JP2012021734A - Double pipe heat exchanger - Google Patents

Double pipe heat exchanger Download PDF

Info

Publication number
JP2012021734A
JP2012021734A JP2010161213A JP2010161213A JP2012021734A JP 2012021734 A JP2012021734 A JP 2012021734A JP 2010161213 A JP2010161213 A JP 2010161213A JP 2010161213 A JP2010161213 A JP 2010161213A JP 2012021734 A JP2012021734 A JP 2012021734A
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
heat exchanger
double
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010161213A
Other languages
Japanese (ja)
Inventor
Naohisa Higashiyama
直久 東山
Hokuto Mine
北斗 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2010161213A priority Critical patent/JP2012021734A/en
Priority to CN 201120250405 priority patent/CN202284876U/en
Publication of JP2012021734A publication Critical patent/JP2012021734A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double pipe heat exchanger for allowing a refrigerant to flow uniformly in the circumferential direction in a first refrigerant flow channel.SOLUTION: The double pipe heat exchanger 1 includes an outer pipe 2, and an inner pipe 3 disposed in the outer pipe 2 at an interval. A clearance between the outer pipe 2 and the inner pipe 3 serves as the first refrigerant flow channel 4, and a second refrigerant flow channel 5 is formed in the inner pipe 3. A refrigerant inflow pipe 12 and a refrigerant outflow pipe 13 are connected to the outer pipe 2 with spacing in the longitudinal direction of the outer pipe 2 to communicate with the first refrigerant flow channel 4. The refrigerant outflow pipe 13 is disposed on a position displaced from the refrigerant inflow pipe 12 in the circumferential direction of the outer pipe 12. A displacement angle in the circumferential direction of the outer pipe 2 to the refrigerant inflow pipe 12, of the refrigerant outflow pipe 13 is 90-180 degrees.

Description

この発明は二重管式熱交換器に関し、さらに詳しくは、外管と、外管内に間隔をおいて設けられた内管とを備えている二重管式熱交換器に関する。   The present invention relates to a double-pipe heat exchanger, and more particularly to a double-pipe heat exchanger that includes an outer tube and an inner tube that is spaced from the outer tube.

この明細書において、「コンデンサ」という用語には、通常のコンデンサの他に凝縮部および過冷却部を有するサブクールコンデンサを含むものとする。   In this specification, the term “capacitor” includes a subcool condenser having a condensing part and a supercooling part in addition to a normal condenser.

従来、カーエアコンに用いられる冷凍サイクルとして、コンプレッサ、凝縮部と過冷却部とを有するコンデンサ、エバポレータ、減圧器としての膨張弁、気液分離器、およびコンデンサとエバポレータとの間に配置され、かつコンデンサの過冷却部から出てきた高温の冷媒とエバポレータから出てきた低温の冷媒とを熱交換させる中間熱交換器を備えたものが提案されている(特許文献1参照)。特許文献1記載の冷凍サイクルにおいては、コンデンサの過冷却部において過冷却された冷媒が、中間熱交換器において、エバポレータから出てきた低温の冷媒によりさらに冷却され、これによりエバポレータの冷却性能が向上させられるようになっている。   Conventionally, as a refrigeration cycle used in a car air conditioner, a compressor, a condenser having a condensing part and a supercooling part, an evaporator, an expansion valve as a decompressor, a gas-liquid separator, and a condenser and an evaporator, and An apparatus including an intermediate heat exchanger for exchanging heat between a high-temperature refrigerant coming out of a condenser supercooling section and a low-temperature refrigerant coming out of an evaporator has been proposed (see Patent Document 1). In the refrigeration cycle described in Patent Document 1, the refrigerant that has been supercooled in the supercooling section of the condenser is further cooled by the low-temperature refrigerant that has emerged from the evaporator in the intermediate heat exchanger, thereby improving the cooling performance of the evaporator. It is supposed to be made.

特許文献1記載の冷凍サイクルに用いられている中間熱交換器は、外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙がコンデンサから出てきた高温冷媒が流れる第1冷媒流路となり、内管内がエバポレータから出てきた低温の冷媒が流れる第2冷媒流路となっており、外管に、冷媒流入パイプおよび冷媒流出パイプが、外管の長さ方向に間隔をおき、かつ第1冷媒流路に通じるように接続されており、冷媒流入パイプおよび冷媒流出パイプが、外管の周方向の同一位置に位置している二重管式熱交換器からなる。   The intermediate heat exchanger used in the refrigeration cycle described in Patent Document 1 includes an outer tube and an inner tube arranged at intervals in the outer tube, and a gap between the outer tube and the inner tube is a condenser. The first refrigerant flow path through which the high-temperature refrigerant coming out of the refrigerant flows, the second refrigerant flow path through which the low-temperature refrigerant coming out of the evaporator flows through the inner pipe, and the refrigerant inflow pipe and the refrigerant outflow pipe are connected to the outer pipe. The refrigerant pipe is connected to the first refrigerant flow path at intervals in the length direction of the outer pipe, and the refrigerant inflow pipe and the refrigerant outflow pipe are located at the same position in the circumferential direction of the outer pipe. Consists of a heavy tube heat exchanger.

しかしながら、特許文献1記載の二重管式熱交換器の場合、冷媒流入パイプから外管と内管との間の第1冷媒流路内に流入した冷媒が、第1冷媒流路の冷媒流入パイプ側の部分を多く流れることになって冷媒の偏流が生じ、第1冷媒流路内での冷媒の流れが周方向に不均一になる。その結果、第1冷媒流路を流れる高温冷媒と、第2冷媒流路を流れる低温冷媒との熱交換効率が低下するおそれがある。   However, in the case of the double-tube heat exchanger described in Patent Document 1, the refrigerant that has flowed into the first refrigerant flow path between the outer pipe and the inner pipe from the refrigerant flow-in pipe is the refrigerant flow into the first refrigerant flow path. A large amount of the pipe-side portion flows, resulting in refrigerant drift, and the refrigerant flow in the first refrigerant flow path becomes uneven in the circumferential direction. As a result, the heat exchange efficiency between the high-temperature refrigerant flowing through the first refrigerant flow path and the low-temperature refrigerant flowing through the second refrigerant flow path may be reduced.

特開2009−204165号公報JP 2009-204165 A

この発明の目的は、上記問題を解決し、第1冷媒流路内での冷媒の流れを周方向に均一化しうる二重管式熱交換器を提供することにある。   An object of the present invention is to provide a double-tube heat exchanger that solves the above-described problems and can make the flow of the refrigerant in the first refrigerant flow path uniform in the circumferential direction.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙が第1冷媒流路となるとともに内管内が第2冷媒流路となっており、外管に、冷媒流入パイプおよび冷媒流出パイプが、外管の長さ方向に間隔をおきかつ第1冷媒流路に通じるように接続されている二重管式熱交換器において、
冷媒流出パイプが、冷媒流入パイプに対して外管の周方向にずれた位置に配置されている二重管式熱交換器。
1) An outer pipe and an inner pipe arranged at intervals in the outer pipe, and a gap between the outer pipe and the inner pipe becomes the first refrigerant flow path, and the inner pipe has the second refrigerant flow path. In the double pipe type heat exchanger, the refrigerant inflow pipe and the refrigerant outflow pipe are connected to the outer pipe at intervals in the length direction of the outer pipe and connected to the first refrigerant flow path.
A double pipe heat exchanger in which the refrigerant outflow pipe is disposed at a position shifted in the circumferential direction of the outer pipe with respect to the refrigerant inflow pipe.

2)冷媒流出パイプの冷媒流入パイプに対する外管の周方向のずれ角度が、90〜180度である上記1)記載の二重管式熱交換器。   2) The double-pipe heat exchanger according to 1) above, wherein a circumferential deviation angle of the outer pipe with respect to the refrigerant inflow pipe is 90 to 180 degrees.

3)外管の内周面に、径方向内方に突出しかつ外管の長さ方向にのびる複数の凸条が周方向に間隔をおいて一体に設けられている上記1)または2)記載の二重管式熱交換器。   3) The above 1) or 2), wherein a plurality of protrusions protruding radially inward and extending in the length direction of the outer tube are integrally provided on the inner peripheral surface of the outer tube at intervals in the circumferential direction. Double tube heat exchanger.

4)外管に、長さ方向に間隔をおいて2つの拡管部が形成されており、一方の拡管部に冷媒流入パイプが接続されるとともに、他方の拡管部に冷媒流出パイプが接続されている上記1)〜3)のうちのいずれかに記載の二重管式熱交換器。   4) Two expansion parts are formed in the outer pipe at intervals in the length direction, and a refrigerant inflow pipe is connected to one expansion part and a refrigerant outflow pipe is connected to the other expansion part. The double pipe heat exchanger according to any one of 1) to 3) above.

上記1)〜4)の二重管式熱交換器によれば、冷媒流出パイプが、冷媒流入パイプに対して外管の周方向にずれた位置に配置されているので、冷媒が、冷媒流入パイプから外管と内管との間の第1冷媒流路内に流入した際に、第1冷媒流路の冷媒流入パイプ側の部分を多く流れることが防止されて冷媒の偏流が発生しなくなり、第1冷媒流路内での冷媒の流れが外管の周方向に均一化される。その結果、第1冷媒流路を流れる高温冷媒と、第2冷媒流路を流れる低温冷媒との熱交換効率が向上する。   According to the double pipe heat exchangers 1) to 4) above, since the refrigerant outflow pipe is disposed at a position shifted in the circumferential direction of the outer pipe with respect to the refrigerant inflow pipe, the refrigerant flows into the refrigerant inflow When flowing into the first refrigerant flow path between the outer pipe and the inner pipe from the pipe, it is prevented that a large portion of the first refrigerant flow path on the refrigerant inflow pipe side flows, and refrigerant drift does not occur. The refrigerant flow in the first refrigerant flow path is made uniform in the circumferential direction of the outer tube. As a result, the heat exchange efficiency between the high-temperature refrigerant flowing through the first refrigerant flow path and the low-temperature refrigerant flowing through the second refrigerant flow path is improved.

上記2)の二重管式熱交換器によれば、第1冷媒流路内での冷媒の流れが外管の周方向に効果的に均一化されるので、第1冷媒流路を流れる高温冷媒と、第2冷媒流路を流れる低温冷媒との熱交換効率が一層向上する。   According to the double pipe heat exchanger of 2) above, the flow of the refrigerant in the first refrigerant channel is effectively equalized in the circumferential direction of the outer tube, so that the high temperature flowing through the first refrigerant channel The heat exchange efficiency between the refrigerant and the low-temperature refrigerant flowing through the second refrigerant channel is further improved.

上記3)の二重管式熱交換器のように、外管の内周面に、径方向内方に突出しかつ外管の長さ方向にのびる複数の凸条が周方向に間隔をおいて一体に設けられている場合、第1冷媒流路内での冷媒の流れが周方向に不均一になりやすいが、この場合であっても、上記1)および2)の構成を有していると、第1冷媒流路内での冷媒の流れが外管の周方向に均一化される。   Like the double-tube heat exchanger of 3) above, a plurality of ridges projecting radially inward and extending in the length direction of the outer tube are spaced apart in the circumferential direction on the inner peripheral surface of the outer tube. When provided integrally, the flow of the refrigerant in the first refrigerant flow path is likely to be uneven in the circumferential direction, but even in this case, it has the configurations 1) and 2) above. Then, the refrigerant flow in the first refrigerant flow path is made uniform in the circumferential direction of the outer tube.

この発明による二重管式熱交換器の全体構成を示す長さ方向の中間部を省略した垂直縦断面図である。It is the vertical longitudinal cross-sectional view which abbreviate | omitted the intermediate part of the length direction which shows the whole structure of the double tube | pipe type heat exchanger by this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 図1のB−B線拡大断面図である。It is a BB line expanded sectional view of Drawing 1. 図1の二重管式熱交換器を中間熱交換器として用いた冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle which used the double tube | pipe type heat exchanger of FIG. 1 as an intermediate | middle heat exchanger.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

また、以下の説明において、図1の上下、左右を上下、左右というものとする。   In the following description, the top and bottom and the left and right in FIG.

図1はこの発明による二重管式熱交換器の全体構成を示し、図2および図3はその要部の構成を示す。また、図4は図1の二重管式熱交換器を中間熱交換器として用いた冷凍サイクルを示す。   FIG. 1 shows the overall configuration of a double-pipe heat exchanger according to the present invention, and FIGS. 2 and 3 show the configuration of the main part thereof. FIG. 4 shows a refrigeration cycle using the double-pipe heat exchanger of FIG. 1 as an intermediate heat exchanger.

図1および図2において、二重管式熱交換器(1)は、横断面円形のアルミニウム押出形材製外管(2)、および外管(2)内に間隔をおいて同心状に挿入された横断面円形のアルミニウム押出形材製内管(3)を備えており、外管(2)と内管(3)との間の間隙が第1冷媒流路(4)となり、内管(3)内が第2冷媒流路(5)となっている。内管(3)の両端部は外管(2)の両端部よりも外側に突出しており、両突出端部にそれぞれ管継手部材(6)が接合されている。   1 and 2, the double-tube heat exchanger (1) is inserted into the outer tube (2) made of extruded aluminum having a circular cross section and concentrically with a space in the outer tube (2). The inner pipe (3) made of extruded aluminum with a circular cross section is provided, and the gap between the outer pipe (2) and the inner pipe (3) becomes the first refrigerant channel (4), and the inner pipe (3) The inside is the second refrigerant flow path (5). Both end portions of the inner pipe (3) protrude outward from both end portions of the outer pipe (2), and pipe joint members (6) are joined to both protruding end portions, respectively.

外管(2)の両端寄りの部分、すなわち両端よりも長さ方向の若干内側部分に、それぞれ拡管部(7)(8)が形成されている。外管(2)における一方の拡管部(7)、ここでは左側の拡管部(7)の管壁には冷媒入口(9)が形成され、同他方の拡管部(8)の管壁には冷媒出口(11)が形成されている。   Expanded tube portions (7) and (8) are respectively formed in portions near both ends of the outer tube (2), that is, slightly inside portions in the length direction from both ends. A refrigerant inlet (9) is formed in the tube wall of one expanded portion (7) in the outer tube (2), here, the left expanded portion (7), and the other expanded tube portion (8) has a tube wall. A refrigerant outlet (11) is formed.

冷媒入口(9)には第1冷媒流路(4)に通じるアルミニウム製冷媒流入パイプ(12)の一端部が挿入されて拡管部(7)にろう付されている。冷媒出口(11)には第1冷媒流路(4)に通じるアルミニウム製冷媒流出パイプ(13)の一端部が挿入されて拡管部(8)にろう付されている。冷媒流入パイプ(12)および冷媒流出パイプ(13)は、外管(2)の中心線に対して外管(2)の径方向外方にのびており、その先端部には、それぞれ管継手部材(14)が接合されている。   One end of an aluminum refrigerant inflow pipe (12) communicating with the first refrigerant flow path (4) is inserted into the refrigerant inlet (9) and brazed to the expanded pipe portion (7). One end of an aluminum refrigerant outflow pipe (13) communicating with the first refrigerant flow path (4) is inserted into the refrigerant outlet (11) and brazed to the expanded pipe portion (8). The refrigerant inflow pipe (12) and the refrigerant outflow pipe (13) extend radially outward of the outer pipe (2) with respect to the center line of the outer pipe (2). (14) is joined.

冷媒流出パイプ(13)は、冷媒流入パイプ(12)に対して外管(2)の周方向(中心線の回りの方向)にずれた位置に配置されている。冷媒流出パイプ(13)の冷媒流入パイプ(12)に対する外管(2)の周方向のずれ角度は、ここでは180度であるが、当該ずれ角度は90〜180度であることが好ましい。すなわち、冷媒流出パイプ(13)は、冷媒流入パイプ(12)に対して、図2に鎖線Xで示す位置と鎖線Yで示す位置との間の範囲内に設けられていることが好ましい。
図3に示すように、外管(2)の内周面に、径方向内方に突出しかつ長さ方向にのびる複数の凸条(15)が周方向に等間隔をおいて一体に設けられている。第1冷媒流路(4)における隣り合う凸条(15)間の間隙が流路部分(4A)となっている。そして、外管(2)の冷媒流入パイプ(12)が接続された拡管部(7)内が、第1冷媒流路(4)の全流路部分(4A)を通じさせかつ冷媒流入パイプ(12)から外管(2)内に流入してきた冷媒を全流路部分(4A)に分流させる冷媒分流部となり、冷媒流出パイプ(13)が接続された拡管部(8)内が、第1冷媒流路(4)の全流路部分(4A)を通じさせかつ全流路部分(4A)を流れてきた冷媒を合流させる冷媒合流部となっている。
The refrigerant outflow pipe (13) is arranged at a position shifted from the refrigerant inflow pipe (12) in the circumferential direction of the outer pipe (2) (direction around the center line). The circumferential deviation angle of the outer pipe (2) with respect to the refrigerant inflow pipe (12) of the refrigerant outflow pipe (13) is 180 degrees here, but the deviation angle is preferably 90 to 180 degrees. That is, it is preferable that the refrigerant outflow pipe (13) is provided within a range between the position indicated by the chain line X and the position indicated by the chain line Y in FIG.
As shown in FIG. 3, a plurality of protrusions (15) projecting radially inward and extending in the length direction are integrally provided on the inner peripheral surface of the outer tube (2) at equal intervals in the circumferential direction. ing. A gap between adjacent ridges (15) in the first refrigerant channel (4) is a channel portion (4A). The inside of the expanded pipe portion (7) to which the refrigerant inflow pipe (12) of the outer pipe (2) is connected is passed through the entire flow path portion (4A) of the first refrigerant flow path (4) and the refrigerant inflow pipe (12 ) Becomes a refrigerant distribution part that diverts the refrigerant flowing into the outer pipe (2) to the entire flow path part (4A), and the inside of the expanded pipe part (8) to which the refrigerant outflow pipe (13) is connected is the first refrigerant. This is a refrigerant merging section that joins the refrigerant that has passed through all the flow path portions (4A) of the flow path (4) and has flowed through all the flow path portions (4A).

図4は、上述した二重管式熱交換器(1)を中間熱交換器として用いた冷凍サイクルを示す。   FIG. 4 shows a refrigeration cycle using the above-described double-pipe heat exchanger (1) as an intermediate heat exchanger.

図4において、冷凍サイクルは冷媒として、たとえばフロン系の冷媒を用いるものであり、コンプレッサ(20)と、凝縮部(22)、気液分離器としての受液器(23)および過冷却部(24)を有するコンデンサ(21)と、エバポレータ(25)と、減圧器としての膨張弁(26)と、コンデンサ(20)から出てきた冷媒とエバポレータ(25)から出てきた冷媒とを熱交換させる中間熱交換器としての二重管式熱交換器(1)とを備えている。二重管式熱交換器(1)の外管(2)に接続された冷媒流入パイプ(12)にコンデンサ(20)の過冷却部(24)からのびる配管が接続され、同じく外管(2)に接続された冷媒流出パイプ(13)に膨張弁(26)にのびる配管が接続される。また、二重管式熱交換器(1)の内管(3)における冷媒流出パイプ(13)側の端部に、エバポレータ(25)からのびる配管が接続され、同じく内管(3)における冷媒流入パイプ(12)側の端部に、コンプレッサ(20)にのびる配管が接続される。冷凍サイクルは、カーエアコンとして車両、たとえば自動車に搭載される。   In FIG. 4, the refrigeration cycle uses, for example, a chlorofluorocarbon refrigerant as a refrigerant, and includes a compressor (20), a condensing unit (22), a liquid receiver (23) as a gas-liquid separator, and a supercooling unit ( 24), the condenser (21), the evaporator (25), the expansion valve (26) as a pressure reducer, and the refrigerant coming out of the condenser (20) and the refrigerant coming out of the evaporator (25). And a double-pipe heat exchanger (1) as an intermediate heat exchanger. A pipe extending from the supercooling section (24) of the condenser (20) is connected to the refrigerant inflow pipe (12) connected to the outer pipe (2) of the double pipe heat exchanger (1), and the outer pipe (2 ) Is connected to the refrigerant outlet pipe (13) connected to the expansion valve (26). In addition, a pipe extending from the evaporator (25) is connected to the end of the inner pipe (3) of the double pipe heat exchanger (1) on the refrigerant outflow pipe (13) side, and the refrigerant in the inner pipe (3) is also connected. A pipe extending to the compressor (20) is connected to the end of the inflow pipe (12). The refrigeration cycle is mounted on a vehicle such as an automobile as a car air conditioner.

冷凍サイクルの稼働時には、コンプレッサ(20)で圧縮された高温高圧の気液混相の冷媒は、コンデンサ(21)の凝縮部(22)で冷却されて凝縮させられた後、受液器(23)内に流入して気液2相に分離され、ついで過冷却部(24)に流入して過冷却される。過冷却された液相冷媒は、冷媒流入パイプ(12)を通って二重管式熱交換器(1)の外管(2)の拡管部(7)内に流入し、拡管部(7)を経て第1冷媒流路(4)内に入る。このとき、冷媒流出パイプ(13)が冷媒流入パイプ(12)に対して外管(2)の周方向にずれており、冷媒流出パイプ(13)の冷媒流入パイプ(12)に対する外管(2)の周方向のずれ角度が90〜180度であることから、液相冷媒が、第1冷媒流路(4)の冷媒流入パイプ(12)側の流路部分(4A)を多く流れることが防止されることになり、液相冷媒の偏流の発生が防止される。したがって、第1冷媒流路(4)内での冷媒の流れが周方向に均一化され、その結果第1冷媒流路(4)を流れる高温液相冷媒と、第2冷媒流路(5)を流れる後述する低温気相冷媒との熱交換効率が向上する。   During the operation of the refrigeration cycle, the high-temperature and high-pressure gas-liquid mixed phase refrigerant compressed by the compressor (20) is cooled and condensed by the condenser (22) of the condenser (21), and then the receiver (23) It flows into the interior and is separated into two phases of gas and liquid, and then flows into the supercooling section (24) to be supercooled. The supercooled liquid phase refrigerant flows through the refrigerant inflow pipe (12) into the expanded pipe (7) of the outer pipe (2) of the double-pipe heat exchanger (1), and the expanded pipe (7). It enters into the 1st refrigerant channel (4) via. At this time, the refrigerant outflow pipe (13) is displaced in the circumferential direction of the outer pipe (2) with respect to the refrigerant inflow pipe (12), and the outer pipe (2) of the refrigerant outflow pipe (13) with respect to the refrigerant inflow pipe (12) ) In the circumferential direction is 90 to 180 degrees, the liquid phase refrigerant often flows through the flow path portion (4A) on the refrigerant inflow pipe (12) side of the first refrigerant flow path (4). Therefore, the occurrence of the drift of the liquid refrigerant is prevented. Therefore, the flow of the refrigerant in the first refrigerant flow path (4) is made uniform in the circumferential direction, and as a result, the high-temperature liquid phase refrigerant flowing in the first refrigerant flow path (4) and the second refrigerant flow path (5) The efficiency of heat exchange with a low-temperature gas-phase refrigerant, which will be described later, flowing through the cylinder is improved.

一方、エバポレータ(25)から出てきた気相冷媒は、二重管式熱交換器(1)の第2冷媒流路(5)内に流入する。そして、液相冷媒が第1冷媒流路(4)内を流れる間に第2冷媒流路(5)内を流れる比較的低温の気相冷媒によりさらに冷却される。二重管式熱交換器(1)の第1冷媒流路(4)における隣接する凸条(15)間の全流路部分(4A)を通過した液相冷媒は、拡管部(8)において合流し、冷媒流出パイプ(13)を通って膨張弁(26)に送られる。膨張弁(26)に送られた液相冷媒は、膨張弁(26)において断熱膨張させられて減圧された後エバポレータ(25)に流入し、エバポレータ(25)において気化させられる。一方、二重管式熱交換器(1)の第2冷媒流路(5)を通過した気相冷媒はコンプレッサ(20)に送られる。   On the other hand, the gas-phase refrigerant that has come out of the evaporator (25) flows into the second refrigerant channel (5) of the double-pipe heat exchanger (1). Then, while the liquid-phase refrigerant flows in the first refrigerant channel (4), it is further cooled by the relatively low temperature gas-phase refrigerant flowing in the second refrigerant channel (5). The liquid-phase refrigerant that has passed through all the flow passage portions (4A) between the adjacent ridges (15) in the first refrigerant flow passage (4) of the double tube heat exchanger (1) It merges and passes through the refrigerant outflow pipe (13) and is sent to the expansion valve (26). The liquid-phase refrigerant sent to the expansion valve (26) is adiabatically expanded and decompressed in the expansion valve (26), flows into the evaporator (25), and is vaporized in the evaporator (25). On the other hand, the gas-phase refrigerant that has passed through the second refrigerant flow path (5) of the double-pipe heat exchanger (1) is sent to the compressor (20).

この発明による二重管式熱交換器は、コンプレッサ、凝縮部と過冷却部とを有するコンデンサ、エバポレータ、減圧器としての膨張弁、気液分離器、およびコンデンサとエバポレータとの間に配置され、かつコンデンサの過冷却部から出てきた高温の冷媒とエバポレータから出てきた低温の冷媒とを熱交換させる中間熱交換器を備えたカーエアコンを構成する冷凍サイクルにおいて、中間熱交換器として好適に用いられる。   The double pipe heat exchanger according to the present invention is disposed between a compressor, a condenser having a condensing part and a supercooling part, an evaporator, an expansion valve as a decompressor, a gas-liquid separator, and the condenser and the evaporator, In a refrigeration cycle that constitutes a car air conditioner having an intermediate heat exchanger that exchanges heat between the high-temperature refrigerant that has come out of the condenser supercooling section and the low-temperature refrigerant that has come out of the evaporator, it is suitable as an intermediate heat exchanger Used.

(1):二重管式熱交換器
(2):外管
(3):内管
(4):第1冷媒流路
(5):第2冷媒流路
(7)(8):拡管部
(12):冷媒流入パイプ
(13):冷媒流出パイプ
(1): Double tube heat exchanger
(2): Outer pipe
(3): Inner pipe
(4): First refrigerant flow path
(5): Second refrigerant flow path
(7) (8): Tube expansion section
(12): Refrigerant inlet pipe
(13): Refrigerant outflow pipe

Claims (4)

外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙が第1冷媒流路となるとともに内管内が第2冷媒流路となっており、外管に、冷媒流入パイプおよび冷媒流出パイプが、外管の長さ方向に間隔をおきかつ第1冷媒流路に通じるように接続されている二重管式熱交換器において、
冷媒流出パイプが、冷媒流入パイプに対して外管の周方向にずれた位置に配置されている二重管式熱交換器。
An outer pipe and an inner pipe arranged at intervals in the outer pipe are provided, and a gap between the outer pipe and the inner pipe serves as a first refrigerant flow path, and the inner pipe serves as a second refrigerant flow path. A double-tube heat exchanger in which a refrigerant inflow pipe and a refrigerant outflow pipe are connected to the outer pipe so as to be spaced apart from each other in the length direction of the outer pipe and communicate with the first refrigerant flow path.
A double pipe heat exchanger in which the refrigerant outflow pipe is disposed at a position shifted in the circumferential direction of the outer pipe with respect to the refrigerant inflow pipe.
冷媒流出パイプの冷媒流入パイプに対する外管の周方向のずれ角度が、90〜180度である請求項1記載の二重管式熱交換器。 The double pipe heat exchanger according to claim 1, wherein the circumferential angle of the outer pipe with respect to the refrigerant inflow pipe is 90 to 180 degrees. 外管の内周面に、径方向内方に突出しかつ外管の長さ方向にのびる複数の凸条が周方向に間隔をおいて一体に設けられている請求項1または2記載の二重管式熱交換器。 3. The double tube according to claim 1, wherein a plurality of protrusions protruding radially inward and extending in the length direction of the outer tube are integrally provided on the inner peripheral surface of the outer tube at intervals in the circumferential direction. Tube heat exchanger. 外管に、長さ方向に間隔をおいて2つの拡管部が形成されており、一方の拡管部に冷媒流入パイプが接続されるとともに、他方の拡管部に冷媒流出パイプが接続されている請求項1〜3のうちのいずれかに記載の二重管式熱交換器。 Two expanded pipe portions are formed in the outer pipe at an interval in the length direction, and a refrigerant inflow pipe is connected to one expanded pipe, and a refrigerant outflow pipe is connected to the other expanded pipe. Item 4. The double-pipe heat exchanger according to any one of Items 1 to 3.
JP2010161213A 2010-07-16 2010-07-16 Double pipe heat exchanger Pending JP2012021734A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010161213A JP2012021734A (en) 2010-07-16 2010-07-16 Double pipe heat exchanger
CN 201120250405 CN202284876U (en) 2010-07-16 2011-07-15 Double-layer tubular heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010161213A JP2012021734A (en) 2010-07-16 2010-07-16 Double pipe heat exchanger

Publications (1)

Publication Number Publication Date
JP2012021734A true JP2012021734A (en) 2012-02-02

Family

ID=45776149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161213A Pending JP2012021734A (en) 2010-07-16 2010-07-16 Double pipe heat exchanger

Country Status (2)

Country Link
JP (1) JP2012021734A (en)
CN (1) CN202284876U (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040244411A1 (en) * 2003-05-27 2004-12-09 Nobuo Ichimura Air-conditioner
JP2005069566A (en) * 2003-08-25 2005-03-17 Daikin Ind Ltd Freezer
JP2009150573A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp Double pipe type heat exchanger, its manufacturing method, and heat pump system comprising the same
JP2009204165A (en) * 2008-02-26 2009-09-10 Showa Denko Kk Double pipe heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040244411A1 (en) * 2003-05-27 2004-12-09 Nobuo Ichimura Air-conditioner
JP2005069566A (en) * 2003-08-25 2005-03-17 Daikin Ind Ltd Freezer
JP2009150573A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp Double pipe type heat exchanger, its manufacturing method, and heat pump system comprising the same
JP2009204165A (en) * 2008-02-26 2009-09-10 Showa Denko Kk Double pipe heat exchanger

Also Published As

Publication number Publication date
CN202284876U (en) 2012-06-27

Similar Documents

Publication Publication Date Title
KR101166806B1 (en) Double pipe and heat exchanger having the same
JP5504050B2 (en) Double tube heat exchanger and method for manufacturing the same
US20090166019A1 (en) Double-wall-tube heat exchanger
JP5202030B2 (en) Double tube heat exchanger
JP2009162396A (en) Double-wall-tube heat exchanger
EP2787314B1 (en) Double-pipe heat exchanger and air conditioner using same
JP2014224670A (en) Double-pipe heat exchanger
WO2010082535A1 (en) Heat exchanger
JP2009041798A (en) Heat exchanger
JP6574630B2 (en) Double tube heat exchanger
JP2011191034A (en) Dual-pipe heat exchanger
JP5898892B2 (en) Intermediate heat exchanger
JP5202029B2 (en) Double tube heat exchanger
JP2011149636A (en) Air conditioner
JP2009216285A (en) Double-tube heat exchanger
JP2016217565A (en) Condenser
JP5899013B2 (en) Double tube heat exchanger
JP2015017762A (en) Double-tube type heat exchanger
JP2014095482A (en) Double-pipe heat exchanger
KR20200001019A (en) Condenser
JP2012021734A (en) Double pipe heat exchanger
JP2014035169A (en) Intermediate heat exchanger
KR20120139007A (en) Double-wall pipe type internal heat exchanger
JP2008075896A (en) Heat exchanger
JP2014035155A (en) Double pipe type heat exchanger

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819