JP2012028212A - Solid lithium-ion secondary battery - Google Patents

Solid lithium-ion secondary battery Download PDF

Info

Publication number
JP2012028212A
JP2012028212A JP2010167039A JP2010167039A JP2012028212A JP 2012028212 A JP2012028212 A JP 2012028212A JP 2010167039 A JP2010167039 A JP 2010167039A JP 2010167039 A JP2010167039 A JP 2010167039A JP 2012028212 A JP2012028212 A JP 2012028212A
Authority
JP
Japan
Prior art keywords
lithium ion
secondary battery
ion secondary
solid
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010167039A
Other languages
Japanese (ja)
Other versions
JP5677779B2 (en
Inventor
Hideaki Maeda
英明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2010167039A priority Critical patent/JP5677779B2/en
Priority to KR1020100095394A priority patent/KR20120015418A/en
Priority to US13/167,050 priority patent/US20120021299A1/en
Publication of JP2012028212A publication Critical patent/JP2012028212A/en
Application granted granted Critical
Publication of JP5677779B2 publication Critical patent/JP5677779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery having high safety and large capacity.SOLUTION: A lithium salt of cyclic imide is added to a cathode and/or an anode.

Description

この発明は、電気自動車、ハイブリッド電気自動車等の車両用電池や、大型蓄電池等として好適な固体リチウムイオン二次電池に関するものである。   The present invention relates to a battery for vehicles such as an electric vehicle and a hybrid electric vehicle, and a solid lithium ion secondary battery suitable as a large storage battery.

リチウムイオン二次電池は、大きな電気化学容量や、高い作動電位、優れた充放電サイクル特性等を有するため、電気自動車、ハイブリッド電気自動車や、大型蓄電池等の各種用途への需要が増大している。このような用途の広がり伴い、リチウムイオン二次電池の安全性の向上及び高性能化が要求されている。しかしながら、電解質として有機溶媒にリチウム塩を溶解させた非水電解液が用いられた従前のリチウムイオン二次電池は、150℃程度で発火する可能性が高く、その安全性に疑問が持たれている。このため、近時、安全性の向上を目的に、リチウムイオン伝導性を有する固体電解質を用いた固体リチウムイオン二次電池が注目されている。   Lithium ion secondary batteries have large electrochemical capacity, high operating potential, excellent charge / discharge cycle characteristics, etc., and therefore demand for various applications such as electric vehicles, hybrid electric vehicles, and large storage batteries is increasing. . With the spread of such applications, there is a demand for improved safety and higher performance of lithium ion secondary batteries. However, a conventional lithium ion secondary battery using a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent as an electrolyte is likely to ignite at about 150 ° C., and its safety is questioned. Yes. For this reason, recently, for the purpose of improving safety, a solid lithium ion secondary battery using a solid electrolyte having lithium ion conductivity has attracted attention.

このような固体リチウムイオン二次電池では、従来、電極中におけるリチウムイオンの移動経路を確保するために、活物質に加えて電極中に固体電解質を添加している(特許文献1)。   In such a solid lithium ion secondary battery, conventionally, a solid electrolyte is added to the electrode in addition to the active material in order to secure a migration path of lithium ions in the electrode (Patent Document 1).

特開2010−146936号公報JP 2010-146936 A

しかし、汎用されるLiS−P等からなる固体電解質は例えば0.1〜20μmμm程度の粒径の粒子状であり嵩高いため、電極中にこのような固体電解質を添加すると、その分だけ活物質の配合量が減り、体積あたりの容量が減少するという問題が生じる。 However, since a solid electrolyte made of Li 2 S—P 2 S 5 or the like that is used in general is in the form of particles having a particle diameter of about 0.1 to 20 μm μm and bulky, for example, when such a solid electrolyte is added to the electrode, As a result, the amount of the active material is reduced, and the capacity per volume is reduced.

また、電池反応をスムーズに行うためには電極が均一な状態であることが必要であるが、電極中に硫化物や酸化物等からなる固体電解質を添加する場合は、これらの固体電解質を溶剤やバインダ中に均一に分散させることが困難であることから、集電体上に電極合剤を均一に塗布することが困難である。また、これらの固体電解質を分散させるための溶剤やバインダの種類によっては導電性が低下してしまうこともある。   Further, in order to perform the battery reaction smoothly, it is necessary that the electrodes are in a uniform state. However, when a solid electrolyte made of sulfide, oxide, or the like is added to the electrode, these solid electrolytes are used as solvents. In addition, it is difficult to uniformly disperse in the binder, and it is difficult to uniformly apply the electrode mixture on the current collector. In addition, the conductivity may be lowered depending on the type of solvent or binder for dispersing these solid electrolytes.

そこで本発明は、上記現状に鑑み、安全性が高く、かつ、高容量な固体リチウムイオン二次電池を提供すべく図ったものである。   In view of the above, the present invention is intended to provide a solid lithium ion secondary battery with high safety and high capacity.

すなわち本発明に係る固体リチウムイオン二次電池は、正極と、負極と、前記正極と前記負極との間に設けられた固体電解質層とを備えたものであって、前記正極及び/又は前記負極が、環状イミドのリチウム塩を含有することを特徴とする。なお、本発明においては、正極及び負極の両方が環状イミドのリチウム塩を含有していてもよいが、いずれか一方の電極のみが環状イミドのリチウム塩を含有していてもよい。   That is, the solid lithium ion secondary battery according to the present invention includes a positive electrode, a negative electrode, and a solid electrolyte layer provided between the positive electrode and the negative electrode, and the positive electrode and / or the negative electrode Contains a lithium salt of a cyclic imide. In the present invention, both the positive electrode and the negative electrode may contain a cyclic imide lithium salt, but only one of the electrodes may contain a cyclic imide lithium salt.

このような本発明によれば、リチウムイオン伝導性を有する環状イミドのリチウム塩を電極中に添加することにより、その分、固体電解質の電極中への添加量を低減させることが可能となる。そして、環状イミドのリチウム塩は粒子状である固体電解質のように嵩高くなく、このような環状イミドのリチウム塩を固体電解質の代わりに電極合剤用のスラリーに添加すると、活物質の表面に当該環状イミドのリチウム塩を薄く被覆することができ、固体電解質と比較して少量の添加で充分なリチウムイオン伝導性を得ることができるとともに、より均一にリチウムイオン伝導体を電極中に分散させることができる。このため、本発明によれば、電極中の活物質密度を高めることができるので、固体リチウムイオン二次電池の体積あたりの容量を増大させることが可能となる。   According to the present invention, by adding a lithium salt of a cyclic imide having lithium ion conductivity to the electrode, the amount of the solid electrolyte added to the electrode can be reduced accordingly. Further, the lithium salt of the cyclic imide is not bulky like the solid electrolyte that is in the form of particles. When such a lithium salt of the cyclic imide is added to the slurry for the electrode mixture instead of the solid electrolyte, the lithium salt of the cyclic imide is added to the surface of the active material. The lithium salt of the cyclic imide can be thinly coated, and sufficient lithium ion conductivity can be obtained with a small amount of addition as compared with the solid electrolyte, and the lithium ion conductor is more uniformly dispersed in the electrode. be able to. For this reason, according to this invention, since the active material density in an electrode can be raised, it becomes possible to increase the capacity | capacitance per volume of a solid lithium ion secondary battery.

また、環状イミドのリチウム塩は、活物質との接触性や、電極合剤に添加した場合の塗工性にも優れており、環状イミドのリチウム塩を配合したスラリー状の電極合剤を集電体上に薄く塗布してシート化することも可能である。   In addition, the lithium salt of the cyclic imide is excellent in the contact property with the active material and in the coating property when added to the electrode mixture, and the slurry-like electrode mixture containing the lithium salt of the cyclic imide is collected. It is also possible to form a sheet by thinly coating on the electric body.

前記正極及び/又は前記負極中における前記環状イミドのリチウム塩の含有量は、1〜40重量%であることが好ましい。   The content of the lithium salt of the cyclic imide in the positive electrode and / or the negative electrode is preferably 1 to 40% by weight.

前記環状イミドのリチウム塩としては、例えば、シクロ−テトラフルオロエタン−1,2−ビス(スルホニル)イミドリチウム((CFSONLi)、シクロ−ヘキサフルオロプロパン−1,3−ビス(スルホニル)イミドリチウム(CF(CFSONLi)等が挙げられる。 Examples of the lithium salt of the cyclic imide include cyclo-tetrafluoroethane-1,2-bis (sulfonyl) imide lithium ((CF 2 SO 2 ) 2 NLi), cyclo-hexafluoropropane-1,3-bis ( And sulfonyl) imidolithium (CF 2 (CF 2 SO 2 ) 2 NLi).

前記固体電解質層が含有する固体電解質としては、リチウムイオン伝導度が10−4S/cm以上であるものが好適に用いられる。 As the solid electrolyte contained in the solid electrolyte layer, those having a lithium ion conductivity of 10 −4 S / cm or more are preferably used.

本発明は、上述した構成よりなるので、電極中への固体電解質の添加量を減らして、電極中の活物質密度を高め、固体リチウムイオン二次電池の体積あたりの容量を増加させることが可能となるとともに、電極反応をより均一に行うことも可能となる。このため、本発明によれば、安全性が高く、かつ、高容量な固体リチウム二次電池を得ることができる。   Since the present invention is configured as described above, it is possible to reduce the amount of solid electrolyte added to the electrode, increase the active material density in the electrode, and increase the capacity per volume of the solid lithium ion secondary battery. In addition, the electrode reaction can be performed more uniformly. Therefore, according to the present invention, it is possible to obtain a solid lithium secondary battery with high safety and high capacity.

従来例(a)及び本発明(b)の電極を示す模式図。The schematic diagram which shows the electrode of a prior art example (a) and this invention (b). 実施例で作製した固体リチウムイオン二次電池の構成を示す模式図。The schematic diagram which shows the structure of the solid lithium ion secondary battery produced in the Example.

以下に本発明に係る固体リチウムイオン二次電池の実施形態について説明する。   Embodiments of a solid lithium ion secondary battery according to the present invention will be described below.

本発明に係る固体リチウムイオン二次電池は、正極と、負極と、これらの電極に挟まれた固体電解質層とからなるものである。   The solid lithium ion secondary battery according to the present invention includes a positive electrode, a negative electrode, and a solid electrolyte layer sandwiched between these electrodes.

本発明における正極及び負極の少なくともいずれか一方の電極は、環状イミドのリチウム塩を含有するものである。   At least one of the positive electrode and the negative electrode in the present invention contains a cyclic imide lithium salt.

前記環状イミドのリチウム塩としては、例えば、下記の式(1)〜(4)で表される化合物が挙げられる。これらの環状イミドのリチウム塩は、単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the lithium salt of the cyclic imide include compounds represented by the following formulas (1) to (4). These cyclic imide lithium salts may be used alone or in combination of two or more.

これらの環状イミドのリチウム塩のなかでも、とりわけ、式(1)で表される5員環構造を有するシクロ−テトラフルオロエタン−1,2−ビス(スルホニル)イミドリチウムと、式(2)で表される6員環構造を有するシクロ−ヘキサフルオロプロパン−1,3−ビス(スルホニル)イミドリチウムとが好適に用いられる。これらの環状イミドのリチウム塩は、4V付近の高電圧環境下でも安定したリチウムイオン伝導性を奏することができる。   Among these cyclic imide lithium salts, in particular, cyclo-tetrafluoroethane-1,2-bis (sulfonyl) imide lithium having a five-membered ring structure represented by formula (1) and formula (2) Cyclo-hexafluoropropane-1,3-bis (sulfonyl) imidolithium having a 6-membered ring structure is preferably used. These cyclic imide lithium salts can exhibit stable lithium ion conductivity even in a high voltage environment of around 4V.

なお、非水電解液が用いられた従前のリチウムイオン二次電池には、バインダとしてポリイミドが用いられることがあるが、前記環状イミドのリチウム塩を非水電解液が用いられた従前のリチウムイオン二次電池のバインダとして使用すると、これらの環状イミドのリチウム塩は有機溶媒中に溶解してしまうので、本発明で用いられる環状イミドのリチウム塩を非水電解液が用いられた従前のリチウムイオン二次電池のバインダとして用いることはできない。   In addition, in a conventional lithium ion secondary battery using a non-aqueous electrolyte, polyimide may be used as a binder, but the lithium salt of the cyclic imide is replaced with a conventional lithium ion using a non-aqueous electrolyte. When used as a binder for a secondary battery, the lithium salt of the cyclic imide is dissolved in an organic solvent. Therefore, the lithium salt of the cyclic imide used in the present invention is a conventional lithium ion using a non-aqueous electrolyte. It cannot be used as a binder for secondary batteries.

図1(a)はリチウムイオン伝導体として固体電解質のみを添加した従来の電極を示すものであるが、粒子状であって嵩高い固体電解質が添加されていることにより、電極中の活物質密度が低下し、このため、得られる固体リチウムイオン二次電池は体積あたりの容量が低いものとなる。   FIG. 1 (a) shows a conventional electrode to which only a solid electrolyte is added as a lithium ion conductor, but the active material density in the electrode is increased by adding a particulate and bulky solid electrolyte. Therefore, the obtained solid lithium ion secondary battery has a low capacity per volume.

一方、リチウムイオン伝導体として前記環状イミドのリチウム塩を使用した本発明における電極では、図1(b)に示すように、前記環状イミドのリチウム塩が活物質表面を薄く被覆した状態で存在している。そして、前記環状イミドのリチウム塩を電極中に添加することにより、従来40重量%程度であった電極中への固体電解質の添加量を、5〜10重量%程度にまで減らすことが可能となり、更に、電池構成や電池の使用条件によっては、固体電解質の添加量を0にすることも可能である。このため、本発明によれば、電極中の活物質密度を向上することができるので、体積あたりの容量が高い固体リチウムイオン二次電池を得ることができる。なお、環状イミドのリチウム塩による被覆層は、厚みが不均一である場合もあり、また、点在する場合もある。   On the other hand, in the electrode in the present invention using the lithium salt of the cyclic imide as the lithium ion conductor, the lithium salt of the cyclic imide exists in a state where the active material surface is thinly coated as shown in FIG. ing. And by adding the lithium salt of the cyclic imide into the electrode, it becomes possible to reduce the amount of solid electrolyte added to the electrode, which was conventionally about 40% by weight, to about 5 to 10% by weight, Furthermore, depending on the battery configuration and battery usage conditions, the amount of solid electrolyte added can be reduced to zero. For this reason, according to this invention, since the active material density in an electrode can be improved, the solid lithium ion secondary battery with a high capacity | capacitance per volume can be obtained. In addition, the coating layer by the lithium salt of cyclic imide may be uneven in thickness, or may be scattered.

なお、図1に示す態様においては、活物質としては一次粒子(粒径が約0.1〜1μm)が凝集した二次粒子(メジアン径が約5〜20μm)からなるものが用いられ、固体電解質としては粒径が約0.1〜20μmであるものが用いられている。   In the embodiment shown in FIG. 1, as the active material, a material composed of secondary particles (median diameter of about 5 to 20 μm) in which primary particles (particle diameter of about 0.1 to 1 μm) are aggregated is used. An electrolyte having a particle size of about 0.1 to 20 μm is used.

前記正極又は負極中における前記環状イミドのリチウム塩の含有量は、1〜40重量%であることが好ましく、より好ましくは5〜20重量%であり、更に好ましくは5〜10重量%である。前記環状イミドのリチウム塩の含有量が1重量%未満であると、固体電解質の添加量を充分に低減することができず、体積あたりの容量が不充分であることがあり、一方、前記環状イミドのリチウム塩の含有量が40重量%を超えると、レート特性が悪化することがある。   The content of the lithium salt of the cyclic imide in the positive electrode or the negative electrode is preferably 1 to 40% by weight, more preferably 5 to 20% by weight, and still more preferably 5 to 10% by weight. When the content of the lithium salt of the cyclic imide is less than 1% by weight, the amount of solid electrolyte added cannot be sufficiently reduced, and the capacity per volume may be insufficient. If the content of the lithium salt of imide exceeds 40% by weight, the rate characteristics may be deteriorated.

前記正極及び負極は、前記環状イミドのリチウム塩に加えて、それぞれ活物質を含有している。   The positive electrode and the negative electrode each contain an active material in addition to the lithium salt of the cyclic imide.

前記正極の活物質としては、リチウムの吸蔵・放出が可能なものであれば特に限定されず、例えば、Mn、Co、Ni、Fe、Al等の遷移金属を含む酸化物、硫化物等を挙げることができる。このような正極活物質としては、より詳細には、例えば、LiMn、LiCoO、LiNiO、LiFeO2、LiNi1/3Co1/3Mn1/32、LiNi0.8Co0.22、LiNi0.8Co0.15Al0.05等が挙げられる。これらの正極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。 The positive electrode active material is not particularly limited as long as it can occlude and release lithium, and examples thereof include oxides and sulfides containing transition metals such as Mn, Co, Ni, Fe, and Al. be able to. As such a positive electrode active material, more specifically, for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2, LiNi 1/3 Co 1/3 Mn 1/3 O 2, LiNi 0.8 Co 0.2 O 2, LiNi 0.8 Co 0.15 Al 0.05 O 2 and the like. These positive electrode active materials may be used independently and 2 or more types may be used together.

前記負極の活物質としては、リチウムとの合金化や、リチウムの吸蔵・放出が可能なものであれば特に限定されず、例えば、リチウム、インジウム、スズ、アルミ、ケイ素等の金属やそれらの合金;Li4/3Ti5/3、SnO等の遷移金属酸化物;人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛、難黒鉛化性炭素等の炭素材料等が挙げられる。これらの負極活物質は、単独で用いられてもよく、二種以上が併用されてもよい。 The active material of the negative electrode is not particularly limited as long as it can be alloyed with lithium or occluded / released lithium. For example, metals such as lithium, indium, tin, aluminum, silicon, and alloys thereof Transition metal oxides such as Li 4/3 Ti 5/3 O 4 , SnO; artificial graphite, graphite carbon fiber, resin-fired carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl Examples include carbon materials such as alcohol resin-fired carbon, polyacene, pitch-based carbon fiber, vapor-grown carbon fiber, natural graphite, and non-graphitizable carbon. These negative electrode active materials may be used independently and 2 or more types may be used together.

前記正極及び負極は、上述の活物質からなる粉末に、例えば、導電剤、結着剤、フィラー、分散剤、イオン導電剤等の添加剤が、適宜選択されて配合されていてもよい。   For the positive electrode and the negative electrode, additives such as, for example, a conductive agent, a binder, a filler, a dispersant, and an ionic conductive agent may be appropriately selected and blended with the powder made of the above active material.

前記導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が挙げられ、前記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等が挙げられる。更に、前記正極及び負極には必要に応じて後述する固体電解質が配合されていてもよい。   Examples of the conductive agent include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Is mentioned. Furthermore, the positive electrode and the negative electrode may contain a solid electrolyte, which will be described later, as necessary.

前記正極又は負極を製造するには、例えば、上述の活物質及び前記環状イミドのリチウム塩と各種添加剤との混合物を調製し、油圧プレス機によりペレット状に圧密化して、正極又は負極とする方法や、上述の活物質及び前記環状イミドのリチウム塩と各種添加剤との混合物を水や有機溶媒等の溶媒に添加してスラリー又はペースト化し、得られたスラリー又はペーストを、ドクターブレード法等を用いて集電体に塗布し、乾燥し、圧延ロール等で圧密化して、正極又は負極とする方法等を用いることができる。   In order to manufacture the positive electrode or the negative electrode, for example, a mixture of the above-mentioned active material and the lithium salt of the cyclic imide and various additives is prepared, and compacted into a pellet shape by a hydraulic press machine to obtain a positive electrode or a negative electrode A method, or a mixture of the above active material and the lithium salt of the cyclic imide and various additives added to a solvent such as water or an organic solvent to form a slurry or paste, and the obtained slurry or paste is used as a doctor blade method or the like. Can be applied to the current collector, dried, and consolidated with a rolling roll or the like to form a positive electrode or a negative electrode.

前記集電体としては、例えば、インジウム、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、リチウム、又は、これらの合金等からなる板状体や箔状体等が挙げられる。   Examples of the current collector include plates and foils made of indium, copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, lithium, or alloys thereof. Is mentioned.

なお、負極活物質として金属又はその合金を使用する場合、金属シート(箔)をそのまま負極として使用してもよい。   In addition, when using a metal or its alloy as a negative electrode active material, you may use a metal sheet (foil) as a negative electrode as it is.

前記固体電解質層は、無機化合物若しくは有機化合物、又は、これらの複合体からなるリチウムイオン伝導体を固体電解質として含有するものである。   The solid electrolyte layer contains a lithium ion conductor made of an inorganic compound, an organic compound, or a composite thereof as a solid electrolyte.

前記無機化合物としては特に限定されず、例えば、LiN、LISICON、LIPON(Li3+yPO4−x)、Thio−LISICON(Li3.25Ge0.250.75)、LiS単独、LiS−P、LiS−SiS、LiS−GeS、LiS−B、LiS−Al、LiO−Al−TiO−P(LATP)等が挙げられる。これらの無機化合物は、結晶、非晶質、ガラス、ガラスセラミック等の構造をとりうる。 Is not particularly limited as the inorganic compound, for example, Li 3 N, LISICON, LIPON (Li 3 + y PO 4-x N x), Thio-LISICON (Li 3.25 Ge 0.25 P 0.75 S 4), Li 2 S alone, Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—B 2 S 5 , Li 2 S—Al 2 S 5 , Li 2 O— al 2 O 3 -TiO 2 -P 2 O 5 (LATP) , and the like. These inorganic compounds can have a structure such as crystal, amorphous, glass, and glass ceramic.

前記有機化合物としては特に限定されず、例えば、ポリエチレンオキサイド(PEO)、ホウ酸エステルポリマー等が挙げられる。   It does not specifically limit as said organic compound, For example, a polyethylene oxide (PEO), a boric acid ester polymer, etc. are mentioned.

前記無機/有機複合体としては特に限定されず、例えば、無機固体電解質であるLiS−Pと有機固体電解質であるポリエチレンオキサイドとの複合体等が挙げられる。 The inorganic / organic composite is not particularly limited, and examples thereof include a composite of Li 2 S—P 2 S 5 that is an inorganic solid electrolyte and polyethylene oxide that is an organic solid electrolyte.

本発明においては、これらの固体電解質のなかでも、リチウムイオン伝導率が10−4S/cm以上であるものが好ましく、このようなリチウムイオン伝導率を有する固体電解質としては、例えば、非晶質LiS−P等が挙げられる。 In the present invention, among these solid electrolytes, those having a lithium ion conductivity of 10 −4 S / cm or more are preferable, and examples of the solid electrolyte having such lithium ion conductivity include amorphous. li 2 S-P 2 S 5, and the like.

本発明に係る固体リチウムイオン二次電池は、これらの正極、固体電解質層及び負極を積層しプレスするか、又は、これらの材料(合剤)を積層しプレスすることにより製造することができる。   The solid lithium ion secondary battery according to the present invention can be produced by laminating and pressing these positive electrode, solid electrolyte layer, and negative electrode, or laminating and pressing these materials (mixture).

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

(実施例1)
正極活物質であるLiNi0.8Co0.15Al0.05と、硫化物固体電解質であるLiS−P(80−20mol%)と、6員環イミド化合物であるCF(CFSONLiと、更に導電剤であるVGCF(気相成長カーボンファイバ)とを、重量比80:5:10:5の割合で混合し、トルエン中に分散させてスラリーを調製した。このスラリーを、ドクターブレードを用いて、SUS箔上に塗布した後、110℃で乾燥し、正極電極とした。同様に、負極活物質としてグラファイトを用い、正極と同様にしてスラリーを調製し、SUS箔上に塗付し負極電極とした。
Example 1
LiNi 0.8 Co 0.15 Al 0.05 O 2 that is a positive electrode active material, Li 2 S—P 2 S 5 (80-20 mol%) that is a sulfide solid electrolyte, and a 6-membered ring imide compound. CF 2 (CF 2 SO 2 ) 2 NLi and VGCF (vapor-grown carbon fiber), which is a conductive agent, are mixed at a weight ratio of 80: 5: 10: 5 and dispersed in toluene to form a slurry. Was prepared. This slurry was applied onto a SUS foil using a doctor blade, and then dried at 110 ° C. to obtain a positive electrode. Similarly, graphite was used as the negative electrode active material, and a slurry was prepared in the same manner as the positive electrode, and applied to a SUS foil to obtain a negative electrode.

上記の各電極をφ13mmに打ち抜き、正極と負極との間に硫化物固体電解質であるLiS−P(80−20mol%)を挟み、4t/cmでプレス後、トルクレンチで3Nmの圧力を掛けてセルに封入し、図2に示すような構成を有する固体リチウムイオン二次電池を作製した。なお、本実施例において固体電解質として使用したLiS−P(80−20mol%)のリチウムイオン伝導度は3×10−4S/cmである。 Each of the above electrodes is punched out to a diameter of 13 mm, Li 2 S—P 2 S 5 (80-20 mol%) as a sulfide solid electrolyte is sandwiched between the positive electrode and the negative electrode, pressed at 4 t / cm 2 , and then with a torque wrench. A solid lithium ion secondary battery having a configuration as shown in FIG. 2 was produced by enclosing the cell with a pressure of 3 Nm. In addition, the lithium ion conductivity of Li 2 S—P 2 S 5 (80-20 mol%) used as the solid electrolyte in this example is 3 × 10 −4 S / cm.

(実施例2)
正極及び負極電極の組成を重量比60:25:10:5にしたこと以外は、実施例1と同様にして固体リチウムイオン二次電池を作製した。
(Example 2)
A solid lithium ion secondary battery was produced in the same manner as in Example 1 except that the composition of the positive electrode and the negative electrode was 60: 25: 10: 5 by weight.

(実施例3)
正極電極の組成を重量比70:10:15:5にし、負極電極の組成を重量比60:25:10:5にしたこと以外は、実施例1と同様にして固体リチウムイオン二次電池を作製した。
(Example 3)
A solid lithium ion secondary battery was prepared in the same manner as in Example 1 except that the composition of the positive electrode was 70: 10: 15: 5 and the composition of the negative electrode was 60: 25: 10: 5. Produced.

(実施例4)
正極及び負極電極の組成を重量比60:0:35:5にし、電極中に固体電解質を添加しなかったこと以外は、実施例1と同様にして固体リチウムイオン二次電池を作製した。
Example 4
A solid lithium ion secondary battery was produced in the same manner as in Example 1, except that the composition of the positive electrode and the negative electrode was 60: 0: 35: 5 by weight and no solid electrolyte was added to the electrode.

(実施例5)
正極活物質としてLiCoOを使用し、正極及び負極電極の組成を重量比60:25:10:5にしたこと以外は、実施例1と同様にして固体リチウムイオン二次電池を作製した。
(Example 5)
A solid lithium ion secondary battery was produced in the same manner as in Example 1 except that LiCoO 2 was used as the positive electrode active material and the composition of the positive electrode and the negative electrode was changed to a weight ratio of 60: 25: 10: 5.

(実施例6)
正極活物質としてLiMnを使用し、正極及び負極電極の組成を重量比60:25:10:5にしたこと以外は、実施例1と同様にして固体リチウムイオン二次電池を作製した。
(Example 6)
A solid lithium ion secondary battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 was used as the positive electrode active material and the composition of the positive electrode and the negative electrode was changed to a weight ratio of 60: 25: 10: 5. .

(実施例7)
環状イミドのリチウム塩として5員環構造を有する(CFSONLiを使用したこと以外は、実施例1と同様にして固体リチウムイオン二次電池を作製した。
(Example 7)
A solid lithium ion secondary battery was produced in the same manner as in Example 1 except that (CF 2 SO 2 ) 2 NLi having a 5-membered ring structure was used as the lithium salt of the cyclic imide.

(比較例1)
正極及び負極電極の組成を重量比80:0:0:20にし、固体電解質及び環状イミドのリチウム塩を添加せずに電極を作製したこと以外は、実施例1と同様にして固体リチウムイオン二次電池を作製した。
(Comparative Example 1)
Except that the composition of the positive electrode and the negative electrode was 80: 0: 0: 20 by weight and the electrode was prepared without adding the solid electrolyte and the lithium salt of the cyclic imide, the same procedure as in Example 1 was performed. A secondary battery was produced.

(比較例2)
正極及び負極電極の組成を重量比80:15:0:5にして、電極中に環状イミドのリチウム塩を添加しなかったこと以外は、実施例1と同様にして固体リチウムイオン二次電池を作製した。
(Comparative Example 2)
A solid lithium ion secondary battery was prepared in the same manner as in Example 1 except that the composition of the positive electrode and the negative electrode was set to a weight ratio of 80: 15: 0: 5 and the lithium salt of cyclic imide was not added to the electrode. Produced.

(比較例3)
正極活物質としてLiCoOを使用し、かつ、正極及び負極電極の組成を重量比60:35:0:5にして、電極中に環状イミドのリチウム塩を添加しなかったこと以外は、実施例1と同様にして固体リチウムイオン二次電池を作製した。
(Comparative Example 3)
Example except that LiCoO 2 was used as the positive electrode active material, the composition of the positive electrode and the negative electrode was 60: 35: 0: 5, and the lithium salt of cyclic imide was not added to the electrode. In the same manner as in Example 1, a solid lithium ion secondary battery was produced.

(比較例4)
正極活物質としてLiCoOを使用し、かつ、正極及び負極電極の組成を重量比80:15:0:5にして、電極中に環状イミドのリチウム塩を添加しなかったこと以外は、実施例1と同様にして固体リチウムイオン二次電池を作製した。
(Comparative Example 4)
Example except that LiCoO 2 was used as the positive electrode active material, the composition of the positive electrode and the negative electrode was 80: 15: 0: 5, and the lithium salt of cyclic imide was not added to the electrode. In the same manner as in Example 1, a solid lithium ion secondary battery was produced.

(比較例5)
正極活物質としてLiMnを使用し、かつ、正極及び負極電極の組成を重量比60:35:0:5にして、電極中に環状イミドのリチウム塩を添加しなかったこと以外は、実施例1と同様にして固体リチウムイオン二次電池を作製した。
(Comparative Example 5)
Except that LiMn 2 O 4 was used as the positive electrode active material, the composition of the positive electrode and the negative electrode was 60: 35: 0: 5, and the lithium salt of the cyclic imide was not added to the electrode. A solid lithium ion secondary battery was produced in the same manner as in Example 1.

(性能評価)
各実施例及び比較例において作製された固体リチウムイオン二次電池に対し、電流密度20μA/cm(初期容量)で、4.2−2.5Vで充放電を行い、容量を測定した。1C放電時の容量は、1.1mA/cmの電流値を流した際の値とした。各実施例及び比較例のレート特性は、実施例1の1C容量を100%とした相対値(%)として算出した。これらの結果を、表1に示した。
(Performance evaluation)
The solid lithium ion secondary batteries produced in the examples and comparative examples were charged and discharged at 4.2-2.5 V at a current density of 20 μA / cm 2 (initial capacity), and the capacity was measured. The capacity at the time of 1 C discharge was a value when a current value of 1.1 mA / cm 2 was passed. The rate characteristics of each example and comparative example were calculated as relative values (%) with the 1C capacity of Example 1 as 100%. These results are shown in Table 1.

表1に示す結果より分かるように、電極中に環状イミドのリチウム塩を添加した実施例1〜7では、体積あたりの容量及びレート特性のいずれにも優れた固体リチウムイオン電池を得ることができた。また、電極中に固体電解質を添加しなかった実施例4においても、充分実用に供しうる容量及びレート特性を有する電池が得られた。これに対して、電極中に環状イミドのリチウム塩を添加しなかった比較例1〜5で得られた固体リチウムイオン電池は、同じ活物質を用いた実施例と比較して特に体積あたりの容量に劣っていた。   As can be seen from the results shown in Table 1, in Examples 1 to 7 in which a lithium salt of a cyclic imide was added to the electrode, a solid lithium ion battery excellent in both capacity per volume and rate characteristics can be obtained. It was. Also in Example 4 in which no solid electrolyte was added to the electrode, a battery having a capacity and rate characteristics sufficient for practical use was obtained. On the other hand, the solid lithium ion batteries obtained in Comparative Examples 1 to 5 in which the lithium salt of the cyclic imide was not added to the electrode, particularly compared to the examples using the same active material, the capacity per volume. It was inferior to.

Claims (4)

正極と、負極と、前記正極と前記負極との間に設けられた固体電解質層とを備えた固体リチウムイオン二次電池であって、
前記正極及び/又は前記負極が、環状イミドのリチウム塩を含有することを特徴とする固体リチウムイオン二次電池。
A solid lithium ion secondary battery comprising a positive electrode, a negative electrode, and a solid electrolyte layer provided between the positive electrode and the negative electrode,
The said positive electrode and / or the said negative electrode contain lithium salt of cyclic imide, The solid lithium ion secondary battery characterized by the above-mentioned.
前記正極及び/又は前記負極中における前記環状イミドのリチウム塩の含有量が、1〜40重量%である請求項1記載の固体リチウムイオン二次電池。   2. The solid lithium ion secondary battery according to claim 1, wherein a content of the lithium salt of the cyclic imide in the positive electrode and / or the negative electrode is 1 to 40 wt%. 前記環状イミドのリチウム塩が、シクロ−テトラフルオロエタン−1,2−ビス(スルホニル)イミドリチウム、及び/又は、シクロ−ヘキサフルオロプロパン−1,3−ビス(スルホニル)イミドリチウムである請求項1又は2記載の固体リチウムイオン二次電池。   The lithium salt of the cyclic imide is cyclo-tetrafluoroethane-1,2-bis (sulfonyl) imide lithium and / or cyclo-hexafluoropropane-1,3-bis (sulfonyl) imide lithium. Or the solid lithium ion secondary battery of 2. 前記固体電解質層が、リチウムイオン伝導度が10−4S/cm以上である固体電解質を含有する請求項1、2又は3記載の固体リチウムイオン二次電池。 4. The solid lithium ion secondary battery according to claim 1, wherein the solid electrolyte layer contains a solid electrolyte having a lithium ion conductivity of 10 −4 S / cm or more.
JP2010167039A 2010-07-26 2010-07-26 Solid lithium ion secondary battery Expired - Fee Related JP5677779B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010167039A JP5677779B2 (en) 2010-07-26 2010-07-26 Solid lithium ion secondary battery
KR1020100095394A KR20120015418A (en) 2010-07-26 2010-09-30 Solid lithium ion secondary battery and electrode usable with same
US13/167,050 US20120021299A1 (en) 2010-07-26 2011-06-23 Solid lithium ion secondary battery and electrode therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010167039A JP5677779B2 (en) 2010-07-26 2010-07-26 Solid lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012028212A true JP2012028212A (en) 2012-02-09
JP5677779B2 JP5677779B2 (en) 2015-02-25

Family

ID=45780899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010167039A Expired - Fee Related JP5677779B2 (en) 2010-07-26 2010-07-26 Solid lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP5677779B2 (en)
KR (1) KR20120015418A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212991A (en) * 2015-04-30 2016-12-15 富士フイルム株式会社 All-solid type secondary battery, electrode sheet for all-solid type secondary battery, and manufacturing method of all-solid type secondary battery
JP2016212990A (en) * 2015-04-30 2016-12-15 富士フイルム株式会社 All-solid type secondary battery, composition for electrode active material layer, electrode sheet for all-solid type secondary battery, and manufacturing methods for all-solid type secondary battery and electrode sheet for all-solid type secondary battery
JP2019067663A (en) * 2017-10-03 2019-04-25 トヨタ自動車株式会社 Negative electrode mixture for all solid lithium ion secondary battery
CN111864205A (en) * 2019-04-29 2020-10-30 宁德时代新能源科技股份有限公司 Positive pole piece of sulfide solid-state battery and sulfide solid-state battery
JPWO2021015147A1 (en) * 2019-07-19 2021-01-28

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102180203B1 (en) * 2019-01-17 2020-11-18 서울대학교산학협력단 Anode material of Lithium ion battery and method of preparing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182621A (en) * 1998-12-11 2000-06-30 Fujitsu Ltd Lithium secondary battery, lithium secondary battery negative electrode and manufacture thereof
JP2006318888A (en) * 2005-04-08 2006-11-24 Sony Corp Electrolyte and battery
JP2007257959A (en) * 2006-03-22 2007-10-04 Sony Corp Battery
JP2007273394A (en) * 2006-03-31 2007-10-18 Sony Corp Electrolyte and battery
JP2007273395A (en) * 2006-03-31 2007-10-18 Sony Corp Battery
JP2007273396A (en) * 2006-03-31 2007-10-18 Sony Corp Electrolytic solution and battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182621A (en) * 1998-12-11 2000-06-30 Fujitsu Ltd Lithium secondary battery, lithium secondary battery negative electrode and manufacture thereof
JP2006318888A (en) * 2005-04-08 2006-11-24 Sony Corp Electrolyte and battery
JP2007257959A (en) * 2006-03-22 2007-10-04 Sony Corp Battery
JP2007273394A (en) * 2006-03-31 2007-10-18 Sony Corp Electrolyte and battery
JP2007273395A (en) * 2006-03-31 2007-10-18 Sony Corp Battery
JP2007273396A (en) * 2006-03-31 2007-10-18 Sony Corp Electrolytic solution and battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212991A (en) * 2015-04-30 2016-12-15 富士フイルム株式会社 All-solid type secondary battery, electrode sheet for all-solid type secondary battery, and manufacturing method of all-solid type secondary battery
JP2016212990A (en) * 2015-04-30 2016-12-15 富士フイルム株式会社 All-solid type secondary battery, composition for electrode active material layer, electrode sheet for all-solid type secondary battery, and manufacturing methods for all-solid type secondary battery and electrode sheet for all-solid type secondary battery
JP2019067663A (en) * 2017-10-03 2019-04-25 トヨタ自動車株式会社 Negative electrode mixture for all solid lithium ion secondary battery
CN111864205A (en) * 2019-04-29 2020-10-30 宁德时代新能源科技股份有限公司 Positive pole piece of sulfide solid-state battery and sulfide solid-state battery
CN111864205B (en) * 2019-04-29 2023-07-18 宁德时代新能源科技股份有限公司 Positive electrode plate of sulfide solid-state battery and sulfide solid-state battery
JPWO2021015147A1 (en) * 2019-07-19 2021-01-28
WO2021015147A1 (en) * 2019-07-19 2021-01-28 昭和電工株式会社 Composite electrode material, electrode layer, and solid-state battery

Also Published As

Publication number Publication date
KR20120015418A (en) 2012-02-21
JP5677779B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5551880B2 (en) All solid state secondary battery
JP5953966B2 (en) Positive electrode composite
KR20120010552A (en) Solid lithium ion secondary battery and electrode usable with same
JP5677779B2 (en) Solid lithium ion secondary battery
JP2012028231A (en) Solid lithium ion secondary battery
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
WO2012147647A1 (en) Lithium ion secondary cell
CN109155435B (en) Solid electrolyte, all-solid-state battery
US20120021299A1 (en) Solid lithium ion secondary battery and electrode therefor
JP6222372B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2016039128A (en) All-solid battery
JP7107880B2 (en) Negative electrode mixture layer
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
JP4120439B2 (en) Lithium ion secondary battery
CN114613939B (en) All-solid battery
JP7140093B2 (en) Negative electrode material for sodium ion battery, and sodium ion battery
JP7127550B2 (en) Positive electrode active material layer for all-solid-state batteries
KR101994878B1 (en) Positive electrode for solid lithium ion secondary battery, and solid lithium ion secondary battery comprising the same
JP2020092000A (en) Sulfide solid battery
JP2019096541A (en) All-solid battery
JP2019220356A (en) Positive electrode material for lithium ion secondary battery, method for manufacturing the same and positive electrode active substance layer containing the same, and lithium ion secondary battery arranged by use thereof
US20170149055A1 (en) Lithium-ion secondary battery
JP2019061827A (en) Lithium ion secondary battery
JP2014116127A (en) All-solid-state battery
CN114824155B (en) All-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150105

R150 Certificate of patent or registration of utility model

Ref document number: 5677779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees