JP2009216285A - Double-tube heat exchanger - Google Patents

Double-tube heat exchanger Download PDF

Info

Publication number
JP2009216285A
JP2009216285A JP2008059393A JP2008059393A JP2009216285A JP 2009216285 A JP2009216285 A JP 2009216285A JP 2008059393 A JP2008059393 A JP 2008059393A JP 2008059393 A JP2008059393 A JP 2008059393A JP 2009216285 A JP2009216285 A JP 2009216285A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
heat exchanger
flow path
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008059393A
Other languages
Japanese (ja)
Inventor
Kazumi Tokizaki
和美 鴇崎
Naohisa Higashiyama
直久 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2008059393A priority Critical patent/JP2009216285A/en
Publication of JP2009216285A publication Critical patent/JP2009216285A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double-tube heat exchanger can uniform the flow of a refrigerant in the circumferential direction in a first refrigerant flow channel between an outer pipe and an inner pipe. <P>SOLUTION: This double-tube heat exchanger 1 includes the outer pipe 2, and the inner pipe 3 disposed in the outer pipe 2 with a clearance, the clearance between the outer pipe 2 and the inner pipe 3 is applied as the first refrigerant flow channel 4, and the inside of the inner pipe 3 is applied as a second refrigerant flow channel 5. A refrigerant inflow pipe 9 and a refrigerant outflow pipe are connected with the outer pipe 2 with a clearance in the longitudinal direction of the outer pipe 2 while being communicated with the first refrigerant flow channel 4. A resistance applying section 10 projecting into the outer pipe 2 and applying the resistance to the flow of the refrigerant to the refrigerant outflow pipe side, is disposed on an end portion of a peripheral wall of the refrigerant inflow pipe 9 at a downstream side in the flowing direction of the refrigerant in the first refrigerant flow channel 4 on the peripheral wall of the refrigerant inflow pipe 9. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は二重管式熱交換器に関し、さらに詳しくは、外管と、外管内に間隔をおいて設けられた内管とを備えている二重管式熱交換器に関する。   The present invention relates to a double-pipe heat exchanger, and more particularly to a double-pipe heat exchanger that includes an outer tube and an inner tube that is spaced from the outer tube.

この明細書において、「コンデンサ」という用語には、通常のコンデンサの他に凝縮部および過冷却部を有するサブクールコンデンサを含むものとする。   In this specification, the term “capacitor” includes a subcool condenser having a condensing part and a supercooling part in addition to a normal condenser.

従来、カーエアコンに用いられる冷凍サイクルとして、コンプレッサ、凝縮部と過冷却部とを有するコンデンサ、エバポレータ、減圧器としての膨張弁、気液分離器、およびコンデンサとエバポレータとの間に配置され、かつコンデンサの過冷却部から出てきた高温の冷媒とエバポレータから出てきた低温の冷媒とを熱交換させる二重管式熱交換器を備えたものが提案されている。この冷凍サイクルにおいては、コンデンサの過冷却部において過冷却された冷媒が、二重管式熱交換器において、エバポレータから出てきた低温の冷媒によりさらに冷却され、これによりエバポレータの冷却性能が向上させられるようになっている。   Conventionally, as a refrigeration cycle used in a car air conditioner, a compressor, a condenser having a condensing part and a supercooling part, an evaporator, an expansion valve as a decompressor, a gas-liquid separator, and a condenser and an evaporator, and There has been proposed a double-pipe heat exchanger that exchanges heat between a high-temperature refrigerant coming out of the condenser supercooling section and a low-temperature refrigerant coming out of the evaporator. In this refrigeration cycle, the refrigerant supercooled in the condenser supercooling section is further cooled by the low-temperature refrigerant coming out of the evaporator in the double pipe heat exchanger, thereby improving the cooling performance of the evaporator. It is supposed to be.

上述した二重管式熱交換器として、外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙がコンデンサから出てきた高温冷媒が流れる第1冷媒流路となり、内管内がエバポレータから出てきた低温の冷媒が流れる第2冷媒流路となっており、外管に、冷媒流入パイプおよび冷媒流出パイプが、外管の長さ方向に間隔をおき、かつ第1冷媒流路に通じるように接続されており、冷媒流入パイプおよび冷媒流出パイプが、外管の周方向の同一位置に位置しているものが知られている(特許文献1参照)。   The double pipe heat exchanger described above includes an outer pipe and an inner pipe arranged at intervals in the outer pipe, and a high-temperature refrigerant in which a gap between the outer pipe and the inner pipe comes out of the condenser. The first refrigerant flow path is a second refrigerant flow path through which the low-temperature refrigerant from the evaporator flows. The refrigerant inflow pipe and the refrigerant outflow pipe are connected to the outer pipe in the length direction of the outer pipe. Are connected so as to communicate with the first refrigerant flow path, and the refrigerant inflow pipe and the refrigerant outflow pipe are located at the same position in the circumferential direction of the outer pipe (patent) Reference 1).

しかしながら、特許文献1記載の二重管式熱交換器の場合、冷媒流入パイプから外管と内管との間の第1冷媒流路内に流入した冷媒が、第1冷媒流路の冷媒流入パイプ側の部分を多く流れることになって冷媒の偏流が生じ、第1冷媒流路内での冷媒の流れが周方向に不均一になる。その結果、第1冷媒流路を流れる高温冷媒と、第2冷媒流路を流れる低温冷媒との熱交換効率が低下するおそれがある。
特開2007−177848号公報
However, in the case of the double-pipe heat exchanger described in Patent Document 1, the refrigerant that has flowed into the first refrigerant flow path between the outer pipe and the inner pipe from the refrigerant flow-in pipe is the refrigerant flow into the first refrigerant flow path. A large amount of the pipe-side portion flows and refrigerant drift occurs, and the refrigerant flow in the first refrigerant flow path becomes uneven in the circumferential direction. As a result, the heat exchange efficiency between the high-temperature refrigerant flowing through the first refrigerant flow path and the low-temperature refrigerant flowing through the second refrigerant flow path may be reduced.
JP 2007-177848 A

この発明の目的は、上記問題を解決し、第1冷媒流路内での冷媒の流れを周方向に均一化しうる二重管式熱交換器を提供することにある。   An object of the present invention is to provide a double-tube heat exchanger that solves the above-described problems and can make the flow of the refrigerant in the first refrigerant flow path uniform in the circumferential direction.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙が第1冷媒流路となるとともに内管内が第2冷媒流路となっており、外管に、冷媒流入パイプおよび冷媒流出パイプが、外管の長さ方向に間隔をおき、かつ第1冷媒流路に通じるように接続されている二重管式熱交換器において、
冷媒流入パイプの周壁の端部に、外管内に突出しかつ冷媒流出パイプ側への冷媒の流れに抵抗を付与する抵抗付与部が設けられている二重管式熱交換器。
1) An outer pipe and an inner pipe arranged at intervals in the outer pipe are provided, and a gap between the outer pipe and the inner pipe becomes the first refrigerant flow path, and the inner pipe has the second refrigerant flow path. In the double pipe heat exchanger, the refrigerant inflow pipe and the refrigerant outflow pipe are connected to the outer pipe so as to be spaced apart from each other in the length direction of the outer pipe and to communicate with the first refrigerant flow path. ,
A double pipe heat exchanger in which a resistance applying portion that protrudes into the outer pipe and gives resistance to the flow of the refrigerant toward the refrigerant outflow pipe is provided at an end of the peripheral wall of the refrigerant inflow pipe.

2)抵抗付与部が、冷媒流入パイプの周壁における第1冷媒流路での冷媒の流れ方向下流側に設けられている上記1)記載の二重管式熱交換器。   2) The double-pipe heat exchanger according to 1) above, wherein the resistance applying portion is provided on the downstream side in the flow direction of the refrigerant in the first refrigerant flow path in the peripheral wall of the refrigerant inflow pipe.

3)冷媒流入パイプおよび冷媒流出パイプが、外管の周方向の同一位置に接続されている上記1)または2)記載の二重管式熱交換器。   3) The double pipe heat exchanger according to 1) or 2) above, wherein the refrigerant inflow pipe and the refrigerant outflow pipe are connected to the same position in the circumferential direction of the outer pipe.

4)第1冷媒流路が、周方向に並んだ複数の流路部分を有しており、冷媒流入パイプが接続された部分と対応する部分において、外管と内管との間に、第1冷媒流路の全流路部分を通じさせる冷媒分流部が設けられ、冷媒流出パイプが接続された部分と対応する部分において、外管と内管との間に、第1冷媒流路の全流路部分を通じさせる冷媒合流部が設けられている上記1)〜3)のうちのいずれかに記載の二重管式熱交換器。   4) The first refrigerant flow path has a plurality of flow path parts arranged in the circumferential direction, and the first refrigerant flow path is located between the outer pipe and the inner pipe at the part corresponding to the part to which the refrigerant inflow pipe is connected. There is provided a refrigerant diverting section through which the entire flow path portion of one refrigerant flow path is provided, and the entire flow of the first refrigerant flow path is between the outer pipe and the inner pipe at a portion corresponding to the portion to which the refrigerant outflow pipe is connected. 4. The double-pipe heat exchanger according to any one of 1) to 3) above, wherein a refrigerant merging portion that is passed through a passage portion is provided.

5)内管の外周面に、径方向外方に突出しかつ内管の長さ方向にのびる複数の凸条が周方向に間隔をおいて設けられ、周方向に隣り合う凸条間の間隙が流路部分となっている上記4)記載の二重管式熱交換器。   5) On the outer peripheral surface of the inner tube, a plurality of ridges projecting radially outward and extending in the length direction of the inner tube are provided at intervals in the circumferential direction, and a gap between adjacent ridges in the circumferential direction is provided. The double pipe heat exchanger according to 4) above, which is a flow path portion.

6)冷媒分流部および冷媒合流部が、外管に膨管部を形成することにより設けられている上記5)記載の二重管式熱交換器。   6) The double-pipe heat exchanger according to 5) above, wherein the refrigerant distribution part and the refrigerant junction part are provided by forming an expansion pipe part in the outer pipe.

7)外管の内周面に、径方向内方に突出しかつ長さ方向にのびる複数の凸条が周方向に間隔をおいて設けられ、周方向に隣り合う凸条間の間隙が流路部分となっている上記4)記載の二重管式熱交換器。   7) On the inner peripheral surface of the outer pipe, a plurality of ridges projecting radially inward and extending in the length direction are provided at intervals in the circumferential direction, and the gap between the ridges adjacent in the circumferential direction is a flow path. The double-pipe heat exchanger according to 4), which is a part.

8)冷媒分流部および冷媒合流部が、内管に縮管部を形成することにより設けられている上記7)記載の二重管式熱交換器。   8) The double-pipe heat exchanger according to 7) above, wherein the refrigerant branching portion and the refrigerant merging portion are provided by forming a contraction pipe portion in the inner pipe.

9)冷媒分流部において、外管の内周面と内管の外周面との間隔をHmm、冷媒流入パイプの抵抗付与部の先端と内管の外周面との間隔をhmmとした場合、h/H≦0.5の関係を満たす上記4)〜8)のうちのいずれかに記載の二重管式熱交換器。   9) When the distance between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube is Hmm and the distance between the tip of the resistance applying portion of the refrigerant inflow pipe and the outer peripheral surface of the inner tube is hmm The double-tube heat exchanger according to any one of 4) to 8) that satisfies a relationship of /H≦0.5.

上記1)の二重管式熱交換器によれば、冷媒流入パイプの周壁の端部にに、外管内に突出しかつ冷媒流出パイプ側への冷媒の流れに抵抗を付与する抵抗付与部が設けられているので、冷媒が、冷媒流入パイプから外管と内管との間の第1冷媒流路内に流入した際に、抵抗付与部の働きによって、第1冷媒流路の冷媒流入パイプ側の部分を流れようとする冷媒に抵抗が付与される。したがって、冷媒が、第1冷媒流路の冷媒流入パイプ側の部分を多く流れることが防止されて冷媒の偏流が発生しなくなり、第1冷媒流路内での冷媒の流れが周方向に均一化される。その結果、第1冷媒流路を流れる高温冷媒と、第2冷媒流路を流れる低温冷媒との熱交換効率が向上する。   According to the double pipe heat exchanger of 1), a resistance applying portion that protrudes into the outer tube and gives resistance to the refrigerant flow toward the refrigerant outflow pipe is provided at the end of the peripheral wall of the refrigerant inflow pipe. Therefore, when the refrigerant flows from the refrigerant inflow pipe into the first refrigerant flow path between the outer pipe and the inner pipe, the function of the resistance imparting portion causes the refrigerant inflow pipe side of the first refrigerant flow path. Resistance is given to the refrigerant that is about to flow through the portion. Therefore, the refrigerant is prevented from flowing much through the portion of the first refrigerant flow path on the refrigerant inflow pipe side, so that the refrigerant does not drift and the refrigerant flow in the first refrigerant flow path is made uniform in the circumferential direction. Is done. As a result, the heat exchange efficiency between the high-temperature refrigerant flowing through the first refrigerant flow path and the low-temperature refrigerant flowing through the second refrigerant flow path is improved.

上記3)の二重管式熱交換器のように、冷媒流入パイプおよび冷媒流出パイプが、外管の周方向の同一位置に接続されている場合、特に、冷媒流入パイプから外管と内管との間の第1冷媒流路内に流入した冷媒は、第1冷媒流路の冷媒流入パイプ側の部分を流れやすくなるが、この場合であっても、抵抗付与部の働きによって、第1冷媒流路の冷媒流入パイプ側の部分を流れようとする冷媒に抵抗が付与される。したがって、冷媒が、第1冷媒流路の冷媒流入パイプ側の部分を多く流れることが防止されて冷媒の偏流が発生しなくなり、第1冷媒流路内での冷媒の流れが周方向に均一化される。   When the refrigerant inflow pipe and the refrigerant outflow pipe are connected to the same position in the circumferential direction of the outer pipe as in the double pipe heat exchanger of 3) above, in particular, the outer pipe and the inner pipe from the refrigerant inflow pipe. The refrigerant that has flowed into the first refrigerant flow path between the two flows easily through the portion of the first refrigerant flow path on the refrigerant inflow pipe side. Resistance is given to the refrigerant that is about to flow through the portion of the refrigerant flow path on the side of the refrigerant inflow pipe. Therefore, the refrigerant is prevented from flowing much through the portion of the first refrigerant flow path on the refrigerant inflow pipe side, so that the refrigerant does not drift and the refrigerant flow in the first refrigerant flow path is made uniform in the circumferential direction. Is done.

上記4)の二重管式熱交換器によれば、冷媒流入パイプから外管と内管との間の第1冷媒流路内に流入した冷媒は、冷媒分流部において第1冷媒流路の周方向の全体に行き渡って各流路部分を流れた後、冷媒合流部において合流して冷媒流出パイプから流出する。そして、第1冷媒流路が、周方向に並んだ複数の流路部分を有している場合、冷媒流入パイプから外管と内管との間の第1冷媒流路内に流入した冷媒は、第1冷媒流路の冷媒流入パイプ側の流路部分を流れやすくなるが、この場合であっても、抵抗付与部の働きによって、第1冷媒流路の冷媒流入パイプ側の流路部分を流れようとする冷媒に抵抗が付与される。したがって、冷媒が、第1冷媒流路の冷媒流入パイプ側の流路部分を多く流れることが防止されて冷媒の偏流が発生しなくなり、第1冷媒流路内での冷媒の流れが周方向に均一化される。   According to the double pipe heat exchanger of 4) above, the refrigerant that has flowed into the first refrigerant flow path between the outer pipe and the inner pipe from the refrigerant inflow pipe passes through the first refrigerant flow path at the refrigerant distribution section. After flowing through each flow passage part over the entire circumferential direction, the refrigerant merges at the refrigerant junction and flows out from the refrigerant outlet pipe. And when the 1st refrigerant channel has a plurality of channel parts arranged in the peripheral direction, the refrigerant which flowed into the 1st refrigerant channel between the outer pipe and the inner pipe from the refrigerant inflow pipe is However, even in this case, the flow passage portion on the refrigerant inflow pipe side of the first refrigerant flow passage is made to flow by the action of the resistance imparting portion. Resistance is imparted to the refrigerant that is about to flow. Therefore, the refrigerant is prevented from flowing in a large amount in the flow path portion on the refrigerant inflow pipe side of the first refrigerant flow path so that the refrigerant does not drift, and the flow of the refrigerant in the first refrigerant flow path is in the circumferential direction. It is made uniform.

上記6)および8)の二重管式熱交換器によれば、冷媒分流部および冷媒合流部を比較的簡単に設けることができる。   According to the double pipe heat exchangers of 6) and 8) above, the refrigerant distribution part and the refrigerant junction part can be provided relatively easily.

上記9)の二重管式熱交換器によれば、第1冷媒流路における冷媒の偏流の発生が効果的に防止される。   According to the double tube heat exchanger of 9) above, occurrence of refrigerant drift in the first refrigerant flow path is effectively prevented.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

なお、全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。   In addition, the same code | symbol is attached | subjected to the same part and the same thing through all drawings, and the overlapping description is abbreviate | omitted.

実施形態1
この実施形態は図1〜図6に示すものである。
Embodiment 1
This embodiment is shown in FIGS.

図1および図2はこの発明による二重管式熱交換器の実施形態1の全体構成を示し、図3〜図5はその要部の構成を示す。また、図6は図1の二重管式熱交換器を中間熱交換器として用いた冷凍サイクルを示す。   1 and 2 show the overall configuration of a double-pipe heat exchanger according to Embodiment 1 of the present invention, and FIGS. 3 to 5 show the configuration of the main part thereof. FIG. 6 shows a refrigeration cycle using the double-pipe heat exchanger of FIG. 1 as an intermediate heat exchanger.

図1〜図5において、二重管式熱交換器(1)は、横断面円形のアルミニウム押出形材製外管(2)、および外管(2)内に間隔をおいて同心状に挿入された横断面円形のアルミニウム押出形材製内管(3)を備えており、外管(2)と内管(3)との間の間隙が第1冷媒流路(4)となり、内管(3)内が第2冷媒流路(5)となっている。内管(3)の両端部は外管(2)の両端部よりも外側に突出している。   1 to 5, the double-pipe heat exchanger (1) is inserted into the outer tube (2) made of aluminum extruded section having a circular cross section and concentrically with a space in the outer tube (2). The inner pipe (3) made of extruded aluminum with a circular cross section is provided, and the gap between the outer pipe (2) and the inner pipe (3) becomes the first refrigerant channel (4), and the inner pipe (3) The inside is the second refrigerant flow path (5). Both end portions of the inner tube (3) protrude outward from both end portions of the outer tube (2).

外管(2)に、アルミニウム製液相冷媒流入パイプ(9)およびアルミニウム製液相冷媒流出パイプ(11)が、外管(2)の長さ方向に間隔をおき、かつ第1冷媒流路(4)に通じるように接続されている。液相冷媒流入パイプ(9)および液相冷媒流出パイプ(11)は、外管(2)の周方向の同一位置に接続されている。外管(2)の両端よりも長さ方向の若干内側部分に、それぞれ膨管部(6)(7)が形成されており、一方の膨管部(6)の管壁に冷媒入口(8)が形成され、同他方の膨管部(7)の管壁に冷媒出口(図示略)が形成されている。冷媒入口(8)には液相冷媒流入パイプ(9)の先端部が挿入されて膨管部(6)にろう付され、冷媒出口には液相冷媒流出パイプ(11)の先端部が挿入されて膨管部(7)にろう付されている。   An aluminum liquid-phase refrigerant inflow pipe (9) and an aluminum liquid-phase refrigerant outflow pipe (11) are spaced apart from each other in the length direction of the outer pipe (2), and the first refrigerant flow path is formed in the outer pipe (2). Connected to (4). The liquid phase refrigerant inflow pipe (9) and the liquid phase refrigerant outflow pipe (11) are connected to the same position in the circumferential direction of the outer pipe (2). Expanded pipe portions (6) and (7) are respectively formed slightly inside the longitudinal direction from both ends of the outer pipe (2), and the refrigerant inlet (8 ) And a refrigerant outlet (not shown) is formed on the tube wall of the other expanded tube portion (7). The tip of the liquid-phase refrigerant inflow pipe (9) is inserted into the refrigerant inlet (8) and brazed to the expansion pipe (6), and the end of the liquid-phase refrigerant outflow pipe (11) is inserted into the refrigerant outlet. Then, it is brazed to the expansion tube portion (7).

内管(3)の内周面に、径方向内方に突出しかつ長さ方向にのびる複数の内部フィン(12)が周方向に等間隔をおいて一体に設けられている。また、内管(3)の外周面に、径方向外方に突出しかつ長さ方向にのびる複数の凸条(13)が周方向に等間隔をおいて一体に設けられており、第1冷媒流路(4)における隣り合う凸条(13)間の間隙が流路部分(4A)となっている。そして、外管(2)における液相冷媒流入パイプ(9)が接続された膨管部(6)によって、第1冷媒流路(4)の全流路部分(4A)を通じさせかつ冷媒流入パイプ(9)から外管(2)内に流入してきた冷媒を全流路部分(4A)に分流させる冷媒分流部(18)が設けられ、液相冷媒流出パイプ(11)が接続された膨管部(7)によって、第1冷媒流路(4)の全流路部分(4A)を通じさせかつ全流路部分(4A)を流れてきた冷媒を合流させる冷媒合流部(図示略)が設けられている。   A plurality of internal fins (12) protruding inward in the radial direction and extending in the length direction are integrally provided on the inner peripheral surface of the inner tube (3) at equal intervals in the circumferential direction. A plurality of protrusions (13) projecting radially outward and extending in the length direction are integrally provided on the outer peripheral surface of the inner pipe (3) at equal intervals in the circumferential direction. A gap between adjacent ridges (13) in the channel (4) is a channel portion (4A). And by the expansion pipe | tube part (6) to which the liquid phase refrigerant | coolant inflow pipe (9) in the outer pipe (2) was connected, let all the flow-path parts (4A) of a 1st refrigerant | coolant flow path (4) pass, and a refrigerant | coolant inflow pipe An expansion pipe provided with a refrigerant distribution section (18) for dividing the refrigerant flowing into the outer pipe (2) from (9) into the entire flow path section (4A) and connected with the liquid-phase refrigerant outflow pipe (11) The part (7) is provided with a refrigerant joining part (not shown) through which the refrigerant flowing through the whole flow path part (4A) through the whole flow path part (4A) of the first refrigerant flow path (4) is joined. ing.

液相冷媒流入パイプ(9)の周壁の端部における第1冷媒流路(4)での冷媒の流れ方向下流側の部分(図1および図3の左側)に、外管(2)の膨管部(6)内に突出しかつ液相冷媒流出パイプ(11)側への冷媒の流れに抵抗を付与する抵抗付与部(10)が一体に形成されている。   An expansion of the outer pipe (2) is provided on the downstream side (left side in FIGS. 1 and 3) of the refrigerant flow direction in the first refrigerant flow path (4) at the end of the peripheral wall of the liquid refrigerant inlet pipe (9). A resistance applying portion (10) that protrudes into the pipe portion (6) and applies resistance to the flow of the refrigerant toward the liquid-phase refrigerant outflow pipe (11) is integrally formed.

ここで、冷媒分流部(18)において、外管(2)の膨管部(6)の内周面と内管(3)の外周面における凸条(13)が設けられていない部分との間隔をHmm、冷媒流入パイプ(9)の抵抗付与部(10)の先端と内管(3)の外周面における凸条(13)が設けられていない部分との間隔をhmmとした場合、h/H≦0.5の関係を満たしていることが好ましい(図3参照)。   Here, in the refrigerant distribution part (18), the inner peripheral surface of the expansion pipe part (6) of the outer pipe (2) and the part where the protrusion (13) on the outer peripheral surface of the inner pipe (3) is not provided. When the interval is Hmm and the interval between the tip of the resistance applying portion (10) of the refrigerant inflow pipe (9) and the portion of the outer peripheral surface of the inner tube (3) where the protrusion (13) is not provided is hmm, h It is preferable that the relationship of /H≦0.5 is satisfied (see FIG. 3).

外管(2)における膨管部(6)(7)よりも長さ方向外側部分には、径方向外方から径方向内方に加圧するローラ加工を全周にわたって施すことによって縮径部(14)が形成されており、縮径部(14)が内管(3)の両端寄りの部分にろう付されている。縮径部(14)は外管(2)内に内管(3)を配置した後に形成されるものであり、縮径部(14)の形成の際に、内管(3)の凸条(13)が潰されるとともに、凸条(13)が縮径部(14)内周面に食い込ませられ、これにより外管(2)内周面と内管(3)における凸条(13)が形成されていない部分の外周面との間隔がろう材で埋まる程度まで小さくされている。この状態で、外管(2)の縮径部(14)と内管(3)とがろう付されており、外管(2)の縮径部(14)の内周面と内管(3)における凸条(13)が形成されていない部分の外周面との間の間隙がろう材(17)で塞がれている(図5参照)。   The outer diameter portion of the outer pipe (2) in the lengthwise direction outside the expansion pipe portions (6) and (7) is subjected to roller processing to pressurize from the radially outer side to the radially inner side, thereby reducing the diameter-reduced portion ( 14) is formed, and the reduced diameter portion (14) is brazed to the portions near both ends of the inner tube (3). The reduced diameter portion (14) is formed after the inner tube (3) is disposed in the outer tube (2), and when the reduced diameter portion (14) is formed, the ridge of the inner tube (3) is formed. (13) is crushed and the ridges (13) are bitten into the inner peripheral surface of the reduced diameter portion (14), whereby the ridges (13) in the outer tube (2) inner peripheral surface and the inner tube (3) The distance from the outer peripheral surface of the portion where no is formed is reduced to such an extent that it is filled with the brazing material. In this state, the reduced diameter portion (14) of the outer tube (2) and the inner tube (3) are brazed, and the inner peripheral surface of the reduced diameter portion (14) of the outer tube (2) and the inner tube ( In 3), the gap between the outer peripheral surface of the portion where the ridges (13) are not formed is closed by the brazing material (17) (see FIG. 5).

内管(3)における冷媒出口が存在する側の端部(図1の左端部)にアルミニウム製気相冷媒流入パイプ(15)の端部の拡管部(15a)が嵌め被せられて内管(3)にろう付され、同じく冷媒入口が存在する側の端部(図1の右端部)にアルミニウム製気相冷媒流出パイプ(16)の端部の拡管部(16a)が嵌め被せられて内管(3)にろう付されている。内管(3)における拡管部(15a)(16a)が嵌め被せられた部分においては、内管(3)の凸条(13)は切除されている。また、凸条(13)が切除される代わりに、外管(2)と内管(3)とのろう付の場合と同様に、気相冷媒流入パイプ(15)の拡管部(15a)および気相冷媒流出パイプ(16)の拡管部(16a)が径方向外方から加圧されることにより、凸条(13)が潰されるとともに拡管部(15a)(16a)の内周面に食い込ませられ、その結果拡管部(15a)(16a)の内周面と内管(3)における凸条(13)が形成されていない部分の外周面との間隔が、ろう材で埋まる程度まで小さくされていてもよい。なお、内管(3)と、気相冷媒流入パイプ(15)の拡管部(15a)および気相冷媒流出パイプ(16)の拡管部(16a)とのろう付は、外管(2)の両端と、気相冷媒流入パイプ(15)の拡管部(15a)および気相冷媒流出パイプ(16)の拡管部(16a)の先端との間隔を適切な大きさにしておき、外管(2)と内管(3)のろう付と同時に行うことが好ましい。   The expanded pipe (15a) at the end of the aluminum gas-phase refrigerant inflow pipe (15) is fitted on the end of the inner pipe (3) where the refrigerant outlet exists (the left end in FIG. 1). 3) The expanded pipe (16a) at the end of the aluminum gas-phase refrigerant outlet pipe (16) is fitted over the end (right end in FIG. 1) on the side where the refrigerant inlet is also present. It is brazed to the tube (3). In the portion of the inner tube (3) where the expanded portions (15a) and (16a) are fitted, the ridge (13) of the inner tube (3) is cut off. Further, instead of cutting the ridge (13), as in the case of brazing between the outer tube (2) and the inner tube (3), the expanded portion (15a) and the expanded portion (15a) of the gas-phase refrigerant inflow pipe (15) When the expanded portion (16a) of the gas-phase refrigerant outlet pipe (16) is pressurized from outside in the radial direction, the ridge (13) is crushed and bites into the inner peripheral surface of the expanded portions (15a) (16a). As a result, the distance between the inner peripheral surface of the expanded pipe portion (15a) (16a) and the outer peripheral surface of the inner tube (3) where the protrusion (13) is not formed is small enough to be filled with the brazing material. May be. Brazing the inner pipe (3) with the expanded section (15a) of the gas-phase refrigerant inflow pipe (15) and the expanded section (16a) of the gas-phase refrigerant outflow pipe (16) The distance between both ends and the expanded pipe part (15a) of the gas-phase refrigerant inflow pipe (15) and the tip of the expanded part (16a) of the gas-phase refrigerant outflow pipe (16) should be appropriately sized, and the outer pipe (2 ) And brazing of the inner pipe (3).

図6は、上述した二重管式熱交換器(1)を中間熱交換器として用いた冷凍サイクルを示す。   FIG. 6 shows a refrigeration cycle using the above-described double-tube heat exchanger (1) as an intermediate heat exchanger.

図6において、冷凍サイクルは冷媒として、たとえばフロン系の冷媒を用いるものであり、コンプレッサ(20)と、凝縮部(22)、気液分離器としての受液器(23)および過冷却部(24)を有するコンデンサ(21)と、エバポレータ(25)と、減圧器としての膨張弁(26)と、コンデンサ(21)から出てきた冷媒とエバポレータ(25)から出てきた冷媒とを熱交換させる中間熱交換器としての二重管式熱交換器(1)とを備えている。二重管式熱交換器(1)の外管(2)に接続された液相冷媒流入パイプ(9)にコンデンサ(21)の過冷却部(24)からのびる配管が接続され、同じく外管(2)に接続された液相冷媒流出パイプ(11)に膨張弁(26)にのびる配管が接続される。また、二重管式熱交換器(1)の内管(3)に接続された気相冷媒流入パイプ(15)にエバポレータ(25)からのびる配管が接続され、同じく内管(3)に接続された気相冷媒流出パイプ(16)にコンプレッサ(20)にのびる配管が接続される。冷凍サイクルは、カーエアコンとして車両、たとえば自動車に搭載される。   In FIG. 6, the refrigeration cycle uses, for example, a chlorofluorocarbon refrigerant as a refrigerant, and includes a compressor (20), a condensing unit (22), a liquid receiver (23) as a gas-liquid separator, and a supercooling unit ( 24), the condenser (21), the evaporator (25), the expansion valve (26) as a pressure reducer, and the refrigerant coming out of the condenser (21) and the refrigerant coming out of the evaporator (25). And a double-pipe heat exchanger (1) as an intermediate heat exchanger. A pipe extending from the supercooling section (24) of the condenser (21) is connected to the liquid-phase refrigerant inflow pipe (9) connected to the outer pipe (2) of the double pipe heat exchanger (1). A pipe extending to the expansion valve (26) is connected to the liquid-phase refrigerant outflow pipe (11) connected to (2). In addition, a pipe extending from the evaporator (25) is connected to the gas-phase refrigerant inflow pipe (15) connected to the inner pipe (3) of the double pipe heat exchanger (1), and also connected to the inner pipe (3). A pipe extending to the compressor (20) is connected to the gas-phase refrigerant outflow pipe (16). The refrigeration cycle is mounted on a vehicle such as an automobile as a car air conditioner.

冷凍サイクルの稼働時には、コンプレッサ(20)で圧縮された高温高圧の気液混相の冷媒は、コンデンサ(21)の凝縮部(22)で冷却されて凝縮させられた後、受液器(23)内に流入して気液2相に分離され、ついで過冷却部(24)に流入して過冷却される。過冷却された液相冷媒は、液相冷媒流入パイプ(9)を通って二重管式熱交換器(1)の第1冷媒流路(4)内に流入し、冷媒分流部(18)において全流路部分(4A)に分流する。このとき、抵抗付与部(10)の働きにより、第1冷媒流路(4)の液相冷媒流入パイプ(9)に近い流路部分(4A)を流れようとする液相冷媒に抵抗が付与されるので、液相冷媒が、第1冷媒流路(4)の液相冷媒流入パイプ(9)側の流路部分(4A)を多く流れることが防止されることになり、液相冷媒の偏流の発生が防止される。したがって、第1冷媒流路(4)内での冷媒の流れが周方向に均一化され、その結果第1冷媒流路(4)を流れる高温液相冷媒と、第2冷媒流路(5)を流れる後述する低温気相冷媒との熱交換効率が向上する。   During the operation of the refrigeration cycle, the high-temperature and high-pressure gas-liquid mixed phase refrigerant compressed by the compressor (20) is cooled and condensed by the condenser (22) of the condenser (21), and then the receiver (23) It flows into the interior and is separated into two phases of gas and liquid, and then flows into the supercooling section (24) for supercooling. The supercooled liquid phase refrigerant flows into the first refrigerant flow path (4) of the double-pipe heat exchanger (1) through the liquid phase refrigerant inflow pipe (9), and flows into the refrigerant distribution section (18). The flow is diverted to the whole flow path portion (4A). At this time, resistance is imparted to the liquid refrigerant that is about to flow through the flow passage portion (4A) of the first refrigerant flow passage (4) near the liquid refrigerant inlet pipe (9) by the action of the resistance imparting portion (10). Therefore, the liquid refrigerant is prevented from flowing in a large amount in the channel portion (4A) on the liquid refrigerant inlet pipe (9) side of the first refrigerant channel (4). The occurrence of drift is prevented. Therefore, the flow of the refrigerant in the first refrigerant flow path (4) is made uniform in the circumferential direction, and as a result, the high-temperature liquid phase refrigerant flowing in the first refrigerant flow path (4) and the second refrigerant flow path (5) The efficiency of heat exchange with a low-temperature gas-phase refrigerant, which will be described later, flowing through the cylinder is improved.

一方、エバポレータ(25)から出てきた気相冷媒は、気相冷媒流入パイプ(15)を通って二重管式熱交換器(1)の第2冷媒流路(5)内に流入する。そして、液相冷媒が第1冷媒流路(4)内を流れる間に第2冷媒流路(5)内を流れる比較的低温の気相冷媒によりさらに冷却される。二重管式熱交換器(1)の第1冷媒流路(4)の全流路部分(4A)を通過した液相冷媒は、膨管部(7)内の冷媒合流部において合流し、液相冷媒流出パイプ(11)を通って膨張弁(26)に送られる。膨張弁(26)に送られた液相冷媒は、膨張弁(26)において断熱膨張させられて減圧された後エバポレータ(25)に流入し、エバポレータ(25)において気化させられる。一方、二重管式熱交換器(1)の第2冷媒流路(5)を通過した気相冷媒は、気相冷媒流出パイプ(16)を通ってコンプレッサ(20)に送られる。   On the other hand, the gas-phase refrigerant coming out of the evaporator (25) flows into the second refrigerant flow path (5) of the double-pipe heat exchanger (1) through the gas-phase refrigerant inflow pipe (15). Then, while the liquid-phase refrigerant flows in the first refrigerant channel (4), it is further cooled by the relatively low temperature gas-phase refrigerant flowing in the second refrigerant channel (5). The liquid-phase refrigerant that has passed through all the flow path portions (4A) of the first refrigerant flow path (4) of the double-pipe heat exchanger (1) merges at the refrigerant merge section in the expansion pipe section (7), It is sent to the expansion valve (26) through the liquid phase refrigerant outflow pipe (11). The liquid-phase refrigerant sent to the expansion valve (26) is adiabatically expanded and decompressed in the expansion valve (26), flows into the evaporator (25), and is vaporized in the evaporator (25). On the other hand, the gas-phase refrigerant that has passed through the second refrigerant flow path (5) of the double-pipe heat exchanger (1) is sent to the compressor (20) through the gas-phase refrigerant outflow pipe (16).

実施形態2
この実施形態は図7〜図9に示すものである。
Embodiment 2
This embodiment is shown in FIGS.

図7〜図9はこの発明による二重管式熱交換器の実施形態2の要部の構成を示す。   FIGS. 7-9 shows the structure of the principal part of Embodiment 2 of the double-pipe heat exchanger by this invention.

実施形態2の二重管式熱交換器(31)の場合、外管(2)の内周面に、径方向内方に突出しかつ長さ方向にのびる複数の凸条(32)が周方向に等間隔をおいて一体に設けられており、第1冷媒流路(4)における隣り合う凸条(32)間の間隙が流路部分(4A)となっている。また、外管(2)の両端部には膨管部は形成されていない。   In the case of the double pipe heat exchanger (31) of the second embodiment, a plurality of ridges (32) projecting radially inward and extending in the length direction are provided on the inner peripheral surface of the outer pipe (2) in the circumferential direction. The gaps between adjacent ridges (32) in the first refrigerant channel (4) are the channel portions (4A). Moreover, the expansion tube part is not formed in the both ends of the outer tube (2).

内管(3)の両端よりも長さ方向の若干内側部分に、それぞれ縮管部(33)が形成されており、外管(2)における一方の縮管部(33)に対応する部分の管壁に冷媒入口(8)が形成され、同他方の縮管部(33)に対応する部分の管壁に冷媒出口(図示略)が形成されている。冷媒入口(8)にはアルミニウム製液相冷媒流入パイプ(9)の先端部が挿入されて外管(2)にろう付され、冷媒出口にはアルミニウム製液相冷媒流出パイプ(図示略)の先端部が挿入されて外管(2)にろう付されている。また、内管(3)の外周面には凸条は設けられていない。そして、内管(3)における液相冷媒流入パイプ(9)が接続された側の縮管部(33)によって、第1冷媒流路(4)の全流路部分(4A)を通じさせかつ冷媒流入パイプ(9)から外管(2)内に流入してきた冷媒を全流路部分(4A)に分流させる冷媒分流部(34)が設けられ、液相冷媒流出パイプ(11)が接続された側の縮管部によって、第1冷媒流路(4)の全流路部分(4A)を通じさせかつ全流路部分(4A)を流れてきた冷媒を合流させる冷媒合流部(図示略)が設けられている。   A contraction tube part (33) is formed in the inner part of the inner tube (3) slightly in the length direction from both ends, and the part corresponding to one of the contraction tube part (33) in the outer tube (2) A refrigerant inlet (8) is formed in the tube wall, and a refrigerant outlet (not shown) is formed in the tube wall at a portion corresponding to the other contracted tube portion (33). The tip of an aluminum liquid phase refrigerant inflow pipe (9) is inserted into the refrigerant inlet (8) and brazed to the outer pipe (2), and an aluminum liquid phase refrigerant outflow pipe (not shown) is connected to the refrigerant outlet. The tip is inserted and brazed to the outer tube (2). Further, no protrusion is provided on the outer peripheral surface of the inner tube (3). Then, the entire pipe portion (4A) of the first refrigerant passage (4) is passed through the contraction pipe portion (33) on the side of the inner pipe (3) to which the liquid-phase refrigerant inflow pipe (9) is connected, and the refrigerant. A refrigerant distribution part (34) for dividing the refrigerant flowing into the outer pipe (2) from the inflow pipe (9) into the entire flow path part (4A) is provided, and the liquid-phase refrigerant outflow pipe (11) is connected. A refrigerant junction (not shown) is provided through the all-flow passage portion (4A) of the first refrigerant flow passage (4) and the refrigerant flowing through the whole flow passage portion (4A) is joined by the side narrow tube portion. It has been.

ここで、冷媒分流部(34)が設けられている部分において、外管(2)の内周面における凸条(32)が設けられていない部分と内管(3)の縮管部(33)の外周面との間隔をHmm、冷媒流入パイプ(9)の抵抗付与部(10)の先端と内管(3)の外周面との間隔をhmmとした場合、h/H≦0.5の関係を満たしていることが好ましい(図7参照)。   Here, in the portion where the refrigerant distribution portion (34) is provided, the portion of the inner peripheral surface of the outer tube (2) where the ridge (32) is not provided and the contracted tube portion (33) of the inner tube (3) ) Is Hmm, and the distance between the tip of the resistance applying portion (10) of the refrigerant inflow pipe (9) and the outer peripheral surface of the inner tube (3) is hmm, h / H ≦ 0.5 It is preferable to satisfy the relationship (see FIG. 7).

また、外管(2)おける内管(3)の縮管部(33)よりも長さ方向外側部分には、径方向外方から径方向内方に加圧するローラ加工を全周にわたって施すことによって縮径部(14)が形成されており、縮径部(14)が内管(3)の両端寄りの部分にろう付されている。縮径部(14)は外管(2)内に内管(3)を配置した後に形成されるものであり、縮径部(14)の形成の際に、外管(2)の凸条(32)が潰されるとともに、凸条(32)が縮径部(14)内周面に食い込ませられ、これにより外管(2)における凸条(32)が形成されていない部分の内周面と内管(3)外周面との間隔がろう材で埋まる程度まで小さくされている。この状態で、外管(2)の縮径部(14)と内管(3)とが径方向外側からろう付されており、外管(2)の縮径部(14)における凸条(32)が形成されていない部分の内周面と内管(3)の外周面との間の間隙がろう材(17)で塞がれている(図9参照)。   In addition, the outer pipe (2) has an inner pipe (3) that is subjected to roller processing over the entire circumference on the outer side in the longitudinal direction of the contracted pipe part (33) from the radially outer side to the radially inner side. Thus, a reduced diameter portion (14) is formed, and the reduced diameter portion (14) is brazed to a portion near both ends of the inner tube (3). The reduced diameter portion (14) is formed after the inner tube (3) is disposed in the outer tube (2), and when the reduced diameter portion (14) is formed, the protruding line of the outer tube (2) is formed. (32) is crushed, and the ridges (32) are bitten into the inner peripheral surface of the reduced diameter portion (14), whereby the inner rim of the outer tube (2) where the ridges (32) are not formed. The distance between the surface and the outer peripheral surface of the inner tube (3) is reduced to such an extent that it is filled with the brazing material. In this state, the reduced diameter portion (14) of the outer tube (2) and the inner tube (3) are brazed from the outside in the radial direction, and the ridges in the reduced diameter portion (14) of the outer tube (2) ( The gap between the inner peripheral surface of the portion where 32) is not formed and the outer peripheral surface of the inner tube (3) is closed by the brazing material (17) (see FIG. 9).

実施形態2の二重管式熱交換器(31)の場合には、実施形態1の二重管式熱交換器(1)の場合とは違って、内管(3)の両端部に気相冷媒流入パイプ(15)および気相冷媒流出パイプ(16)の拡管部(15a)(16a)を嵌め被せてろう付する際には、外管(2)の凸条(32)を切除したり、気相冷媒流入パイプ(15)および気相冷媒流出パイプ(16)の拡管部(15a)(16a)を径方向外方から加圧する必要はなくなる。なお、実施形態2の二重管式熱交換器(31)においても、内管(3)と、気相冷媒流入パイプ(15)の拡管部(15a)および気相冷媒流出パイプ(16)の拡管部(16a)とのろう付は、外管(2)の両端と、気相冷媒流入パイプ(15)の拡管部(15a)および気相冷媒流出パイプ(16)の拡管部(16a)の先端との間隔を適切な大きさにしておき、外管(2)と内管(3)とのろう付と同時に行うことが好ましい。   In the case of the double pipe heat exchanger (31) of the second embodiment, unlike the case of the double pipe heat exchanger (1) of the first embodiment, the air is discharged at both ends of the inner pipe (3). When fitting and brazing the expanded portion (15a) (16a) of the phase refrigerant inflow pipe (15) and the gas phase refrigerant outflow pipe (16), the ridge (32) of the outer pipe (2) is cut off. In other words, it is not necessary to pressurize the expanded portions (15a) and (16a) of the gas-phase refrigerant inflow pipe (15) and the gas-phase refrigerant outflow pipe (16) from the outside in the radial direction. In the double-pipe heat exchanger (31) of Embodiment 2, the inner pipe (3), the expanded portion (15a) of the gas-phase refrigerant inflow pipe (15), and the gas-phase refrigerant outflow pipe (16) Brazing with the expanded pipe part (16a) is performed at both ends of the outer pipe (2), the expanded part (15a) of the gas-phase refrigerant inflow pipe (15) and the expanded part (16a) of the gas-phase refrigerant outflow pipe (16). It is preferable that the distance from the tip is set to an appropriate size and that the brazing between the outer tube (2) and the inner tube (3) is performed simultaneously.

その他の構成は実施形態1の二重管式熱交換器(1)と同様であり、実施形態1の二重管式熱交換器(1)と同様にして、図6に示す冷凍サイクルに組み込まれる。   Other configurations are the same as those of the double-tube heat exchanger (1) of the first embodiment, and are incorporated into the refrigeration cycle shown in FIG. 6 in the same manner as the double-tube heat exchanger (1) of the first embodiment. It is.

そして、過冷却された液相冷媒が、液相冷媒流入パイプ(9)を通って二重管式熱交換器(31)の第1冷媒流路(4)内に流入し、冷媒分流部(34)において全流路部分(4A)に分流する。このとき、抵抗付与部(10)の働きにより、第1冷媒流路(4)の液相冷媒流入パイプ(9)に近い流路部分(4A)を流れようとする液相冷媒に抵抗が付与されるので、液相冷媒が、第1冷媒流路(4)の液相冷媒流入パイプ(9)側の流路部分(4A)を多く流れることが防止されることになり、液相冷媒の偏流の発生が防止される。したがって、第1冷媒流路(4)内での冷媒の流れが周方向に均一化され、その結果第1冷媒流路(4)を流れる高温液相冷媒と、第2冷媒流路(5)を流れる後述する低温気相冷媒との熱交換効率が向上する。第1冷媒流路(4)の全流路部分(4A)を通過した液相冷媒は、他方の縮管部により設けられた冷媒合流部において合流し、液相冷媒流出パイプ(11)を通って膨張弁(26)に送られる。   Then, the supercooled liquid-phase refrigerant flows into the first refrigerant flow path (4) of the double-pipe heat exchanger (31) through the liquid-phase refrigerant inflow pipe (9), and the refrigerant distribution section ( In 34), the flow is diverted to the entire flow path portion (4A). At this time, resistance is imparted to the liquid refrigerant that is about to flow through the flow passage portion (4A) of the first refrigerant flow passage (4) near the liquid refrigerant inlet pipe (9) by the action of the resistance imparting portion (10). Therefore, the liquid refrigerant is prevented from flowing in a large amount in the channel portion (4A) on the liquid refrigerant inlet pipe (9) side of the first refrigerant channel (4). The occurrence of drift is prevented. Therefore, the flow of the refrigerant in the first refrigerant flow path (4) is made uniform in the circumferential direction, and as a result, the high-temperature liquid phase refrigerant flowing in the first refrigerant flow path (4) and the second refrigerant flow path (5) The efficiency of heat exchange with a low-temperature gas-phase refrigerant, which will be described later, flowing through the cylinder is improved. The liquid-phase refrigerant that has passed through all the flow passage portions (4A) of the first refrigerant flow passage (4) merges at the refrigerant merge portion provided by the other contraction pipe portion, and passes through the liquid-phase refrigerant outflow pipe (11). To the expansion valve (26).

上記実施形態1においては内管(3)の外周面に凸条(13)が設けられ、上記実施形態2においては外管(2)の内周面に凸条(32)が設けられているが、内管(3)の外周面および外管(2)の内周面の両方に凸条(13)(32)が設けられていてもよい。この場合、内管(3)の凸条(13)と外管(2)の凸条(32)とは周方向にずれた位置に設けられる。   In the first embodiment, the ridge (13) is provided on the outer peripheral surface of the inner tube (3), and in the second embodiment, the ridge (32) is provided on the inner peripheral surface of the outer tube (2). However, the ridges (13) and (32) may be provided on both the outer peripheral surface of the inner tube (3) and the inner peripheral surface of the outer tube (2). In this case, the ridge (13) of the inner tube (3) and the ridge (32) of the outer tube (2) are provided at positions shifted in the circumferential direction.

上記実施形態1および2においては、二重管式熱交換器(1)(31)は真っ直ぐであるが、これに限定されるものではなく、少なくとも1箇所で屈曲させられることもある。   In the first and second embodiments, the double-pipe heat exchangers (1) and (31) are straight, but are not limited to this, and may be bent at at least one place.

この発明による二重管式熱交換器の実施形態1の全体構成を示す長さ方向の中間部を省略した一部切り欠き正面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway front view of an overall configuration of a double-pipe heat exchanger according to a first embodiment of the present invention, omitting an intermediate portion in a length direction. この発明による二重管式熱交換器の実施形態1の全体構成を示す長さ方向の中間部を省略した一部切り欠き斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective view showing an overall configuration of a double-pipe heat exchanger according to a first embodiment of the present invention, omitting an intermediate portion in a length direction. 図1の部分拡大図である。It is the elements on larger scale of FIG. 図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3. 図3のB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 実施形態1の二重管式熱交換器を中間熱交換器として用いた冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle which used the double tube | pipe type heat exchanger of Embodiment 1 as an intermediate heat exchanger. この発明による二重管式熱交換器の実施形態2を示す図3相当の図である。It is a figure equivalent to FIG. 3 which shows Embodiment 2 of the double pipe type heat exchanger by this invention. 図7のC−C線断面図である。It is CC sectional view taken on the line of FIG. 図7のD−D線断面図である。It is the DD sectional view taken on the line of FIG.

符号の説明Explanation of symbols

(1)(31):二重管式熱交換器
(2):外管
(3):内管
(4):第1冷媒流路
(4A):流路部分
(5):第2冷媒流路
(6)(7):膨管部
(9):液相冷媒流入パイプ
(10):抵抗付与部
(11):液相冷媒流出パイプ
(13)(32):凸条
(18)(34):冷媒分流部
(33):縮管部
(1) (31): Double tube heat exchanger
(2): Outer pipe
(3): Inner pipe
(4): First refrigerant flow path
(4A): Channel part
(5): Second refrigerant flow path
(6) (7): Expansion tube
(9): Liquid-phase refrigerant inflow pipe
(10): Resistance application part
(11): Liquid refrigerant outlet pipe
(13) (32): ridge
(18) (34): Refrigerant distribution part
(33): Reduced tube

Claims (9)

外管と、外管内に間隔をおいて配置された内管とを備え、外管と内管との間の間隙が第1冷媒流路となるとともに内管内が第2冷媒流路となっており、外管に、冷媒流入パイプおよび冷媒流出パイプが、外管の長さ方向に間隔をおき、かつ第1冷媒流路に通じるように接続されている二重管式熱交換器において、
冷媒流入パイプの周壁の端部に、外管内に突出しかつ冷媒流出パイプ側への冷媒の流れに抵抗を付与する抵抗付与部が設けられている二重管式熱交換器。
An outer tube and an inner tube arranged at intervals in the outer tube are provided, and a gap between the outer tube and the inner tube serves as a first refrigerant channel, and the inside of the inner tube serves as a second refrigerant channel. In the double pipe heat exchanger, the refrigerant inflow pipe and the refrigerant outflow pipe are connected to the outer pipe at intervals in the length direction of the outer pipe and connected to the first refrigerant flow path.
A double pipe heat exchanger in which a resistance applying portion that protrudes into the outer pipe and gives resistance to the flow of the refrigerant toward the refrigerant outflow pipe is provided at an end of the peripheral wall of the refrigerant inflow pipe.
抵抗付与部が、冷媒流入パイプの周壁における第1冷媒流路での冷媒の流れ方向下流側に設けられている請求項1記載の二重管式熱交換器。 The double pipe heat exchanger according to claim 1, wherein the resistance applying portion is provided on the downstream side in the flow direction of the refrigerant in the first refrigerant flow path in the peripheral wall of the refrigerant inflow pipe. 冷媒流入パイプおよび冷媒流出パイプが、外管の周方向の同一位置に接続されている請求項1または2記載の二重管式熱交換器。 The double pipe heat exchanger according to claim 1 or 2, wherein the refrigerant inflow pipe and the refrigerant outflow pipe are connected to the same position in the circumferential direction of the outer pipe. 第1冷媒流路が、周方向に並んだ複数の流路部分を有しており、冷媒流入パイプが接続された部分と対応する部分において、外管と内管との間に、第1冷媒流路の全流路部分を通じさせる冷媒分流部が設けられ、冷媒流出パイプが接続された部分と対応する部分において、外管と内管との間に、第1冷媒流路の全流路部分を通じさせる冷媒合流部が設けられている請求項1〜3のうちのいずれかに記載の二重管式熱交換器。 The first refrigerant flow path has a plurality of flow path parts arranged in the circumferential direction, and the first refrigerant is provided between the outer pipe and the inner pipe at a part corresponding to the part to which the refrigerant inflow pipe is connected. A refrigerant diverting portion is provided through the entire flow path portion of the flow path, and the entire flow path portion of the first refrigerant flow path is provided between the outer pipe and the inner pipe at a portion corresponding to the portion to which the refrigerant outflow pipe is connected. The double pipe type heat exchanger according to any one of claims 1 to 3, wherein a refrigerant confluence portion is provided. 内管の外周面に、径方向外方に突出しかつ内管の長さ方向にのびる複数の凸条が周方向に間隔をおいて設けられ、周方向に隣り合う凸条間の間隙が流路部分となっている請求項4記載の二重管式熱交換器。 A plurality of ridges projecting radially outward and extending in the length direction of the inner tube are provided on the outer peripheral surface of the inner tube at intervals in the circumferential direction, and the gap between the adjacent ridges in the circumferential direction is a flow path. The double-tube heat exchanger according to claim 4, which is a part. 冷媒分流部および冷媒合流部が、外管に膨管部を形成することにより設けられている請求項5記載の二重管式熱交換器。 The double pipe heat exchanger according to claim 5, wherein the refrigerant branching portion and the refrigerant merging portion are provided by forming an expansion pipe portion in the outer pipe. 外管の内周面に、径方向内方に突出しかつ長さ方向にのびる複数の凸条が周方向に間隔をおいて設けられ、周方向に隣り合う凸条間の間隙が流路部分となっている請求項4記載の二重管式熱交換器。 A plurality of ridges projecting radially inward and extending in the length direction are provided on the inner peripheral surface of the outer tube at intervals in the circumferential direction. The double-pipe heat exchanger according to claim 4. 冷媒分流部および冷媒合流部が、内管に縮管部を形成することにより設けられている請求項7記載の二重管式熱交換器。 The double-pipe heat exchanger according to claim 7, wherein the refrigerant branching portion and the refrigerant merging portion are provided by forming a contraction pipe portion in the inner pipe. 冷媒分流部において、外管の内周面と内管の外周面との間隔をHmm、冷媒流入パイプの抵抗付与部の先端と内管の外周面との間隔をhmmとした場合、h/H≦0.5の関係を満たす請求項4〜8のうちのいずれかに記載の二重管式熱交換器。 In the refrigerant distribution part, when the distance between the inner peripheral surface of the outer pipe and the outer peripheral surface of the inner pipe is Hmm, and the distance between the tip of the resistance applying part of the refrigerant inflow pipe and the outer peripheral surface of the inner pipe is hmm, The double pipe heat exchanger according to any one of claims 4 to 8, which satisfies a relationship of ≤0.5.
JP2008059393A 2008-03-10 2008-03-10 Double-tube heat exchanger Pending JP2009216285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008059393A JP2009216285A (en) 2008-03-10 2008-03-10 Double-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008059393A JP2009216285A (en) 2008-03-10 2008-03-10 Double-tube heat exchanger

Publications (1)

Publication Number Publication Date
JP2009216285A true JP2009216285A (en) 2009-09-24

Family

ID=41188334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059393A Pending JP2009216285A (en) 2008-03-10 2008-03-10 Double-tube heat exchanger

Country Status (1)

Country Link
JP (1) JP2009216285A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027396A (en) * 2009-06-30 2011-02-10 Showa Denko Kk Double-wall-tube heat exchanger
KR200459178Y1 (en) * 2011-07-26 2012-03-22 최건식 Double tube type heat exchange pipe
CN110207273A (en) * 2019-06-14 2019-09-06 广东美的暖通设备有限公司 Outdoor heat exchanger, refrigeration system, air conditioner, progress control method and device
JP7279246B1 (en) 2022-08-31 2023-05-22 三菱重工サーマルシステムズ株式会社 Air conditioner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837084U (en) * 1981-09-04 1983-03-10 松下電器産業株式会社 double tube heat exchanger
JPH06331283A (en) * 1993-05-26 1994-11-29 Showa Alum Corp Multilayer type heat exchanger
JPH07190650A (en) * 1993-12-28 1995-07-28 Rinnai Corp Heat exchanger
JPH0742406U (en) * 1993-12-28 1995-08-04 昭和アルミニウム株式会社 Double tube heat exchanger
JP2000130964A (en) * 1998-10-26 2000-05-12 Toyota Motor Corp Double-pipe heat exchanger
JP2002107091A (en) * 2000-09-29 2002-04-10 Toyo Radiator Co Ltd Heat exchanger
JP2006078062A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006162238A (en) * 2004-11-09 2006-06-22 Denso Corp Double wall tube
JP2007177848A (en) * 2005-12-27 2007-07-12 Denso Corp Piping

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837084U (en) * 1981-09-04 1983-03-10 松下電器産業株式会社 double tube heat exchanger
JPH06331283A (en) * 1993-05-26 1994-11-29 Showa Alum Corp Multilayer type heat exchanger
JPH07190650A (en) * 1993-12-28 1995-07-28 Rinnai Corp Heat exchanger
JPH0742406U (en) * 1993-12-28 1995-08-04 昭和アルミニウム株式会社 Double tube heat exchanger
JP2000130964A (en) * 1998-10-26 2000-05-12 Toyota Motor Corp Double-pipe heat exchanger
JP2002107091A (en) * 2000-09-29 2002-04-10 Toyo Radiator Co Ltd Heat exchanger
JP2006078062A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006162238A (en) * 2004-11-09 2006-06-22 Denso Corp Double wall tube
JP2007177848A (en) * 2005-12-27 2007-07-12 Denso Corp Piping

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027396A (en) * 2009-06-30 2011-02-10 Showa Denko Kk Double-wall-tube heat exchanger
KR200459178Y1 (en) * 2011-07-26 2012-03-22 최건식 Double tube type heat exchange pipe
CN110207273A (en) * 2019-06-14 2019-09-06 广东美的暖通设备有限公司 Outdoor heat exchanger, refrigeration system, air conditioner, progress control method and device
JP7279246B1 (en) 2022-08-31 2023-05-22 三菱重工サーマルシステムズ株式会社 Air conditioner
WO2024048284A1 (en) * 2022-08-31 2024-03-07 三菱重工サーマルシステムズ株式会社 Air-conditioning device
JP2024034130A (en) * 2022-08-31 2024-03-13 三菱重工サーマルシステムズ株式会社 air conditioner

Similar Documents

Publication Publication Date Title
JP5504050B2 (en) Double tube heat exchanger and method for manufacturing the same
JP2009162395A (en) Double-wall-tube heat exchanger
JP5202030B2 (en) Double tube heat exchanger
JP2009162396A (en) Double-wall-tube heat exchanger
US20210260966A1 (en) Heat exchanger
JP2009216285A (en) Double-tube heat exchanger
JP2014224670A (en) Double-pipe heat exchanger
JP2006003071A (en) Heat exchanger
JP5202029B2 (en) Double tube heat exchanger
JP2011191034A (en) Dual-pipe heat exchanger
JP6574630B2 (en) Double tube heat exchanger
JP5898892B2 (en) Intermediate heat exchanger
JP2009041798A (en) Heat exchanger
JP2011149636A (en) Air conditioner
JP2015017762A (en) Double-tube type heat exchanger
JP2009210224A (en) Heat transfer tube for supercooler, and method for manufacturing the heat transfer tube
JP5899013B2 (en) Double tube heat exchanger
JP6651692B2 (en) Double tube internal heat exchanger
WO2012108112A1 (en) Refrigeration cycle device
JP2014095482A (en) Double-pipe heat exchanger
JP2005226866A (en) Refrigerating cycle device
JP2008075896A (en) Heat exchanger
JP2014035169A (en) Intermediate heat exchanger
JP6763381B2 (en) Cooling device, refrigerant treatment device, and refrigerant treatment method
JP2013204888A (en) Double tube type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A977 Report on retrieval

Effective date: 20120419

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120515

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120713

Free format text: JAPANESE INTERMEDIATE CODE: A523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120713

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130115