JP2012036324A - Illumination cover - Google Patents

Illumination cover Download PDF

Info

Publication number
JP2012036324A
JP2012036324A JP2010179395A JP2010179395A JP2012036324A JP 2012036324 A JP2012036324 A JP 2012036324A JP 2010179395 A JP2010179395 A JP 2010179395A JP 2010179395 A JP2010179395 A JP 2010179395A JP 2012036324 A JP2012036324 A JP 2012036324A
Authority
JP
Japan
Prior art keywords
component
weight
group
polycarbonate resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010179395A
Other languages
Japanese (ja)
Other versions
JP5840832B2 (en
Inventor
Rio Miyake
利往 三宅
Maiko Murai
麻衣子 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45848658&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012036324(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2010179395A priority Critical patent/JP5840832B2/en
Publication of JP2012036324A publication Critical patent/JP2012036324A/en
Application granted granted Critical
Publication of JP5840832B2 publication Critical patent/JP5840832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an illumination cover having excellent flame-retardant characteristics while keeping the high light transmittance.SOLUTION: The illumination cover 1 arranged so as to cover a light source to diffuse the light from the light source comprises a thermoplastic resin composition having a viscosity-averaged molecular weight of 1.6×10-3.0×10, and a structural viscosity index (N) of 1.6-2.5.

Description

本発明は、光源からの光を拡散させるために前記光源を覆うように配置される照明カバーに関する。さらに詳しくは高い光線透過率と拡散性を維持したままで、難燃特性に優れる難燃性ポリカーボネート樹脂組成物からなる照明カバーに関する。   The present invention relates to a lighting cover arranged to cover the light source in order to diffuse light from the light source. More specifically, the present invention relates to a lighting cover made of a flame retardant polycarbonate resin composition having excellent flame retardant properties while maintaining high light transmittance and diffusibility.

従来から各種照明カバー、ディスプレイカバー、自動車メーター、各種銘板などの光拡散性が要求される用途に、芳香族ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂といった透明性樹脂に有機物や無機物の光拡散剤を分散させた材料が広く用いられている。この様な透明性樹脂の中で特に芳香族ポリカーボネート樹脂は機械的特性、耐熱性、耐候性に優れている上、高い光線透過率を備えた樹脂として幅広く使用されている。また光拡散剤としては、架橋構造を有する有機系粒子があり、さらに詳しくは架橋アクリル系粒子、架橋シリコーン系粒子、架橋スチレン系粒子などが挙げられる。さらに炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、二酸化ケイ素、酸化チタン、弗化カルシウムなどの無機系粒子あるいはガラス短繊維などの無機系繊維が挙げられる。特に有機系粒子は無機系粒子に比べて成形品の表面平滑性に優れており高度な成形品外観を達成できるため、幅広い用途に適用可能である。   Disperse organic and inorganic light diffusing agents in transparent resins such as aromatic polycarbonate resin, acrylic resin, and styrene resin for applications that require light diffusibility such as various lighting covers, display covers, automobile meters, and various nameplates. The material used is widely used. Among such transparent resins, aromatic polycarbonate resins are particularly widely used as resins having excellent mechanical properties, heat resistance, weather resistance, and high light transmittance. Examples of the light diffusing agent include organic particles having a crosslinked structure, and more specifically, crosslinked acrylic particles, crosslinked silicone particles, and crosslinked styrene particles. Further, inorganic particles such as inorganic particles such as calcium carbonate, barium sulfate, aluminum hydroxide, silicon dioxide, titanium oxide, and calcium fluoride, or short glass fibers can be used. In particular, organic particles are excellent in surface smoothness of molded products as compared with inorganic particles and can achieve a high appearance of molded products, and thus can be applied to a wide range of applications.

これらの用途では近年、樹脂製照明カバーにおいて火災時のもらい火が延焼を促進するとして、光拡散性ポリカーボネート樹脂にもUL規格(米国アンダーライターズラボラトリー規格)−94においてV−0という高度な難燃性が要求され始めている。特にLED照明に対しては米国にて、UL8750(LED Equipment for Use in Lighting Produce)の中で、照明カバーに対して5VAを必須とする新たな規格が2009年12月に出されている。一方、芳香族ポリカーボネート樹脂はアクリル樹脂、スチレン樹脂などの透明性樹脂難燃性に比べて優れた難燃特性を有しているが、高度な難燃特性(V−0)を得るためには燃焼時の樹脂の滴下(ドリップ)を防止する必要がある(特許文献1、2参照)。しかし、一般的に知られているドリップ抑制剤であるポリテトラフルオロエチレンを芳香族ポリカーボネート樹脂に添加すると、V−0は達成しても、面着火試験である5VA試験では、着火部分において急激な熱収縮が起こるために、穴が開いてしまい、結果としてnot5VAとなってしまう。一方、分岐構造を有するポリカーボネートと有機金属塩からなる樹脂組成物(特許文献3参照)、分岐構造を有するポリカーボネートと有機金属塩および特定のシロキサン化合物からなる樹脂組成物(特許文献4、5参照)についても具体的に記載されている。これらにより優れた難燃性と透明性を維持する組成物が提供されるが、これらには、5VAについての記載は一切なく、また照明カバーの軽量化、輝度向上のために製品の薄肉化の要求が高まってきており、さらなる難燃性のアップが求められている。   In these applications, in recent years, it has been said that light diffusing polycarbonate resin has a high difficulty level of V-0 in UL Standard (Underwriters Laboratory Standards) -94, because fire igniting promotes the spread of fire in resin lighting covers. Flammability is starting to be demanded. Particularly in the United States for LED lighting, a new standard that requires 5VA for a lighting cover is issued in December 2009 in the UL 8750 (LED Equipment for Use in Lighting Production). On the other hand, aromatic polycarbonate resin has excellent flame retardancy compared to the flame retardancy of transparent resins such as acrylic resin and styrene resin, but in order to obtain advanced flame retardancy (V-0). It is necessary to prevent dripping of the resin during combustion (see Patent Documents 1 and 2). However, when polytetrafluoroethylene, which is a generally known drip suppressor, is added to an aromatic polycarbonate resin, V-0 is achieved, but in the 5VA test, which is a surface ignition test, a sudden increase occurs in the ignition part. Since heat shrinkage occurs, a hole is opened, resulting in not5VA. On the other hand, a resin composition comprising a polycarbonate having a branched structure and an organic metal salt (see Patent Document 3), a resin composition comprising a polycarbonate having a branched structure, an organic metal salt and a specific siloxane compound (see Patent Documents 4 and 5). Is also specifically described. These provide compositions that maintain excellent flame retardancy and transparency, but they do not describe 5VA at all, and reduce the thickness of the product to reduce the weight and brightness of the lighting cover. The demand is increasing and further improvement in flame retardancy is required.

特開2009−108281号公報JP 2009-108281 A 特開2006−143949号公報JP 2006-143949 A 特許第3129374号公報Japanese Patent No. 3129374 特許第3163596号公報Japanese Patent No. 3163596 特開2007−31583号公報JP 2007-31583 A

本発明の目的は、高い光線透過率を維持したままで、難燃特性に優れる照明カバーを提供することにある。   An object of the present invention is to provide a lighting cover having excellent flame retardancy while maintaining a high light transmittance.

本発明者らは、上記目的を達成せんとして鋭意研究を重ねた結果、ある特定の粘度平均分子量および構造粘性指数を有する熱可塑性樹脂組成物、好ましくはポリカーボネート樹脂組成物からなる照明カバーが、5VAの規格を充分に達成可能な難燃性を持ち、かつ高い光線透過率を維持できる照明カバーとなることを見出し、本発明に到達した。   As a result of intensive research aimed at achieving the above object, the present inventors have found that a lighting cover comprising a thermoplastic resin composition having a specific viscosity average molecular weight and a structural viscosity index, preferably a polycarbonate resin composition, is 5 VA. The present invention has been achieved by finding that it is a lighting cover that has a flame retardance that can sufficiently satisfy the above standards and can maintain a high light transmittance.

すなわち、本発明によれば、(1)光源からの光を拡散させるために前記光源を覆うように配置される照明カバーであって、該照明カバーが、粘度平均分子量が1.6×10〜3.0×10であり、構造粘性指数(N)が1.6〜2.5である熱可塑性樹脂組成物からなることを特徴とする照明カバーが提供される。 That is, according to the present invention, (1) an illumination cover arranged to cover the light source in order to diffuse light from the light source, the illumination cover has a viscosity average molecular weight of 1.6 × 10 4. There is provided a lighting cover characterized by comprising a thermoplastic resin composition having a structural viscosity index (N) of 1.6 to 2.5, which is ˜3.0 × 10 4 .

本発明のより好適な態様の一つは、(2)熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(B)パーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機アルカリ(土類)金属塩(B成分)0.005〜1.0重量部を含有する難燃性ポリカーボネート樹脂組成物であることを特徴とする上記構成(1)に記載の照明カバーである。   One of the more preferable embodiments of the present invention is that (2) the thermoplastic resin composition is (B) alkali perfluoroalkyl sulfonate (earth) with respect to 100 parts by weight of (A) polycarbonate resin (component A). One or more organic alkali (earth) metal salts selected from the group consisting of metal salts, alkali (earth) metal salts of aromatic sulfonates, and alkali (earth) metal salts of aromatic imides (component B) The illumination cover according to the above configuration (1), which is a flame retardant polycarbonate resin composition containing 0.005 to 1.0 part by weight.

本発明のより好適な態様の一つは、(3)熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(C)光拡散剤(CD成分)0.005〜3.0重量部を含有することを特徴とする上記構成(2)に記載の照明カバーである。   One of the more preferable embodiments of the present invention is that (3) the thermoplastic resin composition is (C) light diffusion agent (CD component) 0.005 with respect to 100 parts by weight of (A) polycarbonate resin (A component). It is a lighting cover as described in said structure (2) characterized by containing -3.0 weight part.

本発明のより好適な態様の一つは、(4)熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(D)分子中にSi−H基を含有するシリコーン化合物(D成分)0.05〜7重量部を含有することを特徴とする上記構成(2)または(3)に記載の照明カバーである。   One of the more preferred embodiments of the present invention is that (4) the thermoplastic resin composition contains (D) Si-H groups in the molecule with respect to (A) 100 parts by weight of the polycarbonate resin (component A). It is a lighting cover as described in said structure (2) or (3) characterized by containing 0.05-7 weight part of silicone compounds (D component).

本発明のより好適な態様の一つは(5)熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(E)紫外線吸収剤(E成分)0.01〜3.0重量部を含有することを特徴とする上記構成(2)〜(4)のいずれかに記載の照明カバーである。   One of the more preferable embodiments of the present invention is that (5) the thermoplastic resin composition is (E) an ultraviolet absorber (E component) 0.01 to 100 parts by weight of (A) polycarbonate resin (A component). It is a lighting cover in any one of said structure (2)-(4) characterized by containing 3.0 weight part.

本発明のより好適な態様の一つは(6)熱可塑性樹脂組成物が、厚さ3.0mmの成形品において、UL94規格の難燃レベル5VAを達成する上記構成(1)〜(5)のいずれかに記載の照明カバーである。   One of the more preferable embodiments of the present invention is as follows. (6) The above constitutions (1) to (5) in which the thermoplastic resin composition achieves a flame retardant level of 5 VA of UL94 standard in a molded product having a thickness of 3.0 mm. The lighting cover according to any one of the above.

本発明のより好適な態様の一つは(7)A成分が分岐構造を有する芳香族ポリカーボネート樹脂である上記構成(2)〜(6)のいずれかに記載の照明カバーである。   One of the more preferable embodiments of the present invention is the lighting cover according to any one of the above configurations (2) to (6), wherein (7) the component A is an aromatic polycarbonate resin having a branched structure.

本発明のより好適な態様の一つは(8)A成分が分岐率0.6〜1.1mol%の分岐構造を有する芳香族ポリカーボネート樹脂である上記構成(7)に記載の照明カバーである。   One of the more preferable embodiments of the present invention is the lighting cover according to the above configuration (7), wherein (8) the A component is an aromatic polycarbonate resin having a branched structure with a branching ratio of 0.6 to 1.1 mol%. .

以下、更に本発明の詳細について説明する。
本発明の照明カバーに用いられる熱可塑性樹脂組成物は粘度平均分子量が1.6×10〜3.0×10であり、構造粘性指数(N)が1.6〜2.5である熱可塑性樹脂組成物である。
Hereinafter, the details of the present invention will be described.
The thermoplastic resin composition used for the lighting cover of the present invention has a viscosity average molecular weight of 1.6 × 10 4 to 3.0 × 10 4 and a structural viscosity index (N) of 1.6 to 2.5. It is a thermoplastic resin composition.

粘度平均分子量は1.6×10〜3.0×10の範囲であり、1.6×10〜2.7×10の範囲が好ましく、1.8×10〜2.7×10の範囲がより好ましく、1.8×10〜2.5×10の範囲が最も好ましい。かかる好適な範囲の下限以上であれば、多くの分野において実用上の機械的強度が得られ、かかる上限以下であれば高剪断速度における剪断粘度が低く、各種成形法、特に射出成形において好適である。 The viscosity average molecular weight is in the range of 1.6 × 10 4 to 3.0 × 10 4 , preferably in the range of 1.6 × 10 4 to 2.7 × 10 4 , and 1.8 × 10 4 to 2.7. A range of × 10 4 is more preferable, and a range of 1.8 × 10 4 to 2.5 × 10 4 is most preferable. If it is above the lower limit of this preferred range, practical mechanical strength can be obtained in many fields, and if it is below this upper limit, the shear viscosity at a high shear rate is low, which is suitable for various molding methods, particularly injection molding. is there.

なお、本発明でいう粘度平均分子量はまず次式にて算出される比粘度を溶媒100mlに熱可塑性樹脂0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは溶媒の落下秒数、tは試料溶液の落下秒数]
求められた比粘度を次式にて挿入して粘度平均分子量Mvを求める。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−4Mv0.83
c=0.7
In addition, the viscosity average molecular weight as used in the field of this invention calculates | requires first using the Ostwald viscometer from the solution which melt | dissolved the thermoplastic resin 0.7g in 20 ml of the specific viscosity computed by following Formula at 20 degreeC,
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is the number of seconds that the solvent falls, and t is the number of seconds that the sample solution falls]
The obtained specific viscosity is inserted by the following formula to determine the viscosity average molecular weight Mv.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 Mv 0.83
c = 0.7

本発明の照明カバーに用いられる熱可塑性樹脂組成物が溶媒に不溶な成分を含む場合、粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の溶媒と混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、溶媒に溶解する成分の固体を得る。かかる固体0.7gを溶媒100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mvを算出する。   When the thermoplastic resin composition used for the lighting cover of the present invention contains a component insoluble in a solvent, the viscosity average molecular weight is calculated in the following manner. That is, the composition is mixed with a solvent having a weight of 20 to 30 times to dissolve the soluble component in the composition. Such soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after the solvent is removed is sufficiently dried to obtain a solid component that dissolves in the solvent. From a solution obtained by dissolving 0.7 g of the solid in 100 ml of solvent, the specific viscosity at 20 ° C. is determined in the same manner as described above, and the viscosity average molecular weight Mv is calculated from the specific viscosity in the same manner as described above.

なお、比粘度を求める際に用いる溶媒は、熱可塑性樹脂が可溶であれば、特に限定されるものではないが、一般的に塩化メチレン、クロロベンゼン、クロロホルムなどのハロゲン系溶媒が好ましく用いられ、特に塩化メチレンが好ましい。   The solvent used for determining the specific viscosity is not particularly limited as long as the thermoplastic resin is soluble, but generally halogen solvents such as methylene chloride, chlorobenzene and chloroform are preferably used. Particularly preferred is methylene chloride.

構造粘性指数(N)は1.6〜2.5の範囲であり、1.6〜2.2の範囲が好ましく、1.7〜2.2の範囲がより好ましく、1.8〜2.2の範囲が最も好ましい。Nが1.6未満では燃焼時の火種の滴下が抑制されなくなり、Nが2.5より大きいと剪断粘度が高くなりすぎて成形加工性が悪化するために、好ましくない。なお本発明でいう構造粘性指数(N)とは溶融流動特性を特徴付ける指標として用いられ、下記式〔1〕で表される。   The structural viscosity index (N) is in the range of 1.6 to 2.5, preferably in the range of 1.6 to 2.2, more preferably in the range of 1.7 to 2.2, and 1.8 to 2. A range of 2 is most preferred. If N is less than 1.6, dripping of fire types during combustion is not suppressed, and if N is more than 2.5, the shear viscosity becomes too high and the molding processability deteriorates, which is not preferable. The structural viscosity index (N) referred to in the present invention is used as an index characterizing the melt flow characteristics and is represented by the following formula [1].

Figure 2012036324
Figure 2012036324

上記式〔1〕において、Dは剪断速度(1/sec)、aは定数、σは剪断応力(Pa)、Nは構造粘性指数である。この構造粘性指数は、ISO11443に準拠して測定される。構造粘性指数は成形加工における樹脂の流動性の指標となるとともに、燃焼時の滴下防止能の指標となりうる。N=1のときはニュートン流動性を示し、Nが大きくなるほど非ニュートン流動性が大きくなる。この構造粘性指数が高い場合、樹脂は溶融状態における粘度が高いため燃焼時に滴下しにくくなり、剪断速度が高くなると粘度が低下するため成形加工性に優れる。   In the above formula [1], D is a shear rate (1 / sec), a is a constant, σ is a shear stress (Pa), and N is a structural viscosity index. This structural viscosity index is measured according to ISO11443. The structural viscosity index can be an index of resin fluidity in molding and can be an index of anti-drip ability during combustion. When N = 1, Newtonian fluidity is exhibited, and as N increases, non-Newtonian fluidity increases. When this structural viscosity index is high, the resin has a high viscosity in a molten state, so that the resin is difficult to dripping during combustion, and when the shear rate is high, the viscosity is lowered, and thus the molding processability is excellent.

本発明に使用される熱可塑性樹脂としては、透明性の高いものであれば良く、ポリスチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、環状ポリオレフィン樹脂、非晶ポリアリレート樹脂等が挙げられそのなかでもポリカーボネート樹脂が好ましく使用される。   The thermoplastic resin used in the present invention is only required to be highly transparent, and examples thereof include polystyrene resin, acrylic resin, polycarbonate resin, cyclic polyolefin resin, amorphous polyarylate resin and the like. Among them, polycarbonate resin is used. Preferably used.

さらに、本発明に用いられる熱可塑性樹脂組成物としては(A)ポリカーボネート樹脂(A成分)および(B)パーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機アルカリ(土類)金属塩(B成分)からなる難燃性ポリカーボネート樹脂組成物が好ましく使用される。以下各成分について詳細に説明する。   Further, the thermoplastic resin composition used in the present invention includes (A) a polycarbonate resin (component A) and (B) an alkali (earth) metal salt of a perfluoroalkyl sulfonate, an alkali (earth) metal of an aromatic sulfonate. A flame retardant polycarbonate resin composition comprising at least one organic alkali (earth) metal salt (component B) selected from the group consisting of a salt and an alkali (earth) metal salt of an aromatic imide is preferably used. Is done. Hereinafter, each component will be described in detail.

<A成分:ポリカーボネート樹脂>
A成分を構成するポリカーボネート樹脂は、下記一般式〔1〕で表されるカーボネート構成単位からなるポリカーボネート樹脂であることが好ましい。
<Component A: Polycarbonate resin>
The polycarbonate resin constituting the component A is preferably a polycarbonate resin composed of a carbonate constituent unit represented by the following general formula [1].

Figure 2012036324
Figure 2012036324

[上記一般式〔1〕において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式〔2〕で表される基からなる群より選ばれる少なくとも一つの基である。] [In General Formula [1], R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or 6 to 6 carbon atoms. 20 cycloalkyl groups, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, aryl groups having 3 to 14 carbon atoms, aryloxy groups having 3 to 14 carbon atoms, carbon atoms Represents a group selected from the group consisting of an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group, and a carboxyl group. E and f are each an integer of 1 to 4, and W is a single bond or at least one group selected from the group consisting of groups represented by the following general formula [2]. . ]

Figure 2012036324
Figure 2012036324

[上記一般式〔2〕においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。] [In the above general formula [2], R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, carbon Represents a group selected from the group consisting of an aryl group having 3 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, and R 19 and R 20 each independently represent a hydrogen atom, a halogen atom, or a carbon atom having 1 to 18 carbon atoms. Alkyl groups, alkoxy groups having 1 to 10 carbon atoms, cycloalkyl groups having 6 to 20 carbon atoms, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, and 3 carbon atoms. -14 aryl group, aryloxy group having 6 to 10 carbon atoms, aralkyl group having 7 to 20 carbon atoms, aralkyloxy group having 7 to 20 carbon atoms, nitro group, aldehyde group, cyano group and It represents a group selected from the group consisting of carboxyl groups, and when there are a plurality thereof, they may be the same or different, g is an integer of 1 to 10, and h is an integer of 4 to 7. ]

上記一般式〔1〕で表されるカーボネート構成単位を誘導する構成する二価フェノールとしては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、および1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。   Examples of the dihydric phenol constituting the carbonate structural unit represented by the general formula [1] include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, and 1,1-bis (4 -Hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) ) Propane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3′-biphenyl) propane, 2,2-bis (4 -Hydroxy-3-isopropylphenyl) propane, 2,2-bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis ( -Hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4- Hydroxyphenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxy) Phenyl) cyclopentane, 4,4′-dihydroxydiphenyl ether, 4,4 ′ Dihydroxy-3,3′-dimethyldiphenyl ether, 4,4′-sulfonyldiphenol, 4,4′-dihydroxydiphenyl sulfoxide, 4,4′-dihydroxydiphenyl sulfide, 2,2′-dimethyl-4,4 '-Sulfonyldiphenol, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 2,2'-diphenyl-4,4'- Sulfonyldiphenol, 4,4′-dihydroxy-3,3′-diphenyldiphenyl sulfoxide, 4,4′-dihydroxy-3,3′-diphenyldiphenyl sulfide, 1,3-bis {2- (4-hydroxyphenyl) Propyl} benzene, 1,4-bis {2- (4-hydroxyphenyl) propyl } Benzene, 1,4-bis (4-hydroxyphenyl) cyclohexane, 1,3-bis (4-hydroxyphenyl) cyclohexane, 4,8-bis (4-hydroxyphenyl) tricyclo [5.2.1.02, 6] Decane, 4,4 ′-(1,3-adamantanediyl) diphenol, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, and the like.

なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、および1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’−スルホニルジフェノール、および9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。   Among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4′-sulfonyldiphenol, 2,2′-dimethyl- 4,4′-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, and 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene is preferred, especially 2,2-bis (4-hydroxyphenyl) propane, 1,1-biphenyl. (4-hydroxyphenyl) cyclohexane (BPZ), 4,4'-sulfonyl diphenol, and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is preferred. Among them, 2,2-bis (4-hydroxyphenyl) propane having excellent strength and good durability is most preferable. Moreover, you may use these individually or in combination of 2 or more types.

上記式〔1〕で表されるカーボネート構成単位を含んでなるポリカーボネート樹脂は、分岐化剤を上記のジヒドロキシ化合物と併用する分岐化ポリカーボネート樹脂であることが好ましい。かかる分岐化ポリカーボネート樹脂に使用される分岐化剤としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等の三官能以上の多官能性芳香族化合物が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。上記分岐化ポリカーボネート樹脂の分岐率は、好ましくは0.05〜1.5mol%、より好ましくは0.2〜1.2mol%、特に好ましくは0.5〜1.2mol%、最も好ましくは0.6〜1.1mol%である。   The polycarbonate resin comprising the carbonate constituent unit represented by the above formula [1] is preferably a branched polycarbonate resin in which a branching agent is used in combination with the dihydroxy compound. Examples of the branching agent used in the branched polycarbonate resin include phloroglucin, phloroglucide, or 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2, 2,4,6-trimethyl. -2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane, 1,1, 1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [1,1-bis ( 4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol and other trisphenols, tetra (4-hydroxyphenyl) methane Bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and acid chlorides thereof More than functional polyfunctional aromatic compounds are mentioned, among which 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane 1,1,1-tris (4-hydroxyphenyl) ethane is particularly preferable. The branching ratio of the branched polycarbonate resin is preferably 0.05 to 1.5 mol%, more preferably 0.2 to 1.2 mol%, particularly preferably 0.5 to 1.2 mol%, and most preferably 0.00. It is 6-1.1 mol%.

これらのポリカーボネート樹脂は、通常のポリカーボネート樹脂を製造するそれ自体公知の反応手段、例えば芳香族ジヒドロキシ成分にホスゲンや炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造される。その製造方法について基本的な手段を簡単に説明する。   These polycarbonate resins are produced by a reaction means known per se for producing ordinary polycarbonate resins, for example, a method in which an aromatic dihydroxy component is reacted with a carbonate precursor such as phosgene or carbonic acid diester. The basic means of the manufacturing method will be briefly described.

カーボネート前駆物質として、例えばホスゲンを使用する反応では、通常酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物またはピリジンなどのアミン化合物が用いられる。溶媒としては、例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンまたは第四級アンモニウム塩などの触媒を用いることもできる。その際、反応温度は通常0〜40℃であり、反応時間は数分〜5時間である。カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下所定割合の芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点などにより異なるが、通常120〜300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また、反応を促進するために通常エステル交換反応に使用される触媒を使用することもできる。前記エステル交換反応に使用される炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられる。これらのうち特にジフェニルカーボネートが好ましい。   In a reaction using, for example, phosgene as a carbonate precursor, the reaction is usually performed in the presence of an acid binder and a solvent. As the acid binder, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used. As the solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. In order to accelerate the reaction, a catalyst such as a tertiary amine or a quaternary ammonium salt can also be used. In that case, reaction temperature is 0-40 degreeC normally, and reaction time is several minutes-5 hours. The transesterification reaction using a carbonic acid diester as a carbonate precursor is performed by a method in which an aromatic dihydroxy component in a predetermined ratio is stirred with a carbonic acid diester while heating with an inert gas atmosphere to distill the generated alcohol or phenols. . The reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 300 ° C. The reaction is completed while distilling off the alcohol or phenol produced under reduced pressure from the beginning. Moreover, in order to accelerate | stimulate reaction, the catalyst normally used for transesterification can also be used. Examples of the carbonic acid diester used in the transesterification include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Of these, diphenyl carbonate is particularly preferred.

本発明において、重合反応においては末端停止剤を使用する。末端停止剤は分子量調節のために使用され、また得られたポリカーボネート樹脂は、末端が封鎖されているので、そうでないものと比べて熱安定性に優れている。かかる末端停止剤としては、下記一般式〔3〕〜〔5〕で表される単官能フェノール類を示すことができる。   In the present invention, a terminal terminator is used in the polymerization reaction. The end terminator is used for molecular weight control, and the obtained polycarbonate resin is excellent in thermal stability as compared with the other one because the end is blocked. Examples of the terminal terminator include monofunctional phenols represented by the following general formulas [3] to [5].

Figure 2012036324
[式中、Aは水素原子、炭素数1〜9のアルキル基、アルキルフェニル基(アルキル部分の炭素数は1〜9)またはフェニルアルキル基(アルキル部分の炭素数0〜9)であり、rは1〜5、好ましくは1〜3の整数である]。
Figure 2012036324
[In the formula, A is a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, an alkylphenyl group (the alkyl moiety has 1 to 9 carbon atoms) or a phenylalkyl group (the alkyl moiety having 0 to 9 carbon atoms); Is an integer from 1 to 5, preferably from 1 to 3.]

Figure 2012036324
Figure 2012036324
[式中、Xは−R−O−、−R−CO−O−または−R−O−CO−である、ここでRは単結合または炭素数1〜10、好ましくは1〜5の二価の脂肪族炭化水素基を示し、nは10〜50の整数を示す。]
Figure 2012036324
Figure 2012036324
[Wherein, X is —R—O—, —R—CO—O— or —R—O—CO—, wherein R is a single bond or a carbon number of 1 to 10, preferably 1 to 5; A valent aliphatic hydrocarbon group, and n represents an integer of 10 to 50. ]

上記一般式〔3〕で表される単官能フェノール類の具体例としては、例えばフェノール、イソプロピルフェノール、p−tert−ブチルフェノール、p−クレゾール、p−クミルフェノール、2−フェニルフェノール、4−フェニルフェノール、およびイソオクチルフェノールなどが挙げられる。また、上記一般式〔4〕〜〔5〕で表される単官能フェノール類は、長鎖のアルキル基あるいは脂肪族エステル基を置換基として有するフェノール類であり、これらを用いてポリカーボネート樹脂の末端を封鎖すると、これらは末端停止剤または分子量調節剤として機能するのみならず、樹脂の溶融流動性が改良され、成形加工が容易になるばかりでなく、樹脂の吸水率を低くする効果があり好ましく使用される。上記一般式〔4〕の置換フェノール類としてはnが10〜30、特に10〜26のものが好ましく、その具体例としては例えばデシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノール等を挙げることができる。また、上記一般式〔5〕の置換フェノール類としてはXが−R−CO−O−であり、Rが単結合である化合物が適当であり、nが10〜30、特に10〜26のものが好適であって、その具体例としては例えばヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。これら単官能フェノール類の内、上記一般式〔3〕で表される単官能フェノール類が好ましく、より好ましくはアルキル置換もしくはフェニルアルキル置換のフェノール類であり、特に好ましくはp−tert−ブチルフェノールまたはp−クミルフェノールである。これらの単官能フェノール類の末端停止剤は、得られたポリカーボネート樹脂の全末端に対して少なくとも5モル%、好ましくは少なくとも10モル% 末端に導入されることが望ましく、また、末端停止剤は単独でまたは2種以上混合して使用してもよい。   Specific examples of the monofunctional phenols represented by the general formula [3] include, for example, phenol, isopropylphenol, p-tert-butylphenol, p-cresol, p-cumylphenol, 2-phenylphenol, 4-phenyl. Phenol, isooctylphenol, etc. are mentioned. The monofunctional phenols represented by the general formulas [4] to [5] are phenols having a long-chain alkyl group or an aliphatic ester group as a substituent, and using these, the terminal of the polycarbonate resin is used. These not only function as a terminal terminator or molecular weight regulator, but also improve the melt fluidity of the resin and facilitate molding, as well as reducing the water absorption rate of the resin. used. The substituted phenols represented by the general formula [4] preferably have n of 10 to 30, particularly 10 to 26. Specific examples thereof include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, Examples include eicosylphenol, docosylphenol, and triacontylphenol. Further, as the substituted phenols of the above general formula [5], compounds in which X is —R—CO—O— and R is a single bond are suitable, and n is 10 to 30, particularly 10 to 26. Specific examples thereof include decyl hydroxybenzoate, dodecyl hydroxybenzoate, tetradecyl hydroxybenzoate, hexadecyl hydroxybenzoate, eicosyl hydroxybenzoate, docosyl hydroxybenzoate and triacontyl hydroxybenzoate. Among these monofunctional phenols, monofunctional phenols represented by the above general formula [3] are preferable, more preferably alkyl-substituted or phenylalkyl-substituted phenols, and particularly preferably p-tert-butylphenol or p- -Cumylphenol. These monofunctional phenolic terminal terminators are desirably introduced at the terminal at least 5 mol%, preferably at least 10 mol%, based on all the terminals of the obtained polycarbonate resin. Or a mixture of two or more thereof.

A成分として用いられるポリカーボネート樹脂は、本発明の趣旨を損なわない範囲で、芳香族ジカルボン酸、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸あるいはその誘導体を共重合したポリエステルカーボネートであってもよい。また光学特性を損なうことがない限り、照明カバーの機械的物性、化学的性質または電気的性質の改良のために、A成分以外の他の熱可塑性樹脂を配合することができる。この他の熱可塑性樹脂の配合量は、その種類および目的によって変わるが、通常、芳香族ポリカーボネート樹脂(A成分)100重量部当たり、1〜30重量部が好ましく、より好ましくは2〜20重量部が適当である。他の熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアルキルメタクリレート樹脂などに代表される汎用プラスチックス、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、ポリアミド樹脂、環状ポリオレフィン樹脂、ポリアリレート樹脂(非晶性ポリアリレート、液晶性ポリアリレート)等に代表されるエンジニアリングプラスチックス、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイドなどのいわゆるスーパーエンジニアリングプラスチックスと呼ばれるものを挙げることができる。さらにオレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマーも使用することができる。   The polycarbonate resin used as the component A may be a polyester carbonate obtained by copolymerizing an aromatic dicarboxylic acid, for example, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid or a derivative thereof, as long as the gist of the present invention is not impaired. As long as the optical properties are not impaired, a thermoplastic resin other than the component A can be blended in order to improve the mechanical properties, chemical properties or electrical properties of the lighting cover. The blending amount of the other thermoplastic resin varies depending on the type and purpose, but is usually preferably 1 to 30 parts by weight, more preferably 2 to 20 parts by weight per 100 parts by weight of the aromatic polycarbonate resin (component A). Is appropriate. Other thermoplastic resins include, for example, general-purpose plastics represented by polyethylene resin, polypropylene resin, polyalkyl methacrylate resin, polyphenylene ether resin, polyacetal resin, polyamide resin, cyclic polyolefin resin, polyarylate resin (non-crystalline) And so-called super engineering plastics such as engineering plastics typified by polyarylate and liquid crystalline polyarylate), polyetheretherketone, polyetherimide, polysulfone, polyethersulfone, and polyphenylene sulfide. . Furthermore, thermoplastic elastomers such as olefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and polyurethane-based thermoplastic elastomers can also be used.

<B成分:難燃剤>
本発明のB成分として使用される難燃剤としてはパーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機アルカリ(土類)金属塩が好ましく使用される。(ここで、アルカリ(土類)金属塩の表記は、アルカリ金属塩、アルカリ土類金属塩のいずれも含む意味で使用する。)B成分の含有量はA成分100重量部に対して0.005〜1.0重量部であることが好ましく、より好ましくは0.01〜0.5重量部であり、さらに好ましくは0.01〜0.2重量部である。含有量が0.005重量部未満の場合、十分な難燃性が得られず、1.0重量部を超える場合も十分な難燃性が得られないばかりか、十分な機械物性も得られなくなる場合がある。
<B component: flame retardant>
Flame retardants used as component B of the present invention include alkali (earth) metal salts of perfluoroalkyl sulfonates, alkali (earth) metal salts of aromatic sulfonates, and alkali (earth) metals of aromatic imides. One or more organic alkali (earth) metal salts selected from the group consisting of salts are preferably used. (Herein, the notation of alkali (earth) metal salt is used in the meaning including both alkali metal salt and alkaline earth metal salt.) The content of the B component is 0. It is preferable that it is 005-1.0 weight part, More preferably, it is 0.01-0.5 weight part, More preferably, it is 0.01-0.2 weight part. When the content is less than 0.005 part by weight, sufficient flame retardancy cannot be obtained, and when it exceeds 1.0 part by weight, not only sufficient flame retardancy is not obtained but also sufficient mechanical properties are obtained. It may disappear.

有機アルカリ(土類)金属塩を構成する金属は、アルカリ金属あるいはアルカリ土類金属であり、より好適にはアルカリ金属である。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、特に好ましくはリチウム、ナトリウム、カリウムである。   The metal constituting the organic alkali (earth) metal salt is an alkali metal or an alkaline earth metal, and more preferably an alkali metal. Examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium, and examples of the alkaline earth metal include beryllium, magnesium, calcium, strontium, and barium, and lithium, sodium, and potassium are particularly preferable.

前記パーフルオロアルキルスルホン酸アルカリ(土類)金属塩の好ましい例としては、パーフルオロメタンスルホン酸塩、パーフルオロエタンスルホン酸塩、パーフルオロプロパンスルホン酸塩、パーフルオロブタンスルホン酸塩、パーフルオロメチルブタンスルホン酸塩、パーフルオロヘキサンスルホン酸塩、パーフルオロヘプタンスルホン酸塩、パーフルオロオクタンスルホン酸塩等が挙げられ、特に炭素数が1〜8のものが好ましい。これらは1種もしくは2種以上を併用して使用することができる。   Preferred examples of the alkali (earth) metal salt of perfluoroalkyl sulfonate include perfluoromethane sulfonate, perfluoroethane sulfonate, perfluoropropane sulfonate, perfluorobutane sulfonate, perfluoromethyl. Examples include butanesulfonate, perfluorohexanesulfonate, perfluoroheptanesulfonate, and perfluorooctanesulfonate, and those having 1 to 8 carbon atoms are particularly preferable. These can be used alone or in combination of two or more.

この中で最も好ましいのはパーフルオロアルキルスルホン酸アルカリ金属塩である。かかるアルカリ金属の中でも、難燃性の要求がより高い場合にはルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、コストの点で有利であるがリチウムおよびナトリウムは逆に難燃性の点で不利な場合がある。これらを勘案してパーフルオロアルキルスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたパーフルオロアルキルスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ金属塩とを併用することもできる。   Of these, the alkali metal salt of perfluoroalkylsulfonic acid is most preferable. Among these alkali metals, rubidium and cesium are suitable when the demand for flame retardancy is higher, but these are not versatile and difficult to purify, resulting in disadvantages in terms of cost. There is. On the other hand, although it is advantageous in terms of cost, lithium and sodium may be disadvantageous in terms of flame retardancy. In consideration of these, the alkali metal in the perfluoroalkylsulfonic acid alkali metal salt can be properly used, but perfluoroalkylsulfonic acid potassium salt having an excellent balance of properties is most suitable in any respect. Such potassium salts and alkali metal salts of perfluoroalkylsulfonic acid composed of other alkali metals can be used in combination.

パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。   Specific examples of alkali metal perfluoroalkyl sulfonates include potassium trifluoromethane sulfonate, potassium perfluorobutane sulfonate, potassium perfluorohexane sulfonate, potassium perfluorooctane sulfonate, sodium pentafluoroethane sulfonate, perfluoro Sodium butanesulfonate, sodium perfluorooctanesulfonate, lithium trifluoromethanesulfonate, lithium perfluorobutanesulfonate, lithium perfluoroheptanesulfonate, cesium trifluoromethanesulfonate, cesium perfluorobutanesulfonate, perfluorooctanesulfonate Cesium, cesium perfluorohexane sulfonate, rubidium perfluorobutane sulfonate, and perf Oro hexane sulfonate rubidium, and these may be used in combination of at least one or two. Of these, potassium perfluorobutanesulfonate is particularly preferred.

前記芳香族スルホン酸アルカリ(土類)金属塩に使用する芳香族スルホン酸としては、モノマー状またはポリマー状の芳香族サルファイドのスルホン酸、芳香族カルボン酸およびエステルのスルホン酸、モノマー状またはポリマー状の芳香族エーテルのスルホン酸、芳香族スルホネートのスルホン酸、モノマー状またはポリマー状の芳香族スルホン酸、モノマー状またはポリマー状の芳香族スルホンスルホン酸、芳香族ケトンのスルホン酸、複素環式スルホン酸、芳香族スルホキサイドのスルホン酸、芳香族スルホン酸のメチレン型結合による縮合体からなる群から選ばれた少なくとも1種の酸を挙げることができ、これらは1種もしくは2種以上を併用して使用することができる。   Examples of the aromatic sulfonic acid used in the alkali (earth) metal salt of aromatic sulfonate include monomeric or polymeric aromatic sulfide sulfonic acid, aromatic carboxylic acid and ester sulfonic acid, monomeric or polymeric form. Aromatic ether sulfonic acid, aromatic sulfonate sulfonic acid, monomeric or polymeric aromatic sulfonic acid, monomeric or polymeric aromatic sulfonic acid, aromatic ketone sulfonic acid, heterocyclic sulfonic acid And at least one acid selected from the group consisting of aromatic sulfonic acid sulfonic acids and condensates of methylene type bonds of aromatic sulfonic acids. These may be used alone or in combination of two or more. can do.

モノマー状またはポリマー状の芳香族サルファイドのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98539号公報に記載されており、例えば、ジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウムなどを挙げることができる。   Monomer or polymer aromatic sulfite alkali (earth) metal salts of aromatic sulfides are described in JP-A-50-98539, for example, disodium diphenyl sulfide-4,4′-disulfonate. And dipotassium diphenyl sulfide-4,4′-disulfonate.

芳香族カルボン酸およびエステルのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98540号公報に記載されており、例えば5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウムなどを挙げることができる。   Examples of sulfonic acid alkali (earth) metal salts of aromatic carboxylic acids and esters are described in JP-A No. 50-98540, for example, potassium 5-sulfoisophthalate, sodium 5-sulfoisophthalate, polyethylene terephthalate. And polysodium acid polysulfonate.

モノマー状またはポリマー状の芳香族エーテルのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98542号公報に記載されており、例えば1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウムなどを挙げることができる。   Monomeric or polymeric aromatic ether sulfonate alkali (earth) metal salts are described in JP-A-50-98542, for example, 1-methoxynaphthalene-4-sulfonate calcium, 4- Disodium dodecylphenyl ether disulfonate, polysodium poly (2,6-dimethylphenylene oxide) polysulfonate, polysodium poly (1,3-phenylene oxide) polysulfonate, polysodium poly (1,4-phenylene oxide) polysulfonate And poly (2,6-diphenylphenylene oxide) polypotassium polysulfonate, poly (2-fluoro-6-butylphenylene oxide) lithium polysulfonate, and the like.

芳香族スルホネートのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98544号公報に記載されており、例えばベンゼンスルホネートのスルホン酸カリウムなどを挙げることができる。   Examples of alkali (earth) metal sulfonates of aromatic sulfonates are described in JP-A No. 50-98544, and examples thereof include potassium sulfonate of benzene sulfonate.

モノマー状またはポリマー状の芳香族スルホン酸アルカリ(土類)金属塩としては、特開昭50−98546号公報に記載されており、例えばベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウムなどを挙げることができる。   Monomeric or polymeric aromatic (earth) metal sulfonates are described in JP-A No. 50-98546, for example, sodium benzenesulfonate, strontium benzenesulfonate, magnesium benzenesulfonate, Examples include dipotassium p-benzenedisulfonate, dipotassium naphthalene-2,6-disulfonate, and calcium biphenyl-3,3′-disulfonate.

モノマー状またはポリマー状の芳香族スルホンスルホン酸アルカリ(土類)金属塩としては、特開昭52−54746号公報に記載されており、例えばジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウムなどを挙げることができる。   Monomeric or polymeric aromatic sulfonesulfonic acid alkali (earth) metal salts are described in JP-A-52-54746, for example, sodium diphenylsulfone-3-sulfonate, diphenylsulfone-3- Examples include potassium sulfonate, dipotassium diphenyl-3,3′-disulfonate, dipotassium diphenylsulfone-3,4′-disulfonate, and the like.

芳香族ケトンのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98547号公報に記載されており、例えばα,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウムなどを挙げることができる。   Examples of alkali sulfonate alkali (earth) metal salts of aromatic ketones are described in JP-A No. 50-98547, for example, α, α, α-trifluoroacetophenone-4-sulfonic acid sodium salt, benzophenone-3 , 3'-disulfonic acid dipotassium.

複素環式スルホン酸アルカリ(土類)金属塩としては、特開昭50−116542号公報に記載されており、例えばチオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウムなどを挙げることができる。   Heterocyclic sulfonic acid alkali (earth) metal salts are described in JP-A-50-116542, for example, disodium thiophene-2,5-disulfonate, dipotassium thiophene-2,5-disulfonate. Thiophene-2,5-disulfonate calcium, sodium benzothiophenesulfonate, and the like.

芳香族スルホキサイドのスルホン酸アルカリ(土類)金属塩としては、特開昭52−54745号公報に記載されており、例えばジフェニルスルホキサイド−4−スルホン酸カリウムなどを挙げることができる。   Examples of the alkali (earth) metal sulfonate of aromatic sulfoxide are described in JP-A-52-54745, and examples thereof include potassium diphenyl sulfoxide-4-sulfonate.

芳香族スルホン酸アルカリ(土類)金属塩のメチレン型結合による縮合体としては、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、アントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。   Examples of the condensate obtained by methylene bond of alkali (earth) metal salt of aromatic sulfonate include formalin condensate of sodium naphthalene sulfonate and formalin condensate of sodium anthracene sulfonate.

前記芳香族系イミドのアルカリ(土類)金属塩としては、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホンアミド(言い換えるとジ(p−トルエンスルホン)イミド)、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミド、ビス(ジフェニルリン酸)イミド等のアルカリ(土類)金属塩などが挙げられる。   Examples of the alkali (earth) metal salt of the aromatic imide include saccharin, N- (p-tolylsulfonyl) -p-toluenesulfonamide (in other words, di (p-toluenesulfone) imide), N- (N Examples include '-benzylaminocarbonyl) sulfanilimide, and alkali (earth) metal salts such as N- (phenylcarboxyl) sulfanilimide and bis (diphenylphosphoric acid) imide.

これらの中でもパーフルオロブタンスルホン酸カリウム、パーフルオロブタンスルホン酸ナトリウム、式〔6〕で示されるジフェニルスルホンのスルホン酸塩、ジ(p−トルエンスルホン)イミドのカリウム塩、および、ジ(p−トルエンスルホン)イミドのナトリウム塩からなる群より選択される1種以上の化合物がより好ましい。さらに最も好ましくはパーフルオロブタンスルホン酸カリウムである。   Among these, potassium perfluorobutanesulfonate, sodium perfluorobutanesulfonate, sulfonate of diphenylsulfone represented by the formula [6], potassium salt of di (p-toluenesulfone) imide, and di (p-toluene) More preferred are one or more compounds selected from the group consisting of sodium salts of sulfone) imides. Most preferred is potassium perfluorobutane sulfonate.

Figure 2012036324
[式中、nは0〜3を表し、MはKあるいはNaを表す。]
Figure 2012036324
[Wherein n represents 0 to 3, and M represents K or Na. ]

<C成分:光拡散剤>
本発明に用いられるC成分として使用される光拡散剤としては、例えばガラス微粒子に代表される無機微粒子、ポリスチレン樹脂、(メタ)アクリル樹脂、シリコーン樹脂等からなる有機微粒子が挙げられ、なかでも有機微粒子が好ましく、その中でもアクリル−スチレン系共重合微粒子が最も好ましい。かかる有機微粒子としては、架橋した有機微粒子が好ましく、その製造過程において少なくとも部分的に架橋されており、芳香族ポリカーボネート樹脂の加工過程において実用的に変形せず、微粒子状態を維持しているものである。特に好適な具体例として、部分架橋したスチレン−メタクリル酸メチル共重合体微粒子[例えば積水化成品工業(株)製 商品名 MSX405KN]、ゴム状ビニルポリマーのコアとシェルを含んだコア/シェルモノホルジーを有するポリマー[例えばローム・アンド・ハーズ・カンパニー製商品名パラロイドEXL−5136]、架橋シロキサン結合を有するシリコーン樹脂[例えば東芝シリコーン(株)製トスパール120]が挙げられる。
<C component: light diffusing agent>
Examples of the light diffusing agent used as the component C used in the present invention include inorganic fine particles typified by glass fine particles, organic fine particles made of polystyrene resin, (meth) acrylic resin, silicone resin, and the like. Fine particles are preferred, and among them, acrylic-styrene copolymer fine particles are most preferred. Such organic fine particles are preferably cross-linked organic fine particles, which are at least partially cross-linked in the production process, are not practically deformed in the processing process of the aromatic polycarbonate resin, and maintain the fine particle state. is there. As a particularly preferred specific example, partially crosslinked styrene-methyl methacrylate copolymer fine particles [for example, product name MSX405KN manufactured by Sekisui Plastics Co., Ltd.], a core / shell monoform containing a rubbery vinyl polymer core and shell Examples thereof include polymers having a gee (for example, trade name Paraloid EXL-5136 manufactured by Rohm and Haas Company) and silicone resins having a crosslinked siloxane bond [for example, Tospearl 120 manufactured by Toshiba Silicone Co., Ltd.].

上記高分子微粒子の屈折率は1.495〜1.504が好ましく、1.497〜1.504がより好ましく、1.497〜1.502がさらに好ましい。屈折率が1.495より小さいと全光線透過率と光分散度(すなわち光拡散性)のバランスが悪くなり、1.504より大きいと充分な光分散度D50を得るには、多くの光拡散剤の添加が必要となってしまい、結局耐衝撃性の低下を引き起こしてしまう場合がある。   The refractive index of the polymer fine particles is preferably from 1.495 to 1.504, more preferably from 1.497 to 1.504, and even more preferably from 1.497 to 1.502. If the refractive index is less than 1.495, the balance between the total light transmittance and the light dispersion (that is, light diffusibility) is poor, and if it is more than 1.504, a large amount of light diffusion is required to obtain a sufficient light dispersion D50. It may be necessary to add an agent, resulting in a decrease in impact resistance.

上記高分子微粒子の平均粒径は好ましくは0.1〜50μmであり、より好ましくは0.5〜30μmであり、さらに好ましくは0.7〜20μmのものである。かかる高分子微粒子の粒径は、コールカウンター法で測定した重量平均粒径であり、その測定機は株式会社日科機製の粒子数・粒度分布アナライザーMODEL Zmである。重量平均粒子径が0.1μm未満、また50μmを越えると十分な光拡散性が得られず、十分な光拡散効果を得るためには配合量が多くなり、光透過性が損なわれる場合がある。   The average particle diameter of the polymer fine particles is preferably 0.1 to 50 μm, more preferably 0.5 to 30 μm, and still more preferably 0.7 to 20 μm. The particle size of the polymer fine particles is a weight average particle size measured by a coal counter method, and the measuring instrument is a particle number / particle size distribution analyzer MODEL Zm manufactured by Nikki Co., Ltd. If the weight average particle diameter is less than 0.1 μm or more than 50 μm, sufficient light diffusibility cannot be obtained, and in order to obtain a sufficient light diffusive effect, the blending amount increases and the light transmittance may be impaired. .

C成分の含有量は、A成分100重量部に対して0.005〜3.0重量部が好ましく、0.05〜2.0重量部がより好ましく、0.05〜1.0重量部がさらに好ましい。C成分の含有量が0.005重量部未満である場合、十分な光拡散性が得られず、3.0重量部を超えると光線透過率が不十分となる場合があるので好ましくない。なお照明カバーとしての光拡散性の付与は上記C成分である光拡散剤を添加する方法以外に、成形品表面をシボ調加工する方法または光拡散剤の添加とシボ調加工の併用などの方法が挙げられる。   The content of component C is preferably 0.005 to 3.0 parts by weight, more preferably 0.05 to 2.0 parts by weight, and 0.05 to 1.0 parts by weight with respect to 100 parts by weight of component A. Further preferred. When the content of component C is less than 0.005 parts by weight, sufficient light diffusibility cannot be obtained, and when it exceeds 3.0 parts by weight, the light transmittance may be insufficient. In addition to the method of adding the light diffusing agent as the above-mentioned component C, the light diffusing property as a lighting cover is a method of embossing the surface of the molded product or a method of adding a light diffusing agent and embossing. Is mentioned.

<D成分:シリコーン化合物>
本発明のD成分として使用されるシリコーン化合物は本発明の目的である難燃性や良好な光学特性を得ることができれば特に限定されないが、良好な光学特性を得るためには、芳香族基を有するシリコーン化合物が好ましい。さらにD成分のシリコーン化合物が効率的に難燃効果を発揮するためには、燃焼過程における分散状態が重要である。かかる分散状態を決定する重要な因子として粘度が挙げられる。これは、燃焼過程においてシリコーン化合物があまりにも揮発しやすい場合、すなわち、粘度が低すぎるシリコーン化合物の場合には、燃焼時に系内に残っているシリコーンが希薄であるため、燃焼時に均一なシリコーンのストラクチャーを形成することが困難となるためと考えられる。またシリコーン化合物の粘度が高すぎると、シリコーン化合物の分散性が悪化し、難燃性、光学特性に悪影響をあたえる。かかる観点より、25℃における粘度は10〜300cStがより好ましく、さらに好ましくは15〜200cSt、最も好ましくは20〜170cStである。
<D component: silicone compound>
The silicone compound used as the component D of the present invention is not particularly limited as long as it can obtain the flame retardancy and good optical properties which are the object of the present invention. However, in order to obtain good optical properties, an aromatic group is used. The silicone compound which has is preferable. Furthermore, in order for the D-component silicone compound to effectively exhibit a flame-retardant effect, the dispersed state in the combustion process is important. Viscosity is an important factor that determines the dispersion state. This is because if the silicone compound is too volatile during the combustion process, that is, if the viscosity of the silicone compound is too low, the silicone remaining in the system at the time of combustion is dilute. It is thought that it becomes difficult to form a structure. Moreover, when the viscosity of a silicone compound is too high, the dispersibility of a silicone compound will deteriorate and it will have a bad influence on a flame retardance and an optical characteristic. From this viewpoint, the viscosity at 25 ° C. is more preferably 10 to 300 cSt, still more preferably 15 to 200 cSt, and most preferably 20 to 170 cSt.

本発明で使用されるD成分が有する芳香族基はシリコーン原子に結合しているものであり、ポリカーボネート樹脂との相溶性を高めたり良好な光学特性を維持するのに寄与しており、燃焼時の炭化皮膜形成にも有利であることから難燃効果の発現にも寄与している。芳香族基を有しない場合は本発明の照明カバーにおける良好な光学特性が得られにくく、高度な難燃性を得ることも困難となる傾向がある。   The aromatic group which D component used by this invention has couple | bonded with the silicone atom, and contributes to improving compatibility with polycarbonate resin or maintaining favorable optical characteristics, This also contributes to the development of a flame retardant effect because it is advantageous for forming a carbonized film. When it does not have an aromatic group, it is difficult to obtain good optical characteristics in the lighting cover of the present invention, and it is difficult to obtain high flame retardancy.

本発明のD成分として使用されるシリコーン化合物は好ましくはSi−H基を含有するシリコーン化合物である。特に、分子中にSi−H基および芳香族基を含有するシリコーン化合物であって、
(1)Si−H基が含まれる量(Si−H量)が0.1〜1.2mol/100g
(2)下記一般式〔7〕で示される芳香族基が含まれる割合(芳香族基量)が10〜70重量%、かつ

Figure 2012036324
[式〔7〕中、Xはそれぞれ独立にOH基、ヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基を示す。nは0〜5の整数を表わす。さらに式〔7〕中においてnが2以上の場合はそれぞれ互いに異なる種類のXを取ることができる。]
(3)平均重合度が3〜150
であるシリコーン化合物の中から選択される少なくとも一種以上のシリコーン化合物であることが好ましい。 The silicone compound used as component D of the present invention is preferably a silicone compound containing a Si-H group. In particular, a silicone compound containing a Si—H group and an aromatic group in the molecule,
(1) The amount of Si—H group contained (Si—H amount) is 0.1 to 1.2 mol / 100 g.
(2) The ratio (aromatic group amount) in which the aromatic group represented by the following general formula [7] is contained is 10 to 70% by weight, and
Figure 2012036324
[In Formula [7], X shows a C1-C20 hydrocarbon group which may have OH group and a hetero atom containing functional group each independently. n represents an integer of 0 to 5. Further, in the formula [7], when n is 2 or more, different types of X can be taken. ]
(3) Average polymerization degree is 3 to 150
It is preferable that it is at least 1 type or more of silicone compounds selected from the silicone compounds which are.

さらに好ましくは、Si−H基含有単位として、下記一般式〔8〕および〔9〕で示される構成単位のうち、少なくとも一種以上の式で示される構成単位を含むシリコーン化合物の中から選択される少なくとも一種以上のシリコーン化合物である。   More preferably, the Si—H group-containing unit is selected from silicone compounds containing at least one constituent unit represented by the formula among the constituent units represented by the following general formulas [8] and [9]. At least one silicone compound.

Figure 2012036324
Figure 2012036324
Figure 2012036324
Figure 2012036324

[式〔8〕および式〔9〕中、Z〜Zはそれぞれ独立に水素原子、ヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基、または下記一般式〔10〕で示される化合物を示す。α1〜α3はそれぞれ独立に0または1を表わす。m1は0もしくは1以上の整数を表わす。さらに式〔8〕中においてm1が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。] [In Formula [8] and Formula [9], Z 1 to Z 3 are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom-containing functional group, or the following general formula [ 10]. α1 to α3 each independently represents 0 or 1. m1 represents 0 or an integer of 1 or more. Further, in the formula [8], when m1 is 2 or more, the repeating unit can take a plurality of different repeating units. ]

Figure 2012036324
Figure 2012036324

[式〔10〕中、Z〜Zはそれぞれ独立に水素原子、ヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基を示す。α4〜α8はそれぞれ独立に0または1を表わす。m2は0もしくは1以上の整数を表わす。さらに式[10]中においてm2が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。] [In Formula [10], Z < 4 > -Z < 8 > shows a C1-C20 hydrocarbon group which may have a hydrogen atom and a hetero atom containing functional group each independently. α4 to α8 each independently represents 0 or 1. m2 represents 0 or an integer of 1 or more. Further, in the formula [10], when m2 is 2 or more, the repeating unit can take a plurality of repeating units. ]

より好ましくは、Mを1官能性シロキサン単位、Dを2官能性シロキサン単位、Tを3官能性シロキサン単位とするとき、MD単位またはMDT単位からなるシリコーン化合物である。   More preferably, when M is a monofunctional siloxane unit, D is a bifunctional siloxane unit, and T is a trifunctional siloxane unit, the silicone compound is composed of MD units or MDT units.

上記一般式〔8〕、〔9〕および〔10〕で示される構成単位のZ〜Z、および一般式〔7〕のXにおけるヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、デシル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基およびアラルキル基を挙げることができ、さらにこれらの基はエポキシ基、カルボキシル基、無水カルボン酸基、アミノ基、およびメルカプト基などの各種官能基を含むものであってもよい。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基であり、特にはメチル基、エチル基、プロピル基等の炭素数1〜4のアルキル基、ビニル基、またはフェニル基が好ましい。 The structural units Z 1 to Z 8 represented by the general formulas [8], [9] and [10], and the hetero atom-containing functional group in X of the general formula [7] may have 1 to 1 carbon atoms. Examples of the hydrocarbon group 20 include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group and a decyl group, a cycloalkyl group such as a cyclohexyl group, an alkenyl group such as a vinyl group and an allyl group, and a phenyl group. , Aryl groups such as tolyl groups, and aralkyl groups, and these groups may include various functional groups such as epoxy groups, carboxyl groups, carboxylic anhydride groups, amino groups, and mercapto groups. Good. More preferably, it is a C1-C8 alkyl group, an alkenyl group, or an aryl group, and especially a C1-C4 alkyl group, such as a methyl group, an ethyl group, and a propyl group, a vinyl group, or a phenyl group is preferable.

前記一般式〔8〕および〔9〕で示される構成単位のうち、少なくとも一種以上の式で示される構成単位を含むシリコーン化合物において、複数のシロキサン結合の繰返し単位を有する場合は、それらはランダム共重合、ブロック共重合、テーパード共重合のいずれの形態を取ることも可能である。   Among the structural units represented by the general formulas [8] and [9], when the silicone compound containing at least one structural unit represented by the formula has a plurality of repeating units of siloxane bonds, they are randomly Any form of polymerization, block copolymerization and tapered copolymerization can be employed.

D成分で好ましいSi−H基を含有するシリコーン化合物については、シリコーン化合物中のSi−H量を0.1〜1.2mol/100gの範囲とすることが好ましい。Si−H量が0.1〜1.2mol/100gの範囲にあることで、燃焼時にシリコーンのストラクチャーの形成が容易となる。さらに好ましくはSi−H量が0.1〜1.0mol/100gの範囲、最も好ましくは0.2〜0.6mol/100gの範囲にあるシリコーン化合物である。Si−H量が少ないとシリコーンのストラクチャー形成が困難となり、Si−H量が多いと組成物の熱安定性が低下する。なお、ここでシリコーンのストラクチャーとは、シリコーン化合物相互の反応、または樹脂とシリコーンとの反応により生成する網状構造をさす。   About the silicone compound containing the Si-H group preferable with D component, it is preferable to make the amount of Si-H in a silicone compound into the range of 0.1-1.2 mol / 100g. When the Si—H amount is in the range of 0.1 to 1.2 mol / 100 g, formation of a silicone structure is facilitated during combustion. More preferred is a silicone compound having a Si-H amount in the range of 0.1 to 1.0 mol / 100 g, most preferably in the range of 0.2 to 0.6 mol / 100 g. When the amount of Si—H is small, it is difficult to form a silicone structure, and when the amount of Si—H is large, the thermal stability of the composition is lowered. Here, the silicone structure refers to a network structure formed by a reaction between silicone compounds or a reaction between a resin and silicone.

また、ここで言うSi−H基量とは、シリコーン化合物100gあたりに含まれるSi−H構造のモル数を言うが、これはアルカリ分解法により、シリコーン化合物の単位重量当たり発生した水素ガスの体積を測定することにより求めることができる。例えば、25℃においてシリコーン化合物1g当たり122mlの水素ガスが発生した場合、下記計算式により、Si−H量は0.5mol/100gとなる。
122×273/(273+25)÷22400×100≒0.5
The Si—H group amount referred to here means the number of moles of the Si—H structure contained per 100 g of the silicone compound. This is the volume of hydrogen gas generated per unit weight of the silicone compound by the alkali decomposition method. Can be determined by measuring. For example, when 122 ml of hydrogen gas is generated per 1 g of the silicone compound at 25 ° C., the Si—H amount is 0.5 mol / 100 g according to the following formula.
122 × 273 / (273 + 25) ÷ 22400 × 100≈0.5

一方、芳香族ポリカーボネート樹脂(A成分)にシリコーン化合物を配合した樹脂組成物において、本発明の照明カバーの白濁、あるいは湿熱処理による光学特性の変化を抑えるためには、前述したとおり、シリコーン化合物の分散状態が重要である。シリコーン化合物が偏在する場合には、樹脂組成物自体が白濁し、さらには本発明の照明カバー表面で剥離などが生じたり、あるいは湿熱処理時にシリコーン化合物が移行して偏在して光学特性が変化するなど、光学特性の良好な照明カバーを得ることが困難となるためである。かかる分散状態を決定する重要な因子としてシリコーン化合物中の芳香族基量、平均重合度が挙げられる。殊に良好な光学特性を維持しうる樹脂組成物において平均重合度は重要である。   On the other hand, in a resin composition in which a silicone compound is blended with an aromatic polycarbonate resin (component A), in order to suppress the white turbidity of the lighting cover of the present invention or a change in optical properties due to wet heat treatment, as described above, Distributed state is important. When the silicone compound is unevenly distributed, the resin composition itself becomes cloudy, and further, peeling or the like occurs on the surface of the lighting cover of the present invention, or the silicone compound migrates and is unevenly distributed during the wet heat treatment to change the optical characteristics. This is because it is difficult to obtain a lighting cover with good optical characteristics. Important factors that determine the dispersion state include the amount of aromatic groups in the silicone compound and the average degree of polymerization. In particular, the average degree of polymerization is important in a resin composition capable of maintaining good optical properties.

かかる観点より、本発明に用いられるシリコーン化合物(D成分)としては、シリコーン化合物中の芳香族基量は10〜70重量%であることが好ましい。さらに好ましくは芳香族基量が15〜60重量%の範囲、最も好ましくは25〜55重量%の範囲にあるシリコーン化合物である。シリコーン化合物中の芳香族基量が10重量%より少ないとシリコーン化合物が偏在して分散不良となり、光学特性が良好な照明カバーを得ることが困難となる場合がある。芳香族基量が70重量%より多いとシリコーン化合物自体の分子の剛直性が高くなるためやはり偏在して分散不良となり、光学特性が良好な照明カバーを得ることが困難となる場合がある。   From this viewpoint, the silicone compound (component D) used in the present invention preferably has an aromatic group content of 10 to 70% by weight in the silicone compound. More preferred is a silicone compound having an aromatic group content in the range of 15 to 60% by weight, most preferably in the range of 25 to 55% by weight. If the amount of the aromatic group in the silicone compound is less than 10% by weight, the silicone compound is unevenly distributed, resulting in poor dispersion, and it may be difficult to obtain a lighting cover with good optical characteristics. If the amount of the aromatic group is more than 70% by weight, the rigidity of the molecule of the silicone compound itself is increased, so that it may be unevenly distributed and poorly dispersed, making it difficult to obtain a lighting cover with good optical characteristics.

なお、ここで芳香族基量とは、シリコーン化合物において、前述した一般式〔7〕で示される芳香族基が含まれる割合のことを言い、下記計算式によって求めることができる。
芳香族基量=〔A/M〕×100(重量%)
ここで、上記式におけるA、Mはそれぞれ以下の数値を表す。
A=シリコーン化合物1分子中に含まれる、全ての一般式〔7〕で示される芳香族基部分の合計分子量
M=シリコーン化合物の分子量
Here, the amount of the aromatic group means a ratio of the aromatic group represented by the general formula [7] described above in the silicone compound, and can be obtained by the following calculation formula.
Aromatic group amount = [A / M] x 100 (wt%)
Here, A and M in the above formula represent the following numerical values, respectively.
A = total molecular weight of all aromatic groups represented by the general formula [7] contained in one molecule of the silicone compound M = molecular weight of the silicone compound

さらに本発明のD成分として使用されるシリコーン化合物は、25℃における屈折率が1.40〜1.60の範囲にあることが望ましい。さらに好ましくは屈折率が1.42〜1.59の範囲であり、最も好ましくは、1.44〜1.59の範囲にあるシリコーン化合物である。屈折率が上記範囲内にある場合、芳香族ポリカーボネート中にシリコーン化合物が微分散することで、より白濁の少ない染色性の良好な樹脂組成物が提供される。   Furthermore, the silicone compound used as the D component of the present invention preferably has a refractive index in the range of 1.40 to 1.60 at 25 ° C. More preferred is a silicone compound having a refractive index in the range of 1.42 to 1.59, and most preferred is a range of 1.44 to 1.59. When the refractive index is within the above range, the silicone compound is finely dispersed in the aromatic polycarbonate, thereby providing a resin composition with less white turbidity and good dyeability.

さらに本発明のD成分として使用されるシリコーン化合物は、105℃/3時間における加熱減量法による揮発量が18%以下であることが好適である。さらに好ましくは揮発量が10%以下であるシリコーン化合物である。揮発量が18%より大きいと本発明の樹脂組成物を押出してペレット化を行う際に、樹脂からの揮発物の量が多くなる問題が生じ、さらに、本発明の照明カバー中に生じる気泡が多くなりやすいという問題がある。   Further, the silicone compound used as the component D of the present invention preferably has a volatilization amount of 18% or less by a heat loss method at 105 ° C./3 hours. More preferably, the silicone compound has a volatilization amount of 10% or less. When the volatilization amount is larger than 18%, there is a problem that the amount of the volatile matter from the resin increases when the resin composition of the present invention is extruded and pelletized, and further, bubbles generated in the lighting cover of the present invention are generated. There is a problem that it tends to increase.

D成分として使用されるシリコーン化合物としては、上記の条件を満たすものであれば直鎖状であっても分岐構造を持つものであっても良く、Si−H基を分子構造中の側鎖、末端、分岐点の何れか、または複数の部位に有する各種の化合物を用いることが可能である。   The silicone compound used as the component D may be linear or branched as long as the above conditions are satisfied, and the Si—H group is a side chain in the molecular structure, It is possible to use various compounds possessed at any of terminal, branching points, or plural sites.

一般的に分子中にSi−H基を含有するシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。
M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位
D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位
T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位
Q単位:SiOで示される4官能性シロキサン単位
In general, the structure of a silicone compound containing a Si—H group in the molecule is constituted by arbitrarily combining the following four types of siloxane units.
M units: (CH 3 ) 3 SiO 1/2 , H (CH 3 ) 2 SiO 1/2 , H 2 (CH 3 ) SiO 1/2 , (CH 3 ) 2 (CH 2 = CH) SiO 1/2 , (CH 3 ) 2 (C 6 H 5 ) SiO 1/2 , (CH 3 ) (C 6 H 5 ) (CH 2 ═CH) SiO 1/2 and other monofunctional siloxane units D units: (CH 3 ) 2 SiO, H (CH 3 ) SiO, H 2 SiO, H (C 6 H 5 ) SiO, (CH 3 ) (CH 2 ═CH) SiO, (C 6 H 5 ) 2 SiO, etc. Unit T unit: (CH 3 ) SiO 3/2 , (C 3 H 7 ) SiO 3/2 , HSiO 3/2 , (CH 2 ═CH) SiO 3/2 , (C 6 H 5 ) SiO 3/2 trifunctional siloxane units Q units etc: tetrafunctional siloxane represented by SiO 2 Place

本発明において使用されるSi−H基を含有するシリコーン化合物の構造は、具体的には、示性式としてDn、Tp、MmDn、MmTp、MmQq、MmDnTp、MmDnQq、MmTpQq、MmDnTpQq、DnTp、DnQq、DnTpQqが挙げられる。この中で好ましいシリコーン化合物の構造は、MmDn、MmTp、MmDnTp、MmDnQqであり、さらに好ましい構造は、MmDnまたはMmDnTpである。
(上記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す整数である。またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子やヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基が異なる2種以上のシロキサン単位とすることができる。)
Specifically, the structure of the silicone compound containing a Si—H group used in the present invention is represented by the following formula: Dn, Tp, MmDn, MmTp, MmQq, MmDnTp, MmDnQq, MmTpQq, MmDnTpQq, DnTp, DnQq, DnTpQq is mentioned. Among these, preferred structures of the silicone compound are MmDn, MmTp, MmDnTp, and MmDnQq, and a more preferred structure is MmDn or MmDnTp.
(The coefficients m, n, p, q in the above formula are integers representing the degree of polymerization of each siloxane unit. Also, if any of m, n, p, q is a numerical value of 2 or more, the coefficient The siloxane units with can be two or more siloxane units having different hydrocarbon groups having 1 to 20 carbon atoms which may have a hydrogen atom or a hetero atom-containing functional group.

ここで、各示性式における係数の合計がシリコーン化合物の平均重合度となる。本発明においては、この平均重合度を3〜150の範囲とすることが好ましく、より好ましくは4〜80の範囲、さらに好ましくは5〜60の範囲である。重合度が3より小さい場合、シリコーン化合物自体の揮発性が高くなるため、このシリコーン化合物を配合した樹脂組成物の加工時において樹脂からの揮発分が多くなりやすいという問題がある。重合度が150より大きい場合、このシリコーン化合物を配合した樹脂組成物における難燃性や光学特性が不十分となりやすい。
なお、上記のシリコーン化合物は、それぞれ単独で用いてもよく、2種以上を組合せて用いてもよい。
Here, the sum of the coefficients in each characteristic formula is the average degree of polymerization of the silicone compound. In this invention, it is preferable to make this average degree of polymerization into the range of 3-150, More preferably, it is the range of 4-80, More preferably, it is the range of 5-60. When the degree of polymerization is less than 3, the volatility of the silicone compound itself is increased, so that there is a problem that the volatile content from the resin tends to increase during processing of the resin composition containing the silicone compound. When the degree of polymerization is greater than 150, the flame retardancy and optical properties of the resin composition containing this silicone compound tend to be insufficient.
In addition, said silicone compound may be used independently, respectively and may be used in combination of 2 or more type.

このようなSi−H結合を有するシリコーン化合物は、それ自体従来公知の方法によって製造することができる。例えば、目的とするシリコーン化合物の構造に従い、相当するオルガノクロロシラン類を共加水分解し、副生する塩酸や低沸分を除去することによって目的物を得ることができる。また、分子中にSi−H結合や一般式〔7〕で示される芳香族基、その他のヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基を有するシリコーンオイル、環状シロキサンやアルコキシシラン類を出発原料とする場合には、塩酸、硫酸、メタンスルホン酸等の酸触媒を使用し、場合によって加水分解のための水を添加して、重合反応を進行させた後、使用した酸触媒や低沸分を同様に除去することによって、目的とするシリコーン化合物を得ることができる。   Such a silicone compound having a Si—H bond can be produced by a method known per se. For example, the target product can be obtained by cohydrolyzing the corresponding organochlorosilanes according to the structure of the target silicone compound and removing by-product hydrochloric acid and low-boiling components. In addition, a silicone oil having a C1-C20 hydrocarbon group that may have an Si-H bond, an aromatic group represented by the general formula [7], or other heteroatom-containing functional group in the molecule, cyclic When using siloxane or alkoxysilane as a starting material, use an acid catalyst such as hydrochloric acid, sulfuric acid, methanesulfonic acid, etc., and optionally add water for hydrolysis to advance the polymerization reaction, The target silicone compound can be obtained by removing the acid catalyst and low-boiling components used in the same manner.

さらに、Si−H基を含有するシリコーン化合物が下記の構造式で示されるシロキサン単位 M、MH、D、DH 、Dφ、T、Tφ (ただし M:(CHSiO1/2MH:H(CHSiO1/2D:(CHSiODH:H(CH)SiODφ:(CSiT:(CH)SiO3/2Tφ:(C)SiO3/2)を有しており、1分子あたりに有する各シロキサン単位の平均数をそれぞれm、mh、d、dh、dp2、t、tpとした場合、下記関係式のすべてを満足することが好ましい。
2 ≦ m+mh ≦ 40
0.35 ≦ d+dh+dp2 ≦ 148
0 ≦ t+tp ≦ 38
0.35 ≦ mh+dh ≦ 110
Furthermore, a silicone compound containing a Si—H group is represented by the following structural formula: siloxane units M, MH, D, DH, Dφ 2 , T, Tφ (where M: (CH 3 ) 3 SiO 1/2 MH: H (CH 3 ) 2 SiO 1/2 D: (CH 3 ) 2 SiODH: H (CH 3 ) SiODφ 2 : (C 6 H 5 ) 2 SiT: (CH 3 ) SiO 3/2 Tφ: (C 6 H 5 ) SiO 3/2 ) and when the average number of each siloxane unit per molecule is m, mh, d, dh, dp2, t, tp, all of the following relational expressions are satisfied. It is preferable to do.
2 ≦ m + mh ≦ 40
0.35 ≦ d + dh + dp2 ≦ 148
0 ≦ t + tp ≦ 38
0.35 ≦ mh + dh ≦ 110

この範囲を外れると本発明の樹脂組成物において良好な難燃性と優れた光学特性を同時に達成することが困難となり、場合によってはSi−H基を含有するシリコーン化合物の製造が困難となる。   Outside this range, it becomes difficult to simultaneously achieve good flame retardancy and excellent optical properties in the resin composition of the present invention, and in some cases, it becomes difficult to produce a silicone compound containing a Si—H group.

本発明のD成分として使用されるシリコーン化合物の含有量は芳香族ポリカーボネート樹脂(A成分)100重量部に対して好ましくは0.05〜7重量部であり、より好ましくは0.1〜4重量部 さらに好ましくは0.3〜2重量部、最も好ましくは0.3〜1重量部である。含有量が多すぎると樹脂の耐熱性が低下したり、加工時にガスが発生しやすくなるという問題あり、少なすぎると難燃性が発揮されないという問題がある。   The content of the silicone compound used as the component D of the present invention is preferably 0.05 to 7 parts by weight, more preferably 0.1 to 4 parts by weight with respect to 100 parts by weight of the aromatic polycarbonate resin (component A). Part More preferably, it is 0.3-2 parts by weight, and most preferably 0.3-1 part by weight. If the content is too large, there is a problem that the heat resistance of the resin is lowered or gas is easily generated during processing, and if it is too small, there is a problem that flame retardancy is not exhibited.

<E成分:紫外線吸収剤>
本発明の照明カバーに用いられる熱可塑性樹脂組成物においては、耐光性を付与するという意味で紫外線吸収剤を含んでいることが好ましい。紫外線吸収剤としては、例えば2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタンなどに代表されるベンゾフェノン系紫外線吸収剤を挙げることができる。
<E component: UV absorber>
The thermoplastic resin composition used in the lighting cover of the present invention preferably contains an ultraviolet absorber in the sense of imparting light resistance. Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, and 2-hydroxy. -4-benzyloxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxybenzophenone, 2,2 '-Dihydroxy-4,4'-dimethoxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis ( 5-Benzoyl-4-hydroxy-2-meth Shifeniru) may be mentioned benzophenone-based ultraviolet absorbers typified by methane.

また紫外線吸収剤としては例えば2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−ドデシル−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ビス(α,α’−ジメチルベンジル)フェニルベンゾトリアゾール、2−[2’−ヒドロキシ−3’−(3”,4”,5”,6”−テトラフタルイミドメチル)−5’−メチルフェニル]ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2,2’メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、メチル−3−[3−tert−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニルプロピオネート−ポリエチレングリコールとの縮合物に代表されるベンゾトリアゾール系紫外線吸収剤を挙げることができる。   Examples of the ultraviolet absorber include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-tert-butylphenyl) benzotriazole, and 2- (2′-hydroxy). -5'-tert-octylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3', 5'- Di-tert-amylphenyl) benzotriazole, 2- (2′-hydroxy-3′-dodecyl-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-bis (α, α'-dimethylbenzyl) phenylbenzotriazole, 2- [2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetraphthal Ruimidomethyl) -5'-methylphenyl] benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ' , 5'-di-tert-butylphenyl) -5-chlorobenzotriazole, 2,2'methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazole-2- Yl) phenol], methyl-3- [3-tert-butyl-5- (2H-benzotriazol-2-yl) -4-hydroxyphenylpropionate-benzotriazole ultraviolet rays typified by condensation products with polyethylene glycol An absorbent can be mentioned.

さらに紫外線吸収剤としては例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシ−フェノール、2−(4,6−ビス−(2,4−ジメチルフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシ−フェノールなどのヒドロキシフェニルトリアジン系化合物を挙げることができる。   Further, examples of the ultraviolet absorber include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxy-phenol, 2- (4,6-bis- (2,4 There may be mentioned hydroxyphenyltriazine compounds such as -dimethylphenyl-1,3,5-triazin-2-yl) -5-hexyloxy-phenol.

紫外線吸収剤の含有量は、それぞれ芳香族ポリカーボネート樹脂(A成分)100重量部当たり0.01〜3.0重量部が好ましく、より好ましくは0.02〜1.0重量部であり、最も好ましくは0.05〜0.3重量部である。   The content of the ultraviolet absorber is preferably 0.01 to 3.0 parts by weight, more preferably 0.02 to 1.0 parts by weight, most preferably 100 parts by weight of the aromatic polycarbonate resin (component A). Is 0.05 to 0.3 parts by weight.

<その他の成分>
一方、本発明の照明カバーに用いられる熱可塑性樹脂組成物には、難燃性や光学特性を損なうことがない限り、他の樹脂や充填剤は配合しても差し支えない。
本発明の照明カバーに用いられる樹脂組成物には、照明カバーに種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。
<Other ingredients>
On the other hand, the thermoplastic resin composition used for the lighting cover of the present invention may be blended with other resins and fillers as long as flame retardancy and optical properties are not impaired.
In the resin composition used for the lighting cover of the present invention, additives known per se can be blended in a small proportion in order to impart various functions and improve characteristics in the lighting cover. These additives are used in usual amounts as long as the object of the present invention is not impaired.

かかる添加剤としては、ドリップ防止剤(フィブリル形成能を有する含フッ素ポリマーなど)、熱安定剤、光安定剤、離型剤、滑剤、摺動剤(PTFE粒子など)、着色剤(カーボンブラック、酸化チタンなどの顔料、染料)、蛍光増白剤、蓄光顔料、蛍光染料、帯電防止剤、流動改質剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(微粒子酸化チタン、微粒子酸化亜鉛など)、グラフトゴムに代表される衝撃改質剤、赤外線吸収剤またはフォトクロミック剤が挙げられる。   Examples of such additives include anti-drip agents (such as fluorine-containing polymers having fibril-forming ability), heat stabilizers, light stabilizers, mold release agents, lubricants, sliding agents (such as PTFE particles), and colorants (carbon black, Pigments and dyes such as titanium oxide), fluorescent whitening agents, phosphorescent pigments, fluorescent dyes, antistatic agents, flow modifiers, crystal nucleating agents, inorganic and organic antibacterial agents, photocatalytic antifouling agents (fine particle titanium oxide, Fine particle zinc oxide), impact modifiers typified by graft rubber, infrared absorbers or photochromic agents.

本発明に用いられる樹脂組成物の熱安定性、酸化防止性、および離型性の改良のために、芳香族ポリカーボネート樹脂において、これらの改良に使用されている添加剤が有利に使用される。以下これら添加剤について具体的に説明する。   In order to improve the thermal stability, antioxidant properties, and releasability of the resin composition used in the present invention, additives used for these improvements are advantageously used in the aromatic polycarbonate resin. Hereinafter, these additives will be specifically described.

本発明に用いられる樹脂組成物は、熱安定剤としてリン含有安定剤を配合することができる。かかるリン含有安定剤としては、ホスファイト化合物、ホスホナイト化合物、およびホスフェート化合物のいずれも使用可能である。   The resin composition used in the present invention can contain a phosphorus-containing stabilizer as a heat stabilizer. As the phosphorus-containing stabilizer, any of phosphite compounds, phosphonite compounds, and phosphate compounds can be used.

ホスファイト化合物としては、さまざまなものを用いることができる。具体的には例えば下記一般式〔11〕で表わされるホスファイト化合物、下記一般式〔12〕で表わされるホスファイト化合物、および下記一般式〔13〕で表わされるホスファイト化合物を挙げることができる。   Various phosphite compounds can be used. Specific examples include phosphite compounds represented by the following general formula [11], phosphite compounds represented by the following general formula [12], and phosphite compounds represented by the following general formula [13].

Figure 2012036324
Figure 2012036324

[式中Rは、水素原子または炭素数1〜20のアルキル基、炭素数6〜20のアリール基ないしアルカリール基、炭素数7〜30のアラルキル基、またはこれらのハロ、アルキルチオ(アルキル基は炭素数1〜30)またはヒドロキシ置換基を示し、3個のRは互いに同一または互いに異なるのいずれの場合も選択でき、また2価フェノール類から誘導されることにより環状構造も選択できる。] [Wherein R 8 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group or an alkaryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a halo or alkylthio thereof (an alkyl group) Represents 1 to 30 carbon atoms) or a hydroxy substituent, and three R 8 can be selected from the same or different from each other, and a cyclic structure can be selected by being derived from dihydric phenols. ]

Figure 2012036324
Figure 2012036324

[式中R、R10はそれぞれ水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基ないしアルキルアリール基、炭素数7〜30のアラルキル基、炭素数4〜20のシクロアルキル基、炭素数15〜25の2−(4−オキシフェニル)プロピル置換アリール基を示す。なお、シクロアルキル基およびアリール基は、アルキル基で置換されていないもの、またはアルキル基で置換されているもののいずれも選択できる。] [Wherein R 9 and R 10 are each a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or an alkylaryl group, an aralkyl group having 7 to 30 carbon atoms, and an alkyl group having 4 to 20 carbon atoms. A cycloalkyl group, a 2- (4-oxyphenyl) propyl-substituted aryl group having 15 to 25 carbon atoms is shown. The cycloalkyl group and the aryl group can be selected from those not substituted with an alkyl group or those substituted with an alkyl group. ]

Figure 2012036324
Figure 2012036324

[式中R11、R12は炭素数12〜15のアルキル基である。なお、R11およびR12は互いに同一または互いに異なるのいずれの場合も選択できる。]で表わされるホスファイト化合物を挙げることができる。 [Wherein R 11 and R 12 are alkyl groups having 12 to 15 carbon atoms. Note that R 11 and R 12 can be selected to be the same or different from each other. The phosphite compound represented by this can be mentioned.

ホスホナイト化合物としては下記一般式〔14〕で表わされるホスホナイト化合物、および下記一般式〔15〕で表わされるホスホナイト化合物を挙げることができる。   Examples of the phosphonite compound include a phosphonite compound represented by the following general formula [14] and a phosphonite compound represented by the following general formula [15].

Figure 2012036324
Figure 2012036324
Figure 2012036324
Figure 2012036324

[式中、Ar、Arは炭素数6〜20のアリール基ないしアルキルアリール基、または炭素数15〜25の2−(4−オキシフェニル)プロピル置換アリール基を示し、4つのArは互いに同一、または互いに異なるいずれも選択できる。または2つのArは互いに同一、または互いに異なるいずれも選択できる。] [In the formula, Ar 1, Ar 2 represents a 2- (4-oxyphenyl) propyl-substituted aryl group of the aryl group or alkyl aryl group having 6 to 20 carbon atoms, or 15-25 carbon atoms, the four Ar 1 Either the same or different from each other can be selected. Alternatively, two Ar 2 can be selected to be the same or different from each other. ]

上記一般式〔11〕で表されるホスファイト化合物の好ましい具体例としては、ジフェニルイソオクチルホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイトが挙げられる。   Preferable specific examples of the phosphite compound represented by the above general formula [11] include diphenylisooctyl phosphite, 2,2′-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, diphenylmono (Tridecyl) phosphite, phenyl diisodecyl phosphite, phenyl di (tridecyl) phosphite are mentioned.

上記一般式〔12〕で表されるホスファイト化合物の好ましい具体例としては、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられ、好ましくはジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトを挙げることができる。かかるホスファイト化合物は1種、または2種以上を併用することができる。   Preferable specific examples of the phosphite compound represented by the general formula [12] include distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2 , 6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, dicyclohexylpentaerythritol diphosphite, etc., preferably distearyl pentaerythritol diphosphite, Bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite and bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite can be mentioned.Such phosphite compounds can be used alone or in combination of two or more.

上記一般式〔13〕で表されるホスファイト化合物の好ましい具体例としては、4,4’−イソプロピリデンジフェノールテトラトリデシルホスファイトを挙げることができる。   Preferable specific examples of the phosphite compound represented by the general formula [13] include 4,4'-isopropylidenediphenol tetratridecyl phosphite.

上記一般式〔14〕で表されるホスホナイト化合物の好ましい具体例としては、テトラキス(2,4−ジ−iso−プロピルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−n−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−iso−プロピルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−n−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト等が挙げられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトがより好ましい。このテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトは、2種以上の混合物が好ましく、具体的にはテトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト(E2−1成分)、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト(E2−2成分)および、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト(E2−3成分)の1種もしくは2種以上を併用して使用可能であるが、好ましくはかかる3種の混合物である。また、3種の混合物の場合その混合比は、F−1成分、F−2成分およびF−3成分を重量比で100:37〜64:4〜14の範囲が好ましく、100:40〜60:5〜11の範囲がより好ましい。   Preferable specific examples of the phosphonite compound represented by the general formula [14] include tetrakis (2,4-di-iso-propylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di -N-butylphenyl) -4,4'-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylenediphosphonite, tetrakis (2,4-di-tert) -Butylphenyl) -4,3'-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3'-biphenylenediphosphonite, tetrakis (2,6-di-iso-propyl) Phenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,6-di-n-butylphenyl) -4,4′-bifu Nylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylenedi Examples thereof include phosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite is preferred, and tetrakis ( 2,4-di-tert-butylphenyl) -biphenylenediphosphonite is more preferred. The tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferably a mixture of two or more, specifically tetrakis (2,4-di-tert-butylphenyl) -4,4. '-Biphenylenediphosphonite (E2-1 component), tetrakis (2,4-di-tert-butylphenyl) -4,3'-biphenylenediphosphonite (E2-2 component) and tetrakis (2,4- One kind or two or more kinds of di-tert-butylphenyl) -3,3′-biphenylenediphosphonite (component E2-3) can be used in combination, but these three kinds of mixtures are preferable. In the case of three kinds of mixtures, the mixing ratio is preferably in the range of 100: 37 to 64: 4 to 14 by weight ratio of the F-1 component, F-2 component and F-3 component, and 100: 40 to 60 : The range of 5-11 is more preferable.

上記一般式〔15〕で表されるホスホナイト化合物の好ましい具体例としては、ビス(2,4−ジ−iso−プロピルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイトビス(2,6−ジ−iso−プロピルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられ、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。このビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトは、2種以上の混合物が好ましく、具体的にはビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、およびビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイトの1種もしくは2種を併用して使用可能であるが、好ましくはかかる2種の混合物である。また、2種の混合物の場合その混合比は、重量比で5:1〜4の範囲が好ましく、5:2〜3の範囲がより好ましい。   Preferable specific examples of the phosphonite compound represented by the general formula [15] include bis (2,4-di-iso-propylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di-n -Butylphenyl) -3-phenyl-phenylphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di-tert-butylphenyl) -3 -Phenyl-phenylphosphonite bis (2,6-di-iso-propylphenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, Bis (2,6-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-tert-butyl) Benzyl) -3-phenyl-phenylphosphonite and the like, bis (di-tert-butylphenyl) -phenyl-phenylphosphonite is preferred, bis (2,4-di-tert-butylphenyl) -phenyl-phenyl Phosphonite is more preferred. The bis (2,4-di-tert-butylphenyl) -phenyl-phenylphosphonite is preferably a mixture of two or more, specifically, bis (2,4-di-tert-butylphenyl) -4- One or two of phenyl-phenylphosphonite and bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite can be used in combination. It is a mixture. In the case of two kinds of mixtures, the mixing ratio is preferably in the range of 5: 1 to 4 by weight, and more preferably in the range of 5: 2 to 3.

一方、ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリメチルホスフェートである。   On the other hand, as phosphate compounds, tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl Examples thereof include phosphate and diisopropyl phosphate, and trimethyl phosphate is preferable.

上記のリン含有熱安定剤の中で、さらに好ましい化合物としては、以下の一般式〔16〕および〔17〕で表される化合物を挙げることができる。   Among the above phosphorus-containing heat stabilizers, more preferred compounds include compounds represented by the following general formulas [16] and [17].

Figure 2012036324
[式〔16〕中、R13およびR14は、それぞれ独立して炭素原子数1〜12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示す。]
Figure 2012036324
[In Formula [16], R < 13 > and R < 14 > show a C1-C12 alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group each independently. ]

Figure 2012036324
(式〔17〕中、R15、R16、R17、R18、R21、R22、およびR23はそれぞれ独立して水素原子、炭素原子数1〜12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示し、R19は水素原子または炭素原子数1〜4のアルキル基を示し、およびR20は水素原子またはメチル基を示す。)
Figure 2012036324
(In the formula [17], R 15 , R 16 , R 17 , R 18 , R 21 , R 22 , and R 23 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, An aryl group or an aralkyl group, R 19 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 20 represents a hydrogen atom or a methyl group.)

式〔16〕中、好ましくはR13およびR14は炭素原子数1〜12のアルキル基であり、より好ましくは炭素原子数1〜8のアルキル基である。式〔16〕で表される化合物としては具体的に、トリス(ジメチルフェニル)ホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイトなどが挙げられ、特にトリス(2,6−ジ−tert−ブチルフェニル)ホスファイトが好ましい。 In the formula [16], R 13 and R 14 are preferably an alkyl group having 1 to 12 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms. Specific examples of the compound represented by the formula [16] include tris (dimethylphenyl) phosphite, tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, tris (di-n-butyl). Phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) Examples thereof include phosphite, and tris (2,6-di-tert-butylphenyl) phosphite is particularly preferable.

式〔17〕で表される化合物としては具体的に、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェノール)と2,6−ジ−tert−ブチルフェノールから誘導されるホスファイト、 2,2’−メチレンビス(4,6−ジ−tert−ブチルフェノール)とフェノールから誘導されるホスファイト、が挙げられ、特に2,2’−メチレンビス(4,6−ジ−tert−ブチルフェノール)とフェノールから誘導されるホスファイトが好ましい。   Specifically, the compound represented by the formula [17] is a phosphite derived from 2,2′-methylenebis (4,6-di-tert-butylphenol) and 2,6-di-tert-butylphenol, 2 2,2'-methylenebis (4,6-di-tert-butylphenol) and phosphites derived from phenol, especially from 2,2'-methylenebis (4,6-di-tert-butylphenol) and phenol. Derived phosphites are preferred.

本発明の照明カバーに用いられる熱可塑性樹脂組成物に配合することができる酸化防止剤としてはフェノール系酸化防止剤を挙げることができる。フェノール系酸化防止剤により熱暴露時の変色を抑制できると共に、難燃性の向上に対してもある程度の効果を発揮する。かかるフェノール系酸化防止剤としては種々のものを使用することができる。   Examples of the antioxidant that can be added to the thermoplastic resin composition used in the lighting cover of the present invention include a phenol-based antioxidant. The phenolic antioxidant can suppress discoloration when exposed to heat and exhibits a certain degree of effect on improving flame retardancy. Various types of such phenolic antioxidants can be used.

かかるフェノール系酸化防止剤の具体例としては、例えばビタミンE、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3’,5’−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどを挙げることができ、好ましく使用できる。   Specific examples of such phenolic antioxidants include, for example, vitamin E, n-octadecyl-β- (4′-hydroxy-3 ′, 5′-di-tert-butylfel) propionate, 2-tert-butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethylaminomethyl) phenol, 3 , 5-Di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert- Butylphenol), 4,4'-methylenebis (2,6-di-tert-butylphenol), 2,2'-me Renbis (4-methyl-6-cyclohexylphenol), 2,2′-dimethylene-bis (6-α-methyl-benzyl-p-cresol) 2,2′-ethylidene-bis (4,6-di-tert- Butylphenol), 2,2'-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), triethylene glycol-N-bis-3 -(3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediol bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, bis [ 2-tert-butyl-4-methyl 6- (3-tert-butyl-5-methyl-2-hydroxybenzyl) fe Ru] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1, -dimethylethyl} -2,4,8, 10-tetraoxaspiro [5,5] undecane, 4,4′-thiobis (6-tert-butyl-m-cresol), 4,4′-thiobis (3-methyl-6-tert-butylphenol), 2, 2′-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4′-di-thiobis (2,6-di-) tert-butylphenol), 4,4′-tri-thiobis (2,6-di-tert-butylphenol), 2,4-bis (n-octylthio) -6- (4-hydroxy 3 ', 5'-di-tert-butylanilino) -1,3,5-triazine, N, N'-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N , N′-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) ) Butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-) Hydroxyphenyl) isocyanurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3- Hydroxy-2,6-dimethylbenzyl) isocyanurate, 1,3,5-tris 2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate, tetrakis [methylene-3 -(3 ', 5'-di-tert-butyl-4-hydroxyphenyl) propionate] methane can be mentioned and can be preferably used.

より好ましくは、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンであり、さらにn−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネートが好ましい。   More preferably, n-octadecyl-β- (4′-hydroxy-3 ′, 5′-di-tert-butylfel) propionate, 2-tert-butyl-6- (3′-tert-butyl-5′-methyl) -2'-hydroxybenzyl) -4-methylphenyl acrylate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1,- Dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane and tetrakis [methylene-3- (3 ′, 5′-di-tert-butyl-4-hydroxyphenyl) propionate] methane Further, n-octadecyl-β- (4′-hydroxy-3 ′, 5′-di-tert-butylfel) propionate is preferable.

また、酸化防止剤としてイオウ含有酸化防止剤を使用することもできる。特に樹脂組成物が回転成形や圧縮成形に使用される場合には好適である。かかるイオウ含有酸化防止剤の具体例としては、ジラウリル−3,3’−チオジプロピオン酸エステル、ジトリデシル−3,3’−チオジプロピオン酸エステル、ジミリスチル−3,3’−チオジプロピオン酸エステル、ジステアリル−3,3’−チオジプロピオン酸エステル、ラウリルステアリル−3,3’−チオジプロピオン酸エステル、ペンタエリスリトールテトラ(β−ラウリルチオプロピオネート)エステル、ビス[2−メチル−4−(3−ラウリルチオプロピオニルオキシ)−5−tert−ブチルフェニル]スルフィド、オクタデシルジスルフィド、メルカプトベンズイミダゾール、2−メルカプト−6−メチルベンズイミダゾール、1,1’−チオビス(2−ナフトール)などを挙げることができる。より好ましくは、ペンタエリスリトールテトラ(β−ラウリルチオプロピオネート)エステルを挙げることができる。   Also, a sulfur-containing antioxidant can be used as the antioxidant. It is particularly suitable when the resin composition is used for rotational molding or compression molding. Specific examples of such sulfur-containing antioxidants include dilauryl-3,3'-thiodipropionate, ditridecyl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate. , Distearyl-3,3′-thiodipropionate, laurylstearyl-3,3′-thiodipropionate, pentaerythritol tetra (β-laurylthiopropionate) ester, bis [2-methyl-4 -(3-laurylthiopropionyloxy) -5-tert-butylphenyl] sulfide, octadecyl disulfide, mercaptobenzimidazole, 2-mercapto-6-methylbenzimidazole, 1,1′-thiobis (2-naphthol) and the like. be able to. More preferably, a pentaerythritol tetra ((beta) -lauryl thiopropionate) ester can be mentioned.

上記に挙げたリン含有熱安定剤、フェノール系酸化防止剤、およびイオウ含有酸化防止剤はそれぞれ単独または2種以上併用することができる。これらの安定剤の組成物中の割合としては、芳香族ポリカーボネート樹脂(A成分)100重量部当たり、リン含有安定剤、フェノール系酸化防止剤、またはイオウ含有酸化防止剤はそれぞれ0.0001〜1重量部であることが好ましい。より好ましくは0.0005〜0.5重量部であり、さらに好ましくは0.001〜0.2重量部である。   The phosphorus-containing heat stabilizer, phenolic antioxidant, and sulfur-containing antioxidant listed above can be used alone or in combination of two or more. The proportion of these stabilizers in the composition is 0.0001 to 1 for each of the phosphorus-containing stabilizer, phenol-based antioxidant, or sulfur-containing antioxidant per 100 parts by weight of the aromatic polycarbonate resin (component A). It is preferable that it is a weight part. More preferably, it is 0.0005-0.5 weight part, More preferably, it is 0.001-0.2 weight part.

本発明の照明カバーに用いられる熱可塑性樹脂組成物には、必要に応じて離型剤を配合することができる。かかる離型剤としてはそれ自体公知のものが使用できる。例えば、飽和脂肪酸エステル、不飽和脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックスまたは1−アルケン重合体が挙げられる。これらは酸変性などの官能基含有化合物で変性されているものも使用できる)、シリコーン化合物(本発明のC成分以外のもの。例えば直鎖状または環状のポリジメチルシロキサンオイルやポリメチルフェニルシリコーンオイルなどが挙げられる。これらは酸変性などの官能基含有化合物で変性されているものも使用できる)、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。これらの中でも飽和脂肪酸エステル類、直鎖状または環状のポリジメチルシロキサンオイルやポリメチルフェニルシリコーンオイルなど、およびフッ素オイルを挙げることができる。好ましい離型剤としては飽和脂肪酸エステルが挙げられ、例えばステアリン酸モノグリセライドなどのモノグリセライド類、デカグリセリンデカステアレートおよびデカグリセリンテトラステアレート等のポリグリセリン脂肪酸エステル類、ステアリン酸ステアレートなどの低級脂肪酸エステル類、セバシン酸ベヘネートなどの高級脂肪酸エステル類、ペンタエリスリトールテトラステアレートなどのエリスリトールエステル類が使用される。かかる離型剤の含有量は芳香族ポリカーボネート樹脂(A成分)100重量部に対して0.01〜0.3重量部が好ましい。   A release agent can be blended in the thermoplastic resin composition used for the lighting cover of the present invention, if necessary. As such a release agent, those known per se can be used. For example, saturated fatty acid ester, unsaturated fatty acid ester, polyolefin wax (polyethylene wax or 1-alkene polymer may be used. These may be modified with a functional group-containing compound such as acid modification), silicone compounds (Other than the component C of the present invention. Examples include linear or cyclic polydimethylsiloxane oil and polymethylphenyl silicone oil. These are also modified with functional group-containing compounds such as acid modification. ), Fluorine compounds (fluorine oil typified by polyfluoroalkyl ether, etc.), paraffin wax, beeswax and the like. Among these, saturated fatty acid esters, linear or cyclic polydimethylsiloxane oil, polymethylphenyl silicone oil, and fluorine oil can be mentioned. Preferable mold release agents include saturated fatty acid esters. For example, monoglycerides such as stearic acid monoglyceride, polyglycerin fatty acid esters such as decaglycerin decastate and decaglycerin tetrastearate, and lower fatty acid esters such as stearic acid stearate. , Higher fatty acid esters such as sebacic acid behenate, and erythritol esters such as pentaerythritol tetrastearate are used. The content of the release agent is preferably 0.01 to 0.3 parts by weight with respect to 100 parts by weight of the aromatic polycarbonate resin (component A).

また、本発明の照明カバーに用いられる熱可塑性樹脂組成物には紫外線吸収剤などに基づく黄色味を打ち消すためにブルーイング剤を配合することができる。ブルーイング剤としては通常ポリカーボネート樹脂に使用されるものであれば、特に支障なく使用することができる。一般的にはアンスラキノン系染料が入手容易であり好ましい。具体的なブルーイング剤としては、例えば一般名Solvent Violet13[CA.No(カラーインデックスNo)60725;商標名 バイエル社製「マクロレックスバイオレットB」、三菱化学(株)製「ダイアレジンブルーG」、住友化学工業(株)製「スミプラストバイオレットB」]、一般名Solvent Violet31[CA.No68210;商標名 三菱化学(株)製「ダイアレジンバイオレットD」]、一般名Solvent Violet33[CA.No60725;商標名 三菱化学(株)製「ダイアレジンブルーJ」]、一般名Solvent Blue94[CA.No61500;商標名 三菱化学(株)製「ダイアレジンブルーN」]、一般名Solvent Violet36[CA.No68210;商標名 バイエル社製「マクロレックスバイオレット3R」]、一般名Solvent Blue97[商標名 バイエル社製「マクロレックスブルーRR」]および一般名Solvent Blue45[CA.No61110;商標名 サンド社製「テラゾールブルーRLS」]等が挙げられ、特に、マクロレックスブルーRR、マクロレックスバイオレットBやテラゾールブルーRLSが好ましい。ブルーイング剤の含有量は芳香族ポリカーボネート樹脂(A成分)100重量部当たり0.000005〜0.0010重量部が好ましく、より好ましくは0.00001〜0.0001重量部である。   In addition, the thermoplastic resin composition used in the lighting cover of the present invention can be blended with a bluing agent in order to counteract the yellowish color based on an ultraviolet absorber or the like. Any bluing agent can be used without any problem as long as it is usually used for polycarbonate resin. In general, anthraquinone dyes are preferred because they are readily available. Specific examples of the bluing agent include the general name Solvent Violet 13 [CA. No. (Color Index No.) 60725; Trade names “Macrolex Violet B” manufactured by Bayer, “Diaresin Blue G” manufactured by Mitsubishi Chemical Corporation, “Sumiplast Violet B” manufactured by Sumitomo Chemical Co., Ltd.], general name Solvent Violet 31 [CA. No. 68210; Trade name “Diaresin Violet D” manufactured by Mitsubishi Chemical Corporation], generic name Solvent Violet 33 [CA. No. 60725; trade name “Diaresin Blue J” manufactured by Mitsubishi Chemical Corporation], generic name Solvent Blue 94 [CA. No. 61500; trade name “Diaresin Blue N” manufactured by Mitsubishi Chemical Corporation, generic name Solvent Violet 36 [CA. No. 68210; Trade name: “Macrolex Violet 3R” manufactured by Bayer, Inc., generic name: Solvent Blue 97 [trade name: “Macrolex Blue RR” manufactured by Bayer, Inc.], and generic name: Solvent Blue 45 [CA. No. 61110; trade name “Terrazol Blue RLS” manufactured by Sand Corp.] and the like, and Macrolex Blue RR, Macrolex Violet B and Terrazol Blue RLS are particularly preferable. The content of the bluing agent is preferably 0.000005 to 0.0010 parts by weight, more preferably 0.00001 to 0.0001 parts by weight per 100 parts by weight of the aromatic polycarbonate resin (component A).

本発明の照明カバーに用いられる熱可塑性樹脂組成物はドリップ防止性に優れるが、かかる性能をさらに補強するため通常のドリップ防止剤を併用することができる。しかしながら該熱可塑性樹脂組成物において、本発明の照明カバーの光学特性を損なわないためその配合量はA成分100重量部に対し0.2重量部以下が適切であり、0.1重量部以下が好ましく、0.08重量部以下がより好ましい。かかるドリップ防止剤としてはフィブリル形成能を有する含フッ素ポリマーを挙げることができる。特にポリテトラフルオロエチレン(以下PTFEと称することがある)が好ましい。フィブリル形成能を有するPTFEの分子量は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その分子量は、標準比重から求められる数平均分子量において100万〜1,000万、より好ましくは200万〜900万である。かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、さらに良好な難燃性および良好な光学特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。混合形態のPTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3000」(商品名)、「メタブレン A3700」(商品名)、「メタブレン A3750」(商品名)、およびGEスペシャリティーケミカルズ社製「BLENDEX B449」(商品名)などを挙げることができる。   The thermoplastic resin composition used for the lighting cover of the present invention is excellent in anti-drip properties, but a normal anti-drip agent can be used in combination to further reinforce such performance. However, in the thermoplastic resin composition, in order not to impair the optical characteristics of the lighting cover of the present invention, the blending amount is suitably 0.2 parts by weight or less with respect to 100 parts by weight of component A, and 0.1 parts by weight or less. Preferably, 0.08 weight part or less is more preferable. Examples of such an anti-drip agent include a fluorine-containing polymer having a fibril forming ability. Polytetrafluoroethylene (hereinafter sometimes referred to as PTFE) is particularly preferable. PTFE having a fibril forming ability has a very high molecular weight, and tends to be bonded to each other by an external action such as shearing force to form a fiber. The molecular weight is 1 million to 10 million, more preferably 2 million to 9 million in the number average molecular weight determined from the standard specific gravity. Such PTFE can be used in solid form or in the form of an aqueous dispersion. In addition, PTFE having such fibril-forming ability can improve the dispersibility in the resin, and it is also possible to use a PTFE mixture in a mixed form with other resins in order to obtain better flame retardancy and good optical properties. It is. Commercially available products of PTFE in the mixed form include “Metablene A3000” (trade name), “Metablene A3700” (trade name), “Metablene A3750” (trade name) manufactured by Mitsubishi Rayon Co., Ltd., and GE Specialty Chemicals “BLENDEX B449” (trade name) and the like.

<樹脂組成物の製造について>
本発明の樹脂組成物を製造するには、任意の方法が採用される。例えばA成分、B成分、C成分およびD成分、更には他の成分をそれぞれV型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどにより造粒を行い、その後ベント式二軸ルーダーに代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する方法が挙げられる。別法として、A成分および任意にB成分、C成分、D成分更には他の成分をそれぞれ独立にベント式二軸ルーダーに代表される溶融混練機に供給する方法、A成分および他の成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。なお、配合する成分に液状のものがある場合には、溶融混練機への供給にいわゆる液注装置、または液添装置を使用することができる。
<About production of resin composition>
Arbitrary methods are employ | adopted in order to manufacture the resin composition of this invention. For example, after thoroughly mixing A component, B component, C component and D component, and other components using premixing means such as V-type blender, Henschel mixer, mechanochemical device, extrusion mixer, etc. Accordingly, there is a method in which granulation is performed by an extrusion granulator or a briquetting machine, followed by melt kneading with a melt kneader represented by a vent type biaxial ruder, and pelletization with an apparatus such as a pelletizer. Alternatively, the A component and optionally the B component, the C component, the D component, and other components are independently fed to a melt kneader represented by a vented twin screw rudder, the A component and the other components. Examples include a method in which a part is premixed and then supplied to the melt-kneader independently of the remaining components. In addition, when there exists a liquid thing in the component to mix | blend, what is called a liquid injection apparatus or a liquid addition apparatus can be used for supply to a melt kneader.

<照明カバーの製造>
本発明の照明カバーは、通常、本発明に用いる熱可塑性樹脂組成物を射出成形して得ることができる。かかる射出成形においては、通常のコールドランナー方式の成形法だけでなく、ランナーレスを可能とするホットランナーによって製造することも可能である。また射出成形においても、通常の成形方法だけでなくガスアシスト射出成形、射出圧縮成形、超高速射出成形、射出プレス成形、二色成形、サンドイッチ成形、インモールドコーティング成形、インサート成形、ブロー成形、発泡成形(超臨界流体を利用するものを含む)、急速加熱冷却金型成形、断熱金型成形および金型内再溶融成形、並びにこれらの組合せからなる成形法等を使用することができる。
<Manufacture of lighting cover>
The lighting cover of the present invention can usually be obtained by injection molding the thermoplastic resin composition used in the present invention. In such injection molding, not only a normal cold runner type molding method but also a hot runner that enables runnerlessness can be used. Also in injection molding, not only ordinary molding methods, but also gas-assisted injection molding, injection compression molding, ultra-high speed injection molding, injection press molding, two-color molding, sandwich molding, in-mold coating molding, insert molding, blow molding, foaming Molding (including those using supercritical fluid), rapid heating / cooling mold molding, heat insulation mold molding and in-mold remelt molding, and molding methods composed of these combinations can be used.

さらに本発明の照明カバーには、各種の表面処理を行うことが可能である。表面処理としては、加飾塗装、ハードコート、撥水・撥油コート、親水コート、紫外線吸収コート、赤外線吸収コート、電磁波吸収コート、発熱コート、帯電防止コート、制電コート、導電コート、並びにメタライジング(メッキ、化学蒸着(CVD)、物理蒸着(PVD)、溶射など)などの各種の表面処理を行うことができる。殊に透明シートに透明導電層が被覆されたものは好適である。   Further, the lighting cover of the present invention can be subjected to various surface treatments. Surface treatment includes decorative coating, hard coat, water / oil repellent coat, hydrophilic coat, UV absorbing coat, infrared absorbing coat, electromagnetic wave absorbing coat, heat generating coat, antistatic coat, antistatic coating, conductive coating, and meta coating. Various surface treatments such as rising (plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal spraying, etc.) can be performed. In particular, a transparent sheet coated with a transparent conductive layer is preferred.

本発明の照明カバーは、ある特定の粘度平均分子量と構造粘性指数を有する熱可塑性樹脂組成物、好ましくはポリカーボネート樹脂組成物からなる照明カバーであり、5VAの規格を充分に達成可能な難燃性を持ち、かつ良好な成形性と高い光線透過率を維持できる照明カバーである。これらの技術は従来の照明カバーの技術にはないものであり、各種照明用途に極めて有用であり、その奏する工業的効果は極めて大である。   The lighting cover of the present invention is a lighting cover made of a thermoplastic resin composition having a specific viscosity-average molecular weight and a structural viscosity index, preferably a polycarbonate resin composition, and is capable of sufficiently achieving the 5VA standard. It is a lighting cover that can maintain good moldability and high light transmittance. These technologies are not present in the conventional lighting cover technology, and are extremely useful for various lighting applications, and the industrial effects exerted by them are extremely large.

実施例において外観の評価に使用した照明カバーである。It is the illumination cover used for evaluation of an external appearance in an Example. 実施例において落下衝撃性の評価に使用した鉄製のおもりを取り付けた照明カバーである。It is the lighting cover which attached the iron weight used for evaluation of drop impact property in an Example.

本発明者らが現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。   The form of the present invention considered to be the best by the present inventors is a collection of the preferable ranges of the above requirements. For example, typical examples are described in the following examples. Of course, the present invention is not limited to these forms.

以下に実施例を挙げてさらに説明するが、本発明はそれに限定されるものではない。
尚、評価としては以下の項目について実施した。
The present invention will be further described below with reference to examples, but the present invention is not limited thereto.
The following items were evaluated.

(i)構造粘性指数
実施例の各組成から得られたペレットについて、ISO11443(JIS K 7199)に準拠し、キャピラリー型レオメーター(東洋精機製作所(株)製 キャピログラフ1D)を使用し、キャピラリーとして東洋精機製作所(株)製 キャピラリー型式EF(径:1.0mm、長さ:10.0mm、L/D:10)を用いて、炉体温度300℃で、剪断速度D(60.8−6080 sec−1)に対する剪断応力σ(Pa)を測定し、それぞれの値を両対数グラフにプロットして得られる回帰直線の勾配から構造粘性指数Nを求めた。
(I) Structural viscosity index About the pellet obtained from each composition of the Example, based on ISO11443 (JIS K7199), a capillary type rheometer (Toyo Seiki Seisakusho Co., Ltd. Capillograph 1D) was used, and Toyo was used as a capillary. Using a capillary type EF (diameter: 1.0 mm, length: 10.0 mm, L / D: 10) manufactured by Seiki Seisakusho Co., Ltd., at a furnace body temperature of 300 ° C. and a shear rate D (60.8-6080 sec) -1 ) was measured, and the structural viscosity index N was determined from the slope of the regression line obtained by plotting each value on a log-log graph.

(ii)粘度平均分子量
実施例の各組成から得られたペレットについて、次式にて算出される比粘度(ηSP)を、20℃で塩化メチレン100mlに各ペレット0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出する。
ηSP/c=[η]+0.45×[η]c (但し[η]は極限粘度)
[η]=1.23×10−4 Mv0.83
c=0.7
なお、実施例の各組成から得られたペレットが不溶な成分を含む場合(実施例6〜10)、粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の塩化メチレンを除去する。塩化メチレン除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mvを算出する。
(Ii) Viscosity average molecular weight About the pellet obtained from each composition of an Example, the specific viscosity ((eta) SP ) calculated by following Formula is taken from the solution which melt | dissolved 0.7g of each pellet in 100 ml of methylene chloride at 20 degreeC. Obtained using an Ostwald viscometer,
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
From the obtained specific viscosity (η SP ), the viscosity average molecular weight Mv is calculated by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 Mv 0.83
c = 0.7
In addition, when the pellet obtained from each composition of an Example contains an insoluble component (Examples 6-10), calculation of a viscosity average molecular weight is performed in the following way. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble component in the composition. Such soluble matter is collected by Celite filtration. The methylene chloride in the resulting solution is then removed. After the methylene chloride is removed, the solid is sufficiently dried to obtain a solid component that dissolves in methylene chloride. The specific viscosity at 20 ° C. is determined from a solution obtained by dissolving 0.7 g of the solid in 100 ml of methylene chloride in the same manner as described above, and the viscosity average molecular weight Mv is calculated from the specific viscosity in the same manner as described above.

(iii)難燃性
実施例の各組成から得られたペレットを120℃で6時間、熱風循環式乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]により、シリンダー温度300℃、金型温度80℃でUL規格94―5Vに従い難燃性評価用の厚み3.0mmの試験片を成形し、評価した。なお、判定が5VAの基準も満たすことが出来なかった場合「not 5V」と示すこととする。
(Iii) Flame retardance The pellets obtained from each composition of the examples were dried at 120 ° C. for 6 hours in a hot air circulating dryer, and the cylinder temperature was measured by an injection molding machine [Toshiba Machine Co., Ltd. IS150EN-5Y]. A test piece having a thickness of 3.0 mm for flame retardancy evaluation was molded and evaluated at 300 ° C. and a mold temperature of 80 ° C. according to UL standard 94-5V. If the determination fails to satisfy the 5VA standard, “not 5V” is indicated.

(iv)外観
実施例の各組成から得られたペレットを120℃で6時間、熱風循環式乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]により、シリンダー温度300℃、金型温度80℃で成形した、図1に示す直径50mm×高さ60mm×厚み2.0mmの照明カバーの表面外観を目視確認した。判定は成形品がフルショットや、やけがない物を○、ショートショットや、やけがある物を×で示した。
(Iv) Appearance Pellets obtained from the compositions of the examples were dried at 120 ° C. for 6 hours in a hot air circulating dryer, and the cylinder temperature was 300 ° C. using an injection molding machine [Toshiba Machine Co., Ltd. IS150EN-5Y]. The surface appearance of a lighting cover having a diameter of 50 mm, a height of 60 mm, and a thickness of 2.0 mm shown in FIG. In the judgment, the molded product is indicated by a full shot or an object with no burn, and a short shot or an object with an burn by ×.

(v)落下衝撃性
(iv)で作成した直径50mm×高さ60mm×厚み2.0mmの照明カバーの内側に、図2に示すように径30mmの球( 重量1.0kg)の鉄製のおもりを取り付け、照明カバーをコンクリート製の床に高さ1mから自然落下させることにより落下衝撃性を評価した。判定は、クラックが入らなかったものを○、クラックが入ったものを×で示した。
(V) Drop impact property An iron weight of a sphere (weight: 1.0 kg) having a diameter of 30 mm as shown in FIG. 2 inside the lighting cover having a diameter of 50 mm × height of 60 mm × thickness of 2.0 mm prepared in (iv). Was attached, and the lighting cover was naturally dropped from a height of 1 m onto a concrete floor to evaluate the drop impact property. Judgment was indicated by ○ when the crack did not occur and by × when the crack occurred.

[実施例1〜10、および比較例1〜4]
表1〜表2記載の配合割合からなる樹脂組成物を以下の要領で作成した。尚、説明は以下の表中の記号にしたがって説明する。表の割合の各成分を計量して、タンブラーを用いて均一に混合し、かかる混合物を押出機に投入して樹脂組成物の作成を行った。押出機としては径30mmφのベント式二軸押出機((株)神戸製鋼所KTX−30)を使用した。スクリュー構成はベント位置以前に第1段のニーディングゾーン(送りのニーディングディスク×2、送りのローター×1、戻しのローター×1および戻しニーディングディスク×1から構成される)を、ベント位置以後に第2段のニーディングゾーン(送りのローター×1、および戻しのローター×1から構成される)を設けてあった。シリンダ−温度およびダイス温度が290℃、およびベント吸引度が3000Paの条件でストランドを押出し、水浴において冷却した後ペレタイザーでストランドカットを行い、ペレット化した。得られたペレットを上記の方法を用い、難燃性評価用の試験片および照明カバーを成形した。なお、表1〜表2に記載の使用した原料等は以下の通りである。
[Examples 1 to 10 and Comparative Examples 1 to 4]
The resin composition which consists of a mixture ratio of Table 1-Table 2 was created in the following ways. The description will be made according to the symbols in the following table. Each component of the ratio of the table | surface was measured, it mixed uniformly using the tumbler, this mixture was thrown into the extruder, and preparation of the resin composition was performed. As the extruder, a vent type twin screw extruder (Kobe Steel Works KTX-30) having a diameter of 30 mmφ was used. The screw configuration is the first stage kneading zone (consisting of 2 feed kneading discs, 1 feed rotor, 1 return rotor and 1 return kneading disc) before the vent position. Thereafter, a second-stage kneading zone (consisting of a feed rotor × 1 and a return rotor × 1) was provided. The strand was extruded under the conditions of cylinder temperature and die temperature of 290 ° C. and vent suction of 3000 Pa, cooled in a water bath, then strand-cut with a pelletizer and pelletized. Using the obtained pellets, a test piece for evaluating flame retardancy and a lighting cover were molded. In addition, the used raw material etc. of Table 1-Table 2 are as follows.

(A−1成分)
PC−1M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.96mol%、粘度平均分子量14,000)
(PC−1Mの製造方法)
温度計、攪拌機、還流冷却器付き反応器にイオン交換水2340部、25%水酸化ナトリウム水溶液947部、ハイドロサルファイト0.7部を仕込み、攪拌下に2,2−ビス(4−ヒドロキシフェニル)プロパン(以下「ビスフェノールA」と称する事がある)710部を溶解した(ビスフェノールA溶液)後、塩化メチレン2299部と48.5%水酸化ナトリウム水溶液112部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液38.1部(1.00mol%)を加えて、15〜25℃でホスゲン354部を約90分かけて吹き込みホスゲン化反応を行った。ホスゲン化終了後、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液241部と48.5%水酸化ナトリウム水溶液88部を加えて、攪拌を停止し、10分間静置分離後、攪拌を行い乳化させ5分後、ホモミキサー(特殊機化工業(株))で回転数1200rpm、バス回数35回で処理し高乳化ドープを得た。該高乳化ドープを重合槽(攪拌機付き)で、無攪拌条件下、温度35℃で3時間反応し重合を終了した。反応終了後、塩化メチレン5728部を加えて希釈した後、反応混合液から塩化メチレン相を分離し、分離した塩化メチレン相にイオン交換水5000部を加え攪拌混合した後、攪拌を停止し、水相と有機相を分離した。次に水相の導電率がイオン交換水と殆ど同じになるまで水洗浄を繰返し精製ポリカーボネート樹脂溶液を得た。次に、該精製ポリカーボネート樹脂溶液をイオン交換水100Lを投入した1000Lニーダーで、液温75℃にて塩化メチレンを蒸発させて粉粒体を得た。該粉粒体25部と水75部を攪拌機付熱水処理槽に投入し、水温95℃で30分間攪拌混合した。次いで、該粉粒体と水の混合物を遠心分離機で分離して、塩化メチレン0.5重量%、水45重量%を含む粉粒体を得た。次に、この粉粒体を140℃にコントロールされているSUS316L製伝導受熱式溝型2軸攪拌連続乾燥機に50kg/hr(ポリカーボネート樹脂換算)で連続供給して、平均乾燥時間3時間の条件で乾燥して、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量14,000、分岐率0.96mol%であった。
(A-1 component)
PC-1M: Aromatic polycarbonate resin having a branched structure (branching rate 0.96 mol%, viscosity average molecular weight 14,000)
(Manufacturing method of PC-1M)
A reactor equipped with a thermometer, a stirrer, and a reflux condenser was charged with 2340 parts of ion-exchanged water, 947 parts of a 25% aqueous sodium hydroxide solution and 0.7 parts of hydrosulfite, and 2,2-bis (4-hydroxyphenyl) under stirring. ) After dissolving 710 parts of propane (hereinafter sometimes referred to as “bisphenol A”) (bisphenol A solution), 2299 parts of methylene chloride, 112 parts of 48.5% aqueous sodium hydroxide solution, 14% strength aqueous sodium hydroxide solution 38.1 parts (1.00 mol%) of an aqueous solution in which 1,1,1-tris (4-hydroxyphenyl) ethane was dissolved at a concentration of 25% was added to the mixture, and 354 parts of phosgene was added at 15 to 25 ° C. over about 90 minutes. And phosgenation reaction was performed. After completion of phosgenation, 241 parts of an 11% strength p-tert-butylphenol methylene chloride solution and 88 parts of 48.5% aqueous sodium hydroxide solution were added, stirring was stopped, and the mixture was allowed to stand for 10 minutes and then stirred. After 5 minutes of emulsification, the mixture was processed with a homomixer (Special Machine Industries Co., Ltd.) at a rotation speed of 1200 rpm and a bath frequency of 35 times to obtain a highly emulsified dope. The highly emulsified dope was reacted in a polymerization tank (with a stirrer) at a temperature of 35 ° C. for 3 hours under non-stirring conditions to complete the polymerization. After completion of the reaction, 5728 parts of methylene chloride was added for dilution, the methylene chloride phase was separated from the reaction mixture, 5000 parts of ion-exchanged water was added to the separated methylene chloride phase and mixed with stirring, and the stirring was stopped. The phase and the organic phase were separated. Next, water washing was repeated until the conductivity of the aqueous phase was almost the same as that of ion-exchanged water to obtain a purified polycarbonate resin solution. Next, methylene chloride was evaporated at a liquid temperature of 75 ° C. with a 1000 L kneader in which 100 L of ion-exchanged water was added to the purified polycarbonate resin solution to obtain a granular material. 25 parts of the granular material and 75 parts of water were put into a hot water treatment tank equipped with a stirrer and stirred and mixed at a water temperature of 95 ° C. for 30 minutes. Subsequently, the mixture of the granular material and water was separated by a centrifugal separator to obtain a granular material containing 0.5% by weight of methylene chloride and 45% by weight of water. Next, this granular material was continuously supplied at 50 kg / hr (in terms of polycarbonate resin) to a SUS316L conductive heat receiving groove type biaxial stirring continuous dryer controlled at 140 ° C., and the condition of an average drying time of 3 hours And dried to obtain a polycarbonate resin particle having a branched structure. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 14,000 and a branching rate of 0.96 mol%.

PC−2M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.91mol%、粘度平均分子量16,100)
(PC−2Mの製造方法)
11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液200部に変更した以外は、PC-1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量16,100、分岐率0.91mol%であった。
PC-2M: Aromatic polycarbonate resin having a branched structure (branch rate 0.91 mol%, viscosity average molecular weight 16,100)
(Manufacturing method of PC-2M)
A polycarbonate resin particle having a branched structure was obtained in the same manner as in the production method of PC-1M except that it was changed to 200 parts of a methylene chloride solution of 11% concentration of p-tert-butylphenol. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 16,100 and a branching ratio of 0.91 mol%.

PC−3M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.91mol%、粘度平均分子量18,200)
(PC−3Mの製造方法)
11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液167部に変更した以外は、PC-1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量18,200、分岐率0.91mol%であった。
PC-3M: Aromatic polycarbonate resin having a branched structure (branching rate 0.91 mol%, viscosity average molecular weight 18,200)
(Manufacturing method of PC-3M)
A polycarbonate resin granule having a branched structure was obtained in the same manner as in the production method of PC-1M except that it was changed to 167 parts of a methylene chloride solution of 11% concentration of p-tert-butylphenol. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 18,200 and a branching ratio of 0.91 mol%.

PC−4M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.72mol%、粘度平均分子量18,200)
(PC−4Mの製造方法)
14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液29.0部(0.76mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液167部に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量18,200、分岐率0.72mol%であった。
PC-4M: Aromatic polycarbonate resin having a branched structure (branching rate 0.72 mol%, viscosity average molecular weight 18,200)
(Method for producing PC-4M)
29.0 parts (0.76 mol%) of an aqueous solution in which 1,1,1-tris (4-hydroxyphenyl) ethane is dissolved at a concentration of 25% in a 14% aqueous sodium hydroxide solution, an 11% concentration of p-tert- Except having changed to 167 parts of methylene chloride solutions of butylphenol, it carried out like the manufacturing method of PC-1M, and obtained the polycarbonate resin granular material which has a branched structure. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 18,200 and a branching ratio of 0.72 mol%.

PC−5M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率1.26mol%、粘度平均分子量18,100)
(PC−5Mの製造方法)
14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液53.3部(1.40mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液176部に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量18,100、分岐率1.26mol%であった。
PC-5M: Aromatic polycarbonate resin having a branched structure (branch rate 1.26 mol%, viscosity average molecular weight 18,100)
(Manufacturing method of PC-5M)
53.3 parts (1.40 mol%) of an aqueous solution in which 1,1,1-tris (4-hydroxyphenyl) ethane was dissolved at a concentration of 25% in a 14% strength aqueous sodium hydroxide solution, an 11% strength p-tert- Except having changed to 176 parts of methylene chloride solutions of butylphenol, it carried out like the manufacturing method of PC-1M, and obtained the polycarbonate resin granular material which has a branched structure. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 18,100 and a branching rate of 1.26 mol%.

PC−6M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.91mol%、粘度平均分子量28,100)
(PC−6Mの製造方法)
11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液89.5部に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量28,100、分岐率0.91mol%であった。
PC-6M: Aromatic polycarbonate resin having a branched structure (branching rate 0.91 mol%, viscosity average molecular weight 28,100)
(Manufacturing method of PC-6M)
Except having changed to 89.5 parts of methylene chloride solutions of 11% concentration of p-tert-butylphenol, it was carried out in the same manner as the production method of PC-1M to obtain a polycarbonate resin particle having a branched structure. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 28,100 and a branching ratio of 0.91 mol%.

PC−7M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.91mol%、粘度平均分子量32,000)
(PC−7Mの製造方法)
11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液74.2部に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量32,000、分岐率0.91mol%であった。
PC-7M: Aromatic polycarbonate resin having a branched structure (branching rate 0.91 mol%, viscosity average molecular weight 32,000)
(Manufacturing method of PC-7M)
Except having changed into 74.2 parts of 11% concentration p-tert-butylphenol methylene chloride solution, it carried out like the manufacturing method of PC-1M, and obtained the polycarbonate resin granular material which has a branched structure. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 32,000 and a branching rate of 0.91 mol%.

PC−8M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.34mol%、粘度平均分子量18,100)
(PC−8Mの製造方法)
14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液15.2部(0.40mol%)に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量18,100、分岐率0.34mol%であった。
PC-8M: Aromatic polycarbonate resin having a branched structure (branching rate 0.34 mol%, viscosity average molecular weight 18,100)
(Manufacturing method of PC-8M)
Except for changing to 15.2 parts (0.40 mol%) of an aqueous solution in which 1,1,1-tris (4-hydroxyphenyl) ethane was dissolved at a concentration of 25% in a 14% strength aqueous sodium hydroxide solution, PC-1M A polycarbonate resin powder having a branched structure was obtained in the same manner as the production method. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 18,100 and a branching rate of 0.34 mol%.

PC−9M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率2.31mol%、粘度平均分子量18,100)
(PC−9Mの製造方法)
ホスゲンを354部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液107部(2.80mol%)に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量18,100、分岐率2.31mol%であった。
PC-9M: Aromatic polycarbonate resin having a branched structure (branch rate 2.31 mol%, viscosity average molecular weight 18,100)
(Manufacturing method of PC-9M)
Except for changing phosgene to 354 parts and 107 parts (2.80 mol%) of an aqueous solution in which 1,1,1-tris (4-hydroxyphenyl) ethane was dissolved at a concentration of 25% in a 14% aqueous sodium hydroxide solution, It carried out similarly to the manufacturing method of PC-1M, and obtained the polycarbonate resin granular material which has a branched structure. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 18,100 and a branching rate of 2.31 mol%.

(B成分)
B−1:パーフルオロブタンスルホン酸カリウム塩(大日本インキ(株)製メガファックF−114P)
B−2:パーフルオロブタンスルホン酸ナトリウム塩(大日本インキ(株)製メガファックF−114S)
(B component)
B-1: Perfluorobutanesulfonic acid potassium salt (Megafac F-114P manufactured by Dainippon Ink, Inc.)
B-2: Sodium perfluorobutanesulfonic acid salt (Megafac F-114S, manufactured by Dainippon Ink Co., Ltd.)

(C成分)
C−1:ビーズ状架橋アクリル粒子(積水化成品工業(株)製:MBX−5(商品名)、平均粒子径5μm)
C−2:ビーズ状架橋シリコーン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社(株)製:トスパール120(商品名)、平均粒子径2μm)
(C component)
C-1: Bead-like crosslinked acrylic particles (manufactured by Sekisui Plastics Co., Ltd .: MBX-5 (trade name), average particle diameter 5 μm)
C-2: Beaded cross-linked silicone (Momentive Performance Materials Japan GK Co., Ltd .: Tospearl 120 (trade name), average particle size 2 μm)

(D成分)
D−1:Si−H基および芳香族基を含有するシリコーン化合物
(D−1の製造)
攪拌機、冷却装置、温度計を取り付けた1Lフラスコに水301.9gとトルエン150gを仕込み、内温5℃まで冷却した。滴下ロートにトリメチルクロロシラン21.7g、メチルジクロロシラン23.0g、ジメチルジクロロシラン12.9およびジフェニルジクロロシラン76.0の混合物を仕込み、フラスコ内へ攪拌しながら2時間かけて滴下した。この間、内温を20℃以下に維持するよう、冷却を続けた。滴下終了後、さらに内温20℃で攪拌を4時間続けて熟成した後、静置して分離した塩酸水層を除去し、10%炭酸ナトリウム水溶液を添加して5分間攪拌後、静置して分離した水層を除去した。その後、さらにイオン交換水で3回洗浄し、トルエン層が中性になったことを確認した。このトルエン溶液を減圧下内温120℃まで加熱してトルエンと低沸点物を除去した後、濾過により不溶物を取り除いてシリコーン化合物B−1を得た。このシリコーン化合物B−1はSi−H基量が0.21mol/100g、芳香族基量が49重量%、平均重合度が8.0であった。
(D component)
D-1: Silicone compound containing Si—H group and aromatic group (production of D-1)
A 1 L flask equipped with a stirrer, a cooling device, and a thermometer was charged with 301.9 g of water and 150 g of toluene, and cooled to an internal temperature of 5 ° C. A mixture of trimethylchlorosilane (21.7 g), methyldichlorosilane (23.0 g), dimethyldichlorosilane (12.9) and diphenyldichlorosilane (76.0) was charged into the dropping funnel and dropped into the flask over 2 hours while stirring. During this time, cooling was continued to maintain the internal temperature at 20 ° C. or lower. After completion of the dropwise addition, the mixture was further aged for 4 hours with stirring at an internal temperature of 20 ° C., then left to stand to remove the separated hydrochloric acid aqueous layer, added with 10% aqueous sodium carbonate solution, stirred for 5 minutes and then left to stand. The separated aqueous layer was removed. Then, it wash | cleaned 3 times with ion-exchange water, and it confirmed that the toluene layer became neutral. The toluene solution was heated to an internal temperature of 120 ° C. under reduced pressure to remove toluene and low-boiling substances, and then insoluble materials were removed by filtration to obtain a silicone compound B-1. This silicone compound B-1 had an Si—H group content of 0.21 mol / 100 g, an aromatic group content of 49% by weight, and an average degree of polymerization of 8.0.

D−2:Si−H基および芳香族基を含有するシリコーン化合物
(D−2の製造)
撹拌装置、冷却装置、温度計を取り付けた1Lフラスコに1,1,3,3−テトラメチルジシロキサン100.7g、1,3,5,7−テトラメチルシクロテトラシロキサン60.1g、オクタメチルシクロテトラシロキサン129.8g、オクタフェニルシクロテトラシロキサン143.8gおよびフェニルトリメトキシシラン99.1gを仕込み、さらに撹拌しながら濃硫酸25.0gを添加した。内温10℃まで冷却した後、水13.8gをフラスコ内へ撹拌しながら30分間かけて滴下した。この間、内温を20℃以下に維持するよう、冷却を続けた。滴下終了後、さらに内温10〜20℃で撹拌を5時間続けて熟成した後、水8.5gとトルエン300gを添加して30分間撹拌後、静置して分離した水層を除去した。その後、さらに5%硫酸ナトリウム水溶液で4回洗浄し、トルエン層が中性になったことを確認した。このトルエン溶液を減圧下内温120℃まで加熱してトルエンと低沸分を除去した後、濾過により不溶物を取り除いてシリコーン化合物B−2を得た。このシリコーン化合物B−2はSi−H基量が0.50mol/100g、芳香族基量が30重量%、平均重合度が10.95のシリコーン化合物であった。
D-2: Silicone compound containing Si—H group and aromatic group (production of D-2)
In a 1 L flask equipped with a stirrer, a cooling device and a thermometer, 100.7 g of 1,1,3,3-tetramethyldisiloxane, 60.1 g of 1,3,5,7-tetramethylcyclotetrasiloxane, octamethylcyclo 129.8 g of tetrasiloxane, 143.8 g of octaphenylcyclotetrasiloxane, and 99.1 g of phenyltrimethoxysilane were charged, and 25.0 g of concentrated sulfuric acid was added with further stirring. After cooling to an internal temperature of 10 ° C., 13.8 g of water was dropped into the flask over 30 minutes while stirring. During this time, cooling was continued to maintain the internal temperature at 20 ° C. or lower. After completion of the dropwise addition, the mixture was further aged at an internal temperature of 10 to 20 ° C. for 5 hours. Then, 8.5 g of water and 300 g of toluene were added, stirred for 30 minutes, and allowed to stand to remove the separated aqueous layer. Thereafter, it was further washed four times with a 5% aqueous sodium sulfate solution, and it was confirmed that the toluene layer became neutral. This toluene solution was heated to an internal temperature of 120 ° C. under reduced pressure to remove toluene and low-boiling components, and then insoluble materials were removed by filtration to obtain a silicone compound B-2. This silicone compound B-2 was a silicone compound having a Si—H group content of 0.50 mol / 100 g, an aromatic group content of 30 wt%, and an average degree of polymerization of 10.95.

<各シリコーン化合物の示性式>
D−1: M φ2
D−2: M 3.5φ2 1.45φ
なお、上記示性式における各記号は以下のシロキサン単位を表し、各記号の係数(下付文字)は1分子中における各シロキサン単位の数(重合度)を示す。
M :(CHSiO1/2
: H(CHSiO1/2
D :(CHSiO
: H(CH)SiO
φ2 :(CSiO
φ :(C)SiO3/2
<Indication formula of each silicone compound>
D-1: M 2 DH 2 D 1 D φ2 3
D-2: MH 3 DH 2 D 3.5 D φ2 1.45 T φ 1
Each symbol in the above formula represents the following siloxane units, and the coefficient (subscript) of each symbol represents the number of siloxane units (degree of polymerization) in one molecule.
M: (CH 3 ) 3 SiO 1/2
M H : H (CH 3 ) 2 SiO 1/2
D: (CH 3 ) 2 SiO
D H: H (CH 3) SiO
D φ2 : (C 6 H 5 ) 2 SiO
: (C 6 H 5 ) SiO 3/2

(E成分)
E−1:ベンゾトリアゾール系紫外線吸収剤(ケミプロ化成工業(株)製:ケミソーブ79)
(E component)
E-1: Benzotriazole ultraviolet absorber (Kemipro Kasei Kogyo Co., Ltd .: Chemisorb 79)

(その他の成分)
PSR:蛍光増白剤(ハッコールケミカル(株)製:ハッコールPSR)
IRX:ヒンダードフェノール系酸化防止剤(チバ・スペシャルティ・ケミカルズ社製:Irganox1076)
(Other ingredients)
PSR: Fluorescent whitening agent (Hackol Chemical Co., Ltd .: Hackol PSR)
IRX: Hindered phenol antioxidant (Ciba Specialty Chemicals: Irganox 1076)

Figure 2012036324
Figure 2012036324

Figure 2012036324
Figure 2012036324

1 照明カバー
2 鉄製のおもり
1 Lighting cover 2 Iron weight

Claims (8)

光源からの光を拡散させるために前記光源を覆うように配置される照明カバーであって、該照明カバーが、粘度平均分子量が1.6×10〜3.0×10であり、構造粘性指数(N)が1.6〜2.5である熱可塑性樹脂組成物からなることを特徴とする照明カバー。 An illumination cover arranged to cover the light source in order to diffuse light from the light source, the illumination cover having a viscosity average molecular weight of 1.6 × 10 4 to 3.0 × 10 4 and having a structure A lighting cover comprising a thermoplastic resin composition having a viscosity index (N) of 1.6 to 2.5. 熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(B)パーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機アルカリ(土類)金属塩(B成分)0.005〜1.0重量部を含有する難燃性ポリカーボネート樹脂組成物であることを特徴とする請求項1に記載の照明カバー。   The thermoplastic resin composition is based on (A) 100 parts by weight of the polycarbonate resin (component A), (B) alkali (earth) metal salt of perfluoroalkylsulfonic acid, alkali (earth) metal salt of aromatic sulfonate, Flame retardant containing 0.005 to 1.0 parts by weight of one or more organic alkali (earth) metal salts (component B) selected from the group consisting of alkali (earth) metal salts of aromatic imides and aromatic imides The lighting cover according to claim 1, wherein the lighting cover is a conductive polycarbonate resin composition. 熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(C)光拡散剤(C成分)0.005〜3重量部を含有することを特徴とする請求項2に記載の照明カバー。   3. The thermoplastic resin composition contains 0.005 to 3 parts by weight of (C) a light diffusing agent (C component) with respect to 100 parts by weight of (A) polycarbonate resin (A component). Lighting cover as described in. 熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(D)分子中にSi−H基を含有するシリコーン化合物(D成分)0.05〜7重量部を含有することを特徴とする請求項2または3に記載の照明カバー。   The thermoplastic resin composition contains 0.05 to 7 parts by weight of a silicone compound (D component) containing Si-H groups in the molecule (D) with respect to 100 parts by weight of (A) polycarbonate resin (A component). The lighting cover according to claim 2, wherein the lighting cover is provided. 熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(E)紫外線吸収剤(E成分)0.01〜3.0重量部を含有することを特徴とする請求項2〜4のいずれか1項に記載の照明カバー。   The thermoplastic resin composition contains 0.01 to 3.0 parts by weight of (E) ultraviolet absorber (E component) with respect to 100 parts by weight of (A) polycarbonate resin (A component). Item 5. The lighting cover according to any one of Items 2 to 4. 熱可塑性樹脂組成物が、厚さ3.0mmの成形品において、UL94規格の難燃レベル5VAを達成する請求項1〜5のいずれか1項に記載の照明カバー。   The lighting cover according to any one of claims 1 to 5, wherein the thermoplastic resin composition achieves a flame retardant level of 5 VA of UL94 standard in a molded product having a thickness of 3.0 mm. A成分が分岐構造を有するポリカーボネート樹脂である請求項2〜6のいずれかに記載の照明カバー。   The lighting cover according to claim 2, wherein the component A is a polycarbonate resin having a branched structure. A成分が分岐率0.6〜1.1mol%の分岐構造を有するポリカーボネート樹脂である請求項7に記載の照明カバー。   The lighting cover according to claim 7, wherein the component A is a polycarbonate resin having a branched structure with a branching ratio of 0.6 to 1.1 mol%.
JP2010179395A 2010-08-10 2010-08-10 Lighting cover Active JP5840832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179395A JP5840832B2 (en) 2010-08-10 2010-08-10 Lighting cover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179395A JP5840832B2 (en) 2010-08-10 2010-08-10 Lighting cover

Publications (2)

Publication Number Publication Date
JP2012036324A true JP2012036324A (en) 2012-02-23
JP5840832B2 JP5840832B2 (en) 2016-01-06

Family

ID=45848658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179395A Active JP5840832B2 (en) 2010-08-10 2010-08-10 Lighting cover

Country Status (1)

Country Link
JP (1) JP5840832B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170057259A (en) * 2014-09-15 2017-05-24 트린세오 유럽 게엠베하 Flame retardant polycarbonates having high total luminous transmittance
JP2019131830A (en) * 2019-05-15 2019-08-08 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fire retardant polycarbonate having high all visible transmissivity

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258532A (en) * 1994-03-18 1995-10-09 Idemitsu Petrochem Co Ltd Flame-retardant polycarbonate resin composition
JP2003049060A (en) * 2001-08-06 2003-02-21 Teijin Chem Ltd Flame-retardant polycarbonate resin composition
JP2007031583A (en) * 2005-07-27 2007-02-08 Teijin Chem Ltd Aromatic polycarbonate resin composition
JP2008189804A (en) * 2007-02-05 2008-08-21 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition and light-guide plate made by molding the same, and light-diffusive member
JP2009155382A (en) * 2007-12-25 2009-07-16 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and molded product of the same
JP2010065164A (en) * 2008-09-11 2010-03-25 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and molded item and member for lighting including the same
JP2010138224A (en) * 2008-12-09 2010-06-24 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition and its molded article
JP2010158811A (en) * 2009-01-07 2010-07-22 Teijin Chem Ltd Method of manufacturing polycarbonate resin sheet having projection and resin sheet manufactured by the method
JP2011219595A (en) * 2010-04-08 2011-11-04 Teijin Chem Ltd Extrusion-molded product made of flame-retardant light-diffusive polycarbonate resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258532A (en) * 1994-03-18 1995-10-09 Idemitsu Petrochem Co Ltd Flame-retardant polycarbonate resin composition
JP2003049060A (en) * 2001-08-06 2003-02-21 Teijin Chem Ltd Flame-retardant polycarbonate resin composition
JP2007031583A (en) * 2005-07-27 2007-02-08 Teijin Chem Ltd Aromatic polycarbonate resin composition
JP2008189804A (en) * 2007-02-05 2008-08-21 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition and light-guide plate made by molding the same, and light-diffusive member
JP2009155382A (en) * 2007-12-25 2009-07-16 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and molded product of the same
JP2010065164A (en) * 2008-09-11 2010-03-25 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition and molded item and member for lighting including the same
JP2010138224A (en) * 2008-12-09 2010-06-24 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition and its molded article
JP2010158811A (en) * 2009-01-07 2010-07-22 Teijin Chem Ltd Method of manufacturing polycarbonate resin sheet having projection and resin sheet manufactured by the method
JP2011219595A (en) * 2010-04-08 2011-11-04 Teijin Chem Ltd Extrusion-molded product made of flame-retardant light-diffusive polycarbonate resin composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170057259A (en) * 2014-09-15 2017-05-24 트린세오 유럽 게엠베하 Flame retardant polycarbonates having high total luminous transmittance
US20170183478A1 (en) * 2014-09-15 2017-06-29 Trinseo Europe Gmbh Flame retardant polycarbonates having high total luminous transmittance
JP2017526797A (en) * 2014-09-15 2017-09-14 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Flame retardant polycarbonate with high total luminous transmittance
US10563043B2 (en) 2014-09-15 2020-02-18 Trinseo Europe Gmbh Flame retardant polycarbonates having high total luminous transmittance
KR102257069B1 (en) * 2014-09-15 2021-05-28 트린세오 유럽 게엠베하 Flame retardant polycarbonates having high total luminous transmittance
JP2019131830A (en) * 2019-05-15 2019-08-08 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fire retardant polycarbonate having high all visible transmissivity

Also Published As

Publication number Publication date
JP5840832B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5032008B2 (en) Aromatic polycarbonate resin composition
JP5679693B2 (en) Flame retardant polycarbonate resin composition
WO2011049228A1 (en) Aromatic polycarbonate resin composition
JP2009108281A (en) Flame-retardant and light-diffusing polycarbonate resin composition
JP5663659B2 (en) Polycarbonate resin composition for light guide, and light guide and surface light source comprising the same
JP2011102364A (en) Thermoplastic resin composition
KR20120114220A (en) Extrusion-molded article comprising aromatic polycarbonate resin composition
JPWO2013141005A1 (en) Light diffusing resin composition
JP2011099030A (en) Extrusion molded product made of aromatic polycarbonate resin composition
TW201412867A (en) Resin composition having light-guiding ability, and light guide plate and surface light source body comprising same
JP3779624B2 (en) Transparent flame retardant aromatic polycarbonate resin composition
JP2011116839A (en) Flame-retardant light-diffusive polycarbonate resin composition
JP5451505B2 (en) Flame retardant polycarbonate resin composition
JP5774813B2 (en) Aromatic polycarbonate resin composition
JP6133644B2 (en) Flame retardant light diffusing polycarbonate resin composition
JP4243497B2 (en) Flame retardant aromatic polycarbonate resin composition
JP5840832B2 (en) Lighting cover
JP2001270983A (en) Flame retardant polycarbonate resin composition
JP2010168463A (en) Flame-retardant, light-diffusing polycarbonate resin composition
JP2012162610A (en) Light-emitting, flame-retardant and high-light transmission resin composition
JP2011105862A (en) Aromatic polycarbonate resin composition
JP5558926B2 (en) Flame retardant polycarbonate resin composition
JP4567156B2 (en) Flame retardant aromatic polycarbonate resin composition
JP2010280846A (en) Flame retarding and light-diffusing polycarbonate resin composition
JP2011084692A (en) Aromatic polycarbonate resin composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151112

R150 Certificate of patent or registration of utility model

Ref document number: 5840832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157