4が触媒コンバータ7内において並列に配置されているものである。
【0033】
そして、触媒C3と触媒C4との間にはクリアランスが設定されているとともに、夫々の外周面は断熱材で覆われている。
【0034】
また、図4に示している触媒の形態の場合、触媒C3と触媒C4に流れ込む排気ガスを仕切るための仕切り壁Cwが触媒C3と触媒C4の間から排気ガス上流側に向かって触媒コンバータ7の前端部まで設けられており、さらに、触媒コンバータ7の入口前方付近の排気ガス流路内に排気ガス温度検出手段である温度センサ9が設けられている。
【0035】
さらに、仕切り壁Cwの前端部には排気ガス切換手段である切換弁Sが設けられており、例えば350℃であった排気ガス温度が上昇して所定温度、例えば、380℃になった場合に、触媒C4への排気ガスを遮断する位置S4にあった切換弁Sは触媒C3への排気ガスを遮断する位置S3に切換えられようになっている。つまり、温度センサ9によって排気ガス温度が380℃未満であることを検出している場合は、切換弁Sは位置S4の状態とされるため、排気ガスは触媒C3に流れるが触媒C4には流れず、温度センサ9によって排気ガス温度が380℃以上であることを検出している場合は、切換弁Sは位置S3の状態とされるため、排気ガスは触媒C4に流れるが触媒C3には流れないようになっている。なお、切換えのための具体的手段はモータ駆動他、如何なる手段であってもよい。
【0036】
そして、一般的に排気ガス浄化用触媒は、NOx、CO、及びHC等の排気ガスに対して、例えば250℃の低温度域から500℃の高温度域までほぼ均一、且つ、高い浄化率を維持するものはないという現状から、図3及び図4で示した触媒について、高温度域で高い浄化率を有する触媒と、低温度域で高い浄化率を有する触媒を組み合わせることは、極めて有意義である。
【0037】
以上の説明のように、本発明に関わる触媒の仕様の形態は、低温度域で排気ガスの浄化率が高い触媒と、高温度域で排気ガスの浄化率が高い触媒とを配置するもので、これにより、エンジンの排気ガス温度が約250℃の低温度から約500℃の高温度となるような幅広い運転状態においてもNOx、CO及びHC濃度を低減することが可能となる。
【0038】
そして、触媒C(即ち、触媒C1、触媒C2、触媒C3、及び触媒C4)は、リーン燃焼運転時には排気ガスに含まれるNOxをNOx吸収材であるBa、K、Sr及びMgに吸蔵し、次に理論空燃比燃焼運転時またはリッチ燃焼運転時(λ≦1)には上記Ba等から放出されたNOxと、排気ガス中に含まれる還元成分であるHC、CO及びH2とを反応させ、排気ガスを浄化するものである。すなわち、触媒CはリーンNOx浄化作用を有するものであり、そのリーン燃焼運転時における排気ガスの酸素濃度は例えば4〜5%から20%であり、空燃比はA/F=18〜150である。一方、リッチ燃焼運転時における排気ガスの酸素濃度は0.5%以下である。
【0039】
また、触媒CはリーンNOx浄化作用を有するが、リーン燃焼運転が長時間続くと触媒CのNOx吸蔵量が飽和状態となってNOx浄化性能の低下を招く。そのため、リーン燃焼運転を2〜3分行い、この間にNOx吸蔵材にNOxを吸蔵し、次いでリッチ燃焼運転を1〜5秒行い、この間に吸蔵していたNOxを放出して浄化する、というサイクルが繰り返されるように制御がなされている。
【0040】
さらに、触媒層3に含まれるNOx吸蔵材(Ba、K、Sr及びMg)への硫黄成分の吸収過剰状態が判定されたときには、燃焼室の空燃比をリッチ状態とすると共に、点火時期を遅らせる点火リタード制御が2〜10分程度行われるようになっている。これによって排気ガスの温度が高められてNOx吸蔵材の温度も上昇し、硫黄被毒されたNOx吸蔵材から硫黄成分が脱離して再生が図られることとなる。
【0041】
触媒層3には、触媒金属として貴金属が担持されているので、排気ガス中のNOx及びHCが貴金属表面で活性化されると共に、複合酸化物から活性化された酸素が供給されることとなる。従って、排気ガス中のNOのNO2への酸化反応、HCの部分酸化反応が円滑に進行し、このNO2及び部分酸化HCはエネルギー的に反応しやすい状態にあるため、前者の還元及び後者の酸化が効率良く進行することになる。
【0042】
すなわち、空燃比リーンにおいて、触媒層3では、触媒層3でNOが酸化されて生成したNO2がNOx吸蔵材に吸蔵され、見掛け上NOxが浄化された格好となる。NOx吸蔵材に吸蔵されたNO2は、空燃比リッチとなったときに触媒層3の貴金属上で活性化された部分酸化HCと反応して分解浄化されることとなる。従って、触媒層3はリーンNOx浄化触媒としての機能を発揮するということができる。
【0043】
【実施例】
<評価触媒の調製>
以下の方法により本発明に係る触媒を調製した。
【0044】
−コート層の形成−
γーアルミナと複合酸化物とアルミナバインダとを、γ−アルミナ担持量(担持量は後述するハニカム担体に担持させたときの担体1L当たりの乾燥質量のこと。以下、同じ。)と複合酸化物担持量の合計を320g/Lで一定重量とするとともに、この320g/Lの範囲内で複合酸化物担持量を表1のように変え、これらに、夫々、アルミナバインダ担持量が30g/Lとなるように秤量して混合し、これにイオン交換水を添加することによってスラリーを調製した。このスラリーにコージェライト製モノリス担体を浸漬して引き上げ、余分なスラリーを吹き飛ばす、という方法により、担体にスラリーをウォッシュコートした。次いで、これを150℃の温度で1時間乾燥し、540℃の温度で2時間焼成することによってコート層を形成した。なお、この乾燥条件及び焼成条件は以下の説明における「乾燥」及び「焼成」も同じである。
【0045】
次に、比較例1として複合酸化物を含有しない、即ち、γーアルミナのみで320g/Lの担持量とされるコート層を形成した。
【0046】
さらに、比較例2としてγーアルミナを含有しない、即ち、複合酸化物のみで320g/Lの担持量とされるコート層を形成した。
【0047】
以上のコート層における複合酸化物の担持量を下記の表1に示す。なお、複合酸化物における酸化物の質量組成比は、いずれもCeO:ZrO:SrO=73.3:25.7:1である。
【表1】

Figure 0004222064
【0048】
−含浸工程−
ジニトロジアミン白金硝酸塩水溶液と、硝酸ロジウム水溶液と、酢酸バリウム水溶液と、酢酸カリウム水溶液と、酢酸ストロンチウム水溶液と、酢酸マグネシウム水溶液とを、Pt担持量が3.5g/L、Rh担持量が0.3g/L、Ba担持量が30g/L、K担持量が6g/L、Sr担持量が10g/L及びMg担持量が10g/Lとなるように秤量し混合してなる混合溶液を調製した。
【0049】
次いで、この混合溶液を表1に示した実施例1〜7、及び比較例1、2の担体上のコート層に含浸させ、これを乾燥及び焼成した。
【0050】
そして、上記実施例1〜7、及び比較例1、2のリッチNOx浄化率を下記測定方法に従って測定した。
−NOx浄化率の測定方法−
触媒を固定床流通式反応評価装置に取り付け、図5に示すように、空燃比リーンの模擬排気ガス(ガス組成A)を60秒間流し、次にガス組成を切換えて空燃比リッチの模擬排気ガス(ガス組成B)を60秒間流す、というサイクルを5回繰り返した後、空燃比リーンの模擬排気ガス(ガス組成A)から空燃比リッチの模擬排気ガス(ガス組成B)に切換えて60秒間、即ち、テスト開始から540秒〜600秒の間におけるリッチNOx浄化率(以下、本測定結果に関しては単に浄化率と称す)を測定した。また、そのガス組成は表2に示す通りであり、空間速度SVは25000h-1とした。なお、一般的に、上記の方法による浄化率測定結果は、実車での測定結果よりも低い浄化率を示し、本測定の結果が約75%程度の浄化率であれば、充分に実用可能である。
【0051】
上記測定条件において、触媒温度及び模擬排気ガス温度は夫々、250℃、300℃、350℃、400℃、450℃、及び500℃とした。即ち、本浄化率の測定方法によれば、複合酸化物の担持量と、触媒温度と、浄化率との関係が分かり、図3、図4に示した形態の触媒において、低温度域で浄化率の高い触媒と高温度域で浄化率の高い触媒の組合せが明らかにできる。
【0052】
【表2】
Figure 0004222064
【0053】
図6に上記の方法による浄化率測定結果を示す。図6において、まず、実施例1の複合酸化物を含む触媒の場合、250℃の低温度では浄化率は低く温度の上昇とともに浄化率が上がり、400℃から450℃の間で最高の浄化率を示した後、さらに温度が上昇すると若干の浄化率の低下を示す。即ち、実施例1は低温度域よりも高温度域で浄化率が高い触媒である。
【0054】
実施例2の場合、250℃から約400℃の間では実施例1よりも浄化率は高いが、高温度域では逆に実施例1よりもやや低い浄化率となっている。実施例2は低温度域よりも高温度域で浄化率が高い触媒であることが分かる。
【0055】
実施例3の場合、250℃では実施例2よりも浄化率は低いが、温度の上昇とともに実施例2より高い浄化率を示すようになり、約400℃で最高の浄化率を示した後、500℃の高温では実施例1、及び実施例2よりも低い浄化率を示す。そして、実施例3は低温度域よりも高温度域で浄化率が高い触媒であることが分かる。但し、実施例1、実施例2よりもその傾向は顕著ではない。
【0056】
実施例4の場合、250℃から300℃を超える温度域では実施例1、及び3よりも高い浄化率を示し、温度の上昇とともに浄化率も上昇して350℃から400℃の間で最高の浄化率を示した後、さらに温度が上昇すると急激に浄化率が低下する。高温度域では、明らかに実施例1、2、及び3よりも浄化率は低い。即ち、実施例4は高温度域よりも低温度域で浄化率が高い触媒であることが分かる。
【0057】
実施例5の場合、実施例4に近い浄化率の傾向を示しているが、最高の浄化率を示す温度は約350℃になっており、実施例4よりもさらに、高温度域よりも低温度域で浄化率が高い触媒であることが分かる
【0058】
実施例6の場合、250℃でかなり高い浄化率を有し、さらに300℃から350℃の間で最高の浄化率が得られている。そしてその浄化率も他の実施例のよりも高い。500℃の高温度では実施例1及び実施例2よりもやや低い浄化率を示している。したがって、実施例6は高温度域よりも低温度域で浄化率が高い触媒であるとともにその傾向を最も顕著に有している。
【0059】
実施例7の場合、250℃から350℃を少し超える温度域において、実施例5と実施例6との間の浄化率を示し、温度の上昇とともに浄化率は低下する。したがって、実施例7は高温度域よりも低温度域で浄化率が高い触媒である。
【0060】
続いて比較例1及び比較例2について説明する。比較例1は先に述べたように複合酸化物の担持量は0g/Lである。この比較例1は、実施例1と同様に低温度域よりも高温度域で高い浄化率を有しているように見える。しかし、触媒上にセリアが含まれていないため、NOxを吸蔵する性能が低く、リーン運転時に実施例1に比べて少ない量のNOxしか吸蔵できていない。従って、リッチ運転時に放出するNOxの量が少なく、見かけ上、NOx浄化率が高くなっているだけである。
【0061】
比較例2は、約350℃で最高の浄化率を示しているが、実施例1〜7の場合の最高の浄化率よりもかなり低く、250℃、及び500℃では50%以下の低い浄化率となっている。また、比較例2のコート層は、担体に担持する際のスラリー粘度が実施例1〜7のスラリーよりもかなり高く、メッシュの目詰まりやコート層の厚みの不均一な部分が確認でき、実用には適していないものであることも分かった。
【0062】
以上説明したように、複合酸化物を含む触媒である実施例1〜7は、その複合酸化物の担持量によって、低温度域よりも高温度域で浄化率が高い触媒と、高温度域よりも低温度域で浄化率が高い触媒とに分けられる。
【0063】
具体的には、実施例1〜3、即ち複合酸化物の担持量が40g/L〜120g/Lの触媒は低温度域よりも高温度域で浄化率が高い触媒であり、160g/L〜280g/Lの触媒は、高温度域よりも低温度域で浄化率が高い触媒であると言える。
【0064】
上記の知見を下に、高温度域よりも低温度域で浄化率が高い触媒、及び低温度域よりも高温度域で浄化率が高い触媒に必要な複合酸化物の担持量の上限値と下限値について、さらに実験を行った。
【0065】
なお、高温度域よりも低温度域で浄化率が高い触媒の複合酸化物の担持量については、320g/Lでは、先に説明したメッシュの目詰まりやコート層の厚みの不均一が生じること、及び280g/Lで充分なNOx浄化性能が確認できるところから、280g/Lを上限値として設定した。
【0066】
高温度域よりも低温度域で浄化率が高い触媒の複合酸化物担持量の下限値、及び低温度域よりも高温度域で浄化率が高い触媒に必要な複合酸化物の担持量の上限値は上記実施例3と実施例4の間にあると考えられるところから、実施例8として、複合酸化物の担持量が140g/Lの触媒を調製して、実施例1〜7と同じ方法でリッチNOx浄化率の測定を行った。なお、実施例8の触媒の調製方法は実施例1〜7と同じである。
【0067】
さらに、低温度域よりも高温度域で浄化率が高い触媒に必要な複合酸化物の担持量の下限値は比較例1と実施例1の間にあると考えられるところから、実施例9として、複合酸化物の担持量が20g/Lの触媒を調製して、実施例1〜7と同じ方法でリッチNOx浄化率の測定を行った。なお、実施例9の触媒の調製方法は実施例1〜7と同じである。
【0068】
図7は上記実施例8、及び実施例9のリッチNOx浄化率の測定結果を示すものである。なお、参考として、上記実施例1、3、4、6、及び実施例7の結果も合わせて示している。
【0069】
図7において、高温度域よりも低温度域で浄化率が高い触媒の複合酸化物担持量の下限値について実施例9を検討する。
【0070】
実施例9の場合、約400℃よりやや低い温度で最高の浄化率を示し、それよりも低温、或いは高温では浄化率が低下する。そしてこれは、ほぼ実施例3と実施例4の中間に近い浄化率を示している。
【0071】
また、250℃から300℃の低温度域では実施例4よりも浄化率を示しているが、実用可能な浄化率、約75%以上の浄化率を有しているところから、実施例9、即ち、複合酸化物の担持量が140g/Lの触媒は、高温度域よりも低温度域で浄化率が高い触媒における上記担持量の下限値として設定することができる。
【0072】
一方、実施例9の高温度域の浄化率も約75%以上を有しているところから、実施例9、即ち、複合酸化物の担持量が140g/Lの触媒は、低温度域よりも高温度域で浄化率が高い触媒における上記担持量の上限値として設定することができる。
【0073】
次に、低温度域よりも高温度域で浄化率が高い触媒の複合酸化物担持量の下限値について実施例8を検討する。
【0074】
実施例8の場合、実施例1よりもやや低い浄化率であるが、実施例1とほぼ同じ傾向を示す。そして、図7から分かるように、実施例8は400℃前後において実施例1、3、及び実施例9よりも低い浄化率を示すものの、約80〜90%の浄化率であるところから、実用可能であるとともに、この温度領域における浄化率の下限をカバーできる触媒である。したがって、低温度域よりも高温度域で浄化率が高い触媒における上記担持量の下限値として設定することができる。
【0075】
以上より、図3で示した触媒の形態の場合、上流側の触媒C1における複合酸化物の担持量は20g/L以上、140g/L以下、下流側の触媒C2における複合酸化物の担持量は140g/L以上、280g/L以下が良い。
【0076】
また、図4で示した触媒の形態の場合、高温側の触媒C4における複合酸化物の担持量は20g/L以上、140g/L以下、低温側の触媒C3における複合酸化物の担持量は140g/L以上、280g/L以下が良い。
【0077】
このことから明らかなように、複合酸化物の担持量が140g/Lの触媒は、図3で示した触媒の形態の場合、上流側の触媒C1と下流側の触媒C2の両方に用い、或いは図4で示した触媒の形態の場合、高温側の触媒C4と低温側の触媒C3の両方に用いても良い。
【0078】
次に、低温度域よりも高温度域で浄化率が高い触媒として実施例3の触媒を例にして、λ≦1のA/Fの状態でのリッチNOx浄化性能を測定した。その結果を図8に示している。なお、本評価方法は、上記実施例1〜7他のリッチNOx浄化率の測定方法と基本的には同じであるが、リッチ側のガス組成を変える(CO、H2、HCの還元成分を増やす)ことにより、A/Fを変化させて評価したものである。
【0079】
図8によれば、450℃の高温下、λ≦1の状態において、実施例3の触媒は従来触媒よりも高いリッチNOx浄化率を示している。このことより、低温度域よりも高温度域で浄化率が高い触媒を使えば、高温度域においてA/Fを過度にリッチにしなくても高いリッチNOx浄化性能が得られ、燃料消費量の低減が可能となることが確認できた。
【0080】
なお、図4で示した触媒の形態の場合、380℃を切換弁Sが切換えられる排気ガスの温度条件としたが、本発明はこの温度に限定されるものではない。
【図面の簡単な説明】
【図1】本発明の実施形態に係る排気ガス浄化用触媒の構造
【図2】本発明に係るエンジンから触媒に至る配置を示す図
【図3】本発明に係る触媒の使用形態の一つを示す図
【図4】本発明に係る触媒の別の使用形態を示す図
【図5】NOx浄化率の測定方法を示す図
【図6】リッチNOx浄化率測定結果を示す図
【図7】複合酸化物含有量の上下限値を検討するためのリッチNOx浄化率測定結果を示す図
【図8】実施例3を代表例としたλ≦1のA/F状態でのリッチNOx浄化性能測定結果
【図9】従来の技術の課題を説明する図
【符号の説明】
1・・・担体
2・・・担体セル
3・・・触媒層
5・・・排気通路5
9・・・温度検出装置
C・・・触媒
C1・・・上流側触媒
C2・・・下流側触媒
C3・・・低温度域で浄化率の高い触媒
C4・・・高温度域で浄化率の高い触媒
S・・・切換弁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification catalyst.
[0002]
[Prior art]
As a catalyst for purifying engine exhaust gas, a three-way catalyst that can simultaneously and extremely effectively purify HC, CO, and NOx in the exhaust gas in the vicinity of the theoretical air-fuel ratio is known. Further, in the air-fuel ratio lean, NOx contained in the exhaust gas is occluded in a NOx occlusion material such as Ba, and in the stoichiometric air-fuel ratio or air-fuel ratio rich, the NOx occluded is moved onto the noble metal, and this is contained in the exhaust gas. HC, CO and H 2 React with a reducing gas such as N 2 There is also known a so-called lean NOx purification catalyst that reduces and purifies the gas and also oxidizes and purifies the reducing gas.
[0003]
In general, these catalysts contain an oxygen storage material that changes the oxidation number and stores and releases oxygen as a constituent component. 2 And CeO 2 -ZrO 2 Double oxide is used. These oxides play a role of correcting the deviation from the stoichiometric air-fuel ratio by storing or releasing oxygen in the three-way catalyst, and absorb a large amount of oxygen contained in the exhaust gas in the lean NOx purification catalyst. Thus, the NOx occlusion is promoted by temporarily setting the vicinity of the noble metal in a reducing atmosphere, and the same function as that of the above three-way catalyst when the lean NOx catalyst functions as the three-way catalyst.
[0004]
With regard to the oxygen storage material that plays such a role, in recent years, many references have been made that mention complex oxide components and their crystal forms. 2 -ZrO 2 An oxygen storage material of -SrO-based composite oxide is also known as one of them (see Patent Document 1 below).
[0005]
Note that CeO as an oxygen storage material 2 -ZrO 2 Patent Document 1 in which a —SrO-based composite oxide was proposed is by the present applicant, and in this Document 1, “the double oxide that acts as an oxygen storage material contains Sr in addition to Ce and Zr. Even if the catalyst is exposed to a high temperature atmosphere for a long time, the oxygen occlusion function is not greatly reduced, and a catalyst having excellent heat deterioration resistance can be obtained.
[0006]
In Patent Document 1, although the reason why the above effect is obtained is not clear, the analysis results indicate that the presence of Sr is CeO. 2 -ZrO 2 It contributes to higher crystallinity, finer particles, expansion of mesopores, prevention of sulfur poisoning than double oxides alone, and it is thought that it is possible to maintain the oxygen storage function up to a high temperature range. It is said.
[0007]
Furthermore, the Ce-Zr-Sr double oxide (CeO 2 -ZrO 2 -SrO-based complex oxide) releases NOx absorbed in the NOx occlusion material because the amount of oxygen released is not so large when the air-fuel ratio of the engine is stoichiometric or rich at a normal exhaust gas temperature of around 350 ° C. In order to reduce and purify the air-fuel ratio, the time for maintaining the air-fuel ratio at stoichiometric or rich can be shortened, or the richness can be lowered, that is, CeO. 2 -ZrO 2 It also describes that the use of -SrO-based composite oxide as an oxygen storage material has the effect of reducing fuel consumption.
[0008]
And in this literature 1, CeO as an oxygen storage material 2 -ZrO 2 -SrO-based composite oxide is disposed on a support as an inner catalyst layer together with a noble metal and NOx occlusion material, and on the inner catalyst layer, an outer catalyst layer having a noble metal and zeolite is provided for exhaust gas purification. It is disclosed to be used as a catalyst.
[0009]
However, this document 1 describes a temperature condition where an automobile exhaust gas purifying catalyst, particularly a lean NOx catalyst, or a three-way catalyst is placed, that is, a low temperature range (for example, during low-speed running in an urban area or the like) to a high temperature. CeO required to always obtain a high NOx purification rate over a wide temperature range (for example, when traveling at high speed on a highway). 2 -ZrO 2 -SrO type complex oxide content is not specified. Therefore, the catalyst described in this document 1 may not always obtain a high NOx purification rate for exhaust gas temperature conditions that vary widely under various operating conditions as an automobile exhaust gas purification catalyst. is there.
[0010]
Further, the present inventors have found that the catalyst provided with the inner catalyst layer and the outer catalyst layer described in Patent Document 1 (hereinafter referred to as a conventional catalyst) has an A / F (air-fuel ratio) at a high temperature of 450 ° C. The relationship with the rich NOx purification rate was examined, and the result as shown in FIG. 9 was obtained.
[0011]
As can be seen from the figure, the NOx purification rate of the conventional catalyst increases as it becomes richer (λ ≦ 1). In other words, however, in order to increase the NOx purification rate, it is necessary to supply a reducing agent to make it rich, and there is a problem that the fuel consumption increases accordingly.
[0012]
[Patent Document 1]
JP 2001-310131 A
[0013]
[Problems to be solved by the invention]
From the above, the present invention provides CeO as an oxygen storage material. 2 -ZrO 2 -Exhaust gas purification catalyst having a catalyst layer in which SrO-based complex oxide is coated on a carrier together with a noble metal and NOx storage material, while obtaining a high NOx purification rate from a low temperature range to a high temperature range, and reducing fuel consumption of the engine It is an object to provide an exhaust gas purifying catalyst that can contribute to the above.
[0014]
[Means for Solving the Problems]
The first configuration of the exhaust gas purifying catalyst according to the present invention is a NOx absorbent that absorbs NOx in the exhaust gas in the presence of excess oxygen and releases the absorbed NOx when the oxygen concentration of the exhaust gas decreases, CeO 2 -ZrO 2 A catalyst layer containing a catalyst layer containing a SrO-based composite oxide, a catalyst noble metal, and alumina is coated on a catalyst carrier and is disposed in an exhaust gas flow path of a spark ignition engine, Consists of an upstream catalyst disposed upstream along the flow direction of exhaust gas and a downstream catalyst disposed downstream along the flow direction of exhaust gas. The composite oxide in the upstream catalyst is The content is 20 g / L or more and 140 g / L or less, and the composite oxide in the downstream catalyst has a content of 140 g / L or more and 280 g / L or less.
[0015]
According to the first configuration, in a normal spark ignition engine, the catalyst disposed on the upstream side (inlet side) in the exhaust gas purification catalyst disposed in the exhaust gas flow path is disposed on the downstream side (outlet side). CeO whose content is specified to be not less than 20 g / L and not more than 140 g / L so as to exhibit a characteristic of high NOx purification rate at a high temperature on the upstream side. 2 -ZrO 2 The CeO whose content is specified to be 140 g / L or more and 280 g / L or less so that the catalyst containing the —SrO-based composite oxide is disposed on the downstream side thereof and exhibits a high NOx purification rate at a low temperature. 2 -ZrO 2 By disposing a catalyst containing -SrO-based composite oxide, a high NOx purification rate can always be maintained even when the exhaust gas purification catalyst has a low temperature or a high temperature.
[0016]
Further, since the upstream catalyst has a higher NOx purification rate than the conventional catalyst under the A / F condition of λ ≦ 1 at high temperature, it is not necessary to perform an excessively rich purge to increase the NOx purification rate. Therefore, fuel consumption can be suppressed.
[0017]
This will be explained in more detail. CeO which is an oxygen absorbent 2 -ZrO 2 -When the amount of released oxygen from the SrO-based composite oxide is large, reducing components (HC, CO, H, etc.) in exhaust gas for purifying NOx by making it stoichiometric or rich 2 Etc.), the amount of the reducing component consumed by reacting with the released oxygen also increases. Therefore, more reducing components are required to reduce and purify NOx. That is, it is necessary to lengthen the time for maintaining the stoichiometric or rich state or to increase the richness. In contrast, CeO in the present invention 2 -ZrO 2 From the relationship between the content and temperature of the —SrO-based composite oxide, CeO contained in the upstream catalyst 2 -ZrO 2 Since the -SrO-based composite oxide is set to 20 g / L or more and 140 g / L or less so that the amount of released oxygen is small, the consumption of reducing components is small. Therefore, the time for maintaining the stoichiometric or rich state to reduce and purify NOx can be shortened or the rich degree can be lowered, and as a result, the fuel consumption is also reduced.
[0018]
A second configuration according to the present invention is a NOx absorbent that absorbs NOx in exhaust gas in the presence of excess oxygen and releases the absorbed NOx when the oxygen concentration of the exhaust gas decreases, and CeO. 2 -ZrO 2 A catalyst layer containing a catalyst layer containing a SrO-based composite oxide, a catalyst noble metal, and alumina is coated on a catalyst carrier and is disposed in an exhaust gas flow path of a spark ignition engine, Is a high temperature active catalyst based on the exhaust gas temperature detected by a temperature detector provided in front of the catalyst inlet, in which two catalysts, a high temperature active catalyst and a low temperature active catalyst, are arranged in parallel to the flow direction of the exhaust gas Alternatively, a switching means for switching the exhaust gas path to the low temperature active catalyst is provided, and the composite oxide in the high temperature active catalyst has a content of 20 g / L or more and 140 g / L or less. The content is 140 g / L or more and 280 g / L or less.
[0019]
According to the second configuration, there is provided switching means for switching the exhaust gas path to the high temperature active catalyst or the low temperature active catalyst based on the exhaust gas temperature detected by the temperature detection device provided in front of the catalyst inlet, When the exhaust gas temperature is equal to or higher than the predetermined temperature, the switching means is switched so that the exhaust gas flows into the high temperature active catalyst, and this high temperature active catalyst has a content of 20 g so as to exhibit a high NOx purification rate at a high temperature. CeO specified to be not less than / L and not more than 140 g / L 2 -ZrO 2 -When the catalyst containing the SrO-based composite oxide is disposed, the switching means is switched so that the exhaust gas flows into the low temperature active catalyst when the exhaust gas temperature is equal to or lower than the predetermined temperature. CeO whose content is specified to be 140 g / L or more and 280 g / L or less so as to exhibit a high purification rate. 2 -ZrO 2 By disposing a catalyst containing -SrO-based composite oxide, a high NOx purification rate can always be maintained even when the exhaust gas purification catalyst has a low temperature or a high temperature.
[0020]
Similarly to the upstream catalyst of the first configuration, the high temperature active catalyst has a higher NOx purification rate than the conventional catalyst under the A / F condition of λ ≦ 1 at high temperature. There is no need to increase the rate. Therefore, fuel consumption can be suppressed.
[0021]
【The invention's effect】
As described above, the present invention provides CeO as an oxygen storage material. 2 -ZrO 2 -Exhaust gas purification catalyst having a catalyst layer in which SrO-based complex oxide is coated on a carrier together with a noble metal and NOx storage material, while obtaining a high NOx purification rate from a low temperature range to a high temperature range, and reducing fuel consumption of the engine It is possible to provide an exhaust gas purifying catalyst that can contribute to the above.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0023]
In the description of the embodiment of the present invention, “low temperature (low temperature)”, “high temperature (high temperature)” and the like are described. “Low temperature (low temperature)” and “high temperature (high temperature)” represent relative comparisons, and a specific standard temperature is set, and “low temperature (low temperature)” and “high temperature (high temperature) based on it. Does not mean ")". This is because the gist of the present invention is the CeO in the catalyst. 2 -ZrO 2 Paying attention to the fact that the temperature range where the NOx purification rate increases depending on the content of the -SrO-based complex oxide is a low temperature range or a high temperature range, and in the region where the low exhaust gas temperature flows Has a composite oxide content catalyst that increases the NOx purification rate at a low temperature, and the composite gas that has a high NOx purification rate at a high temperature in a portion where a high exhaust gas temperature flows. A catalyst with an oxide content is arranged, and the content of each of the composite oxides in the two catalysts can be set according to a number of vehicle types, and the reference temperature can be varied according to the combination. Because it changes.
[0024]
(Composition of catalyst)
FIG. 1 shows the structure of an exhaust gas purifying catalyst C according to an embodiment of the present invention. The catalyst C includes, for example, a monolithic carrier 1 made of cordierite, which is a carrier material having excellent heat resistance. On the inner wall surface of the cell 2 of the carrier 1, a NOx absorbent, which will be described in detail later, CeO 2 -ZrO 2 A catalyst layer 3 containing a —SrO-based composite oxide (hereinafter referred to as composite oxide), a catalyst noble metal, and alumina is formed.
[0025]
The catalyst layer 3 combines a noble metal component (for example, Pt, Rh), Ba, K, Sr, and Mg as NOx storage materials, a base material on which the noble metal and NOx storage material are supported, and this base material powder. And a binder to be held. Here, the base material is formed of a mixture of alumina and composite oxide.
[0026]
(Production method of catalyst C)
The basic production method of the catalyst C is as follows.
[0027]
First, a base material (mixture of alumina and composite oxide), a binder and water are mixed to form a slurry, and this slurry is washed on a monolith support, dried and fired to form a coat layer. .
[0028]
Subsequently, a mixed solution of the solution of the noble metal component and each solution of the Ba component, the K component, the Sr component, and the Mg component that are NOx storage materials is prepared. Then, the mixed solution is impregnated into the coat layer, and dried and fired.
[0029]
(Usage form of catalyst C)
For example, as shown in FIG. 2, the catalyst C is disposed in a catalytic converter 7 disposed in an exhaust passage 5 for exhausting exhaust gas from a lean combustion engine 4 for a vehicle. The arrangement site of the catalytic converter 7 corresponds to the under floor portion of the vehicle.
[0030]
Specifically, the catalyst C has a form shown in FIG. 3 or FIG. 4, for example. First, the form shown in FIG. 3 will be described. As can be seen from FIG. 3, the catalyst C includes an upstream side (exhaust gas temperature side) catalyst C1 into which exhaust gas from the engine flows, and a downstream side (exhaust gas) disposed in series behind the upstream side catalyst C1. The lower temperature side) catalyst C2.
[0031]
A clearance is set between the upstream catalyst C1 and the downstream catalyst C2, and the outer peripheral surfaces of the upstream catalyst C1 and the downstream catalyst C2 are covered with a heat insulating material in the catalytic converter 7. Is arranged.
[0032]
On the other hand, the form of the catalyst C shown in FIG. 4 is such that a catalyst C3 having a high purification rate in a low temperature region and a catalyst C4 having a high purification rate in a high temperature region are arranged in parallel in the catalytic converter 7. .
[0033]
And clearance is set between the catalyst C3 and the catalyst C4, and each outer peripheral surface is covered with the heat insulating material.
[0034]
4, the partition wall Cw for partitioning the exhaust gas flowing into the catalyst C3 and the catalyst C4 is provided between the catalyst C3 and the catalyst C4 toward the exhaust gas upstream side. A temperature sensor 9 serving as an exhaust gas temperature detecting means is provided in the exhaust gas passage near the front of the inlet of the catalytic converter 7.
[0035]
Further, a switching valve S which is an exhaust gas switching means is provided at the front end portion of the partition wall Cw, and when the exhaust gas temperature which has been 350 ° C. rises to a predetermined temperature, for example, 380 ° C. The switching valve S that was in the position S4 for blocking the exhaust gas to the catalyst C4 is switched to the position S3 for blocking the exhaust gas to the catalyst C3. That is, when the temperature sensor 9 detects that the exhaust gas temperature is lower than 380 ° C., the switching valve S is in the position S4, so that the exhaust gas flows to the catalyst C3 but flows to the catalyst C4. If the temperature sensor 9 detects that the exhaust gas temperature is 380 ° C. or higher, the switching valve S is in the position S3, so that the exhaust gas flows to the catalyst C4 but flows to the catalyst C3. There is no such thing. The specific means for switching may be any means other than motor drive.
[0036]
In general, an exhaust gas purification catalyst has a substantially uniform and high purification rate for exhaust gases such as NOx, CO, and HC, for example, from a low temperature range of 250 ° C. to a high temperature range of 500 ° C. From the current situation that there is nothing to maintain, it is extremely meaningful to combine the catalyst shown in FIGS. 3 and 4 with a catalyst having a high purification rate in a high temperature range and a catalyst having a high purification rate in a low temperature range. is there.
[0037]
As described above, the form of the specification of the catalyst related to the present invention is to arrange a catalyst having a high exhaust gas purification rate in a low temperature range and a catalyst having a high exhaust gas purification rate in a high temperature range. As a result, the NOx, CO and HC concentrations can be reduced even in a wide range of operating conditions where the exhaust gas temperature of the engine ranges from a low temperature of about 250 ° C. to a high temperature of about 500 ° C.
[0038]
Then, the catalyst C (that is, the catalyst C1, the catalyst C2, the catalyst C3, and the catalyst C4) occludes NOx contained in the exhaust gas into the NOx absorbents Ba, K, Sr, and Mg during the lean combustion operation. Furthermore, during the stoichiometric air-fuel ratio combustion operation or the rich combustion operation (λ ≦ 1), NOx released from the Ba and the like, and HC, CO, and H that are reducing components contained in the exhaust gas 2 To purify the exhaust gas. That is, the catalyst C has a lean NOx purification action, and the oxygen concentration of the exhaust gas during the lean combustion operation is, for example, 4 to 5% to 20%, and the air-fuel ratio is A / F = 18 to 150. . On the other hand, the oxygen concentration of the exhaust gas during the rich combustion operation is 0.5% or less.
[0039]
Further, although the catalyst C has a lean NOx purification action, if the lean combustion operation continues for a long time, the NOx occlusion amount of the catalyst C becomes saturated and the NOx purification performance is reduced. Therefore, the lean combustion operation is performed for 2 to 3 minutes, during which NOx is stored in the NOx storage material, and then the rich combustion operation is performed for 1 to 5 seconds, and the NOx stored during this time is released and purified. Is controlled to repeat.
[0040]
Further, when it is determined that the sulfur component is excessively absorbed in the NOx storage material (Ba, K, Sr, and Mg) contained in the catalyst layer 3, the air-fuel ratio of the combustion chamber is made rich and the ignition timing is delayed. The ignition retard control is performed for about 2 to 10 minutes. As a result, the temperature of the exhaust gas is raised and the temperature of the NOx occlusion material is also raised, and the sulfur component is desorbed from the sulfur-poisoned NOx occlusion material, and regeneration is achieved.
[0041]
Since the noble metal is supported on the catalyst layer 3 as the catalyst metal, NOx and HC in the exhaust gas are activated on the surface of the noble metal and oxygen activated from the composite oxide is supplied. . Therefore, NO in the exhaust gas 2 The oxidation reaction to HC and the partial oxidation reaction of HC proceed smoothly. 2 In addition, since the partially oxidized HC is in a state of being energetically reactive, the former reduction and the latter oxidation proceed efficiently.
[0042]
That is, in the air-fuel ratio lean, NO is generated in the catalyst layer 3 by oxidizing NO in the catalyst layer 3. 2 Is stored in the NOx storage material, and apparently the NOx is purified. NO stored in NOx storage material 2 Is decomposed and purified by reacting with the partially oxidized HC activated on the noble metal of the catalyst layer 3 when the air-fuel ratio becomes rich. Therefore, it can be said that the catalyst layer 3 exhibits a function as a lean NOx purification catalyst.
[0043]
【Example】
<Preparation of evaluation catalyst>
The catalyst according to the present invention was prepared by the following method.
[0044]
-Formation of coat layer-
γ-alumina, composite oxide and alumina binder are supported on γ-alumina (supported amount is the dry mass per liter of carrier when supported on a honeycomb carrier described later. The same applies hereinafter) and composite oxide. The total amount is fixed at 320 g / L, and the composite oxide loading is changed as shown in Table 1 within the range of 320 g / L, and the alumina binder loading is 30 g / L, respectively. The slurry was prepared by weighing and mixing so that ion-exchanged water was added thereto. The slurry was wash coated on the carrier by a method in which a cordierite monolith carrier was dipped in the slurry and pulled up, and excess slurry was blown off. Next, this was dried at a temperature of 150 ° C. for 1 hour and baked at a temperature of 540 ° C. for 2 hours to form a coat layer. The drying conditions and firing conditions are the same for “drying” and “firing” in the following description.
[0045]
Next, as Comparative Example 1, a coating layer containing no complex oxide, that is, a supported amount of 320 g / L with γ-alumina alone was formed.
[0046]
Furthermore, as Comparative Example 2, a coating layer that did not contain γ-alumina, that is, a loading amount of 320 g / L with only the composite oxide was formed.
[0047]
The amount of the composite oxide supported in the above coating layer is shown in Table 1 below. In addition, as for the mass composition ratio of the oxide in complex oxide, all are CeO. 2 : ZrO 2 : SrO = 73.3: 25.7: 1.
[Table 1]
Figure 0004222064
[0048]
-Impregnation process-
An aqueous solution of dinitrodiamine platinum nitrate, an aqueous solution of rhodium nitrate, an aqueous solution of barium acetate, an aqueous solution of potassium acetate, an aqueous solution of strontium acetate, and an aqueous solution of magnesium acetate have a Pt loading of 3.5 g / L and an Rh loading of 0.3 g. A mixed solution was prepared by weighing / mixing L / Ba, 30 g / L Ba, 6 g / L K, 10 g / L Sr and 10 g / L Mg, and 10 g / L.
[0049]
Next, this mixed solution was impregnated into the coating layers on the carriers of Examples 1 to 7 and Comparative Examples 1 and 2 shown in Table 1, and dried and fired.
[0050]
And the rich NOx purification rate of the said Examples 1-7 and Comparative Examples 1 and 2 was measured in accordance with the following measuring method.
-Measuring method of NOx purification rate-
The catalyst is attached to a fixed bed flow reaction evaluation apparatus, and as shown in FIG. 5, a simulated exhaust gas (gas composition A) with lean air-fuel ratio is allowed to flow for 60 seconds, and then the gas composition is switched to simulate simulated exhaust gas with rich air-fuel ratio. After repeating the cycle of flowing (gas composition B) for 60 seconds 5 times, switching from air-fuel ratio lean simulated exhaust gas (gas composition A) to air-fuel ratio rich simulated exhaust gas (gas composition B) for 60 seconds, That is, the rich NOx purification rate (hereinafter simply referred to as the purification rate for the measurement result) between 540 seconds and 600 seconds from the start of the test was measured. The gas composition is as shown in Table 2, and the space velocity SV is 25000 h. -1 It was. In general, the purification rate measurement result by the above method shows a lower purification rate than the measurement result in the actual vehicle, and if the result of this measurement is a purification rate of about 75%, it is sufficiently practical. is there.
[0051]
Under the above measurement conditions, the catalyst temperature and the simulated exhaust gas temperature were 250 ° C., 300 ° C., 350 ° C., 400 ° C., 450 ° C., and 500 ° C., respectively. In other words, according to the method for measuring the purification rate, the relationship between the amount of the composite oxide supported, the catalyst temperature, and the purification rate can be understood, and the catalyst having the configuration shown in FIGS. 3 and 4 can be purified at a low temperature range. A combination of a catalyst with a high rate and a catalyst with a high purification rate in a high temperature range can be clarified.
[0052]
[Table 2]
Figure 0004222064
[0053]
FIG. 6 shows the purification rate measurement results by the above method. In FIG. 6, first, in the case of the catalyst containing the composite oxide of Example 1, the purification rate is low at a low temperature of 250 ° C., and the purification rate increases with increasing temperature, and the highest purification rate between 400 ° C. and 450 ° C. When the temperature further increases, the purification rate slightly decreases. That is, Example 1 is a catalyst having a higher purification rate in a high temperature range than in a low temperature range.
[0054]
In the case of Example 2, the purification rate is higher than that of Example 1 between 250 ° C. and about 400 ° C., but the purification rate is slightly lower than that of Example 1 in the high temperature range. It can be seen that Example 2 is a catalyst having a higher purification rate in the high temperature range than in the low temperature range.
[0055]
In the case of Example 3, the purification rate is lower than that of Example 2 at 250 ° C., but as the temperature rises, the purification rate becomes higher than that of Example 2, and after showing the highest purification rate at about 400 ° C., At a high temperature of 500 ° C., the purification rate is lower than that of Example 1 and Example 2. And it turns out that Example 3 is a catalyst with a high purification rate in a high temperature range rather than a low temperature range. However, the tendency is not more conspicuous than in the first and second embodiments.
[0056]
In the case of Example 4, a purification rate higher than those in Examples 1 and 3 is shown in a temperature range from 250 ° C. to 300 ° C., and the purification rate increases with an increase in temperature, which is the highest between 350 ° C. and 400 ° C. After the purification rate is shown, the purification rate rapidly decreases as the temperature rises further. In the high temperature range, the purification rate is clearly lower than that of Examples 1, 2, and 3. That is, it can be seen that Example 4 is a catalyst having a high purification rate in a lower temperature range than in a high temperature range.
[0057]
In the case of Example 5, although the tendency of the purification rate similar to Example 4 is shown, the temperature which shows the highest purification rate is about 350 degreeC, and is lower than a high temperature range further than Example 4. It can be seen that the catalyst has a high purification rate in the temperature range.
[0058]
In the case of Example 6, it has a considerably high purification rate at 250 ° C., and the highest purification rate is obtained between 300 ° C. and 350 ° C. The purification rate is higher than that of the other embodiments. At a high temperature of 500 ° C., the purification rate is slightly lower than that of Example 1 and Example 2. Therefore, Example 6 is a catalyst having a high purification rate in a lower temperature range than in a high temperature range, and has the tendency notably.
[0059]
In the case of Example 7, the purification rate between Example 5 and Example 6 is shown in a temperature range slightly exceeding 250 ° C. to 350 ° C., and the purification rate decreases as the temperature increases. Therefore, Example 7 is a catalyst having a high purification rate in a lower temperature range than in a high temperature range.
[0060]
Subsequently, Comparative Example 1 and Comparative Example 2 will be described. In Comparative Example 1, as described above, the amount of the composite oxide supported is 0 g / L. This Comparative Example 1 appears to have a higher purification rate in the high temperature range than in the low temperature range, as in Example 1. However, since ceria is not contained on the catalyst, the performance of storing NOx is low, and only a small amount of NOx can be stored compared to Example 1 during lean operation. Therefore, the amount of NOx released during the rich operation is small, and the NOx purification rate is merely increased.
[0061]
Comparative Example 2 shows the highest purification rate at about 350 ° C., but is considerably lower than the highest purification rate in Examples 1 to 7, and a low purification rate of 50% or less at 250 ° C. and 500 ° C. It has become. In addition, the coating layer of Comparative Example 2 has a considerably higher slurry viscosity when supported on the carrier than the slurries of Examples 1 to 7, and it is possible to confirm clogging of the mesh and uneven thickness of the coating layer. It was also found that it was not suitable for.
[0062]
As described above, Examples 1 to 7, which are catalysts containing a composite oxide, have a higher purification rate in a higher temperature range than in a low temperature range, and a higher temperature range than the low temperature range, depending on the amount of the composite oxide supported. Can also be divided into catalysts with a high purification rate in a low temperature range.
[0063]
Specifically, Examples 1 to 3, that is, a catalyst having a composite oxide loading of 40 g / L to 120 g / L is a catalyst having a higher purification rate in a higher temperature range than in a lower temperature range, and 160 g / L to It can be said that the catalyst of 280 g / L is a catalyst having a high purification rate in a lower temperature range than in a high temperature range.
[0064]
Based on the above knowledge, the upper limit of the amount of complex oxide supported for a catalyst having a high purification rate at a lower temperature range than the high temperature range, and a catalyst having a higher purification rate at a higher temperature range than the low temperature range, and Further experiments were conducted on the lower limit.
[0065]
As for the loading amount of the composite oxide of the catalyst having a high purification rate in the lower temperature range than in the high temperature range, the clogging of the mesh and the uneven thickness of the coat layer described above occur at 320 g / L. 280 and 280 g / L, from which sufficient NOx purification performance can be confirmed, 280 g / L was set as the upper limit.
[0066]
Lower limit of the amount of composite oxide supported by a catalyst with a high purification rate in a lower temperature range than in the high temperature range, and an upper limit of the amount of composite oxide required for a catalyst with a higher purification rate in a higher temperature range than in the low temperature range Since the value is considered to be between Example 3 and Example 4, as Example 8, a catalyst having a composite oxide loading of 140 g / L was prepared, and the same method as in Examples 1-7. Then, the rich NOx purification rate was measured. In addition, the preparation method of the catalyst of Example 8 is the same as Examples 1-7.
[0067]
Furthermore, since it is considered that the lower limit value of the amount of the complex oxide supported in the catalyst having a higher purification rate in the high temperature range than in the low temperature range is between Comparative Example 1 and Example 1, as Example 9 A catalyst having a composite oxide loading of 20 g / L was prepared, and the rich NOx purification rate was measured by the same method as in Examples 1-7. In addition, the preparation method of the catalyst of Example 9 is the same as Examples 1-7.
[0068]
FIG. 7 shows the measurement results of the rich NOx purification rates of Example 8 and Example 9. For reference, the results of Examples 1, 3, 4, 6, and 7 are also shown.
[0069]
In FIG. 7, Example 9 is examined for the lower limit value of the amount of the composite oxide supported by the catalyst having a higher purification rate in the lower temperature range than in the higher temperature range.
[0070]
In the case of Example 9, the highest purification rate is shown at a temperature slightly lower than about 400 ° C., and the purification rate is lowered at a lower temperature or higher temperature. This indicates a purification rate that is almost in the middle of the third and fourth embodiments.
[0071]
Further, in the low temperature range of 250 ° C. to 300 ° C., the purification rate is higher than that in Example 4, but since it has a practically usable purification rate, a purification rate of about 75% or more, Example 9, That is, a catalyst having a composite oxide loading of 140 g / L can be set as the lower limit of the loading in a catalyst having a high purification rate in a lower temperature range than in a high temperature range.
[0072]
On the other hand, since the purification rate in the high temperature range of Example 9 is also about 75% or more, Example 9, that is, the catalyst having a composite oxide loading of 140 g / L, is more effective than the low temperature range. It can be set as the upper limit value of the supported amount in a catalyst having a high purification rate in a high temperature range.
[0073]
Next, Example 8 is examined for the lower limit value of the amount of the composite oxide supported by the catalyst having a higher purification rate in the higher temperature range than in the lower temperature range.
[0074]
In the case of Example 8, although the purification rate is slightly lower than that of Example 1, it shows almost the same tendency as Example 1. As can be seen from FIG. 7, although Example 8 shows a purification rate lower than that of Examples 1, 3 and 9 at around 400 ° C., it has a purification rate of about 80 to 90%. The catalyst is capable of covering the lower limit of the purification rate in this temperature range. Therefore, it can be set as the lower limit value of the supported amount in the catalyst having a higher purification rate in the high temperature range than in the low temperature range.
[0075]
From the above, in the case of the catalyst form shown in FIG. 3, the supported amount of the composite oxide in the upstream catalyst C1 is 20 g / L or more and 140 g / L or less, and the supported amount of the composite oxide in the downstream catalyst C2 is 140 g / L or more and 280 g / L or less are good.
[0076]
In the case of the catalyst form shown in FIG. 4, the supported amount of the composite oxide in the high temperature side catalyst C4 is 20 g / L or more and 140 g / L or less, and the supported amount of the composite oxide in the low temperature side catalyst C3 is 140 g. / L or more and 280 g / L or less is good.
[0077]
As is clear from this, a catalyst having a composite oxide loading of 140 g / L is used for both the upstream catalyst C1 and the downstream catalyst C2 in the catalyst form shown in FIG. In the case of the form of the catalyst shown in FIG. 4, it may be used for both the high temperature side catalyst C4 and the low temperature side catalyst C3.
[0078]
Next, the rich NOx purification performance in the A / F state of λ ≦ 1 was measured using the catalyst of Example 3 as an example of a catalyst having a higher purification rate in a higher temperature range than in the lower temperature range. The result is shown in FIG. This evaluation method is basically the same as the measurement methods of the rich NOx purification rates of Examples 1 to 7 above, but changes the gas composition on the rich side (increases the reducing components of CO, H2, and HC). Thus, the A / F is changed and evaluated.
[0079]
According to FIG. 8, the catalyst of Example 3 shows a rich NOx purification rate higher than that of the conventional catalyst in a state where λ ≦ 1 at a high temperature of 450 ° C. Therefore, if a catalyst having a high purification rate in a higher temperature range than in a low temperature range is used, a high rich NOx purification performance can be obtained without excessively rich A / F in the high temperature range, and the fuel consumption can be reduced. It was confirmed that reduction was possible.
[0080]
In the case of the form of the catalyst shown in FIG. 4, 380 ° C. is the exhaust gas temperature condition for switching the switching valve S, but the present invention is not limited to this temperature.
[Brief description of the drawings]
FIG. 1 shows the structure of an exhaust gas purifying catalyst according to an embodiment of the present invention.
FIG. 2 is a view showing an arrangement from the engine to the catalyst according to the present invention.
FIG. 3 is a view showing one use form of the catalyst according to the present invention.
FIG. 4 is a diagram showing another usage pattern of the catalyst according to the present invention.
FIG. 5 is a diagram showing a method for measuring the NOx purification rate.
FIG. 6 is a graph showing the result of measuring the rich NOx purification rate
FIG. 7 is a graph showing the results of measuring rich NOx purification rate for studying the upper and lower limits of the composite oxide content.
FIG. 8 is a measurement result of rich NOx purification performance in an A / F state of λ ≦ 1 with Example 3 as a representative example.
FIG. 9 is a diagram for explaining a problem of a conventional technique
[Explanation of symbols]
1 ... Carrier
2 ... Carrier cell
3 ... Catalyst layer
5 ... Exhaust passage 5
9 ... Temperature detection device
C ... Catalyst
C1 ... Upstream catalyst
C2 ... Downstream catalyst
C3 ... Catalyst with high purification rate in low temperature range
C4 ... Catalyst with high purification rate in high temperature range
S ... Switching valve

Claims (2)

排気ガス中のNOxを過剰酸素の存在下で吸収し、該排気ガスの酸素濃度が低下すると吸収したNOxを放出するNOx吸収材と、CeO−ZrO−SrO系複合酸化物と、触媒貴金属と、アルミナとを含む触媒層が触媒担体に被覆されるとともに、火花点火式エンジンの排気ガス流路に配置される排気ガス浄化用触媒であって、
上記触媒は排気ガスの流れ方向に沿って上流側に配設された上流側触媒と排気ガスの流れ方向に沿って下流側に配設された下流側触媒とから成り、上記上流側触媒における上記複合酸化物は20g/L以上、140g/L以下の含有量とされ、上記下流側触媒における上記複合酸化物は140g/L以上、280g/L以下の含有量とされていることを特徴とする、排気ガス浄化用触媒。
NOx in the exhaust gas is absorbed in the presence of excess oxygen, and NOx absorbent the oxygen concentration of the exhaust gas to release NOx absorbed and reduced, and the CeO 2 -ZrO 2 -SrO-based composite oxide, catalytic precious metal And a catalyst layer containing alumina is coated on the catalyst carrier, and is an exhaust gas purification catalyst disposed in the exhaust gas flow path of the spark ignition engine,
The catalyst includes an upstream catalyst disposed on the upstream side along the exhaust gas flow direction and a downstream catalyst disposed on the downstream side along the exhaust gas flow direction. The composite oxide has a content of 20 g / L or more and 140 g / L or less, and the composite oxide in the downstream catalyst has a content of 140 g / L or more and 280 g / L or less. Exhaust gas purification catalyst.
排気ガス中のNOxを過剰酸素の存在下で吸収し、該排気ガスの酸素濃度が低下すると吸収したNOxを放出するNOx吸収材と、CeO−ZrO−SrO系複合酸化物と、触媒貴金属と、アルミナとを含む触媒層が触媒担体に被覆されるとともに、火花点火式エンジンの排気ガス流路に配置される排気ガス浄化用触媒であって、
上記触媒は高温活性触媒と低温活性触媒の2つの触媒が排気ガスの流れ方向に対して並列に配置され、上記触媒の入口前方に設けられた温度検出装置によって検出された排気ガス温度に基づいて上記高温活性触媒または上記低温活性触媒へ排気ガス経路を切換える切換手段が備えられているとともに、上記高温活性触媒における上記複合酸化物は20g/L以上、140g/L以下の含有量とされ、上記低温活性触媒における上記複合酸化物は140g/L以上、280g/L以下の含有量とされていることを特徴とする、排気ガス浄化用触媒。
NOx in the exhaust gas is absorbed in the presence of excess oxygen, and NOx absorbent the oxygen concentration of the exhaust gas to release NOx absorbed and reduced, and the CeO 2 -ZrO 2 -SrO-based composite oxide, catalytic precious metal And a catalyst layer containing alumina is coated on the catalyst carrier, and is an exhaust gas purification catalyst disposed in the exhaust gas flow path of the spark ignition engine,
The catalyst is based on an exhaust gas temperature detected by a temperature detection device provided in front of the catalyst inlet, in which two catalysts, a high temperature active catalyst and a low temperature active catalyst, are arranged in parallel with respect to the flow direction of the exhaust gas. Switching means for switching the exhaust gas path to the high temperature active catalyst or the low temperature active catalyst is provided, and the composite oxide in the high temperature active catalyst has a content of 20 g / L or more and 140 g / L or less, An exhaust gas purification catalyst characterized in that the composite oxide in the low-temperature active catalyst has a content of 140 g / L or more and 280 g / L or less.
JP2003059258A 2003-03-06 2003-03-06 Exhaust gas purification catalyst Expired - Fee Related JP4222064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059258A JP4222064B2 (en) 2003-03-06 2003-03-06 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059258A JP4222064B2 (en) 2003-03-06 2003-03-06 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2004267843A JP2004267843A (en) 2004-09-30
JP4222064B2 true JP4222064B2 (en) 2009-02-12

Family

ID=33122119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059258A Expired - Fee Related JP4222064B2 (en) 2003-03-06 2003-03-06 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4222064B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877693B1 (en) * 2004-11-08 2007-04-13 Peugeot Citroen Automobiles Sa EXHAUST GAS NOx TREATMENT SYSTEM OF A MOTOR VEHICLE THERMAL MOTOR
JP2006226231A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP4639919B2 (en) * 2005-04-08 2011-02-23 三菱自動車工業株式会社 Exhaust gas purification device
JP4654746B2 (en) 2005-04-14 2011-03-23 マツダ株式会社 Exhaust gas purification catalyst device
EP2177258B1 (en) 2008-10-17 2016-04-20 Mazda Motor Corporation Exhaust gas purification catalyst
JP5733191B2 (en) * 2011-12-15 2015-06-10 トヨタ自動車株式会社 Exhaust gas purification system for purifying NOX in exhaust gas

Also Published As

Publication number Publication date
JP2004267843A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JP6246192B2 (en) Three-way catalyst system
JP2000176298A (en) Exhaust gas purification catalyst and its production
EP1188908A2 (en) Exhaust gas purifying system
JP2002079106A (en) Catalyst and apparatus for cleaning exhaust gas
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP4923412B2 (en) Exhaust gas purification catalyst
JP4696430B2 (en) Exhaust gas purification catalyst
EP1844843B1 (en) Use of an exhaust gas purifying catalyst composition containing zeolite for reducing hydrogen sulfide
JP4222064B2 (en) Exhaust gas purification catalyst
JP3985054B2 (en) Exhaust gas purification catalyst
JP2004275814A (en) Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying apparatus
JP4626115B2 (en) Exhaust gas purification catalyst and method for producing exhaust gas purification catalyst
JP4214744B2 (en) Engine exhaust gas purification device
JP2002168117A (en) Exhaust emission control system
JP6569637B2 (en) Exhaust gas purification device for internal combustion engine
JP2002018242A (en) Exhaust gas cleaning apparatus of engine
JP4085448B2 (en) Exhaust gas purification device
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JP2000157867A (en) Catalyst for exhaust gas treatment
JP4231959B2 (en) Exhaust gas purification catalyst
JP2002273226A (en) Catalyst for purifying exhaust gas and its manufacturing method
JP2004230226A (en) Catalyst for automobile
JP2005185966A (en) Automobile exhaust emission purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees