JP2014035155A - Double pipe type heat exchanger - Google Patents

Double pipe type heat exchanger Download PDF

Info

Publication number
JP2014035155A
JP2014035155A JP2012177310A JP2012177310A JP2014035155A JP 2014035155 A JP2014035155 A JP 2014035155A JP 2012177310 A JP2012177310 A JP 2012177310A JP 2012177310 A JP2012177310 A JP 2012177310A JP 2014035155 A JP2014035155 A JP 2014035155A
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
tube
small
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012177310A
Other languages
Japanese (ja)
Inventor
Hokuto Mine
北斗 峯
Koichi Inoue
晃一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2012177310A priority Critical patent/JP2014035155A/en
Publication of JP2014035155A publication Critical patent/JP2014035155A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double pipe type heat exchanger in which an area of heat transfer surface between a first refrigerant and a second refrigerant can be further increased.SOLUTION: A double pipe type heat exchanger 1 includes an outer pipe 2 and an inner pipe 3 arranged in the outer pipe 2 with an interval between the pipes. A plurality of small pipe parts 4 extended in a longitudinal direction of the inner pipe 3 are integrally formed on a pipe wall of the inner pipe 3 in such a way that the small pipe parts 4 are arranged with an interval in a peripheral direction of the inner pipe 3 and with an interval between the an inner peripheral surface of the outer pipe 2 and the small pipe parts 4. A gap between the outer pipe 2 and the inner pipe 3 is used as an outside first refrigerant passage 5 and the inside of the inner pipe 3 is used as an inside first refrigerant passage 6. The insides of the small pipe parts 4 are used as a second refrigerant passage 7. A communication hole 19 for communicating the outside first refrigerant passage 5 with the inside first refrigerant passage 6 is formed on a portion between the adjacent small pipe parts 4 on the pipe wall of the inner pipe 3 on a portion of the inner pipe 3 which exists in the outer pipe 2.

Description

この発明は二重管式熱交換器に関し、さらに詳しくは、外管と、外管内に間隔をおいて設けられた内管とを備えている二重管式熱交換器に関する。   The present invention relates to a double-pipe heat exchanger, and more particularly to a double-pipe heat exchanger that includes an outer tube and an inner tube that is spaced from the outer tube.

この明細書において、「コンデンサ」という用語には、通常のコンデンサの他に凝縮部および過冷却部を有するサブクールコンデンサを含むものとする。   In this specification, the term “capacitor” includes a subcool condenser having a condensing part and a supercooling part in addition to a normal condenser.

従来、カーエアコンに用いられる冷凍サイクルとして、圧縮機、凝縮部と過冷却部とを有するコンデンサ、エバポレータ、減圧器としての膨張弁、気液分離器、およびコンデンサとエバポレータとの間に配置され、かつコンデンサの過冷却部から出てきた高温の冷媒とエバポレータから出てきた低温の冷媒とを熱交換させる中間熱交換器を備えたものが提案されている(特許文献1参照)。特許文献1記載の冷凍サイクルにおいては、コンデンサの過冷却部において過冷却された冷媒が、中間熱交換器において、エバポレータから出てきた低温低圧の冷媒によりさらに冷却され、これによりエバポレータの冷却性能が向上させられるようになっている。   Conventionally, as a refrigeration cycle used in a car air conditioner, a compressor, a condenser having a condensing part and a supercooling part, an evaporator, an expansion valve as a decompressor, a gas-liquid separator, and a condenser and an evaporator, And the thing provided with the intermediate | middle heat exchanger which heat-exchanges the high temperature refrigerant | coolant which came out from the supercooling part of the capacitor | condenser, and the low temperature refrigerant | coolant which came out of the evaporator is proposed (refer patent document 1). In the refrigeration cycle described in Patent Document 1, the refrigerant supercooled in the condenser supercooling section is further cooled by the low-temperature and low-pressure refrigerant that has come out of the evaporator in the intermediate heat exchanger, whereby the cooling performance of the evaporator is improved. It can be improved.

特許文献1記載の冷凍サイクルに用いられている中間熱交換器は、外管と、外管内に間隔をおいて配置された内管とを備え、内管内を低圧側冷媒(第1の冷媒)が流れ、外管と内管との間の間隙を高圧側冷媒(第2の冷媒)が流れるようになっており、内管の内周面に、径方向内方に突出しかつ長さ方向にのびる複数の内部フィンが周方向に間隔をおいて設けられるとともに、内管の外周面に、径方向外方に突出しかつ長さ方向にのびる複数の凸条が周方向に間隔をおいて設けられ、内部フィンのフィン高さが凸条の突出高さよりも高くなっている二重管式熱交換器からなる。   The intermediate heat exchanger used in the refrigeration cycle described in Patent Document 1 includes an outer pipe and an inner pipe arranged at intervals in the outer pipe, and the inside of the inner pipe is a low-pressure side refrigerant (first refrigerant). The high-pressure side refrigerant (second refrigerant) flows through the gap between the outer pipe and the inner pipe, and projects radially inward and in the length direction on the inner peripheral surface of the inner pipe. A plurality of extending internal fins are provided at intervals in the circumferential direction, and a plurality of protrusions protruding radially outward and extending in the length direction are provided on the outer peripheral surface of the inner tube at intervals in the circumferential direction. The double fin type heat exchanger is configured such that the fin height of the internal fin is higher than the protruding height of the ridge.

しかしながら、最近では、低圧冷媒と高圧冷媒との間の伝熱面積をさらに増大させた二重管式熱交換器が求められている。   However, recently, there has been a demand for a double-pipe heat exchanger that further increases the heat transfer area between the low-pressure refrigerant and the high-pressure refrigerant.

特開2009−162395号公報JP 2009-162395 A

この発明の目的は、上記要求に応え、第1冷媒と第2冷媒との間の伝熱面積をさらに増大させることができる二重管式熱交換器を提供することにある。   An object of the present invention is to provide a double-pipe heat exchanger that meets the above requirements and can further increase the heat transfer area between the first refrigerant and the second refrigerant.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)外管と、外管内に間隔をおいて配置された内管とを備えており、内管の管壁に、内管の長手方向にのびる複数の小管部が、内管の周方向に間隔をおくとともに外管内周面と間隔をおくように一体に形成され、外管と内管との間の間隙および内管内を第1の冷媒が流れるとともに、小管部内を第2の冷媒が流れるようになっている二重管式熱交換器。   1) An outer pipe and an inner pipe arranged at intervals in the outer pipe are provided, and a plurality of small pipe portions extending in the longitudinal direction of the inner pipe are provided in the circumferential direction of the inner pipe on the pipe wall of the inner pipe. The first refrigerant flows in the gap between the outer pipe and the inner pipe and the inner pipe, and the second refrigerant flows in the small pipe portion. A double-tube heat exchanger.

2)内管における外管内に存在する部分において、内管の管壁における隣り合う小管部間の部分に、外管と内管との間の間隙および内管内を通じさせる連通穴が形成されている上記1)記載の二重管式熱交換器。   2) In the portion of the inner tube that exists in the outer tube, a gap between the outer tube and the inner tube is formed in the portion between adjacent small tube portions in the tube wall of the inner tube and a communication hole that allows the inner tube to pass through. A double-pipe heat exchanger as described in 1) above.

3)内管の両端部が小管部の両端部よりも内管の長さ方向外側に突出しており、内管の一端開口が第1冷媒の入口になるとともに他端開口が第1冷媒の出口となり、内管における小管部よりも突出した一方の部分に、第2の冷媒を分流させて全小管部内に送り込む冷媒分流部が設けられ、同じく他方の部分に、全小管部内を流れた第2の冷媒を合流させる冷媒合流部が設けられ、冷媒分流部に第2冷媒供給管が接続され、冷媒合流部に第2冷媒排出管が接続されている上記1)または2)記載の二重管式熱交換器。   3) Both end portions of the inner tube protrude outward in the length direction of the inner tube from both ends of the small tube portion, and one end opening of the inner tube serves as an inlet for the first refrigerant and the other end opening serves as an outlet for the first refrigerant. Thus, a refrigerant branching part for diverting the second refrigerant and sending it into all the small pipe parts is provided in one part of the inner pipe that protrudes from the small pipe part, and the second part that has flowed through the whole small pipe part in the other part. The double pipe as described in 1) or 2) above, wherein a refrigerant merging portion for merging the refrigerants is provided, a second refrigerant supply pipe is connected to the refrigerant diverting portion, and a second refrigerant discharge pipe is connected to the refrigerant merging portion. Type heat exchanger.

4)小管部の両端部が外管の両端部よりも内管の長さ方向外側に突出しており、外管と内管との間の間隙の両端が閉鎖されている上記3)記載の二重管式熱交換器。   4) Both ends of the small tube portion protrude outward in the length direction of the inner tube from both ends of the outer tube, and both ends of the gap between the outer tube and the inner tube are closed. Double pipe heat exchanger.

5)小管部の内周面の横断面形状が円形であり、小管部の周壁の一部が内管の管壁と共有され、小管部の周壁における内管の管壁と共有されていない部分の外周面が1つの円筒面上に位置している上記1)〜4)のうちのいずれかに記載の二重管式熱交換器。   5) The cross-sectional shape of the inner peripheral surface of the small pipe part is circular, a part of the peripheral wall of the small pipe part is shared with the pipe wall of the inner pipe, and the part of the peripheral wall of the small pipe part that is not shared with the pipe wall of the inner pipe The double pipe heat exchanger according to any one of the above 1) to 4), wherein the outer peripheral surface of is located on one cylindrical surface.

上記1)〜5)の二重管式熱交換器によれば、外管と、外管内に間隔をおいて配置された内管とを備えており、内管の管壁に、内管の長手方向にのびる複数の小管部が、内管の周方向に間隔をおくとともに外管内周面と間隔をおくように一体に形成され、外管と内管との間の間隙および内管内を第1の冷媒が流れるとともに、小管部内を第2の冷媒が流れるようになっているので、小管部内を流れる第2冷媒は、小管部の周壁の全体において外管と内管との間の間隙および内管内を流れる第1冷媒と熱交換をする。したがって、第1冷媒と第2冷媒との間の伝熱面積が増大し、第1冷媒と第2冷媒との熱交換効率が向上する。   According to the double pipe heat exchanger of 1) to 5) above, the outer pipe and the inner pipe arranged at intervals in the outer pipe are provided, and the inner pipe is provided on the inner wall of the inner pipe. A plurality of small pipe portions extending in the longitudinal direction are integrally formed so as to be spaced in the circumferential direction of the inner pipe and spaced from the inner peripheral surface of the outer pipe. Since the first refrigerant flows and the second refrigerant flows in the small pipe portion, the second refrigerant flowing in the small pipe portion has a gap between the outer pipe and the inner pipe in the entire peripheral wall of the small pipe portion and Heat exchange with the first refrigerant flowing in the inner pipe is performed. Therefore, the heat transfer area between the first refrigerant and the second refrigerant is increased, and the heat exchange efficiency between the first refrigerant and the second refrigerant is improved.

上記2)の二重管式熱交換器によれば、内管内に第1冷媒を供給すると、内管内を流れる第1冷媒は連通穴を通って外管と内管との間の間隙に入って当該間隙を流れるので、比較的簡単な構造で、第1冷媒を、内管内および内外両管間の間隙内に流すことができる。   According to the double pipe heat exchanger of 2), when the first refrigerant is supplied into the inner pipe, the first refrigerant flowing in the inner pipe passes through the communication hole and enters the gap between the outer pipe and the inner pipe. Thus, the first refrigerant can flow in the gap between the inner pipe and the inner and outer pipes with a relatively simple structure.

上記3)の二重管式熱交換器によれば、1つの冷媒供給管から冷媒分流部内に送り込まれた第2冷媒は、すべての小管部に分流して小管部内を流れ、冷媒合流部において合流して冷媒排出管から送り出される。したがって、比較的簡単な構造で、第2冷媒を、すべての小管部に流すことができる。   According to the double pipe heat exchanger of 3), the second refrigerant sent from one refrigerant supply pipe into the refrigerant distribution part is divided into all the small pipe parts and flows through the small pipe parts. It merges and is sent out from the refrigerant discharge pipe. Therefore, the second refrigerant can be caused to flow through all the small pipe portions with a relatively simple structure.

上記5)の二重管式熱交換器によれば、第1冷媒と第2冷媒との間の伝熱面積を効果的に増大させることが可能となり、第1冷媒と第2冷媒との熱交換効率が一層向上する。   According to the double pipe heat exchanger of 5) above, it is possible to effectively increase the heat transfer area between the first refrigerant and the second refrigerant, and the heat of the first refrigerant and the second refrigerant. The exchange efficiency is further improved.

この発明による二重管式熱交換器の全体構成を示す長さ方向の中間部を省略した垂直縦断面図である。It is the vertical longitudinal cross-sectional view which abbreviate | omitted the intermediate part of the length direction which shows the whole structure of the double-tube type heat exchanger by this invention. 図1のA−A線拡大断面図である。It is an AA line expanded sectional view of FIG. 図1の二重管式熱交換器の一端部寄りの部分を部分的に示す斜視図である。It is a perspective view which shows partially the part near the one end part of the double-pipe heat exchanger of FIG. 図1の二重管式熱交換器の図3と同じ部分を示す分解斜視図である。It is a disassembled perspective view which shows the same part as FIG. 3 of the double tube | pipe type heat exchanger of FIG. 図1の二重管式熱交換器を中間熱交換器として用いた冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle which used the double tube | pipe type heat exchanger of FIG. 1 as an intermediate | middle heat exchanger.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

なお、全図面を通じて同一部分および同一物には同一符号を付す。   In the drawings, the same parts and the same parts are denoted by the same reference numerals.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

図1はこの発明による二重管式熱交換器の全体構成を示し、図2〜図4はその要部の構成を示し、図5は図1の二重管式熱交換器を中間熱交換器として用いた冷凍サイクルを示す。   FIG. 1 shows the overall configuration of a double-pipe heat exchanger according to the present invention, FIGS. 2 to 4 show the configuration of the essential parts thereof, and FIG. 5 shows an intermediate heat exchange of the double-pipe heat exchanger of FIG. The refrigeration cycle used as a container is shown.

図1〜図4において、二重管式熱交換器(1)は、横断面円形のアルミニウム押出形材製外管(2)、および外管(2)内に間隔をおいて同心状に挿入された横断面円形のアルミニウム押出形材製内管(3)を備えており、内管(3)の管壁に、内管(3)の長手方向にのびる複数の小管部(4)が、内管(3)の周方向に間隔をおくとともに外管(2)内周面と間隔をおくように一体に形成され、外管(2)と内管(3)との間の間隙および内管(3)内を第1の冷媒が流れるとともに、小管部(4)内を第2の冷媒が流れるようになっている。ここで、外管(2)と内管(3)との間の間隙を外側第1冷媒流路(5)というとともに内管(3)内を内側第1冷媒流路(6)といい、小管部(4)内を第2冷媒流路(7)というものとする。   1 to 4, the double-pipe heat exchanger (1) is inserted into the outer tube (2) made of extruded aluminum having a circular cross section and concentrically in the outer tube (2) at intervals. A plurality of small pipe portions (4) extending in the longitudinal direction of the inner pipe (3) on the inner wall of the inner pipe (3). The outer tube (2) is formed integrally with the inner pipe (3) so as to be spaced apart from the inner pipe (2) and the inner pipe (3). The first refrigerant flows in the pipe (3), and the second refrigerant flows in the small pipe portion (4). Here, the gap between the outer pipe (2) and the inner pipe (3) is called the outer first refrigerant flow path (5) and the inner pipe (3) is called the inner first refrigerant flow path (6). The inside of the small pipe portion (4) is referred to as a second refrigerant channel (7).

内管(3)および小管部(4)は一体に形成されており、内管(3)および小管部(4)の両端部は外管(2)の両端よりも内管(2)の長さ方向外側に突出している。外管(2)の両端には外管(2)の両端開口を塞ぐ閉鎖部材(17)がろう付されており、内管(3)および小管部(4)は閉鎖部材(17)に形成された貫通穴(18)内に通されて閉鎖部材(17)にろう付されている。   The inner pipe (3) and the small pipe part (4) are integrally formed, and both ends of the inner pipe (3) and the small pipe part (4) are longer than the both ends of the outer pipe (2). Projects outward in the vertical direction. A closing member (17) for closing both ends of the outer tube (2) is brazed to both ends of the outer tube (2), and the inner tube (3) and the small pipe portion (4) are formed in the closing member (17). Is passed through the formed through hole (18) and brazed to the closing member (17).

内管(3)および小管部(4)は一体に形成されており、小管部(4)の両端部が切除されることによって、内管(3)の両端部が小管部(4)の両端部よりも内管(3)の長さ方向外側に突出させられている。小管部(4)の内周面、すなわち第2冷媒流路(7)の横断面形状は円形であり、小管部(4)の周壁の一部が、内管(3)の管壁と共有され、小管部(4)の周壁における内管(3)の管壁と共有されていない部分の外周面が1つの円筒面上に位置している。また、内管(3)の一端開口、ここでは右端開口が第1冷媒の入口(8)になるとともに他端開口が第1冷媒の出口(9)となっている。   The inner pipe (3) and the small pipe part (4) are integrally formed, and both ends of the small pipe part (4) are cut off so that both ends of the inner pipe (3) are both ends of the small pipe part (4). It protrudes outward in the length direction of the inner tube (3) from the portion. The inner peripheral surface of the small pipe part (4), that is, the cross-sectional shape of the second refrigerant flow path (7) is circular, and a part of the peripheral wall of the small pipe part (4) is shared with the pipe wall of the inner pipe (3) And the outer peripheral surface of the part which is not shared with the tube wall of the inner tube (3) in the peripheral wall of the small tube part (4) is located on one cylindrical surface. One end opening of the inner pipe (3), here the right end opening, is the first refrigerant inlet (8), and the other end opening is the first refrigerant outlet (9).

内管(3)における小管部(4)よりも突出した左側部分(3a)に、第2冷媒を分流させて全小管部(4)の第2冷媒流路(7)内に送り込むアルミニウム製冷媒分流部(11)が設けられており、冷媒分流部(11)に冷媒分流部(11)内に第2冷媒を送り込む第2冷媒供給管(12)が接続されている。また、内管(3)における小管部(4)よりも突出した右側部分(3b)に、全小管部(4)内を流れた第2冷媒を合流させるアルミニウム製冷媒合流部(13)が設けられており、冷媒合流部(13)に冷媒合流部(13)内から第2冷媒を送り出す第2冷媒排出管(14)が接続されている。冷媒分流部(11)および冷媒合流部(13)は同様な構成であるが、冷媒分流部(11)について詳細に説明する。すなわち、冷媒分流部(11)は両端が閉鎖された円筒状であり、右側の閉鎖壁(11a)に内管(3)および小管部(4)が挿入される貫通穴(15)が形成されており、貫通穴(15)内に内管(3)および小管部(4)が挿入されて右側閉鎖壁(11a)にろう付されている。また、冷媒分流部(11)の左側の閉鎖壁(11b)に内管(3)が通される貫通穴(16)が形成されており、貫通穴(16)内に内管(3)が通されて左側閉鎖壁(11b)にろう付されている。冷媒合流部(13)の左側閉鎖壁(13a)に内管(3)および小管部(4)が挿入される貫通穴(15)が形成されており、貫通穴(15)内に内管(3)および小管部(4)が挿入されて右側閉鎖壁(13a)にろう付されている。また、冷媒合流部(13)の右側閉鎖壁(13b)に内管(3)が通される貫通穴(16)が形成されており、貫通穴(16)内に内管(3)が通されて右側閉鎖壁(13b)にろう付されている。   An aluminum refrigerant that splits the second refrigerant into the left part (3a) of the inner pipe (3) that protrudes from the small pipe part (4) and feeds it into the second refrigerant flow path (7) of all the small pipe parts (4). A diversion part (11) is provided, and a second refrigerant supply pipe (12) for feeding the second refrigerant into the refrigerant diversion part (11) is connected to the refrigerant diversion part (11). In addition, an aluminum refrigerant merging portion (13) for merging the second refrigerant flowing in the entire small pipe portion (4) is provided on the right side portion (3b) protruding from the small pipe portion (4) in the inner pipe (3). The second refrigerant discharge pipe (14) for sending the second refrigerant from the refrigerant merging portion (13) is connected to the refrigerant merging portion (13). The refrigerant branching section (11) and the refrigerant junction section (13) have the same configuration, but the refrigerant branching section (11) will be described in detail. That is, the refrigerant distribution part (11) has a cylindrical shape with both ends closed, and a through hole (15) into which the inner pipe (3) and the small pipe part (4) are inserted is formed in the right closing wall (11a). The inner tube (3) and the small tube portion (4) are inserted into the through hole (15) and brazed to the right closing wall (11a). Further, a through hole (16) through which the inner pipe (3) is passed is formed in the left closed wall (11b) of the refrigerant distribution part (11), and the inner pipe (3) is formed in the through hole (16). Passed through and brazed to the left closing wall (11b). A through hole (15) into which the inner pipe (3) and the small pipe part (4) are inserted is formed in the left closed wall (13a) of the refrigerant junction (13), and the inner pipe ( 3) and the small pipe part (4) are inserted and brazed to the right closing wall (13a). Also, a through hole (16) through which the inner pipe (3) is passed is formed in the right closing wall (13b) of the refrigerant junction (13), and the inner pipe (3) is passed through the through hole (16). And brazed to the right closing wall (13b).

内管(3)における外管(2)内に存在する部分において、内管(3)の管壁における隣り合う小管部(4)間の部分に、外管(2)と内管(3)との間の間隙に設けられた外側第1冷媒流路(5)と、内管(3)内に設けられた内側第1冷媒流路(6)とを通じさせる複数の連通穴(19)が形成されている。連通穴(19)は内管(3)の長手方向に長い長穴からなり、内管(3)の周壁における隣り合う小管部(4)間の部分に内管(3)の長手方向に間隔をおいて複数形成されている。   In the part existing in the outer pipe (2) in the inner pipe (3), the outer pipe (2) and the inner pipe (3) are arranged in the part between the adjacent small pipe parts (4) in the pipe wall of the inner pipe (3). There are a plurality of communication holes (19) that allow the outer first refrigerant flow path (5) provided in the gap between the inner pipe (3) and the inner first refrigerant flow path (6) provided in the inner pipe (3) to pass through. Is formed. The communication hole (19) is a long hole in the longitudinal direction of the inner pipe (3), and is spaced in the longitudinal direction of the inner pipe (3) in a portion between adjacent small pipe parts (4) on the peripheral wall of the inner pipe (3). A plurality are formed.

なお、図示は省略したが、外管(2)および内管(3)は、全体が直線状になっている場合と、少なくとも1箇所で曲げられている場合とがある。   Although not shown, the outer tube (2) and the inner tube (3) may be entirely straight or bent at at least one location.

図5は、上述した二重管式熱交換器(1)を中間熱交換器として用いた冷凍サイクルを示す。   FIG. 5 shows a refrigeration cycle using the above-described double-pipe heat exchanger (1) as an intermediate heat exchanger.

図5において、冷凍サイクルは冷媒として、たとえばフロン系の冷媒を用いるものであり、コンプレッサ(20)と、凝縮部(22)、気液分離器としての受液器(23)および過冷却部(24)を有するコンデンサ(21)と、エバポレータ(25)と、減圧器としての膨張弁(26)と、コンデンサ(20)から出てきた冷媒とエバポレータ(25)から出てきた冷媒とを熱交換させる中間熱交換器としての二重管式熱交換器(1)とを備えている。二重管式熱交換器(1)の冷媒分流部(11)の冷媒供給管(12)にコンデンサ(20)の過冷却部(24)からのびる配管が接続され、同じく冷媒合流部(13)の冷媒排出管(14)に膨張弁(26)にのびる配管が接続される。また、内管(3)の第1媒流路(6)の入口(8)にエバポレータ(25)からのびる配管が接続され、同じく出口(9)にコンプレッサ(20)にのびる配管が接続される。冷凍サイクルは、カーエアコンとして車両、たとえば自動車に搭載される。   In FIG. 5, the refrigeration cycle uses, for example, a chlorofluorocarbon refrigerant as a refrigerant, and includes a compressor (20), a condensing unit (22), a liquid receiver (23) as a gas-liquid separator, and a supercooling unit ( 24), the condenser (21), the evaporator (25), the expansion valve (26) as a pressure reducer, and the refrigerant coming out of the condenser (20) and the refrigerant coming out of the evaporator (25). And a double-pipe heat exchanger (1) as an intermediate heat exchanger. A pipe extending from the supercooling section (24) of the condenser (20) is connected to the refrigerant supply pipe (12) of the refrigerant distribution section (11) of the double-pipe heat exchanger (1), and also the refrigerant junction section (13) A pipe extending to the expansion valve (26) is connected to the refrigerant discharge pipe (14). Also, a pipe extending from the evaporator (25) is connected to the inlet (8) of the first medium flow path (6) of the inner pipe (3), and a pipe extending to the compressor (20) is connected to the outlet (9). . The refrigeration cycle is mounted on a vehicle such as an automobile as a car air conditioner.

冷凍サイクルの稼働時には、コンプレッサ(20)で圧縮された高温高圧の気液混相の冷媒は、コンデンサ(21)の凝縮部(22)で冷却されて凝縮させられた後、受液器(23)内に流入して気液2相に分離され、ついで過冷却部(24)に流入して過冷却される。過冷却された液相冷媒は、冷媒供給管(12)を通って二重管式熱交換器(1)の冷媒分流部(11)内に流入し、冷媒分流部(11)内で分流してすべての小管部(4)の第2冷媒流路(7)内に入る。小管部(4)の第2冷媒流路(7)内に入った液相冷媒は、第2冷媒流路(7)内を流れた後冷媒合流部(13)内に入って合流させられ、冷媒排出管(14)を通って膨張弁(26)に送られ、ここで減圧された後エバポレータ(25)に流入し、エバポレータ(25)内を流れる間に通風間隙を流れる空気を冷却して気相となる。   During the operation of the refrigeration cycle, the high-temperature and high-pressure gas-liquid mixed phase refrigerant compressed by the compressor (20) is cooled and condensed by the condenser (22) of the condenser (21), and then the receiver (23) It flows into the interior and is separated into two phases of gas and liquid, and then flows into the supercooling section (24) to be supercooled. The supercooled liquid-phase refrigerant flows into the refrigerant distribution section (11) of the double-pipe heat exchanger (1) through the refrigerant supply pipe (12) and is divided in the refrigerant distribution section (11). And enters the second refrigerant flow path (7) of all the small pipe portions (4). The liquid-phase refrigerant that has entered the second refrigerant flow path (7) of the small pipe portion (4) flows through the second refrigerant flow path (7), and then enters the refrigerant merge section (13) to be merged. It is sent to the expansion valve (26) through the refrigerant discharge pipe (14), where it is decompressed, flows into the evaporator (25), and cools the air flowing through the ventilation gap while flowing through the evaporator (25). It becomes the gas phase.

エバポレータ(25)を通過した比較的低温低圧の冷媒は、内管(3)の内側第1冷媒流路(6)の入口(8)から内側第1冷媒流路(6)内に入る。内側第1冷媒流路(6)内に入った冷媒は、内側第1冷媒流路(6)内を流れて出口(9)に至る。また、内側第1冷媒流路(6)内を流れる冷媒は、連通穴(19)を通って外管(2)と内管(3)との間の外側第1冷媒流路(5)内に入って外側第1冷媒流路(5)内を流れ、再び連通穴(19)を通って内側第1冷媒流路(6)内に戻るとともに、内側第1冷媒流路(6)内を流れて出口(9)に至る。そして、内側第1冷媒流路(6)の出口(9)から流出した冷媒は、配管を通ってコンプレッサ(1)に送られる。   The relatively low-temperature and low-pressure refrigerant that has passed through the evaporator (25) enters the inner first refrigerant flow path (6) from the inlet (8) of the inner first refrigerant flow path (6) of the inner pipe (3). The refrigerant that has entered the inner first refrigerant flow path (6) flows through the inner first refrigerant flow path (6) and reaches the outlet (9). In addition, the refrigerant flowing in the inner first refrigerant flow path (6) passes through the communication hole (19) and enters the outer first refrigerant flow path (5) between the outer pipe (2) and the inner pipe (3). And flows in the outer first refrigerant flow path (5), returns to the inner first refrigerant flow path (6) through the communication hole (19), and passes through the inner first refrigerant flow path (6). Flow to the exit (9). And the refrigerant | coolant which flowed out from the exit (9) of the inner side 1st refrigerant | coolant flow path (6) is sent to a compressor (1) through piping.

液相冷媒が第2冷媒流路(7)内を流れる間に両第1冷媒流路(5)(6)内を流れる比較的低温の気相冷媒によりさらに冷却される。   While the liquid-phase refrigerant flows in the second refrigerant flow path (7), the liquid-phase refrigerant is further cooled by the relatively low-temperature gas-phase refrigerant flowing in the first refrigerant flow paths (5) and (6).

この発明による二重管式熱交換器は、コンプレッサ、凝縮部と過冷却部とを有するコンデンサ、エバポレータ、減圧器としての膨張弁、気液分離器、およびコンデンサとエバポレータとの間に配置され、かつコンデンサの過冷却部から出てきた高温の冷媒とエバポレータから出てきた低温の冷媒とを熱交換させる中間熱交換器を備えたカーエアコンを構成する冷凍サイクルにおいて、中間熱交換器として好適に用いられる。   The double pipe heat exchanger according to the present invention is disposed between a compressor, a condenser having a condensing part and a supercooling part, an evaporator, an expansion valve as a decompressor, a gas-liquid separator, and the condenser and the evaporator, In a refrigeration cycle that constitutes a car air conditioner having an intermediate heat exchanger that exchanges heat between the high-temperature refrigerant that has come out of the condenser supercooling section and the low-temperature refrigerant that has come out of the evaporator, it is suitable as an intermediate heat exchanger Used.

(1):二重管式熱交換器
(2):外管
(3):内管
(4):小管部
(5):外側第1冷媒流路
(6):内側第1冷媒流路
(7):第2冷媒流路
(11):冷媒分流部
(12):冷媒供給管
(13):冷媒合流部
(14):冷媒排出管
(1): Double tube heat exchanger
(2): Outer pipe
(3): Inner pipe
(4): Small pipe section
(5): Outer first refrigerant flow path
(6): Inside first refrigerant flow path
(7): Second refrigerant flow path
(11): Refrigerant branch
(12): Refrigerant supply pipe
(13): Refrigerant junction
(14): Refrigerant discharge pipe

Claims (5)

外管と、外管内に間隔をおいて配置された内管とを備えており、内管の管壁に、内管の長手方向にのびる複数の小管部が、内管の周方向に間隔をおくとともに外管内周面と間隔をおくように一体に形成され、外管と内管との間の間隙および内管内を第1の冷媒が流れるとともに、小管部内を第2の冷媒が流れるようになっている二重管式熱交換器。 An outer tube and an inner tube arranged at intervals in the outer tube are provided, and a plurality of small pipe portions extending in the longitudinal direction of the inner tube are spaced apart in the circumferential direction of the inner tube on the tube wall of the inner tube. The first refrigerant flows in the gap between the outer pipe and the inner pipe and the inner pipe, and the second refrigerant flows in the small pipe portion. Double pipe heat exchanger. 内管における外管内に存在する部分において、内管の管壁における隣り合う小管部間の部分に、外管と内管との間の間隙および内管内を通じさせる連通穴が形成されている請求項1記載の二重管式熱交換器。 A part of the inner pipe existing in the outer pipe is formed with a gap between the adjacent small pipe portions in the pipe wall of the inner pipe and a communication hole for allowing the inner pipe to pass through the gap between the outer pipe and the inner pipe. 2. The double-pipe heat exchanger according to 1. 内管の両端部が小管部の両端部よりも内管の長さ方向外側に突出しており、内管の一端開口が第1冷媒の入口になるとともに他端開口が第1冷媒の出口となり、内管における小管部よりも突出した一方の部分に、第2の冷媒を分流させて全小管部内に送り込む冷媒分流部が設けられ、同じく他方の部分に、全小管部内を流れた第2の冷媒を合流させる冷媒合流部が設けられ、冷媒分流部に第2冷媒供給管が接続され、冷媒合流部に第2冷媒排出管が接続されている請求項1または2記載の二重管式熱交換器。 Both end portions of the inner tube protrude outward in the length direction of the inner tube from both end portions of the small tube portion, one end opening of the inner tube serves as the inlet of the first refrigerant, and the other end opening serves as the outlet of the first refrigerant, In one portion of the inner pipe that protrudes from the small pipe portion, there is provided a refrigerant branching portion that divides the second refrigerant and sends it into all the small pipe portions. Similarly, the second refrigerant that has flowed in the entire small pipe portion is provided in the other portion. The double pipe type heat exchange according to claim 1 or 2, wherein a refrigerant merging section is provided for merging the refrigerant, a second refrigerant supply pipe is connected to the refrigerant distribution section, and a second refrigerant discharge pipe is connected to the refrigerant merging section. vessel. 小管部の両端部が外管の両端部よりも内管の長さ方向外側に突出しており、外管と内管との間の間隙の両端が閉鎖されている請求項3記載の二重管式熱交換器。 The double pipe according to claim 3, wherein both ends of the small pipe part protrude outward in the length direction of the inner pipe from both ends of the outer pipe, and both ends of the gap between the outer pipe and the inner pipe are closed. Type heat exchanger. 小管部の内周面の横断面形状が円形であり、小管部の周壁の一部が内管の管壁と共有され、小管部の周壁における内管の管壁と共有されていない部分の外周面が1つの円筒面上に位置している請求項1〜4のうちのいずれかに記載の二重管式熱交換器。 The cross-sectional shape of the inner peripheral surface of the small tube portion is circular, a part of the peripheral wall of the small tube portion is shared with the tube wall of the inner tube, and the outer periphery of the portion of the peripheral wall of the small tube portion that is not shared with the tube wall of the inner tube The double-tube heat exchanger according to any one of claims 1 to 4, wherein the surface is located on one cylindrical surface.
JP2012177310A 2012-08-09 2012-08-09 Double pipe type heat exchanger Pending JP2014035155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012177310A JP2014035155A (en) 2012-08-09 2012-08-09 Double pipe type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177310A JP2014035155A (en) 2012-08-09 2012-08-09 Double pipe type heat exchanger

Publications (1)

Publication Number Publication Date
JP2014035155A true JP2014035155A (en) 2014-02-24

Family

ID=50284232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177310A Pending JP2014035155A (en) 2012-08-09 2012-08-09 Double pipe type heat exchanger

Country Status (1)

Country Link
JP (1) JP2014035155A (en)

Similar Documents

Publication Publication Date Title
CN103822411B (en) Heat exchange dual pipe
JP2009162395A (en) Double-wall-tube heat exchanger
CN101936629A (en) Dual tubing heat exchanger
CN102192670A (en) Double pipe and heat exchanger having the same
JP2009204166A (en) Double pipe heat exchanger
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
US20210260966A1 (en) Heat exchanger
JP2009162396A (en) Double-wall-tube heat exchanger
EP2787314B1 (en) Double-pipe heat exchanger and air conditioner using same
JP2006003071A (en) Heat exchanger
JP2014224670A (en) Double-pipe heat exchanger
JP2010185648A (en) Heat exchanger
JP2009041798A (en) Heat exchanger
JP2011191034A (en) Dual-pipe heat exchanger
JP5202029B2 (en) Double tube heat exchanger
JP6574630B2 (en) Double tube heat exchanger
JP2009216285A (en) Double-tube heat exchanger
JP2013061138A (en) Intermediate heat exchanger
JP2016217565A (en) Condenser
JP2015017762A (en) Double-tube type heat exchanger
JP2014095482A (en) Double-pipe heat exchanger
JP2014035155A (en) Double pipe type heat exchanger
JP5899013B2 (en) Double tube heat exchanger
KR20120139007A (en) Double-wall pipe type internal heat exchanger
JP2014035169A (en) Intermediate heat exchanger