JP2012026968A - 光学素子の面間偏心測定装置及び面間偏心測定方法 - Google Patents

光学素子の面間偏心測定装置及び面間偏心測定方法 Download PDF

Info

Publication number
JP2012026968A
JP2012026968A JP2010168313A JP2010168313A JP2012026968A JP 2012026968 A JP2012026968 A JP 2012026968A JP 2010168313 A JP2010168313 A JP 2010168313A JP 2010168313 A JP2010168313 A JP 2010168313A JP 2012026968 A JP2012026968 A JP 2012026968A
Authority
JP
Japan
Prior art keywords
lens
fixing jig
lens fixing
inclination
aspherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010168313A
Other languages
English (en)
Inventor
Takeshi Hirose
武史 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010168313A priority Critical patent/JP2012026968A/ja
Publication of JP2012026968A publication Critical patent/JP2012026968A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

【課題】本発明は、設備構成がよりコンパクトで、測定のタクトタイムの短縮が可能な面間偏心測定装置及び面間偏心測定方法を提供する。
【解決手段】非球面レンズを保持するレンズ固定用治具2と、レンズ固定用治具2を回転及び反転する回転手段3と、レンズ固定用治具2の水平位置及び傾きを微調整する調心機構4と、レンズ固定用治具2の水平位置を検出する変位センサ5と、レンズ固定用治具2に固定されたオプティカルフラット6と、レンズ固定用治具2の傾きを検出するオートコリメータ7と、非球面レンズの面振れを測定する面振れ測定センサ8と、変位センサ5及びオートコリメータ7によりレンズ固定用治具2の水平位置及び傾きを測定させる制御手段と、非球面レンズのシフト量及びチルト量を算出する演算手段と、を有する光学素子の面間偏心測定装置1。
【選択図】図1

Description

本発明は、光学素子の面間偏心測定装置及び面間偏心測定方法に係り、特に、コンパクトな装置構成で、一つの光学素子の面間偏心の測定時間を短縮できる面間偏心測定装置及び面間偏心測定方法に関する。
非球面レンズは、レンズの上面と下面の偏心及び傾き(以下、面間偏心という)がレンズの特性を左右する。また、例えば、カメラに使用するレンズでは、昨今のカメラ本体の性能の向上による非球面レンズの使用枚数の増加に伴い、レンズに求められる面間偏心の要求精度が高度化している。
面間偏心を高精度に測定するためには、3次元測定機を使用してレンズの上面、下面の3次元形状をそれぞれ測定したり、より簡易な測定方法として反射偏心測定機にレンズ面の振れを測定するための変位センサを搭載し、この変位センサによりレンズを回転させたときのレンズ面の振れを測定することで行っている(例えば、特許文献1及び2参照)。
特許第4291849号公報 特許第3725817号公報
しかしながら、3次元測定機を用いた測定は、設備が大掛かりになり、また、30分/個程度の長いタクトタイムの測定となってしまう。
また、反射偏心測定機を用いた測定は、(1)非球面係数の少ないレンズの測定に向いていないこと、(2)測定精度を向上させるためには変位センサの測定位置精度を向上させる必要があり、結局、設備が大掛かりになってしまうこと、(3)原理的にシフト測定精度が悪いこと、(4)レンズの回転を伴う測定のためレンズ位置調整を自動化できず3次元測定機と比較しても測定タクトタイムにメリットが出ないこと、等の問題があった。
本発明は、上記の問題を解消するために、設備構成がよりコンパクトで、測定のタクトタイムの短縮が可能な光学素子の面間偏心測定装置及び面間偏心測定方法の提供を目的とする。
本発明の光学素子の面間偏心測定装置は、測定対象の非球面レンズを保持するためのレンズ保持部を有する板状のレンズ固定用治具と、前記レンズ固定用治具の水平回転及び上下面を反転させる回転手段と、前記レンズ固定用治具の水平位置及び傾きを調整する調心機構と、前記レンズ固定用治具の水平位置を検出する変位センサと、前記レンズ固定用治具に固定されたオプティカルフラットと、前記レンズ固定用治具の傾きを検出するオートコリメータと、鉛直方向の軸を中心に回転させて、前記非球面レンズの面振れを測定する面振れ測定センサと、前記面振れ測定センサの測定結果に基づいて面振れの有無を判断し、面振れが有ると判断した場合は、前記調心機構を動作させ、再度、面振れの測定、面振れの有無の判断を繰り返し、面振れが無いと判断した場合は、前記変位センサ及びオートコリメータを用いて前記レンズ固定用治具の水平位置及び傾きの測定をする制御手段と、前記非球面レンズの上面について測定された前記レンズ固定用治具の水平位置及び傾き並びに非球面レンズの下面について測定された前記レンズ固定用治具の水平位置及び傾き、から前記非球面レンズのシフト量及びチルト量を算出する演算手段と、を有することを特徴とする。
また、本発明の光学素子の面間偏心測定方法は、上記光学素子の面間偏心測定装置を用いた面間偏心測定方法であって、前記レンズ固定用治具のレンズ保持部に、測定対象の非球面レンズを保持させる保持工程と、前記レンズ固定用治具に保持される非球面レンズの一方の面に対し、前記面振れ測定センサにより面振れを測定する上面面振れ測定と、該上面面振れ測定の結果に基づいて、非球面レンズの水平位置及び傾きを変化させる上面位置調整と、を前記非球面レンズの面振れがなくなるまで繰り返して行い非球面軸を決定する上面調心工程と、
前記非球面軸を決定したときの前記レンズ固定用治具の水平位置を変位センサにより、傾きをオートコリメータにより測定する第1の位置決定工程と、前記面振れがなくなった非球面レンズ上面について、決定した非球面軸を中心にして前記レンズ固定用治具を水平に180度回転させる上面回転工程と、前記上面回転工程により水平回転された前記レンズ固定用治具の水平位置を変位センサにより、傾きをオートコリメータにより測定する第2の位置決定工程と、
前記第2の位置決定工程が終了したレンズ固定用治具の上下面を反転させる反転工程と、前記反転したレンズ固定用治具に保持される非球面レンズの他方の面に対し、前記面振れ測定センサにより面振れを測定する下面面振れ測定と、該下面面振れ測定の結果に基づいて、非球面レンズの水平位置及び傾きを変化させる下面位置調整と、を前記非球面レンズの面振れがなくなるまで繰り返して行い非球面軸を決定する下面調心工程と、
前記非球面軸を決定したときの前記レンズ固定用治具の水平位置を変位センサにより、傾きをオートコリメータにより測定する第3の位置決定工程と、前記面振れがなくなった非球面レンズ下面について、決定した非球面軸を中心にして前記レンズ固定用治具を水平に180度回転させる下面回転工程と、前記下面回転工程により180度回転したレンズ固定用治具の水平位置を変位センサにより、傾きをオートコリメータにより測定する第4の位置決定工程と、
前記第1乃至第4の位置決定工程により得られた水平位置の値に基づいて、非球面レンズのシフト量を算出するシフト量算出工程と、前記第1乃至第4の位置決定工程により得られた傾きの値に基づいて、非球面レンズのチルト量を算出するチルト量算出工程と、を有することを特徴とする。
本発明の光学素子の面間偏心測定装置及び面間偏心測定方法によれば、設備構成がコンパクトでありながら、光学素子の上面、下面の非球面軸のシフト量及びチルト量を簡便に測定できる。この装置及び方法による測定は、非球面係数の少ないレンズにも対応でき、測定精度も良好で、測定のタイムタクトを短縮できる。
本発明の一実施形態である光学素子の面間偏心測定装置の概略構成図である。 図1の光学素子の面間偏心測定装置で用いたレンズ固定用治具の(a)側断面図及び(b)平面図である。 図1の光学素子の面間偏心測定装置を用いた面間偏心測定方法における、工程(A)〜(C)についての動作を説明する図である。 図1の光学素子の面間偏心測定装置を用いた面間偏心測定方法における、工程(D)〜(E)についての動作を説明する図である。 非球面レンズのシフト量算出について説明するための関係図である。 非球面レンズのシフト量の算出方法について説明する図である。 非球面レンズのチルト量算出について説明するための関係図である。 非球面レンズのチルト量の算出方法について説明する図である。
以下、本発明について図面を参照しながら説明する。
図1に示した光学素子の面間偏心測定装置1は、非球面レンズ50を保持するレンズ固定用治具2と、レンズ固定用治具2の水平回転及び上下面を反転させる回転手段3と、レンズ固定用治具2の水平位置及び傾きを調整する調心機構4と、レンズ固定用治具2の水平位置を検出する変位センサ5と、レンズ固定用治具2に固定されたオプティカルフラット6と、レンズ固定用治具2の傾きを検出するオートコリメータ7と、非球面レンズ50の面振れを測定する面振れ測定センサ8と、から構成される。
なお、光学素子の面間偏心測定装置1は、面振れ測定センサ8は、鉛直方向の軸を中心に回転させて、非球面レンズ50の面振れを測定するもので、得られた測定値から面振れの有無を判断し、面振れが有ると判断した場合には調心機構4を動作させ、面振れが無いと判断した場合には変位センサ5及びオートコリメータ7によりレンズ固定用治具2の水平位置及び傾きの測定する制御手段を有する。さらに、光学素子の面間偏心測定装置1は、得られた複数の水平位置及び傾きから、非球面レンズ50のシフト量及びチルト量を算出する演算手段と、を有して構成される。ここで面振れとは、面振れ測定センサ8でセンサとレンズの距離を測定した時に、その測定距離が一定とならないことをいい、このとき、測定した非球面レンズの非球面軸と面振れ測定センサ8の回転軸とがずれている。
レンズ固定用治具2は、図2にその側断面及び平面を示したように、測定対象の非球面レンズを中央部に保持、固定するためのレンズ保持部2aを有する板状の治具である。測定される非球面レンズ50は、光学面に接触しないように、レンズ固定用治具2の中央に配設されたレンズ固定用金具2bにより固定される。レンズ固定用金具2bは、非球面レンズ50を安定して固定できるように、レンズの外周の複数個所を均等に保持する。安定に保持するためには、少なくともレンズ外周を周方向に等間隔で、3箇所、好ましくは4箇所以上でレンズを保持することが好ましい。
レンズ固定用治具2の側面2cは平滑に鏡面加工されており、後述する変位センサ5から、この鏡面部分にレーザ光を照射し、反射光の受光時間の測定により、レンズ固定用治具2の位置を精密に計測できる。
回転手段3は、レンズ固定用治具2の水平回転と、レンズ固定用治具2の上下面の反転と、をそれぞれ独立に制御できる。水平回転させる場合には、レンズ固定用治具2を、鉛直方向の軸により180度(水平面上で)回転させる。上下面を反転させる場合には、レンズ固定用治具2を、一旦面間偏心測定装置1から外部へ移動させ、水平方向の回転軸により180度回転させることで上下面を反転させる。
この回転手段3としては、例えば、図1に示したような回転アームにより達成できる。この回転アームは、レンズ固定用治具2を、その傾き状態を維持したままハンド部3aで保持、移動でき、保持したレンズ固定用治具2の水平回転では、測定対象の非球面レンズの非球面軸を中心に水平回転ができる。さらに、この回転アームは、レンズ固定用治具2を、その傾き状態を維持したままハンド部3aで保持、移動させた後、アーム部3bを軸にハンド部3aを180度回転させることで、上下面の反転ができる。
調心機構4は、レンズ固定用治具2の水平位置及び傾きを微調整する。この調心機構は、水平位置を微調整できる水平移動手段4aと、傾きを微調整できる傾斜角度調整手段4bと、から構成される。
この水平移動手段4aは、その上部に傾斜角度調整手段4bを載せており、さらにその上部にレンズ固定用治具2を固定できる。したがって、この水平移動手段4aを移動することでレンズ固定用治具2の水平位置を変更できる。ここで、水平移動手段4aとしては、例えば、ピエゾ素子、XY軸微動ステージ等が挙げられる。
この傾斜角度調整手段4bを構成するにあたって、調整角度の大きい粗調整用のものと、調整角度の小さい微調整のものとを組み合わせることが好ましい。このとき、例えば、粗調整用の方の調整角度は±0.1度以下の精度で連続的あるいはステップ的に調整し、微調整用の方の調整角度をは±0.001度以下の精度で連続的あるいはステップ的に調整できるのが好ましい。
傾斜角度調整手段4bとしては、ピエゾ素子、傾斜ステージ、ゴニオステージ等を使用できる。調整角度は水平面に対して±10度までの範囲とすればよい。
傾斜角度調整手段4bの上部は、レンズ固定用治具2を保持、固定できるようになっており、この傾斜角度調整手段4bにより、レンズ固定用治具2の傾きを微調整できる。この傾斜角度は、X軸方向、Y軸方向の両方の傾斜角度を調整することで、水平面に対するどのような傾斜角度も達成できる。
変位センサ5は、レンズ固定用治具2の水平位置を検出する。この変位センサ5としては、例えば、反射タイプのレーザ変位計、光学三角測距式変位センサ、レーザーフォーカス式変位センサ、超音波式変位センサ、過電流式変位センサ等を使用でき、反射タイプのレーザ変位計を用いた場合には、レンズ固定用治具2の鏡面加工された側面に水平にレーザ光を照射し、反射光の受光時間を測定してレンズ固定用治具2と変位センサ5との距離が求められる。
この変位センサ5は、図1では、レンズ固定用治具2の左側から照射するようにしてXY平面のX方向の位置を測定するようにのみ記載しているが、実際には、Y方向の位置も測定できるように、図の手前から奥へ向けて、レーザ光を照射するように変位センサ5が設けられている。このとき、変位センサは少なくともX方向及びY方向で各々2個ずつ設けて、その距離を正確に計測できる構成が好ましい。
オプティカルフラット6は、レンズ固定用治具2に固定されており、レンズ固定用治具2の基準傾きを決定する。このオプティカルフラット6は、レンズ固定用治具2の傾きを測定するために使用され、後述するオートコリメータ7からのレーザ光を受ける位置に設けられる。具体的には、図2に示したように、レンズ固定用治具2の内部であって、レンズ固定部2aの外周に円環状に固定して設けることが好ましい。また、オプティカルフラットの面精度を維持するために内周は出来るだけ小さく、厚みはできるだけ厚いことが望ましい。
オートコリメータ7は、レンズ固定用治具2の傾きを検出する。オートコリメータ7は、オプティカルフラット6へレーザ光を照射し、その反射光の角度からレンズ固定用治具2の傾きを検出する。
面振れ測定センサ8は、鉛直方向の軸を中心に回転させて、非球面レンズの面振れを測定する。この面振れ測定センサ8は、測定対象であるレンズの測定面に対して、斜め上方に配置され、レンズの非球面軸に近い回転軸を中心に回転しながら、レンズの測定面とセンサとの距離を測定する。センサとレンズとの距離の振れが測定された場合は、非球面軸とセンサの回転軸8aが一致していないことがわかり、振れが測定されない場合は、非球面軸とセンサの回転軸8aが一致したことがわかる。
なお、この面振れ測定センサ8は、測定対象である非球面レンズへのレーザ光の照射角度によって、測定ができない場合も生じるため、センサの角度、上下位置、水平位置を調整して測定対象である非球面レンズの面振れの測定を安定してできることが好ましい。
制御手段は、図示していないが、面振れ測定センサ8の測定により面振れの有無を判断する。面振れが有ると判断した場合には、調心機構4を動作させることで、レンズ固定用治具2の水平位置及び傾きを変えて、再度、面振れ測定センサ8により面振れを測定し、再度、面振れの有無を判断する。
一方、面振れが無いと判断した場合には、測定面の非球面軸と面振れ測定センサ8のセンサ回転軸8aが一致していることがわかり、ここで面振れ測定を終了し、制御手段は、この位置におけるレンズ固定用治具2の水平位置及び傾きを、変位センサ5及びオートコリメータ7により測定させる。
このとき、変位センサ5及びオートコリメータ7による測定値は、記憶手段により記憶しておく。ここで記憶した測定値は、後述する演算手段により使用される。このとき用いられる記憶手段は、半導体メモリ、HDD等の公知の記憶手段が挙げられる。
また、演算手段は、測定対象である非球面レンズのシフト量及びチルト量を算出する。ここで、シフト量及びチルト量について、より具体的に説明する。シフト量とは、非球面レンズの上面の非球面軸と下面の非球面軸との水平方向における相対的位置のズレをいい、チルト量とは、非球面レンズの上面の非球面軸と下面の非球面軸とのなす角が180度からどれだけの角度、どの方向にズレているかをいう。
したがって、上記した非球面軸の決定、その際のレンズ固定用治具2の位置及び傾きの測定は、非球面レンズ50の上面及び下面の両面を測定対象とし、それぞれのデータが上記記憶手段に記憶される。そして、この記憶されている上面の非球面軸を決定したときのレンズ固定用治具2の水平位置及び傾き並びに下面の非球面軸を決定したときのレンズ固定用治具2の水平位置及び傾きに基づいて、非球面レンズ50の上面の非球面軸と下面の非球面軸とのシフト量及びチルト量を算出する。具体的な算出方法については、後述する面間偏心測定方法において説明する。
次に、この光学素子の面間偏心測定装置1を用いた光学素子の面間偏心測定方法について説明する。図3は、この光学素子の面間偏心測定方法の下記工程(A)〜(C)についての動作を、図4は、下記工程(D)〜(E)についての動作を説明する図である。
(A)保持工程
まず、光学素子の面間偏心測定装置1からレンズ固定用治具2を外し、図2に示したように、そのレンズ保持部2aに、測定対象の非球面レンズ50を固定し、保持させる(図3(a))。そして、この非球面レンズ50を保持したレンズ固定用治具2は、面間偏心測定装置1にセットされ、基準位置に調整される。この基準位置は、水平位置は、レンズ固定用治具2の治具中心がセンサ回転軸8aと平面上に同一の位置にくるように、傾きはオプティカルフラット6に照射される、オートコリメータ7のレーザ光とその反射光の軌跡が一致する位置となる。
(B)上面調心工程
次に、セットされたレンズ固定用治具2に保持される非球面レンズ50の一方の面(以下、こちらの面を「上面」という)に対して上面調心工程を行う。この上面調心工程は、次に説明する(B−1)上面面振れ測定と(B−2)上面位置調整とを、非球面レンズ50の面振れがなくなるまで繰り返し行うもので、これにより非球面軸が決定される。
(B−1)上面面振れ測定は、レンズ固定用治具2に保持される非球面レンズ50の上面に対し、面振れ測定センサ8により面振れを測定する操作である。このとき面振れ測定センサ8を、鉛直方向のセンサ回転軸8aを中心に回転させて、非球面レンズの面振れを測定する(図3(b))。この回転により、面振れ測定センサ8は、レンズとの距離を連続的に測定して、その測定距離の変動の状態を確認する。測定距離が変動する場合には面振れが有ると判断され、非球面軸50aとセンサ回転軸8aが一致していないことがわかる。
(B−2)上記上面面振れ測定により、面振れが有った場合には、上面位置調整を行う。この上面位置調整は、非球面レンズ50の水平位置又は傾きを変化させて非球面軸50aをセンサ回転軸8aと一致する方向へ、水平位置又は傾きを移動させる操作である。
このとき、水平位置は、水平移動手段4aにより、非球面レンズ50を保持するレンズ固定用治具2ごと水平位置を移動させて調整する。また、傾きは、傾斜角度調整手段4bを用いて同じように、非球面レンズ50を保持するレンズ固定用治具2ごと傾斜角度を変化させて調整する。
上記上面面振れ測定の結果より、面振れが大きい場合には、まず水平位置を水平調整手段4aによって変化させ位置を調整する。この水平位置の調整は、上面面振れ測定によって得られた最大値と最小値の大きさ及び位置データに基づいて、その最大値と最小値の差が最も小さくなるように行われる。具体的には、(最大値−最小値)/2の距離だけ最大値の方向へ水平移動させる。
水平移動後は、再度上面面振れ測定を行い、面振れが改善されているかを判断する。面振れが改善されていれば、次に、傾斜角度調整手段4bによって変化させ傾きを調整する。この傾斜角度の調整は、上面面振れ測定によって得られた最大値と最小値の大きさ及び位置データに基づいて、その最大値と最小値の差が最も小さくなるように行われる。具体的には、(最大値−最小値)/2の距離に相当する角度だけ最大値の方向へ傾斜させる。ここで、(最大値−最小値)/2の距離に相当する角度は、面振れ測定している非球面レンズの位置の接線の傾きから角度と距離の関係を計算して、距離を角度に変換すればよい。
傾斜後は、再度上面面振れ測定を行い、面振れが改善されているかを判断する。面振れが改善されていれば、上記と同様に水平位置の調整と傾斜角度の調整とを繰り返して行う。なお、調整操作を行った後、面振れが改善されていない場合には、調整操作前の状態に一旦戻して、もう一方の要素を調整する調整操作を継続すればよい。
上記(B−1)及び(B−2)の操作を繰り返して行い、面振れが測定されなくなったとき、すなわち、面振れ測定センサにより測定されるレンズ上面との距離が一定となり、非球面軸50aとセンサ回転軸8aとが一致したとき、この上面調心工程を終了する(図3(c))。
ところで、非球面軸50aとセンサ回転軸8aとは、一致させることが非常に困難であるため、実際には、面振れの量が必要とされる面間偏心測定精度に対して十分小さくなったと判断したときにも、軸が一致したものと同様に扱い上面調心工程を終了する。ここで、面振れの量が十分に小さくなったとの判断は、測定対象の非球面レンズの大きさ、形状に基づいて、(1)所定の基準値を設け、面振れの「最大値−最小値」がその基準値内に入ったとき、(2)面振れの「最大値−最小値」が、面振れ測定のn回目とn+1回目の差、n+1回目とn+2回目の差、がほぼゼロ(又は基準値以下)になったとき、(3)面振れ測定による面振れの大きさが「大→中→小→中」と変化したときの一番面振れの改善されている状態(「小」の部分)を判別したとき、等の基準に従い、これらを単独で又は組み合わせて行えばよい。
(C)第1の位置決定工程
上記調心工程により、非球面軸50aとセンサ回転軸8aとが一致したことが確認できたら、その一致した状態におけるレンズ固定用治具2の水平位置及び傾きを測定する第1の位置決定工程を行う。
(C−1)第1の位置決定工程における水平位置は、レンズ固定用治具2の外周に離間して装置に固定された変位センサ5を用いて行う。レンズ固定用治具2の測定に係る外周側面2cは、鏡面加工されており、この鏡面部分に、変位センサ5からレーザ光を照射する。レーザ光の照射から、その反射光の検出時間を測定することで変位センサ5からレンズ固定用治具2までの距離を測定する。変位センサ5は、レンズ固定用治具2の水平位置を決定するために、X軸方向、Y軸方向の2方向の距離を測定するように装置に設けられる(図3(d))。なお、X軸方向、Y軸方向のいずれにおいてもセンサを2個以上設けるようにして、その平均値を算出することで、レンズ固定用治具2がX軸及びY軸方向に傾いている場合にも、レンズの非球面軸の位置を確実に算出できる。
(C−2)第1の位置決定工程における傾きは、レンズ固定用治具2の上方に離間して装置に固定されたオートコリメータ7を用いて行う。レンズ固定用治具2にはオプティカルフラット6が埋め込まれており、オートコリメータ7からレーザ光を照射する。このレーザ光の反射光の傾きの検出により、レンズ固定用治具2の傾きを測定できる(図3(d))。
ここで測定された水平位置及び傾きからなる位置情報は、記憶手段に記憶され、後の工程において使用される。
(D)上面回転工程
第1の位置決定が終了したら、次に、上面回転工程を行う。この上面回転は、レンズ固定用治具2を、上記非球面軸50a(センサ回転軸8a)を回転軸として、180度水平回転する(図4(a);回転前)。すなわち、この回転では、レンズ固定用治具2はその傾きを保持したまま、かつ、非球面レンズ50の上面を上方に向けたまま、回転される。また、この回転によって非球面軸50aが、センサ回転軸8aと一致した状態は変わらない(図4(b);回転後)。
回転した後、それぞれ水平位置及び傾きも180度回転した状態とするため、水平移動手段4aの水平位置及び傾斜角度調整手段4bの傾きも、それぞれセンサ回転軸8a中心に180度回転された状態へと調整される。
(E)第2の位置決定工程
180度水平回転したレンズ固定用治具2に対して、水平位置及び傾きを決定する第2の位置決定工程を行う。この第2の位置決定工程で、上記(C)第1の位置決定工程と同様に、変位センサ5及びオートコリメータ7により水平位置及び傾きが決定される(図4(c))。
そして、第1の位置決定工程と同様に、ここで測定された水平位置及び傾きからなる位置情報は、記憶手段に記憶され、後の工程において使用される。
(F)反転工程
第2の位置決定が終了したら、次に、レンズ固定用治具2の上下面を回転手段3により反転させる。この反転により、非球面レンズ50の上面と下面が入れ替わり、下面の測定の準備が整う。このとき、調心機構の水平位置及び傾きは基準位置に戻して、レンズ固定用治具2を基準位置に載置することが好ましい。
(G)下面調心工程
次に、レンズ固定用治具2に保持される非球面レンズ50の他方の面(以下、こちらの面を「下面」という)に対して調心工程を行う。この下面調心工程は、上面調心工程と同様に、下面面振れ測定と下面位置調整とを、非球面レンズ50の面振れがなくなるまで繰り返し行うもので、これにより非球面軸が決定される。
(G−1)下面面振れ測定は、レンズ固定用治具2に保持される非球面レンズ50の下面に対し、面振れ測定センサ8により面振れを測定する操作である。このとき面振れ測定センサ8を、鉛直方向のセンサ回転軸8aを中心に回転させて、非球面レンズの面振れを測定する。この回転により、面振れ測定センサ8は、レンズとの距離を連続的に測定して、その測定距離が変動の状態を確認する。測定距離が変動する場合には面振れが有ると判断され、非球面軸50bとセンサ回転軸8aが一致していないことがわかる。
(G−2)上記下面面振れ測定により、面振れが有った場合には、下面位置調整を行う。この下面位置調整は、非球面レンズ50の水平位置又は傾きを変化させて非球面軸50bをセンサ回転軸8aと一致する方向へ、水平位置又は傾きを移動させる操作である。
上記(G−1)及び(G−2)の操作を繰り返して行い、面振れが測定されなくなったとき、すなわち、面振れ測定センサにより測定されるレンズ下面との距離が一定となり、非球面軸50bとセンサ回転軸8aとが一致したとき、この下面調心工程を終了する。また(B)上面調心工程と同様に、面振れの量が必要とされる面間偏心測定精度に対して十分小さくなったと判断されたときにも下面調心工程を終了する。
(H)第3の位置決定工程
上記下面調心工程を実施して、非球面軸50bとセンサ回転軸8aとが一致したことが確認できたら、その一致した状態におけるレンズ固定用治具2の水平位置及び傾きを測定する第3の位置決定工程を行う。測定は、上記(C)第1の位置決定工程と同様に、変位センサ5及びオートコリメータ7により水平位置及び傾きが決定される。なお、レンズ固定用治具2に埋め込まれたオプティカルフラット6は、下面からも測定できるように、測定位置においては、レンズ固定用治具2に開口部が設けられている。
ここで測定された水平位置及び傾きからなる位置情報は、記憶手段に記憶され、後の工程において使用される。
(I)下面回転工程
第3の位置決定が終了したら、次に、下面回転工程を行う。この下面回転は、レンズ固定用治具2を、上記非球面軸50b(センサ回転軸8a)を回転軸として、180度水平回転する。すなわち、この回転では、レンズ固定用治具2はその傾きを保持したまま、かつ、非球面レンズ50の下面を上方に向けたまま、回転される。また、この回転によって非球面軸50bが、センサ回転軸8aと一致した状態は変わらない。
回転した後、それぞれ水平位置及び傾きも180度回転した状態とするため、水平移動手段4aの水平位置及び傾斜角度調整手段4bの傾きも、それぞれセンサ回転軸8a中心に180度回転された状態へと調整される。
(J)第4の位置決定工程
180度水平回転したレンズ固定用治具2に対して、水平位置及び傾きを決定する第4の位置決定工程を行う。この第4の位置決定工程は、上記(H)第1の位置決定工程と同様に、変位センサ5及びオートコリメータ7により水平位置及び傾きが決定される。
そして、第1の位置決定工程と同様に、ここで測定された水平位置及び傾きからなる位置情報は、記憶手段に記憶され、後の工程において使用される。
(K)シフト量算出工程
第4の位置決定工程まで終了したら、測定対象の非球面レンズ50のシフト量を算出する。シフト量の算出は、上記第1〜4の位置決定工程で得られた水平位置の情報を使用して算出する。
まず、レンズ固定用治具2の治具中心線Oを基準とし、この基準がレンズ固定用治具2の平面上の原点となる。このとき、原点に対してズレて存在する非球面レンズ50上面の非球面軸の座標をA(ax,ay)、下面の非球面軸の座標をB(bx,by)とする。このとき、レンズ固定用治具2の側断面から見たX軸方向のズレを図5に示した。
このとき、座標AのX成分は、図6(a)に示した第1の位置決定工程で得られたX軸方向の水平位置情報(以下、X1という)と図6(b)に示した第2の位置決定工程で得られたX軸方向の水平位置情報(以下、X2という)との差をとることで算出される。具体的には、X1とX2とから得られる差(X1−X2)は、常に、治具中心線Oと上面の非球面軸の座標AのX成分との距離の2倍の距離となるため、座標AのX成分はax=(X1−X2)/2の計算式によって算出できる。
上記の関係は、Y軸方向にも言えるため、全く同じ考え方で第1の位置決定工程で得られたY軸方向の水平位置情報(以下、Y1という)と第2の位置決定工程で得られたY軸方向の水平位置情報(以下、Y2という)を用い、座標AのY成分はay=(Y1−Y2)/2の計算式によって算出できる。
そして、上記のようにX成分及びY成分がそれぞれ算出されれば、治具中心線Oに対する座標Aがわかる。
次に、座標Bについても座標Aと同様に、図6(c)に示した第3の位置決定工程で得られたX軸方向の水平位置情報(以下、X3という)と図6(d)に示した第4の位置決定工程で得られたX軸方向の水平位置情報(以下、X4という)を用い、座標BのX成分はbx=(X3−X4)/2の計算式によって算出でき、さらに、第3の位置決定工程で得られたY軸方向の水平位置情報(以下、Y3という)と第4の位置決定工程で得られたY軸方向の水平位置情報(以下、Y4という)を用い、座標BのY成分はby=(Y3−Y4)/2の計算式によって算出できる。
そして、上記のようにX成分及びY成分がそれぞれ算出されれば、治具中心線Oに対する座標Bがわかる。
このようにして座標Aと座標Bとがわかれば、この非球面レンズにおけるシフト量は、それぞれの座標の差(座標A−座標B)をとることで容易に算出できる。
(L)チルト量算出工程
第4の位置決定工程まで終了したら、測定対象の非球面レンズ50のチルト量を算出する。チルト量の算出は、上記第1〜4の位置決定工程で得られたレンズ固定用治具2の傾きの情報を使用して算出する。
まず、レンズ固定用治具2に固定されたオプティカルフラットの上下面の法線を基準(基準線)とする。このとき、基準線に対する非球面レンズ50の上面の非球面軸の傾きをγ、下面の非球面軸の傾きをφとする(図7)。
このとき、センサ回転軸に対してオートコリメータ7からのレーザ光がθの角度を持っているとき、図8(a)に示したように第1の位置決定工程で得られた傾き情報は、反射光の傾きとして(θ+γ)が得られる。また、図8(b)に示したように第2の位置決定工程で得られた傾き情報は(θ−γ)が得られる。これらの傾き情報の差をとると、(θ+γ)−(θ−γ)=2γが得られ、γの値が決定できる。
次に、下面についても同様であり、このとき、センサ回転軸に対してオートコリメータ7からのレーザ光はθの角度で変わらない。よって、図8(c)に示したように第3の位置決定工程で得られた傾き情報は、反射光の傾きとして2×(θ+φ)が得られる。また、図8(d)に示したように第4の位置決定工程で得られた傾き情報は(θ−φ)が得られる。これらの傾き情報の差をとると、(θ+φ)−(θ−φ)=2φが得られ、φの値が決定できる。
上記のように得られたγとφとは、共にX軸成分、Y軸成分を有しており、これらを分離して、X軸方向のチルト量、Y軸方向のチルト量をそれぞれ算出し、これらの合成により非球面レンズ50のチルト量が算出できる。
以上のように、本発明の面間偏心測定装置及び方法によれば、コンパクトな設備構成でありながら、非球面レンズ50のシフト量及びチルト量を容易に測定できる。さらに、この測定装置及び方法によれば、非球面係数の少ないレンズにも対応でき、測定精度も良好で、測定のタクトタイムを短縮できる。
本発明の光学素子の面間偏心測定装置及び面間偏心測定方法は、プレス成形により得られた非球面レンズについて、その上面及び下面のシフト量及びチルト量の測定に使用できる。
1…光学素子の面間偏心測定装置、2…レンズ固定用治具、3…回転手段、4…調心機構、5…変位センサ、6…オプティカルフラット、7…オートコリメータ、8…面振れ測定センサ、8a…センサ回転軸、50…非球面レンズ、50a,50b…非球面軸、

Claims (4)

  1. 測定対象の非球面レンズを保持するためのレンズ保持部を有する板状のレンズ固定用治具と、
    前記レンズ固定用治具の水平回転及び上下面を反転させる回転手段と、
    前記レンズ固定用治具の水平位置及び傾きを調整する調心機構と、
    前記レンズ固定用治具の水平位置を検出する変位センサと、
    前記レンズ固定用治具に固定されたオプティカルフラットと、
    前記レンズ固定用治具の傾きを検出するオートコリメータと、
    鉛直方向の軸を中心に回転させて、前記非球面レンズの面振れを測定する面振れ測定センサと、
    前記面振れ測定センサの測定結果に基づいて面振れの有無を判断し、面振れが有ると判断した場合は、前記調心機構を動作させ、再度、面振れの測定、面振れの有無の判断を繰り返し、面振れが無いと判断した場合は、前記変位センサ及びオートコリメータにより前記レンズ固定用治具の水平位置及び傾きの測定をする制御手段と、
    前記非球面レンズの上面について測定された前記レンズ固定用治具の水平位置及び傾き並びに非球面レンズの下面について測定された前記レンズ固定用治具の水平位置及び傾き、から前記非球面レンズのシフト量及びチルト量を算出する演算手段と、
    を有することを特徴とする光学素子の面間偏心測定装置。
  2. 前記レンズ固定用治具の外周側面が鏡面加工されており、前記変位センサが反射タイプのレーザ変位計である請求項1記載の面間偏心測定装置。
  3. 前記調心機構の傾斜角度調整手段が、ピエゾ素子を有している請求項1又は2記載の面間偏心測定装置。
  4. 請求項1乃至3のいずれか1項記載の光学素子の面間偏心測定装置を用いた面間偏心測定方法であって、
    前記レンズ固定用治具のレンズ保持部に、測定対象の非球面レンズを保持させる保持工程と、
    前記レンズ固定用治具に保持される非球面レンズの一方の面に対し、前記面振れ測定センサにより面振れを測定する上面面振れ測定と、該上面面振れ測定の結果に基づいて、非球面レンズの位置及び傾きを変化させる上面位置調整と、を前記非球面レンズの面振れがなくなるまで繰り返し非球面軸を決定する上面調心工程と、
    前記非球面軸を決定したときの前記レンズ固定用治具の水平位置を変位センサにより、傾きをオートコリメータにより測定する第1の位置決定工程と、
    前記面振れがなくなった非球面レンズ上面について、決定した非球面軸を中心にして前記レンズ固定用治具を水平に180度回転させる上面回転工程と、
    前記上面回転工程により水平回転された前記レンズ固定用治具の水平位置を変位センサにより、傾きをオートコリメータにより測定する第2の位置決定工程と、
    前記第2の位置決定工程が終了したレンズ固定用治具の上下面を反転させる反転工程と、
    前記反転したレンズ固定用治具に保持される非球面レンズの他方の面に対し、前記面振れ測定センサにより面振れを測定する下面面振れ測定と、該下面面振れ測定の結果に基づいて、非球面レンズの水平位置及び傾きを変化させる下面位置調整と、を前記非球面レンズの面振れがなくなるまで繰り返して行い非球面軸を決定する下面調心工程と、
    前記非球面軸を決定したときの前記レンズ固定用治具の水平位置を変位センサにより、傾きをオートコリメータにより測定する第3の位置決定工程と、
    前記面振れがなくなった非球面レンズ下面について、決定した非球面軸を中心にして前記レンズ固定用治具を水平に180度回転させる下面回転工程と、
    前記下面回転工程により180度回転したレンズ固定用治具の水平位置を変位センサにより、傾きをオートコリメータにより測定する第4の位置決定工程と、
    前記第1乃至第4の位置決定工程により得られた水平位置の値に基づいて、非球面レンズのシフト量を算出するシフト量算出工程と、
    前記第1乃至第4の位置決定工程により得られた傾きの値に基づいて、非球面レンズのチルト量を算出するチルト量算出工程と、
    を有することを特徴とする光学素子の面間偏心測定方法。
JP2010168313A 2010-07-27 2010-07-27 光学素子の面間偏心測定装置及び面間偏心測定方法 Withdrawn JP2012026968A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168313A JP2012026968A (ja) 2010-07-27 2010-07-27 光学素子の面間偏心測定装置及び面間偏心測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168313A JP2012026968A (ja) 2010-07-27 2010-07-27 光学素子の面間偏心測定装置及び面間偏心測定方法

Publications (1)

Publication Number Publication Date
JP2012026968A true JP2012026968A (ja) 2012-02-09

Family

ID=45780044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168313A Withdrawn JP2012026968A (ja) 2010-07-27 2010-07-27 光学素子の面間偏心測定装置及び面間偏心測定方法

Country Status (1)

Country Link
JP (1) JP2012026968A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106813598A (zh) * 2017-02-23 2017-06-09 云南北方驰宏光电有限公司 非球面镜片定心装置及定心方法
KR20200073007A (ko) * 2018-12-13 2020-06-23 주식회사 강한이노시스 산업기계설비 진단 및 위치제어시스템
CN115164731A (zh) * 2022-06-17 2022-10-11 西安应用光学研究所 一种入射面自动准直定位***及定位方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106813598A (zh) * 2017-02-23 2017-06-09 云南北方驰宏光电有限公司 非球面镜片定心装置及定心方法
CN106813598B (zh) * 2017-02-23 2019-04-05 云南北方驰宏光电有限公司 非球面镜片定心装置及定心方法
KR20200073007A (ko) * 2018-12-13 2020-06-23 주식회사 강한이노시스 산업기계설비 진단 및 위치제어시스템
KR102197729B1 (ko) * 2018-12-13 2021-01-04 주식회사 강한이노시스 산업기계설비 진단 및 위치제어시스템
CN115164731A (zh) * 2022-06-17 2022-10-11 西安应用光学研究所 一种入射面自动准直定位***及定位方法

Similar Documents

Publication Publication Date Title
US10074192B2 (en) Substrate inspection apparatus and control method thereof
US8635783B2 (en) Surface measurement instrument and method
WO2007018118A1 (ja) レンズにおける表裏面の光軸偏芯量の測定方法
JP6219320B2 (ja) ウェーハなどのターゲットを処理するためのリソグラフィシステム及び方法
US8059278B2 (en) Optical wave interference measuring apparatus
US20100097619A1 (en) Optical wave interference measuring apparatus
TW201913034A (zh) 盤形凸輪之輪廓精度的非接觸式暨光學量測自動化系統及其方法
JP2013069986A5 (ja)
JP4904844B2 (ja) 超精密形状測定方法
JP2012026968A (ja) 光学素子の面間偏心測定装置及び面間偏心測定方法
JP6089548B2 (ja) 平行度測定方法
KR101958962B1 (ko) 렌즈 소자 반송 기구, 컨트롤러, 광축 조정 장치와 광학 모듈 제조 설비 및 그 제조 방법
JP2007127473A (ja) 非球面レンズの測定方法、非球面レンズの測定装置、非球面レンズの測定プログラム、非球面レンズの製造方法及び非球面レンズ
TWI558978B (zh) 真圓度量測裝置及真圓度量測方法
JP2018059733A (ja) 三次元形状計測システム
JP5010964B2 (ja) 角度測定方法およびその装置
JPH06258182A (ja) 非球面レンズの偏芯測定方法及び装置
JP2000121340A (ja) 面傾斜角度測定機
JP6980304B2 (ja) 非接触内面形状測定装置
JP2012002726A (ja) 校正用冶具、校正方法、及び該校正用冶具が搭載可能な形状測定装置
JP2016136120A (ja) 形状測定方法および形状測定装置
JP4877938B2 (ja) 直径測定装置
JP2000131054A (ja) 回転軸の傾き測定方法及び傾き調整方法
JP2005331497A (ja) 非球面レンズの評価装置及び評価方法
JPH1074687A (ja) ステージ装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131001