JP2012034433A - モータ駆動システム - Google Patents

モータ駆動システム Download PDF

Info

Publication number
JP2012034433A
JP2012034433A JP2010169413A JP2010169413A JP2012034433A JP 2012034433 A JP2012034433 A JP 2012034433A JP 2010169413 A JP2010169413 A JP 2010169413A JP 2010169413 A JP2010169413 A JP 2010169413A JP 2012034433 A JP2012034433 A JP 2012034433A
Authority
JP
Japan
Prior art keywords
motor
temperature
electric
cooling
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010169413A
Other languages
English (en)
Other versions
JP5408449B2 (ja
Inventor
Jun Saito
潤 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2010169413A priority Critical patent/JP5408449B2/ja
Publication of JP2012034433A publication Critical patent/JP2012034433A/ja
Application granted granted Critical
Publication of JP5408449B2 publication Critical patent/JP5408449B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】モータの切換え頻度を低減させ、トルク変動を抑制する。
【解決手段】車両に要求される出力が第1のモータの許容出力又は第2のモータの許容出力のうちいずれか小さい方の許容出力以下である場合、例えば所定の低負荷時に、第1のモータ及び第2のモータのうち低温側のモータを選択して作動させる(S80,S90,S100,S130)電動車両において、第1のモータと第2のモータとの温度差が第1の所定値Tβ未満であるときには、第1のモータから前記第2のモータへの切替又は第2のモータから第1のモータへの切替を禁止する(S120)。
【選択図】図4

Description

本発明は、複数のモータを使用した駆動システムにおけるモータの制御技術に関する。
モータを使用した駆動システムとして例えば近年開発が進んでいる電動車両は、電気モータを走行駆動源として用い、アクセル操作等の操作に応じて電気モータの出力トルクを制御する構成となっている。このような電動車両において、複数の電気モータを搭載し、必要なトルクに応じて電気モータを切換えて作動する技術が開発されている。例えば高速走行時や加速時のように高トルクを要する場合には2個の電気モータを駆動させ、低速走行時のように低トルクで十分である場合には1個の電気モータのみ駆動させることで、高トルクに対応可能にしつつ低トルク時では効率のよい駆動が可能となる。
更に、上記のように2個の電気モータを駆動システムに備えた電動車両において、低トルク状態が続き1個の電気モータのみ作動し続けると、その電気モータのみ発熱して効率低下を招く虞がある。そこで、発熱して高温となった電気モータの出力トルクを抑制することで、電気モータの温度上昇を抑える技術が開発されている(特許文献1)。
特開2008−247155号公報
上記特許文献1では、2つの電気モータのうち高温側の電気モータの温度が所定温度を超えたときに、高温側から低温側へ電気モータの駆動を切り換える制御を行なっている。
しかしながら、このように制御すると、2つの電気モータの温度が両方とも所定温度に近くなると、駆動する電気モータの切り換えが頻繁に行なわれることになってしまう。したがって、駆動システムから出力するトルクが変動し、例えば電動車両の搭乗者に違和感を与えてしまう。
本発明はこのような問題を解決するためになされたもので、モータの温度上昇を抑えるべく複数のモータを切り換えて作動させるモータ駆動システムにおいて、モータの切換え頻度を低減させ、トルク変動を抑制することにある。
上記目的を達成するため、請求項1のモータ駆動システムは、車両の駆動源となる第1のモータ及び第2のモータと、第1及び第2のモータのそれぞれの温度を検出する温度検出手段と、車両に要求される出力が第1のモータの許容出力又は第2のモータの許容出力のうちいずれか小さい方の許容出力以下である場合に、温度検出手段により検出されたモータ温度が第1のモータ及び第2のモータのうち低温側のモータを選択して作動させる制御手段とを有する車両のモータ駆動システムにおいて、制御手段は、第1のモータと第2のモータとの温度差が所定値に達しないときには、第1のモータから第2のモータへの切替又は第2のモータから第1のモータへの切替を禁止することを特徴とする。
また、請求項2のモータ駆動システムは、請求項1において、第1のモータ及び第2のモータを冷却水により冷却する冷却手段と、冷却水の水温を検出する冷却水温検出手段とを備え、制御手段は、冷却水温検出手段により検出された冷却水の水温が第1のモータの温度と第2のモータの温度との間の温度であるときに、切替を禁止することを特徴とする。
また、請求項3のモータ駆動システムは、請求項2において、冷却手段は、冷却水を循環させるウォータポンプを備え、制御手段は、第1のモータ又は第2のモータのうち少なくとも一方の温度が所定温度以上となったときに、ウォータポンプを作動させることを特徴とする。
本発明の請求項1のモータ駆動システムによれば、車両に要求される出力が前記第1のモータの許容出力又は前記第2のモータの許容出力のうちいずれか小さい方の許容出力以下である場合、例えば低負荷時に第1のモータ及び第2のモータのうち低温側のモータを選択して作動させるので、低温側のモータを比較的高トルクで作動させることができ、モータの効率を向上させることができる。
そして、第1のモータと第2のモータとの温度差が所定値以下であるときには、第1のモータから第2のモータへの作動切換え又は、第2のモータから第1のモータへの作動切換えを禁止するので、例えば第1のモータと第2のモータとのうち低温側のモータのみ作動させて、第1のモータの温度と第2のモータの温度とが逆転しても、直ぐにはモータの作動切換えが行なわれなくなる。これにより、モータの切換え頻度が低減し、トルク変動を抑制することができる。
本発明の請求項2のモータ駆動システムによれば、冷却水の温度が第1のモータ温度と第2のモータ温度との間の温度である場合にモータの切換を禁止する。これにより、第1のモータと第2のモータとの両方のモータ温度が冷却水の温度に近い場合にモータの切換を禁止することができるため、モータの切換え頻度の低減ができると共に、第1のモータ及び第2のモータの両方のモータの冷却効率を上げることができる。
本発明の請求項3のモータ駆動システムによれば、第1のモータと第2のモータとのうち少なくとも一方の温度が所定温度以上となったときにウォータポンプを作動させるので、第1のモータと第2のモータとの両方の温度差が小さい状態でいずれかの温度が所定温度まで上昇してしまったとしても、冷却手段によりモータの温度上昇を確実に抑えることができる。
本発明に係るモータ駆動システムを供えた電動車両の概略構成図である。 モータ及び冷却装置の制御手順を示すブロック図である。 駆動モータの判定手順を示すフローチャートである。 駆動モータの判定手順を示すフローチャートである。 モータの効率の一例を示すグラフであり、A)は第1のモータ、B)は第2のモータである。 低負荷でのモータ駆動時におけるモータ温度の推移の一例であり、A)は参考形態、B)は本実施形態での推移を示す。
以下、図面に基づき本発明の実施形態について説明する。
図1は、本発明に係る電動車両の実施形態の概略構成図である。
図1に示すように、本発明の実施形態に係る電動車両の概略構造図である。
本実施形態の電動車両(以下、単に車両1という)は、走行駆動源として電気モータ2、3を2個備えている。第1の電気モータ2(第1のモータ)は第1の減速機4を介して車両1の前輪5を駆動可能であり、第2の電気モータ3(第2のモータ)は第2の減速機6を介して車両1の後輪7を駆動可能に構成されている。第1の電気モータ2及び第2の電気モータ3は、インバータを備え、車両1に搭載されたバッテリ8より電力を供給されて駆動する。第1の電気モータ2及び第2の電気モータ3は、ECU10(制御手段)により駆動制御される。なお、本実施形態では、第1の電気モータ2と第2の電気モータ3とは同一仕様のものを使用している。また、第1の減速機4及び第2の減速機6は同じ減速比に設定されている。したがって、第1の電気モータ2と第2の電気モータ3とは、その回転速度が同一である。
また、車両1には、電気モータ2、3の冷却装置11(冷却手段)が備えられている。冷却装置11は、ラジエータ12及びウォータポンプ13が介装されて冷却水が循環する冷却水路14からなり、ウォータポンプ13から吐出した冷却水を第1の電気モータ2及び第2の電気モータ3に導いて熱交換させる。第1の電気モータ2及び第2の電気モータ3を通過して昇温した冷却水は、ラジエータ12に導入されて冷却されウォータポンプ13に還流される。
ラジエータ12とウォータポンプ13との間の冷却水路14には、冷却水の温度を検出する水温センサ15が設けられている。また、第1の電気モータ2及び第2の電気モータ3には、夫々モータ温度を検出する温度検出手段である第1のモータ温度センサ16、第2のモータ温度センサ17が設けられている。
図2は、ECU10における各電気モータ2、3及び冷却装置11の制御手順を示すブロック図である。
図2に示すように、ECU10は、アクセル等の操作装置に基づいて設定されたモータトルク及びモータ回転速度の要求値を入力し、モータ駆動パターン判定ブロック30によりモータ駆動パターン、即ち第1の電気モータ2及び第2の電気モータ3の2個のモータを駆動させるのか、いずれか1個の電気モータを駆動させるのかを判定する。例えば、モータ駆動パターン判定ブロック30では、モータトルクがモータ回転速度に基づいて設定された閾値以上であれば2個の駆動、閾値未満であれば1個の駆動に判定する。
そして、駆動モータ判定ブロック31は、モータ駆動パターン判定ブロック30により判定したモータ駆動パターン、水温センサ15により入力した冷却水温Tc、第1のモータ温度センサ16より第1のモータ温度T1、及び第2のモータ温度センサ17より第2のモータ温度T2とを入力し、第1の電気モータ2及び第2の電気モータ3のうち駆動するモータを判定し、夫々の電気モータ2、3の出力トルクである第1のモータトルク及び第2のモータトルクを設定する。
また、冷却実施判定ブロック32は、第1のモータ温度T1と第2のモータ温度T2とにより冷却装置11を駆動するか否かを判定する。詳しくは、第1の電気モータ2の温度及び第2の電気モータ3の温度のいずれか一方が所定の冷却作動温度Tw(所定温度)に達した場合に冷却装置11を駆動すると判定する。ECU10は、冷却装置11を駆動すると判定した場合には、ウォータポンプ13を作動させて、冷却水路14内で冷却水を循環させる。
図3、4は、駆動モータ判定ブロック31における駆動モータの判定手順を示すフローチャートである。
本ルーチンは、車両電源オン時に繰り返し行なわれる。
図3、4に示すように、ステップS10では、第1のモータ温度センサ16より第1のモータ温度T1を、第2のモータ温度センサ17により第2のモータ温度T2を、水温センサ15より冷却水温Tcを入力する。そして、ステップS20に進む。
ステップS20では、ステップS10で入力した冷却水温Tcが制御切替水温Tα以上であるか否かを判別する。制御切替水温Tαは、1個のモータ駆動を行なうか否かを判別する閾値であり、1個のモータ駆動を行なっても冷却装置11により第1の電気モータ2及び第2の電気モータ3が十分に冷却可能な温度に設定すればよい。冷却水温Tcが制御切替水温Tα以上である場合には、ステップS30に進む。
ステップS30では、モータ駆動パターン判定部30により判定したモータ駆動パターンが1、即ち1個のモータ駆動であるか否かを判別する。モータ駆動パターンが1である場合には、ステップS40に進む。
ステップS40では、ステップS10で入力した第1のモータ温度T1が第2のモータ温度T2以上であるか否かを判別する。第1のモータ温度T1が第2のモータ温度T2以上である場合には、ステップS50に進む。
ステップS50では、第1のモータ温度T1を高温側モータ温度Thiに設定し、第2のモータ温度T2を低温側モータ温度Tlowに設定する。そして、ステップS70に進む。
ステップS40において、第1のモータ温度T1が第2のモータ温度T2未満であると判定した場合には、ステップS60に進む。
ステップS60では、第2のモータ温度T2を高温側モータ温度Thiに設定し、第1のモータ温度T1を低温側モータ温度Tlowに設定する。そして、ステップS70に進む。
ステップS70では、制御切替水温Tαが、ステップS50またはステップS60で設定した低温側モータ温度Tlowより低いか否かを判別する。制御切替水温Tαが低温側モータ温度Tlowより低い場合には、ステップS80に進む。
ステップS80では、現在の制御状態が第1のモータを制御している駆動パターン(S100)かを判断し、第1のモータを制御している場合はステップS90に進む。
ステップS90では、高温側モータ温度Thiが、第1のモータ温度T1であるか否かを判別する。高温側モータ温度Thiが第1のモータ温度T1でない場合には、ステップS100に進む。
ステップS100では、第1の電気モータ2のみを、要求されるモータトルクに応じて駆動させる。そして、本ルーチンをリターンする。
ステップS90で高温側モータ温度Thiが第1のモータ温度T1であると判定した場合には、ステップS110に進む。
ステップS110では、高温側モータ温度Thiと低温側モータ温度Tlowとの差が所定温度Tβ(所定値)以上であるか否かを判別する。高温側モータ温度Thiと低温側モータ温度Tlowとの差が所定値Tβ未満である場合には、ステップS100に進む。高温側モータ温度Thiと低温側モータ温度Tlowとの差が所定値Tβ以上である場合には、ステップS120に進む。
ステップS120では、第2の電気モータ3のみを、要求されるモータトルクに応じて駆動させる。そして、本ルーチンをリターンする。
ステップS80にて、第2のモータを制御している場合はステップS130に進む。
ステップS130では、高温側モータ温度Thiが、第1のモータ温度T1であるか否かを判別する。高温側モータ温度Thiが第1のモータ温度T1である場合には、ステップS120に進む。高温側モータ温度Thiが第1のモータ温度T1でない場合には、ステップS140に進む。
ステップS140では、高温側モータ温度Thiと低温側モータ温度Tlowとの差が所定温度Tβ(所定値)以上であるか否かを判別する。高温側モータ温度Thiと低温側モータ温度Tlowとの差が所定値Tβ以上である場合には、ステップS100に進む。高温側モータ温度Thiと低温側モータ温度Tlowとの差が所定値Tβ未満である場合には、ステップS120に進む。
ステップS70で制御切替水温Tαが、低温側モータ温度Tlow以上であると判定した場合には、ステップS150に進む。
ステップ150で、制御切替水温Tαが高温側モータ温度Thi未満かつ、低温側モータ温度Tlowより大きいと判定した場合は、ステップS160に進む。
ステップ160では、第1のモータ駆動(S100)制御中または、第2のモータ駆動(S120)制御中であるかを判定する。第1のモータ駆動(S100)制御中または、第2のモータ駆動(S120)制御中であると判定した場合、ステップS80に進む。第1のモータ駆動(S100)制御中または、第2のモータ駆動(S120)制御中でないと判定した場合、ステップS170に進む。
ステップS170では、高温側モータ温度Thiと低温側モータ温度Tlowとの差が所定温度Tβ(所定値)以上であるか否かを判別する。高温側モータ温度Thiと低温側モータ温度Tlowとの差が所定値Tβ以上である場合、ステップS80に進む。高温側モータ温度Thiと低温側モータ温度Tlowとの差が所定値Tβ未満である場合、ステップS180に進む。
ステップS20で冷却水温Tcが制御切替水温Tα未満であると判定した場合、ステップS30でモータ駆動パターンが2、即ち2個のモータで駆動すると判定した場合、また、ステップS150で制御切替水温Tαが高温側モータ温度Thi以上である、または低温側モータ温度Tlow以下であると判定した場合には、ステップS180に進む。
ステップS180では、モータ効率優先制御を実施する。詳しくは、第1の電気モータ2及び第2の電気モータ3の両方或いはどちらか一方のモータを用いて、モータ効率を優先させた制御を行なう。そして、本ルーチンをリターンさせる。
以下に、図5を用いて、モータ効率優先制御について説明する。
図5は、電気モータ2、3の効率の一例を示すグラフであり、A)は第1の電気モータ2、B)は第2の電気モータ3を示す。図5中に、各モータでの動作ポイントの一例を示しており、図5中○は2個のモータで要求されるモータトルクを半分ずつ出力した場合、図5中●は1個のモータ(第1のモータ)のみで要求されるモータトルクを出力させた場合を示す。
図5に示すように、電気モータ2、3の効率は使用可能範囲において、一般的に図5中右上方向、即ち高回転及び高トルクで動作させると効率が向上する。要求されるモータトルクが比較的少ない場合には、2個の電気モータ2、3で半分ずつトルクを分担した場合(図5中○)と比較して、第1の電気モータ2のみで駆動した場合(図5中●で示す作動ポイント)では、第1の電気モータ2において、トルクが上昇して効率が上昇する。この場合では、第2の電気モータ3は車両1の走行によって回転するもののトルクを出力せず、よって2個の電気モータ2、3を合わせたシステム全体としての効率は、第1の電気モータ2単独の効率に一致する。したがって、要求するモータトルクが比較的少ない場合には、2個の電気モータ2、3で駆動させるよりも、1個の電気モータで駆動した方が全体的な効率を向上させることができる。本実施形態では、モータ効率優先制御として、例えば図5中●で示すように、モータ効率を優先させたトルク設定を実施する。
以上の制御を行なうことで、本実施形態では、まず、モータ駆動パターン判定ブロック30においてモータ回転速度とモータトルクとに基づいて電気モータ2、3を1個駆動するか2個駆動するかを判定する。具体的には、モータトルクが低い場合に電気モータ2、3を2個使用せずに1個で駆動させる。
そして、モータ駆動パターン判定ブロック30において1個駆動と判定した場合には、第1の電気モータ2の温度と第2の電気モータ3とのうち低温側の電気モータを駆動させて高温側の電気モータの駆動を規制する。これにより、高温側の電気モータの温度の上昇が抑えられ、冷却装置11を作動させなくとも運転を続けることが可能となる。
しかしながら、第1の電気モータ2と第2の電気モータ3との温度差が所定値Tβ未満である場合には、このような低温側の電気モータを選択して作動させる制御をせずに、第1のモータから前記第2のモータへの切替又は前記第2のモータから前記第1のモータへの切替を禁止して1個の電気モータを使用してモータ効率優先制御を行なう。2個の電気モータ2、3の温度差が少ない場合に低温側の電気モータのみ作動するよう制御すると、すぐに2個の電気モータ2、3の温度が逆転するので、この作動切換えが頻繁に繰り返されることになり、車両1の搭乗者に違和感を与えてしまう。そこで、本実施形態では、上記のように2個の電気モータ2、3の温度差が少ない場合にはモータ効率優先制御を行い、電気モータ2、3の作動切換えを規制して一つのモータで走行することで、トルク変動を抑制し、搭乗者に違和感を与えないようにすることができる。又、冷却水の温度が第1のモータ温度と第2のモータ温度との間の温度である場合には、冷却水により第1のモータも第2のモータも効率よく冷却することができる。よって、第1のモータと第2のモータとの両方のモータ温度が冷却水の温度に近い場合にモータの切換を禁止することで、モータの切換え頻度の低減ができると共に、第1のモータ及び第2のモータの両方のモータの冷却効率を上げることができる。なおモータ効率優先制御を行なうことで電気モータ2、3の温度が更に上昇し、冷却作動温度Twに達したときに冷却装置11が作動するので、電気モータ2、3の過熱による効率低下を防止することは可能である。
図6は、低負荷でのモータ駆動時におけるモータ温度の推移の一例を示し、(A)は電気モータ2、3の作動切換えを行なわず、冷却装置11のみでモータ温度を低下させる制御を行なう参考形態、(B)は本実施形態を示している。なお、各温度グラフの下方には合わせて冷却装置11の作動タイミングを示している。
図6(A)に示すように、参考形態では、低負荷時では、第1の電気モータ2のみ駆動させるので、第1の電気モータ2の温度が大きく上昇して行き、第1の電気モータ2が冷却作動温度Twに到達したときに(図6中a) に冷却装置11が作動する。
これに対し、図6(B)に示す本実施形態では、低負荷時に第1の電気モータ2のみ駆動させ第1のモータ温度T1が大きく上昇して行き、第1のモータ温度T1と第2のモータ温度T2との差が所定値Tβになった時点(図6中b)で、第1の電気モータ2から第2の電気モータ3に駆動が切り換わる。これにより、以降は第2のモータ温度T2が大きく上昇し第1のモータ温度T1の上昇が緩やかになる。そして、第1のモータ温度T1及び第2のモータ温度T2のいずれかが冷却作動温度Twに到達したとき(図6中c、第1のモータ温度T1と第2のモータ温度T2とが同時に到達している)に冷却装置11が作動する。
したがって、B)に示す本実施形態は、A)に示す参考形態と比較して、冷却装置11の作動開始タイミングを遅らせることができる(a→c)。よって、冷却によるエネルギーロスを抑え、システム全体としての省エネ化を図ることができる。
また、本実施形態では、冷却水温Tcが高温側モータ温度Thiより高い場合には、第1の電気モータ2と第2の電気モータ3との温度差に拘わらず2個の電気モータ2、3を使用したモータ効率優先制御を行なう。冷却水温Tcが高温側モータ温度Thiより高い場合としては、例えばモータの温度が大きく上昇していないのにインバータのみ温度が上昇している場合や、エアコン等の電気モータ2、3以外の車載機器により冷却水の温度が上昇している場合が考えられる。即ち、温度センサ16、17により電気モータ2、3の温度が正確に検出できていない虞があるので、モータ温度に基づく電気モータ2、3の切換え制御をせずにその誤作動を防止している。また、電気モータ2、3以外の車載機器により冷却水の温度が上昇している場合には、冷却装置11の冷却能力が不十分となる虞があるので、1個の電気モータ2、3による切換え制御により冷却装置11の開始タイミングを遅くさせずに、電気モータ2、3の効率を優先した作動により冷却装置11の開始タイミングを早めて、電気モータ2、3の温度上昇を極力抑えるようにしている。
以上、本実施形態では、電動車両の駆動システムに本発明を適用しているが、電動車両以外でも複数の電気モータを備えた駆動システムに広く本発明を適用することができる。
また、本実施形態では、モータ駆動パターンが1つのモータのみの場合となっているが、例えばモータのトルク配分比で第1のモータと第2のモータで異なる場合にも適用することができる。この場合、第1のモータ駆動が選択された場合、第1のモータとトルク配分を大きくする。
1 車両(電動車両)
2 第1の電気モータ
3 第2の電気モータ
8 バッテリ
10 ECU
11 冷却装置

Claims (3)

  1. 車両の駆動源となる第1のモータ及び第2のモータと、前記第1及び第2のモータのそれぞれの温度を検出する温度検出手段と、前記車両に要求される出力が前記第1のモータの許容出力又は前記第2のモータの許容出力のうちいずれか小さい方の許容出力以下である場合に、前記温度検出手段により検出されたモータ温度が前記第1のモータ及び前記第2のモータのうち低温側のモータを選択して作動させる制御手段とを有する車両のモータ駆動システムにおいて、
    前記制御手段は、前記第1のモータと前記第2のモータとの温度差が所定値に達しないときには、前記第1のモータから前記第2のモータへの切替又は前記第2のモータから前記第1のモータへの切替を禁止することを特徴とするモータ駆動システム。
  2. 前記第1のモータ及び前記第2のモータを冷却水により冷却する冷却手段と、
    前記冷却水の水温を検出する冷却水温検出手段とを備え、
    前記制御手段は、前記冷却水温検出手段により検出された冷却水の水温が前記第1のモータの温度と前記第2のモータの温度との間の温度であるときに、前記切替を禁止することを特徴とする請求項1に記載のモータ駆動システム。
  3. 前記冷却手段は、前記冷却水を循環させるウォータポンプを備え、
    前記制御手段は、前記第1のモータ又は前記第2のモータのうち少なくとも一方の温度が所定温度以上となったときに、前記ウォータポンプを作動させることを特徴とする請求項2に記載のモータ駆動システム。
JP2010169413A 2010-07-28 2010-07-28 モータ駆動システム Expired - Fee Related JP5408449B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169413A JP5408449B2 (ja) 2010-07-28 2010-07-28 モータ駆動システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169413A JP5408449B2 (ja) 2010-07-28 2010-07-28 モータ駆動システム

Publications (2)

Publication Number Publication Date
JP2012034433A true JP2012034433A (ja) 2012-02-16
JP5408449B2 JP5408449B2 (ja) 2014-02-05

Family

ID=45847210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169413A Expired - Fee Related JP5408449B2 (ja) 2010-07-28 2010-07-28 モータ駆動システム

Country Status (1)

Country Link
JP (1) JP5408449B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014030296A (ja) * 2012-07-31 2014-02-13 Toyota Motor Corp 電動車両の駆動装置
CN112238756A (zh) * 2019-07-16 2021-01-19 株式会社斯巴鲁 车辆
CN113613925A (zh) * 2019-03-19 2021-11-05 采埃孚股份公司 用于操作工作机器的驱动系的方法、用于工作机器的驱动系以及工作机器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215101A (ja) * 1989-10-26 1991-09-20 Maharishi Heaven On Earth Dev Corp Bv 電気運転システム
JP2003153588A (ja) * 2001-11-09 2003-05-23 Nissan Motor Co Ltd モータ駆動装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215101A (ja) * 1989-10-26 1991-09-20 Maharishi Heaven On Earth Dev Corp Bv 電気運転システム
JP2003153588A (ja) * 2001-11-09 2003-05-23 Nissan Motor Co Ltd モータ駆動装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014030296A (ja) * 2012-07-31 2014-02-13 Toyota Motor Corp 電動車両の駆動装置
CN113613925A (zh) * 2019-03-19 2021-11-05 采埃孚股份公司 用于操作工作机器的驱动系的方法、用于工作机器的驱动系以及工作机器
CN112238756A (zh) * 2019-07-16 2021-01-19 株式会社斯巴鲁 车辆

Also Published As

Publication number Publication date
JP5408449B2 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5673452B2 (ja) 組電池の温度調節装置
JP5197713B2 (ja) 冷却システム
JP6252681B2 (ja) モータ制御装置及びモータ制御方法
JP2015071334A (ja) ハイブリッド車制御装置
JP2005098301A (ja) ハイブリッド自動車のエンジン運転停止を要求する方法及びシステム
KR102644621B1 (ko) 친환경 차량의 수냉식 pe-배터리 냉각시스템 제어 방법
JP2010213461A (ja) 車両用モータ温度制御装置
JP5494159B2 (ja) 車両駆動システムの暖機制御装置
JP5408449B2 (ja) モータ駆動システム
JP6037000B2 (ja) 冷却水制御装置
JP7339797B2 (ja) 車両
JP2009207267A (ja) 車両の停止保持装置及び停止保持方法
JP2009261197A (ja) 回転電機駆動回路の冷却装置及び方法
JP4052256B2 (ja) 温度調節装置
JP5375723B2 (ja) 電動機の制御装置
KR101125005B1 (ko) 하이브리드 차량용 전동식 워터펌프 제어 방법
JP2005022321A (ja) 成形機
JP6699251B2 (ja) 車両の冷却装置
JP2008179262A (ja) 暖機制御装置
JP2013135586A (ja) 電気自動車
JP2018170825A (ja) 車両用冷却システム
US9714653B2 (en) Electric vehicle and control method for electric vehicle
JP2014147193A (ja) 電動車両用冷却装置
JP5900082B2 (ja) 半導体装置
JP2005147028A (ja) ハイブリッド車の冷却装置及び冷却方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130906

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R151 Written notification of patent or utility model registration

Ref document number: 5408449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees