JP2012019128A - Thin film photoelectric conversion device - Google Patents

Thin film photoelectric conversion device Download PDF

Info

Publication number
JP2012019128A
JP2012019128A JP2010156557A JP2010156557A JP2012019128A JP 2012019128 A JP2012019128 A JP 2012019128A JP 2010156557 A JP2010156557 A JP 2010156557A JP 2010156557 A JP2010156557 A JP 2010156557A JP 2012019128 A JP2012019128 A JP 2012019128A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
thin film
layer
conversion device
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010156557A
Other languages
Japanese (ja)
Inventor
Wataru Yoshida
航 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2010156557A priority Critical patent/JP2012019128A/en
Publication of JP2012019128A publication Critical patent/JP2012019128A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily producing irregular structure on a rear surface of a thin film photoelectric conversion device.SOLUTION: A rear surface reflection part 5 is formed by a substrate which is separated from a photoelectric conversion unit, and a thin film photoelectric conversion device is formed by laminating the rear surface reflection part 5 on the photoelectric conversion unit by a transparent adhesion layer 6. Thus, the production of the rear surface reflection part is not affected by the photoelectric conversion unit. Therefore, ideal irregularities are produced with fewer limitations of a method for creating irregularities.

Description

本発明は、太陽電池に代表される薄膜光電変換装置に関する。   The present invention relates to a thin film photoelectric conversion device typified by a solar cell.

近年では、薄膜光電変換装置の典型例である薄膜太陽電池も多様化し、従来の非晶質薄膜太陽電池の他に結晶質薄膜太陽電池も開発され、これらを積層したハイブリッド型(積層型の一種)薄膜太陽電池も実用化されている。   In recent years, thin film solar cells, which are typical examples of thin film photoelectric conversion devices, have also diversified, and in addition to conventional amorphous thin film solar cells, crystalline thin film solar cells have also been developed. ) Thin film solar cells are also in practical use.

薄膜太陽電池は、一般に少なくとも表面が絶縁性の基板上に順に積層された透明導電膜、1以上の半導体薄膜光電変換ユニット、および裏面電極を含んでいる。そして、1つの光電変換ユニットは、p型層とn型層でサンドイッチされたi型層を含んでいる。   A thin-film solar cell generally includes a transparent conductive film, one or more semiconductor thin-film photoelectric conversion units, and a back electrode, which are sequentially laminated on a substrate whose surface is insulative. One photoelectric conversion unit includes an i-type layer sandwiched between a p-type layer and an n-type layer.

光電変換ユニットの厚さの大部分は実質的に真性の半導体層であるi型層によって占められ、光電変換作用は主としてこのi型層内で生じる。したがって、光電変換層であるi型層の膜厚は光吸収のためには厚いほうが好ましいが、必要以上に厚くすればその堆積のためのコストと時間が増大することになる。   Most of the thickness of the photoelectric conversion unit is occupied by the i-type layer which is a substantially intrinsic semiconductor layer, and the photoelectric conversion action mainly occurs in this i-type layer. Therefore, the i-type layer, which is a photoelectric conversion layer, is preferably thicker for light absorption, but if it is thicker than necessary, the cost and time for deposition will increase.

他方、p型やn型の導電型層は光電変換ユニット内に拡散電位を生じさせる役目を果たし、この拡散電位の大きさによって薄膜太陽電池の重要な特性の1つである開放端電圧の値が左右される。しかし、これらの導電型層は光電変換には寄与しない不活性な層であり、導電型層にドープされた不純物によって吸収される光は発電に寄与せず損失となる。したがって、p型とn型の導電型層の膜厚は、十分な拡散電位を生じさせる範囲内で可能な限り薄くすることが好ましい。   On the other hand, the p-type and n-type conductive layers serve to generate a diffusion potential in the photoelectric conversion unit, and the value of the open end voltage, which is one of the important characteristics of the thin film solar cell, depending on the magnitude of the diffusion potential. Is affected. However, these conductive layers are inactive layers that do not contribute to photoelectric conversion, and light absorbed by impurities doped in the conductive layers does not contribute to power generation and is lost. Therefore, it is preferable that the thicknesses of the p-type and n-type conductive layers be as thin as possible within a range that generates a sufficient diffusion potential.

上述のような光電変換ユニットは、それに含まれるp型とn型の導電型層が非晶質か結晶質かに関わらず、i型の光電変換層が非晶質なものは非晶質光電変換ユニットと称され、i型層が結晶質のものは結晶質光電変換ユニットと称される。非晶質光電変換ユニットを含む薄膜太陽電池の一例として、i型光電変換層に非晶質シリコンを用いた非晶質薄膜シリコン太陽電池が挙げられる。また、結晶質光電変換ユニットを含む薄膜太陽電池の一例として、i型光電変換層に微結晶シリコンや多結晶シリコンを用いた結晶質薄膜シリコン太陽電池が挙げられる。   The photoelectric conversion unit as described above has a non-crystalline i-type photoelectric conversion layer regardless of whether the p-type and n-type conductive layers contained therein are amorphous or crystalline. The conversion unit is referred to as a crystalline photoelectric conversion unit. As an example of a thin film solar cell including an amorphous photoelectric conversion unit, an amorphous thin film silicon solar cell using amorphous silicon for an i-type photoelectric conversion layer can be given. Moreover, as an example of a thin film solar cell including a crystalline photoelectric conversion unit, a crystalline thin film silicon solar cell using microcrystalline silicon or polycrystalline silicon as an i-type photoelectric conversion layer can be given.

一般に、光電変換層に用いられている半導体においては、光の波長が長くなるに従って光吸収係数が小さくなる。特に、光電変換材料が薄膜である場合には、吸収係数の小さな波長領域において十分な光吸収が生じないために、光電変換量が光電変換層の膜厚によって制限されることになる。そこで、光電変換装置内に入射した光が外部に逃げにくい光散乱構造を形成することによって、実質的な光路長を長くして十分な吸収を生じさせ、これによって大きな光電流を発生させる工夫がなされている。例えば、光散乱透過を生じさせるために、表面凹凸形状を含むテクスチャ透明導電膜が用いられている。   In general, in a semiconductor used for a photoelectric conversion layer, the light absorption coefficient decreases as the wavelength of light increases. In particular, when the photoelectric conversion material is a thin film, sufficient light absorption does not occur in a wavelength region having a small absorption coefficient, so that the photoelectric conversion amount is limited by the film thickness of the photoelectric conversion layer. Therefore, by forming a light scattering structure that makes it difficult for light incident in the photoelectric conversion device to escape to the outside, a substantial optical path length is lengthened to cause sufficient absorption, thereby generating a large photocurrent. Has been made. For example, a textured transparent conductive film including an uneven surface shape is used to cause light scattering and transmission.

表面透明導電膜のテクスチャ化は光閉じ込め効果として、セル表面における反射率の低減およびセル内における光路長の増大という効果をもち、薄膜シリコン太陽電池の特性改善法として最も重要な技術の一つであることが知られている。しかし、これまでに光学シミュレーションの結果、表面透明導電膜より裏面電極のテクスチャ化が光閉じ込め構造としてより効果的であることがわかっている。   Texturing of the surface transparent conductive film has one of the most important techniques for improving the characteristics of thin-film silicon solar cells, as it has the effect of reducing the reflectivity on the cell surface and increasing the optical path length in the cell as a light confinement effect. It is known that there is. However, as a result of optical simulations so far, it has been found that texturing the back electrode is more effective as a light confinement structure than the front transparent conductive film.

特許文献1ではシミュレーションの結果より、表面側凹凸とは別に、裏面側も凹凸化を試みている。表面は透明導電層の結晶成長を用いて凹凸としている。一方、裏面側は、光電変換層をブラスト法で研磨することで裏面側を凹凸化している。   In Patent Document 1, from the simulation results, apart from the surface side unevenness, an attempt is made to make the back surface uneven. The surface is roughened by crystal growth of the transparent conductive layer. On the other hand, the back surface side is roughened by polishing the photoelectric conversion layer by a blast method.

また非特許文献1では裏面側にアルミナ微粒子を用いることで裏面側のテクスチャ化を試みている。   Further, Non-Patent Document 1 attempts to texture the back side by using alumina fine particles on the back side.

特開2002−158366号公報JP 2002-158366 A

J.Vac.Soc.Jpn. Vol. 50, No. 8, 2007 pp.534−536J. et al. Vac. Soc. Jpn. Vol. 50, no. 8, 2007 pp. 534-536

上述の特許文献1によれば、半導体光電変換層製膜後にブラスト法により半導体光電変換層表面を荒らし、凹凸構造を作製しているが、この方法では、半導体光電変換層にダメージを与えてしまうことになる。また、非特許文献1では半導体光電変換層製膜後にアルミナ微粒子を用いて凹凸を作製しているが、この手法において理想的な光閉じ込め効果を得るためには、微粒子に高い透過性、導電性、耐熱性、分散の制御が求められ、実際にこのような微粒子を用意することは非常に難しい。   According to the above-mentioned Patent Document 1, the surface of the semiconductor photoelectric conversion layer is roughened by blasting after the semiconductor photoelectric conversion layer is formed, and the concavo-convex structure is produced. However, in this method, the semiconductor photoelectric conversion layer is damaged. It will be. In Non-Patent Document 1, irregularities are produced using alumina fine particles after the formation of a semiconductor photoelectric conversion layer. In order to obtain an ideal optical confinement effect in this method, the fine particles have high permeability and conductivity. Therefore, control of heat resistance and dispersion is required, and it is very difficult to actually prepare such fine particles.

上述のような先行技術における状況に鑑み、本発明の目的は、裏面凹凸化の手法を従来よりも容易にし、裏面凹凸を含んだ理想的な光閉じ込め構造を持つ光電変換特性に優れた薄膜光電変換装置を、各層にダメージを与えることなく、作製可能とすることである。   In view of the situation in the prior art as described above, the object of the present invention is to make a back surface unevenness method easier than before, and to provide a thin film photoelectric converter with an ideal optical confinement structure including back surface unevenness and excellent photoelectric conversion characteristics. It is possible to manufacture the conversion device without damaging each layer.

このような課題を解決するために、本発明による薄膜光電変換装置は、「透光性基板1上に順次積層された、受光面透明電極層2、半導体光電変換ユニット3、裏面透明電極層4、裏面反射部5からなる薄膜光電変換装置であって、裏面反射部5は透明接着層6、反射層7、裏面基板8から成っており、透明接着層6により裏面透明電極層4と反射層7が接着されており、かつ反射層7は、透明接着層6との界面に凹凸を備えていることを特徴とする薄膜光電変換装置」である。なお、「裏面反射部5は透明接着層6、反射層7、裏面基板8から成っており、透明接着層6により裏面透明電極層4と反射層7が接着されており」とは、裏面基板8上に反射層7、透明接着層6を順次積層したものをまとめて裏面反射部5とし、その裏面反射部5を裏面透明電極層4上に真空ラミネータ等を使いラミネートすることで、裏面透明電極層4と反射層7が接着されている状態をいう。   In order to solve such a problem, the thin film photoelectric conversion device according to the present invention is “a light-receiving surface transparent electrode layer 2, a semiconductor photoelectric conversion unit 3, and a back surface transparent electrode layer 4 that are sequentially laminated on a light-transmitting substrate 1. The thin film photoelectric conversion device is composed of a back surface reflecting portion 5, and the back surface reflecting portion 5 is composed of a transparent adhesive layer 6, a reflective layer 7, and a back substrate 8, and the transparent adhesive layer 6 and the back transparent electrode layer 4 and the reflective layer. 7 is bonded, and the reflective layer 7 is a thin film photoelectric conversion device characterized in that the interface with the transparent adhesive layer 6 is uneven. “The back surface reflecting portion 5 is composed of a transparent adhesive layer 6, a reflective layer 7, and a back substrate 8, and the back transparent electrode layer 4 and the reflective layer 7 are bonded by the transparent adhesive layer 6” means that the back substrate The back surface reflective portion 5 is formed by sequentially stacking the reflective layer 7 and the transparent adhesive layer 6 on the back surface 8, and the back surface reflective portion 5 is laminated on the back surface transparent electrode layer 4 using a vacuum laminator or the like. A state in which the electrode layer 4 and the reflective layer 7 are bonded.

また本発明は、「反射層7における凹凸の横方向ピッチが0.5um〜100umである、前記の薄膜光電変換装置」である。また本発明は、「裏面透明電極層がITOを含み、その膜厚は50nm〜200nmである、前記の薄膜光電変換装置」、もしくは「裏面透明電極層がZnOを含み、その膜厚は500nm〜5000nmである、前記の薄膜光電変換装置」である。また本発明は、「透明接着層6が、EVAに代表される接着性ポリマー材料である、前記の薄膜光電変換装置」である。   Moreover, this invention is "the said thin film photoelectric conversion apparatus whose lateral direction pitch of the unevenness | corrugation in the reflection layer 7 is 0.5-100 micrometers." Further, the present invention is the above-mentioned thin film photoelectric conversion device wherein the back transparent electrode layer contains ITO and the film thickness is 50 nm to 200 nm, or “the back transparent electrode layer contains ZnO and the film thickness is 500 nm to The above-mentioned thin film photoelectric conversion device having a thickness of 5000 nm ”. Moreover, this invention is "the said thin film photoelectric conversion apparatus whose transparent contact bonding layer 6 is an adhesive polymer material represented by EVA."

また本発明は、「裏面反射部における反射層7はAg、Al、Moなどに代表される金属薄膜、裏面基板として表面に凹凸を有するガラス基板を用いている、前記の薄膜光電変換装置」である。   In addition, the present invention is the above-mentioned thin film photoelectric conversion device in which the reflective layer 7 in the back reflecting portion uses a metal thin film typified by Ag, Al, Mo or the like, and a glass substrate having irregularities on the surface as the back substrate. is there.

本発明によれば、薄膜光電変換装置における裏面凹凸化を制限少なく実現することができる。つまり、本発明によれば、裏面凹凸は裏面反射部に存在しており、裏面反射部は電極機能を有していないため、裏面反射部に導電性は制限されない。また、裏面反射部は、半導体光電変換ユニットとは別に作製されるため、裏面反射部の作製温度の制限が無い。また同じ理由で、ブラスト法やエッチング法などダメージを与えるような方法で裏面反射部の凹凸作製が可能である。これらの発明の効果により凹凸ガラス、LP−CVDによるノンドープZnO膜、電界析出ZnO膜、ナノインプリント、高温スパッタによるAg膜、熱CVDによる酸化膜など、裏面凹凸化の選択肢が非常に多く、そのためセル構造に合った理想的な光閉じ込め効果の得られる凹凸を選択することができる。すなわち、本発明ではより光電変換特性に優れた薄膜光電変換装置を容易に作製することができる。   According to the present invention, the back surface unevenness in the thin film photoelectric conversion device can be realized with a limited amount. That is, according to the present invention, the back surface unevenness exists in the back surface reflection portion, and the back surface reflection portion does not have an electrode function, and therefore the conductivity is not limited to the back surface reflection portion. Moreover, since the back surface reflection part is manufactured separately from the semiconductor photoelectric conversion unit, there is no limitation on the manufacturing temperature of the back surface reflection part. Further, for the same reason, it is possible to produce the unevenness of the back reflecting portion by a method that causes damage such as blasting or etching. Due to the effects of these inventions, there are a great number of options for surface unevenness such as uneven glass, non-doped ZnO film by LP-CVD, field deposited ZnO film, nanoimprint, Ag film by high temperature sputtering, oxide film by thermal CVD, etc. It is possible to select irregularities that provide an ideal optical confinement effect suitable for That is, in the present invention, a thin film photoelectric conversion device having more excellent photoelectric conversion characteristics can be easily produced.

本発明の一つの実施形態に係る積層型薄膜光電変換装置の製造工程の途中の模式的断面図である。It is typical sectional drawing in the middle of the manufacturing process of the lamination type thin film photoelectric conversion apparatus concerning one embodiment of the present invention. 本発明の一つの実施形態に係る積層型薄膜光電変換装置の製造工程の途中の模式的断面図である。It is typical sectional drawing in the middle of the manufacturing process of the lamination type thin film photoelectric conversion apparatus concerning one embodiment of the present invention. 本発明の一つの実施形態に係る積層型薄膜光電変換装置の模式的断面図である。It is a typical sectional view of a lamination type thin film photoelectric conversion device concerning one embodiment of the present invention. 従来の積層型薄膜光電変換装置の模式的断面図である。It is typical sectional drawing of the conventional lamination type thin film photoelectric conversion apparatus.

以下に本発明の実施形態について詳細に説明するが、本発明は以下の実施形態のみに限定するものではない。   Embodiments of the present invention will be described in detail below, but the present invention is not limited only to the following embodiments.

本発明による薄膜光電変換装置は、「透光性基板1上に順次積層された、受光面透明電極層2、半導体光電変換ユニット3、裏面透明電極層4、裏面反射部5からなる薄膜光電変換装置であって、裏面反射部5は透明接着層6、反射層7、裏面基板8から成っており、透明接着層6により裏面透明電極層4と反射層7が接着されており、かつ反射層7は、透明接着層6との界面に凹凸を備えていることを特徴とする薄膜光電変換装置」である。なお、「裏面反射部5は透明接着層6、反射層7、裏面基板8から成っており、透明接着層6により裏面透明電極層4と反射層7が接着されており」とは、裏面基板8上に反射層7、透明接着層6を順次積層したものをまとめて裏面反射部5とし、その裏面反射部5を裏面透明電極層4上に真空ラミネータ等を使いラミネートすることで、裏面透明電極層4と反射層7が接着されている状態をいう。また、「透光性基板」とは、光を透過する基板であり、ガラスや透光性フィルムが好ましい。また、「受光面透明電極層」とは、高透過率かつ低抵抗の薄膜から成っており、透明導電酸化物(TCO)が好ましい。特に表面に凹凸構造をつけるために、熱CVD法によるSnO2膜などが選択され得る。また、「半導体光電変換ユニット」とはpin接合を1以上含む半導体薄膜の積層から成っている。半導体薄膜としては、水素化アモルファスシリコン(a−Si:H)、水素化微結晶シリコン(mc−Si:H)などが特に好ましい。   The thin film photoelectric conversion device according to the present invention is “thin film photoelectric conversion comprising a light receiving surface transparent electrode layer 2, a semiconductor photoelectric conversion unit 3, a back surface transparent electrode layer 4, and a back surface reflection portion 5, which are sequentially laminated on a translucent substrate 1. In the apparatus, the back surface reflection portion 5 includes a transparent adhesive layer 6, a reflective layer 7, and a back substrate 8, and the back surface transparent electrode layer 4 and the reflective layer 7 are bonded by the transparent adhesive layer 6, and the reflective layer Reference numeral 7 denotes a thin film photoelectric conversion device characterized in that the interface with the transparent adhesive layer 6 has irregularities. “The back surface reflecting portion 5 is composed of a transparent adhesive layer 6, a reflective layer 7, and a back substrate 8, and the back transparent electrode layer 4 and the reflective layer 7 are bonded by the transparent adhesive layer 6” means that the back substrate The back surface reflective portion 5 is formed by sequentially stacking the reflective layer 7 and the transparent adhesive layer 6 on the back surface 8, and the back surface reflective portion 5 is laminated on the back surface transparent electrode layer 4 using a vacuum laminator or the like. A state in which the electrode layer 4 and the reflective layer 7 are bonded. The “translucent substrate” is a substrate that transmits light, and glass or a translucent film is preferable. The “light-receiving surface transparent electrode layer” is a thin film having a high transmittance and a low resistance, and a transparent conductive oxide (TCO) is preferable. In particular, an SnO 2 film formed by a thermal CVD method or the like can be selected in order to provide an uneven structure on the surface. Further, the “semiconductor photoelectric conversion unit” is composed of a stack of semiconductor thin films including one or more pin junctions. As the semiconductor thin film, hydrogenated amorphous silicon (a-Si: H), hydrogenated microcrystalline silicon (mc-Si: H), or the like is particularly preferable.

また本発明は、「反射層7における凹凸の横方向ピッチが0.5um〜100umである、前記の薄膜光電変換装置」である。なお、横方向ピッチが0.5um〜100umであるとは、例えばAFMを用いて反射層表面の凹凸をスキャンした時、Rsm(粗さ曲線要素の平均長さ)が0.5um〜100umの範囲にあることをいう。   Moreover, this invention is "the said thin film photoelectric conversion apparatus whose lateral direction pitch of the unevenness | corrugation in the reflection layer 7 is 0.5-100 micrometers." Note that the lateral pitch is 0.5 μm to 100 μm, for example, when the irregularities on the surface of the reflective layer are scanned using AFM, Rsm (average length of roughness curve elements) is in the range of 0.5 μm to 100 μm. It means that there is.

また本発明は、「裏面透明電極層がITOを含み、その膜厚は50nm〜200nmである、前記の薄膜光電変換装置」である。なお、膜厚は例えば断面TEM観察などの手法を用いて測定することが出来る。裏面透明電極層としては、高い透過率と高い導電性を持つ薄膜が好ましい。例えばITOやZnOなどが特に好ましい。光学的に、裏面透明電極層の屈折率をNi、光電変換ユニットの屈折率がNi以上、接着層の屈折率がNi以下であるとすると、ITOの膜厚Diが、Di=λ/2Niを満たす波長で反射率が上がることを考慮して膜厚を選択すると良い。   Moreover, this invention is "the said thin film photoelectric conversion apparatus whose back surface transparent electrode layer contains ITO, and the film thickness is 50 nm-200 nm." The film thickness can be measured using a technique such as cross-sectional TEM observation. As the back transparent electrode layer, a thin film having high transmittance and high conductivity is preferable. For example, ITO or ZnO is particularly preferable. Optically, assuming that the refractive index of the back transparent electrode layer is Ni, the refractive index of the photoelectric conversion unit is Ni or more, and the refractive index of the adhesive layer is Ni or less, the ITO film thickness Di is Di = λ / 2Ni. The film thickness may be selected in consideration of the increase in reflectance at a wavelength that satisfies the requirement.

また本発明は、「裏面反射部における反射層7はAg、Al、Moなどに代表される金属薄膜、裏面基板として表面に凹凸を有するガラス基板を用いている、前記の薄膜光電変換装置」である。裏面反射部における凹凸化として、表面に凹凸をガラス基板と、反射用金属薄膜の組合せが特に好ましい。ガラス基板表面における凹凸としては、ガラス上にインプリント法によるコーティングや電界析出ZnOなどの絶縁薄膜 のコーティングによる凹凸、もしくはガラスのドライエッチングやウェットエッチングによる凹凸、ガラス表面のブラストによる凹凸などが特に好ましい。   In addition, the present invention is the above-mentioned thin film photoelectric conversion device in which the reflective layer 7 in the back reflecting portion uses a metal thin film typified by Ag, Al, Mo or the like, and a glass substrate having irregularities on the surface as the back substrate. is there. A combination of a glass substrate and a reflective metal thin film is particularly preferable as the unevenness in the back reflecting portion. As the unevenness on the surface of the glass substrate, unevenness due to coating by imprinting on the glass or coating of an insulating thin film such as electrolytically deposited ZnO, unevenness due to dry etching or wet etching of glass, unevenness due to blasting of the glass surface, etc. are particularly preferable. .

以下、本発明の実施形態について、説明する。   Hereinafter, embodiments of the present invention will be described.

図1〜3において、本発明の実施形態による薄膜光電変換装置の作製方法の一例が模式的な断面図で図解されている。まず図1において、透光性基板1上に、受光面透明電極層2、半導体光電変換ユニット3、裏面透明電極層4が順次積層される。ここで透光性基板1は例えば、ガラス板や透明樹脂フイルムなどを用いることができる。ガラス板としては、大面積な板が安価に入手可能で透明性、絶縁性が高い、 SiO2、 Na20及びCaOを主成分とする両主面が平滑なフロート板ガラスを用いることができる。   1-3, an example of the manufacturing method of the thin film photoelectric conversion apparatus by embodiment of this invention is illustrated with typical sectional drawing. First, in FIG. 1, a light-receiving surface transparent electrode layer 2, a semiconductor photoelectric conversion unit 3, and a back surface transparent electrode layer 4 are sequentially laminated on a translucent substrate 1. Here, for example, a glass plate or a transparent resin film can be used as the translucent substrate 1. As the glass plate, it is possible to use a float plate glass which has a large area plate available at low cost and has high transparency and insulation, and which has both main surfaces of SiO2, Na20 and CaO as the main components and is smooth.

また受光面透明電極2は高透過率かつ低抵抗の薄膜から成っており、例えばITO膜、SnO2膜、或いはZnO膜のような透明導電性酸化物(TCO)の薄膜で構成することができる。TCO薄膜は単層構造でも多層構造であっても良い。これらは、蒸着法、CVD法、或いはスパッタリング法等それ自体既知の気相堆積法を用いて形成することができる。受光面透明電極2の表面には、微細な凹凸を含む表面テクスチャ構造を形成することが好ましい。表面にこのようなテクスチャ構造を形成することにより、半導体光電変換ユニット3の光の入射効率を向上させることができる。   The light-receiving surface transparent electrode 2 is composed of a thin film having high transmittance and low resistance, and can be composed of a thin film of transparent conductive oxide (TCO) such as an ITO film, a SnO 2 film, or a ZnO film. The TCO thin film may have a single layer structure or a multilayer structure. These can be formed by a vapor deposition method known per se such as an evaporation method, a CVD method, or a sputtering method. A surface texture structure including fine irregularities is preferably formed on the surface of the light-receiving surface transparent electrode 2. By forming such a texture structure on the surface, the light incident efficiency of the semiconductor photoelectric conversion unit 3 can be improved.

また半導体光電変換ユニット3はpin接合を1以上含む半導体薄膜の積層である。特にハイブリッド型薄膜光電変換装置においては非晶質シリコン光電変換ユニット3aおよび微結晶シリコン光電変換ユニット3bを備えている。非晶質シリコン光電変換ユニット3aは非晶質シリコン光電変換層を備えており、受光面透明電極2側からp型層、非晶質シリコン光電変換層、及びn型層を順次積層した構造を有する。これらp型層、非晶質シリコン光電変換層、及びn型層はいずれもプラズマCVD法により形成することができる。一方、微結晶シリコン光電変換ユニット3bは微結晶シリコン光電変換層を備えており、例えば、非晶質シリコン光電変換ユニット3a側からp型層、微結晶シリコン光電変換層、及びn型層を順次積層した構造を有する。これらp型層、微結晶シリコン光電変換層、及びn型層はいずれもプラズマCVD法により形成することが出来る。また、非晶質シリコン光電変換層及び微結晶シリコン光電変換層の材料としては、真性半導体のシリコンやゲルマニウム、もしくはシリコンカーバイド及びシリコンゲルマニウム等の合金を挙げることができる。   The semiconductor photoelectric conversion unit 3 is a stacked semiconductor thin film including one or more pin junctions. In particular, the hybrid thin film photoelectric conversion device includes an amorphous silicon photoelectric conversion unit 3a and a microcrystalline silicon photoelectric conversion unit 3b. The amorphous silicon photoelectric conversion unit 3a includes an amorphous silicon photoelectric conversion layer, and has a structure in which a p-type layer, an amorphous silicon photoelectric conversion layer, and an n-type layer are sequentially stacked from the light-receiving surface transparent electrode 2 side. Have. These p-type layer, amorphous silicon photoelectric conversion layer, and n-type layer can all be formed by plasma CVD. On the other hand, the microcrystalline silicon photoelectric conversion unit 3b includes a microcrystalline silicon photoelectric conversion layer. For example, a p-type layer, a microcrystalline silicon photoelectric conversion layer, and an n-type layer are sequentially formed from the amorphous silicon photoelectric conversion unit 3a side. It has a laminated structure. These p-type layer, microcrystalline silicon photoelectric conversion layer, and n-type layer can all be formed by plasma CVD. Examples of the material for the amorphous silicon photoelectric conversion layer and the microcrystalline silicon photoelectric conversion layer include intrinsic semiconductor silicon and germanium, or alloys such as silicon carbide and silicon germanium.

また裏面透明電極層4は、受光面透明電極層と同じく高透過率かつ低抵抗の薄膜から成っており、TCO薄膜が好ましい。下層に半導体光電変換ユニット3が存在するため、受光面透明電極層2よりも製膜温度などに制限がある。具体的な材料には例えばITOやZnOなどが特に好ましい。裏面透明電極層4にITOを用いる場合は、その屈折率をNi、光電変換ユニット3の屈折率がNi以上、接着層6の屈折率がNi以下であるとすると、ITOの膜厚Diが、Di=λ/2Niを満たす波長で反射率が上がることと、TCOの抵抗率を考慮すると、ITOの膜厚は50nm〜200nmの範囲が最適となる。裏面透明電極層4にZnOを用いる場合はZnOの抵抗率と、ZnOの結晶成長による凹凸を考慮すると、ZnOの膜厚は500nm〜5000nmが最適となる。   The back transparent electrode layer 4 is made of a thin film having a high transmittance and a low resistance like the light receiving surface transparent electrode layer, and a TCO thin film is preferable. Since the semiconductor photoelectric conversion unit 3 exists in the lower layer, the film forming temperature is more limited than the light receiving surface transparent electrode layer 2. Specific materials such as ITO and ZnO are particularly preferable. When ITO is used for the back transparent electrode layer 4, assuming that the refractive index is Ni, the refractive index of the photoelectric conversion unit 3 is Ni or higher, and the refractive index of the adhesive layer 6 is Ni or lower, the ITO film thickness Di is Considering that the reflectance increases at a wavelength satisfying Di = λ / 2Ni and the resistivity of TCO, the film thickness of ITO is optimally in the range of 50 nm to 200 nm. When ZnO is used for the back transparent electrode layer 4, the optimum film thickness of ZnO is 500 nm to 5000 nm in consideration of the resistivity of ZnO and the unevenness caused by the crystal growth of ZnO.

次に図2において、裏面反射部の作成方法が図解されている。裏面反射部5は、裏面基板8上に反射層7および透明接着層6を順次積層したものから成っている。裏面基板8にはガラス基板やフイルム基材などが用いられるが、その表面には凹凸が設けられているのが好ましい。凹凸はサンドブラスト、ウェットエッチング、ドライエッチング、ナノインプリント法、Ag、ZnO、SnO2などの結晶成長などを利用して作製され得る。反射層7はAg、Al、Moなどの金属薄膜、硫酸バリウムなどを含む白色顔料などが好ましい。反射層7は半導体光電変換ユニット3に入射し裏面反射部5に到着した光を反射して半導体光電変換ユニット3内に再入射させる反射機能を有する。また半導体光電変換ユニット3への光の入射効率を向上させるため、反射光を散乱させることが求められる。そのため反射層7はその表面に凹凸構造を持っていることが好ましい。反射層7をスパッタ法や蒸着法による前記のような金属薄膜とすれば、反射層7の形状はその下層である裏面基板8の凹凸構造を受け継ぐことが出来る。透明接着層6は、接着性、透明性、耐光性、耐湿性などが求められ、例えば、EVA(エチレン・ビニルアセテート共重合体)、PVB(ポリビニルブチラール)、PIB(ポリイソブチレン)、及びシリコーン樹脂等を用いることができる。また反射層7と裏面基板8の間の密着性向上のためにZnOのような薄膜材料を設けることもできる。   Next, in FIG. 2, a method for creating the back surface reflecting portion is illustrated. The back surface reflecting portion 5 is formed by sequentially laminating a reflective layer 7 and a transparent adhesive layer 6 on a back surface substrate 8. Although a glass substrate or a film base material is used for the back substrate 8, it is preferable that the surface is provided with irregularities. The unevenness can be produced by using sandblasting, wet etching, dry etching, nanoimprint method, crystal growth of Ag, ZnO, SnO2, or the like. The reflective layer 7 is preferably a metal thin film such as Ag, Al, or Mo, a white pigment containing barium sulfate, or the like. The reflection layer 7 has a reflection function of reflecting the light incident on the semiconductor photoelectric conversion unit 3 and arriving at the back surface reflection portion 5 so as to re-enter the semiconductor photoelectric conversion unit 3. Moreover, in order to improve the incident efficiency of the light to the semiconductor photoelectric conversion unit 3, it is required to scatter the reflected light. Therefore, it is preferable that the reflective layer 7 has an uneven structure on the surface. If the reflective layer 7 is a metal thin film as described above by sputtering or vapor deposition, the shape of the reflective layer 7 can inherit the concavo-convex structure of the back substrate 8 which is the lower layer. The transparent adhesive layer 6 is required to have adhesiveness, transparency, light resistance, moisture resistance and the like. For example, EVA (ethylene / vinyl acetate copolymer), PVB (polyvinyl butyral), PIB (polyisobutylene), and silicone resin Etc. can be used. In addition, a thin film material such as ZnO can be provided to improve the adhesion between the reflective layer 7 and the back substrate 8.

次に図3において、図1の裏面透明電極層4上に裏面反射部5をラミネートした、薄膜光電変換装置の完成図を示す。ラミネートとは、真空ラミネータなどを用い、裏面透明電極層4上と透明接着層6側を重ね合わせ加圧することで貼着することである。   Next, in FIG. 3, a completed drawing of the thin film photoelectric conversion device in which the back surface reflecting portion 5 is laminated on the back surface transparent electrode layer 4 of FIG. Lamination is to adhere by applying pressure by overlapping and pressing the back surface transparent electrode layer 4 and the transparent adhesive layer 6 side using a vacuum laminator or the like.

このように裏面反射部を光電変換ユニットと別に作製することにより、裏面凹凸化の選択肢が非常に多くなり、そのためセル構造に合った理想的な光閉じ込め効果の得られる凹凸を選択することができる。   By making the back surface reflection portion separately from the photoelectric conversion unit in this way, there are a great number of back surface unevenness options, and therefore it is possible to select the unevenness that provides an ideal light confinement effect that matches the cell structure. .

上述のような本発明による実施形態に対応する具体的な例として、以下においていくつかの実施例が比較例と共に説明される。なお、本発明が以下の実施例に限定されないことは言うまでもない。   As specific examples corresponding to the embodiments according to the present invention as described above, some examples will be described below together with comparative examples. Needless to say, the present invention is not limited to the following examples.

(実施例1)
本発明の実施例1においては、図3に対応して薄膜光電変換装置が作製された。まず図1において、透光性基板1上に、受光面透明電極層2、半導体光電変換ユニット3、裏面透明電極層4が順次積層された。ここで透光性基板1はフロート板ガラスを用いた。また受光面透明電極2としては熱CVD法により、表面に微細な凹凸を含む800nm膜厚のSnO2が積層された。また半導体光電変換ユニット3は、受光面透明電極2上に順に上段光電変換ユニット、下段光電変換ユニットと積層されたタンデム型であった。上段光電変換ユニットは厚さ約15nmのp型a−SiC:H(Hを含むa−SiC)層、厚さ約300nmのa−Si:H(Hを含むa−Si)層、および厚さ約20nmのn型微結晶Si層を含んでいる。また下段光電変換ユニットとして、厚さ約15nmのp型微結晶Si層、厚さ約2μmの微結晶シリコン光電変換ユニット、そして厚さ約20nmのn型微結晶Si層を含んでいた。すなわち、本実施例1における半導体光電変換ユニット3は、その主面に平行な2組のpin接合からなる光電変換ユニットを含んでいた。また裏面透明電極層4としてはスパッタリング法により150nm厚のITO膜が積層された。
Example 1
In Example 1 of the present invention, a thin film photoelectric conversion device was manufactured corresponding to FIG. First, in FIG. 1, a light-receiving surface transparent electrode layer 2, a semiconductor photoelectric conversion unit 3, and a back surface transparent electrode layer 4 are sequentially laminated on a translucent substrate 1. Here, the translucent substrate 1 was float glass. As the light-receiving surface transparent electrode 2, SnO2 having a thickness of 800 nm including fine irregularities was laminated on the surface by a thermal CVD method. In addition, the semiconductor photoelectric conversion unit 3 was a tandem type in which an upper photoelectric conversion unit and a lower photoelectric conversion unit were sequentially stacked on the light-receiving surface transparent electrode 2. The upper photoelectric conversion unit has a p-type a-SiC: H (H-containing a-SiC) layer having a thickness of about 15 nm, an a-Si: H (H-containing a-Si) layer having a thickness of about 300 nm, and a thickness. It includes an n-type microcrystalline Si layer of about 20 nm. The lower photoelectric conversion unit included a p-type microcrystalline Si layer having a thickness of about 15 nm, a microcrystalline silicon photoelectric conversion unit having a thickness of about 2 μm, and an n-type microcrystalline Si layer having a thickness of about 20 nm. That is, the semiconductor photoelectric conversion unit 3 in Example 1 included a photoelectric conversion unit composed of two sets of pin junctions parallel to the main surface. As the back transparent electrode layer 4, an ITO film having a thickness of 150 nm was laminated by a sputtering method.

次に図2に対応して、裏面反射部5が作成された。裏面反射部5は、裏面基板8上に反射層7および透明接着層6を順次積層したものから成っていた。裏面基板8としては表面凹凸板ガラスが用いられた。裏面基板8の表面凹凸はサンドブラスト法とウェットエッチング法を併用して作製された。レーザ顕微鏡で反射層表面の凹凸を測定すると、横方向ピッチのパラメータであるRsmが3umであった。この凹凸上に反射層7が、スパッタリング法により300nmのAg膜が製膜された。さらにその上に透明接着層6としてEVA(エチレン・ビニルアセテート共重合体)を重ね、裏面反射部5を完成させた。   Next, the back surface reflecting portion 5 was created corresponding to FIG. The back surface reflecting portion 5 was formed by sequentially laminating the reflective layer 7 and the transparent adhesive layer 6 on the back substrate 8. As the back substrate 8, a surface uneven plate glass was used. The surface irregularities of the back substrate 8 were produced by using both the sand blasting method and the wet etching method. When unevenness on the surface of the reflective layer was measured with a laser microscope, Rsm, which is a parameter of the lateral pitch, was 3 um. A 300 nm Ag film was formed on the projections and depressions by a sputtering method. Further, EVA (ethylene / vinyl acetate copolymer) was stacked thereon as the transparent adhesive layer 6 to complete the back reflecting portion 5.

次に図3に示されるように、裏面透明電極層4上に裏面反射部5をラミネートし、薄膜光電変換装置を完成させた。   Next, as shown in FIG. 3, the back surface reflecting portion 5 was laminated on the back surface transparent electrode layer 4 to complete the thin film photoelectric conversion device.

本実施例1において得られた薄膜光電変換装置の受光面透明電極層2と裏面透明電極層4からそれぞれ電極を取り出し、環境温度25℃において、ソーラーシミュレータを用いてAM1.5の光を100mW/cm2の強度で照射して光電変換特性を測定したところ、短絡電流密度が13.05mA/cm2、一セルあたりの開放端電圧が1.387V、曲線因子0.741、そして光電変換効率が13.4%であった。   The electrodes were respectively taken out from the light-receiving surface transparent electrode layer 2 and the back surface transparent electrode layer 4 of the thin film photoelectric conversion device obtained in Example 1, and at an ambient temperature of 25 ° C., AM1.5 light was irradiated at 100 mW / mm using a solar simulator. When the photoelectric conversion characteristics were measured by irradiation with an intensity of cm 2, the short-circuit current density was 13.05 mA / cm 2, the open-circuit voltage per cell was 1.387 V, the fill factor was 0.741, and the photoelectric conversion efficiency was 13. 4%.

(比較例1)
本発明の比較例は図4に対応して薄膜半導体光電変換装置が作製された。まず図4において、透光性基板1b上に、受光面透明電極層2b、半導体光電変換ユニット3b、裏面電極層4bが順次積層された。
(Comparative Example 1)
In the comparative example of the present invention, a thin film semiconductor photoelectric conversion device was manufactured corresponding to FIG. First, in FIG. 4, the light-receiving surface transparent electrode layer 2b, the semiconductor photoelectric conversion unit 3b, and the back electrode layer 4b were sequentially laminated on the translucent substrate 1b.

透光性基板1bとしては実施例1と同じ板ガラスが用いられた。また受光面透明電極層2bとしては実施例1と同じSnO2膜が用いられた。また半導体光電変換ユニット3bとしては実施例1における半導体光電変換ユニット3と同じ構成が用いられた。また裏面電極層4bとしては、スパッタリング法による80nm厚ZnO膜、300nm厚Ag膜の積層膜が用いられた。こうして完成した比較例1による薄膜光電変換装置は一般的に製造される、タンデム型薄膜半導体光電変換装置であり、受光面透明導電膜に凹凸構造がついているが、裏面側には設計された凹凸構造は存在しない。この比較例1の薄膜半導体光電変換装置を実施例1と同じように光電変換特性を測定したところ、短絡電流密度が11.86mA/cm2、一セルあたりの開放端電圧が1.385V、曲線因子0.740、そして光電変換効率が12.2%であった。   As the translucent substrate 1b, the same plate glass as in Example 1 was used. Further, the same SnO 2 film as in Example 1 was used as the light-receiving surface transparent electrode layer 2b. Moreover, the same structure as the semiconductor photoelectric conversion unit 3 in Example 1 was used as the semiconductor photoelectric conversion unit 3b. As the back electrode layer 4b, a stacked film of an 80 nm thick ZnO film and a 300 nm thick Ag film formed by sputtering was used. The thin film photoelectric conversion device according to Comparative Example 1 completed in this manner is a tandem thin film semiconductor photoelectric conversion device that is generally manufactured. The light receiving surface transparent conductive film has a concavo-convex structure. There is no structure. When the photoelectric conversion characteristics of the thin film semiconductor photoelectric conversion device of Comparative Example 1 were measured in the same manner as in Example 1, the short-circuit current density was 11.86 mA / cm 2, the open-circuit voltage per cell was 1.385 V, and the fill factor The photoelectric conversion efficiency was 0.740 and 12.2%.

[光電変換特性の対比]
比較例1と実施例1を対比すると、本発明の薄膜光電変換装置は、変換効率において比較例1に示される一般的な積層型薄膜光電変換装置よりも優れていることがわかる。
[Contrast of photoelectric conversion characteristics]
Comparing Comparative Example 1 and Example 1, it can be seen that the thin film photoelectric conversion device of the present invention is superior to the general stacked thin film photoelectric conversion device shown in Comparative Example 1 in conversion efficiency.

1、1b.透光性基板
2、2b.受光面透明電極層
3、3b.半導体光電変換ユニット
4.裏面透明電極層
4b.裏面電極層
5.裏面反射部
6.透明接着層
7.反射層
8.裏面基板
1, 1b. Translucent substrate 2, 2b. Light-receiving surface transparent electrode layer 3, 3b. 3. Semiconductor photoelectric conversion unit Back transparent electrode layer 4b. 4. Back electrode layer 5. Back surface reflection part 6. Transparent adhesive layer Reflective layer 8. Back substrate

Claims (4)

透光性基板、受光面透明電極層、半導体光電変換ユニット、裏面透明電極層、裏面反射部からなる薄膜光電変換装置であって、裏面反射部は透明接着層、反射層、裏面基板から成っており、透明接着層により裏面透明電極層と反射層が接着されており、かつ反射層は、透明接着層との界面に凹凸を備えていることを特徴とする薄膜光電変換装置。   A thin film photoelectric conversion device comprising a translucent substrate, a light-receiving surface transparent electrode layer, a semiconductor photoelectric conversion unit, a back surface transparent electrode layer, and a back surface reflection portion, the back surface reflection portion comprising a transparent adhesive layer, a reflection layer, and a back surface substrate A thin film photoelectric conversion device, wherein the back transparent electrode layer and the reflective layer are bonded by the transparent adhesive layer, and the reflective layer has irregularities at the interface with the transparent adhesive layer. 請求項1に記載の薄膜光電変換装置であって、反射層と透明接着層界面における凹凸の横方向ピッチが0.5um〜100umであることを特徴とする薄膜光電変換装置。   2. The thin film photoelectric conversion device according to claim 1, wherein a lateral pitch of unevenness at the interface between the reflective layer and the transparent adhesive layer is 0.5 μm to 100 μm. 請求項1、又は2に記載の薄膜光電変換装置であって、裏面透明電極層はITOを含み、その膜厚が50nm〜200nmであることを特徴とする薄膜光電変換装置。   3. The thin film photoelectric conversion device according to claim 1, wherein the back transparent electrode layer contains ITO and has a thickness of 50 nm to 200 nm. 請求項1〜3のいずれかに記載の薄膜光電変換装置であって、裏面反射部における反射層が金属薄膜であり、かつ、裏面基板として表面に凹凸を有するガラス基板を用いていることを特徴とする薄膜光電変換装置。   The thin-film photoelectric conversion device according to any one of claims 1 to 3, wherein the reflective layer in the back reflecting portion is a metal thin film, and a glass substrate having irregularities on the surface is used as the back substrate. A thin film photoelectric conversion device.
JP2010156557A 2010-07-09 2010-07-09 Thin film photoelectric conversion device Pending JP2012019128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156557A JP2012019128A (en) 2010-07-09 2010-07-09 Thin film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156557A JP2012019128A (en) 2010-07-09 2010-07-09 Thin film photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2012019128A true JP2012019128A (en) 2012-01-26

Family

ID=45604142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156557A Pending JP2012019128A (en) 2010-07-09 2010-07-09 Thin film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2012019128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051519A1 (en) * 2011-10-04 2013-04-11 旭硝子株式会社 Thin film solar cell module and method for manufacturing thin film solar cell module
JP2013258289A (en) * 2012-06-13 2013-12-26 Mitsubishi Materials Corp Laminate for thin film solar cell, and method for manufacturing thin film solar cell including the same
EP3292568A4 (en) * 2015-05-05 2019-01-02 Epishine AB Methods and arrangements for a solar cell device
KR20190108887A (en) * 2018-03-15 2019-09-25 엘지전자 주식회사 Compound semiconductor solar cell and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321362A (en) * 1994-05-24 1995-12-08 Sanyo Electric Co Ltd Photovoltaic device
JP2000294818A (en) * 1999-04-05 2000-10-20 Sony Corp Thin film semiconductor device and manufacture thereof
JP2009032779A (en) * 2007-07-25 2009-02-12 Toray Ind Inc Thin-film solar cell module
WO2010053301A2 (en) * 2008-11-06 2010-05-14 (주)엘지하우시스 Functional sheet and solar cell module including same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321362A (en) * 1994-05-24 1995-12-08 Sanyo Electric Co Ltd Photovoltaic device
JP2000294818A (en) * 1999-04-05 2000-10-20 Sony Corp Thin film semiconductor device and manufacture thereof
JP2009032779A (en) * 2007-07-25 2009-02-12 Toray Ind Inc Thin-film solar cell module
WO2010053301A2 (en) * 2008-11-06 2010-05-14 (주)엘지하우시스 Functional sheet and solar cell module including same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051519A1 (en) * 2011-10-04 2013-04-11 旭硝子株式会社 Thin film solar cell module and method for manufacturing thin film solar cell module
JP2013258289A (en) * 2012-06-13 2013-12-26 Mitsubishi Materials Corp Laminate for thin film solar cell, and method for manufacturing thin film solar cell including the same
EP3292568A4 (en) * 2015-05-05 2019-01-02 Epishine AB Methods and arrangements for a solar cell device
KR20190108887A (en) * 2018-03-15 2019-09-25 엘지전자 주식회사 Compound semiconductor solar cell and manufacturing method thereof
KR102498522B1 (en) 2018-03-15 2023-02-10 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 Compound semiconductor solar cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101319750B1 (en) Photovoltaic module and method of manufacturing a photovoltaic module having multiple semiconductor layer stacks
TWI438904B (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
JP4222500B2 (en) Silicon-based thin film photoelectric conversion device
WO2003065462A1 (en) Tandem thin-film photoelectric transducer and its manufacturing method
WO2005011002A1 (en) Silicon based thin film solar cell
JP2010123944A (en) Solar cell having reflective structure
JPWO2011065571A1 (en) PHOTOELECTRIC CONVERSION MODULE, ITS MANUFACTURING METHOD, AND POWER GENERATION DEVICE
JP2008270562A (en) Multi-junction type solar cell
TW201234619A (en) Thin film silicon solar cell in multi-junction configuration on textured glass
JP2012019128A (en) Thin film photoelectric conversion device
JP2016029675A (en) Light-transmissible insulation board for thin film solar battery and integration type thin film silicon solar battery
JP3258680B2 (en) Photovoltaic device
JP5618465B2 (en) Thin film solar cell module
TW201041165A (en) Solar battery and method for manufacturing the same
JP5905824B2 (en) Parallel photoelectric conversion laminated device and series integrated photoelectric conversion device
JP5490031B2 (en) Photovoltaic device and photovoltaic module
JP2010141192A (en) Thin-film solar cell and thin-film solar battery
WO2013070552A2 (en) Photovoltaic window with light-turning features
JP2011222589A (en) Photovoltaic device and manufacturing method thereof
JP2012089712A (en) Thin film solar cell and method for manufacturing the same
JP2011077128A (en) Photoelectric converter
JP2011096730A (en) Thin-film solar cell and method of manufacturing the same
TW201101503A (en) Transparent thin-film solar cell
JP2008235687A (en) Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device
JP2010103347A (en) Thin film photoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140707

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007