JP2012012653A - Method for producing metallic fine particle - Google Patents

Method for producing metallic fine particle Download PDF

Info

Publication number
JP2012012653A
JP2012012653A JP2010149456A JP2010149456A JP2012012653A JP 2012012653 A JP2012012653 A JP 2012012653A JP 2010149456 A JP2010149456 A JP 2010149456A JP 2010149456 A JP2010149456 A JP 2010149456A JP 2012012653 A JP2012012653 A JP 2012012653A
Authority
JP
Japan
Prior art keywords
metal
fine particles
ions
electrolytic
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010149456A
Other languages
Japanese (ja)
Other versions
JP5566794B2 (en
Inventor
Noriyuki Honma
敬之 本間
Mikiko Saito
美紀子 齋藤
Hideo Nishikubo
英郎 西久保
Tomohiro Ishii
智紘 石井
Hidemichi Fujiwara
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Waseda University
Original Assignee
Furukawa Electric Co Ltd
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Waseda University filed Critical Furukawa Electric Co Ltd
Priority to JP2010149456A priority Critical patent/JP5566794B2/en
Publication of JP2012012653A publication Critical patent/JP2012012653A/en
Application granted granted Critical
Publication of JP5566794B2 publication Critical patent/JP5566794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing metallic fine particles, when metal ions are electrolytically reduced to produce metallic fine particles, which reduces variation in particle diameters, suppresses the formation of the metallic fine particles into a dendrite shape, and produces the uniform metallic fine particles.SOLUTION: Regarding the method for producing metallic fine particles in which, in an electrolytic water solution containing the ions of a metal (A) and the ions of a metal (B), the metal (B) is precipitated by electrolytic reduction, and further, the fine particles of the metal (A) are precipitated, the molar concentration ratio between the ions of the metal (B) and the ions of the metal (A), (B/A) is ≤0.5, also, the ions of the metal (B) are the ions precipitated at a potential nobler than the precipitation potential of the ions of the metal (A), and by applying electric current to a space between the anode and the cathode in the electrolytic water solution in such a manner that the cathode electrode potential reaches a potential of ≤-1V to the reference electrode of silver/silver chloride, the metal (B) is precipitated on the surface of the cathode by the electrolytic reduction, and the fine particles of the metal (A) being the baser metal are precipitated on the precipitated metal (B) or in the vicinity of the metal (B).

Description

本発明は、銅、ニッケル、コバルト、鉄、亜鉛、スズ等の金属微粒子の製造方法に関する。   The present invention relates to a method for producing fine metal particles such as copper, nickel, cobalt, iron, zinc and tin.

金属微粒子は、ナノサイズ(1μm以下)まで粒子径が微細化すると融点が低減することが知られており、このようなナノサイズの金属微粒子の分散したコロイド溶液やナノサイズの金属微粒子を混練したペーストは200〜300℃の焼成温度で良好な導電膜を作ることが知られている。既に、インクジェットプリント技術を用いて、金属微粒子として銀微粒子を用いた微粒子インクによるプリント回路の作製が報告されている。
しかしながら、銀微粒子インクを用いてプリントされた焼成回路は単に原料コストが高いだけでなく、配線等に使用された銀が電気化学反応によりイオン化して溶け出すことによって起こるマイグレーションを発生し易い傾向があるために配線間での結線が起きるという致命的な問題を有している。このマイグレーションの起こり易さはイオン化の電気化学列の順序と異なり、Ag>Pb≧Cuの順であり、このようなマイグレーションに対する耐性の低い銀微粒子から、該耐性の高い銅微粒子、銀成分の少ない合金微粒子等の使用への移行が望まれており、該耐性の高い金属微粒子を低コストで製造できる製造方法が必要になっている。
Metal fine particles are known to have a melting point that decreases when the particle size is reduced to nano-size (1 μm or less), and such colloidal solution in which nano-sized metal fine particles are dispersed or nano-sized metal fine particles are kneaded. It is known that a paste forms a good conductive film at a firing temperature of 200 to 300 ° C. The production of a printed circuit using fine particle ink using silver fine particles as metal fine particles has already been reported using an inkjet printing technique.
However, the firing circuit printed using the silver fine particle ink is not only high in raw material cost, but also tends to generate migration caused by ionization and dissolution of silver used for wiring and the like by an electrochemical reaction. For this reason, there is a fatal problem that wiring between wirings occurs. The ease of this migration is different from the order of the electrochemical column of ionization, and is in the order of Ag> Pb ≧ Cu. From the silver fine particles having low resistance to such migration, the copper fine particles having high resistance, and the silver component being small. There is a demand for a shift to the use of alloy fine particles and the like, and there is a need for a production method capable of producing such highly resistant metal fine particles at a low cost.

上記背景のもとに、電気化学的な手法を用いたナノサイズの金属微粒子の製造方法についての研究開発が積極的に行なわれている。
このようなナノサイズの金属微粒子を製造する方法として、主に気相合成法と液相合成法が知られている。該気相合成法は、気相中に導入した金属蒸気から固体の金属微粒子を形成する方法であり、一方、液相合成法は、溶液中に分散させた金属イオンを電解又は無電解還元により金属微粒子を析出させる方法である。無電解還元により金属イオンを還元するための還元方法としては、アルコール、ポリオール、アルデヒド、ヒドラジン、水素化ホウ素ナトリウム等を用いる方法、電解還元により電気化学的にカソード電極上で還元を行う方法とが知られている。特に、電気化学的に還元を行う方法は、その還元速度を電流量の調整により生成する金属微粒子の形状・サイズを制御することが可能であり、また電流量の調整により、複合(合金)微粒子の生成も可能であることから、近年大いに注目されている。
Based on the above background, research and development have been actively conducted on methods for producing nano-sized metal fine particles using electrochemical techniques.
As a method for producing such nano-sized metal fine particles, a gas phase synthesis method and a liquid phase synthesis method are mainly known. The gas phase synthesis method is a method of forming solid metal fine particles from metal vapor introduced into the gas phase, while the liquid phase synthesis method is performed by electrolytic or electroless reduction of metal ions dispersed in a solution. This is a method of depositing metal fine particles. As a reduction method for reducing metal ions by electroless reduction, there are a method using alcohol, polyol, aldehyde, hydrazine, sodium borohydride, and the like, and a method of performing reduction on the cathode electrode electrochemically by electrolytic reduction. Are known. In particular, the electrochemical reduction method can control the shape and size of the fine metal particles produced by adjusting the amount of reduction, and the composite (alloy) fine particles by adjusting the amount of current. In recent years, it has attracted much attention.

還元剤を使用する方法として、特許文献1には、有機溶媒中に銅化合物と還元剤と保護剤とを添加して電解水溶液を調製し、該溶液を非酸化雰囲気下で加熱することによって還元して銅微粒子を析出する方法が提案されている。電気化学的にカソード電極上で還元を行う方法として、非特許文献1では、界面活性剤や金属配位子を添加した水溶液中において、目的金属からなる陽極と、炭素または白金からなる陰極間に通電することにより、金属粒子を作成する方法が提案されている。
本発明者らは、金属微粒子及び高分子分散媒を含む電解液中の金属イオンを電解還元することによる金属微粒子の製造技術について、下記特許文献2に示す、Ptめっき膜とUVインプリント法を用いて作製した400nmピッチの白金ナノドット電極をカソードとして電解めっきを行い、均一な金属微粒子の成長を実現できることを確認している。
As a method of using a reducing agent, Patent Document 1 discloses that an aqueous electrolytic solution is prepared by adding a copper compound, a reducing agent, and a protective agent in an organic solvent, and the solution is reduced by heating in a non-oxidizing atmosphere. Thus, a method for depositing copper fine particles has been proposed. As a method for electrochemical reduction on a cathode electrode, Non-Patent Document 1 discloses that, in an aqueous solution to which a surfactant or a metal ligand is added, between an anode made of a target metal and a cathode made of carbon or platinum. A method of creating metal particles by energization has been proposed.
The inventors of the present invention have disclosed a Pt plating film and a UV imprint method shown in Patent Document 2 below, regarding a technique for producing metal fine particles by electrolytic reduction of metal ions in an electrolytic solution containing metal fine particles and a polymer dispersion medium. Electroplating was performed using a platinum nanodot electrode with a 400 nm pitch produced by using the cathode as a cathode, and it was confirmed that uniform metal fine particle growth could be realized.

特開2005−281781号公報JP 2005-281781 A 特開2007−327117号公報JP 2007-327117 A

A.Pietrikova et al., Metallic Materials, Vol.29, (1991), p262-272A. Pietrikova et al., Metallic Materials, Vol. 29, (1991), p262-272

上記従来の気相合成法では、一般に、CVD、レーザーアブレーション、スパッタリングなどにより金属蒸気が反応容器に供給されて、金属微粒子の生成が行われるが、これら反応装置は高価である上、歩留まりが悪く、製造コストが高いという問題点があり、更に得られる金属微粒子は、粒径分布が広いという問題点もあった。また、非特許文献1等に記載された電気化学的にカソード電極上で還元を行う方法では、還元されて得られた金属粒子がデンドライト(樹枝)状に成長するため、金属粒子の形状が不均一であるという問題点があった。特許文献1の還元剤を用いた還元方法では金属微粒子の粒子径の制御について更なる改良が望まれている。特許文献2に開示の方法では白金ナノドットを形成するための型作製にコスト、時間が費やされるという問題点があった。

本発明は、上記問題点を解決して金属イオンを電解還元して金属微粒子を製造する際に粒子径のバラツキが少なく金属微粒子がデンドライト状に析出されるのを抑制可能なナノサイズの金属微粒子の製造方法を提供することを目的とする。
In the above conventional gas phase synthesis method, metal vapor is generally supplied to a reaction vessel by CVD, laser ablation, sputtering, etc., and metal fine particles are generated. However, these reactors are expensive and yield is poor. Further, there is a problem that the production cost is high, and the metal fine particles obtained have a problem that the particle size distribution is wide. In addition, in the method of electrochemical reduction on the cathode electrode described in Non-Patent Document 1 or the like, the metal particles obtained by reduction grow in a dendrite shape, so that the shape of the metal particles is indefinite. There was a problem of being uniform. In the reduction method using the reducing agent of Patent Document 1, further improvement is desired for the control of the particle diameter of the metal fine particles. In the method disclosed in Patent Document 2, there is a problem that cost and time are spent on mold production for forming platinum nanodots.

The present invention is a nano-sized metal fine particle which can solve the above-mentioned problems and suppress the metal fine particle from being deposited in a dendrite shape when the metal fine particle is produced by electrolytic reduction of metal ions. It aims at providing the manufacturing method of.

本発明は以上の事情を背景としてなされたものであり、電解水溶液中に目的物である金属微粒子を形成する金属イオンと、該金属よりも貴な電位の他の金属のイオンの共存下に電解還元すると、ナノサイズの金属微粒子を容易に得られることを見出し、本発明を完成するに至った。

即ち、本発明は、以下の〈1〉ないし〈9〉に記載する発明を要旨とする。〈1〉少なくとも金属(A)のイオンと金属(B)のイオンを含む電解水溶液中で陽極と陰極間に通電して、電解還元により金属(B)を析出させると共に金属(A)の微粒子を析出させる金属微粒子の製造方法において、
電解水溶液中で金属(B)のイオンと金属(A)のイオンのモル濃度比(B/A)が0.5以下であり、かつ金属(B)のイオンが金属(A)のイオンの析出電位よりも貴な電位で析出するイオンであり、
該電解水溶液中の陽極と陰極間に、銀/塩化銀の参照電極に対し陰極電極電位が−1V以下の電位となるように印加することにより、
該電解還元により陰極表面上に金属(B)を析出させて、より卑な金属である金属(A)の微粒子を前記析出した金属(B)上ないし金属(B)の近傍に析出させることを特徴とする、金属微粒子の製造方法。
〈2〉前記電解水溶液中で、金属(B)のイオン濃度が0.0001〜0.1(mol/L)であることを特徴とする、前記〈1〉に記載の金属微粒子の製造方法。
〈3〉前記電解水溶液中で、金属(B)のイオンと金属(A)のイオンのモル濃度比(B/A)が0.001から0.5であることを特徴とする、前記〈1〉又は〈2〉に記載の金属微粒子の製造方法。
〈4〉前記金属(B)が金、白金、パラジウム、イリジウム、銅、銀、ニッケル、コバルト、鉄、亜鉛、及びスズから選択される1種であり、金属(A)が金を除く金属から選択される1種であり、かつ金属(B)のイオンの析出電位よりも卑な電位で析出するイオンを形成する金属であることを特徴とする、前記〈1〉から〈3〉のいずれかに記載の金属微粒子の製造方法。
The present invention has been made against the background described above. Electrolysis is performed under the coexistence of metal ions that form fine metal particles, which are target products, in an aqueous electrolytic solution and ions of other metals having a higher potential than the metal. It has been found that nano-sized metal fine particles can be easily obtained by reduction, and the present invention has been completed.

That is, the gist of the present invention is the invention described in the following <1> to <9>. <1> A current is passed between an anode and a cathode in an electrolytic aqueous solution containing at least metal (A) ions and metal (B) ions to deposit metal (B) by electrolytic reduction and to form fine particles of metal (A). In the method for producing metal fine particles to be precipitated,
The molar concentration ratio (B / A) of the metal (B) ion to the metal (A) ion is 0.5 or less in the electrolytic aqueous solution, and the metal (B) ion is a deposited metal (A) ion. It is an ion that precipitates at a potential nobler than the potential,
By applying the cathode electrode potential between the anode and the cathode in the electrolytic aqueous solution so that the cathode electrode potential is −1 V or less with respect to the silver / silver chloride reference electrode,
The metal (B) is deposited on the cathode surface by the electrolytic reduction, and fine particles of the metal (A), which is a more basic metal, are deposited on the deposited metal (B) or in the vicinity of the metal (B). A method for producing metal fine particles, which is characterized.
<2> The method for producing metal fine particles according to <1>, wherein the ion concentration of the metal (B) is 0.0001 to 0.1 (mol / L) in the electrolytic aqueous solution.
<3> The above-mentioned <1>, wherein the molar concentration ratio (B / A) of the metal (B) ion to the metal (A) ion is 0.001 to 0.5 in the electrolytic aqueous solution. > Or <2>.
<4> The metal (B) is one selected from gold, platinum, palladium, iridium, copper, silver, nickel, cobalt, iron, zinc, and tin, and the metal (A) is from a metal other than gold. Any one of the above <1> to <3>, which is a metal that is selected and is a metal that forms ions that deposit at a lower potential than the deposition potential of the ions of the metal (B). The manufacturing method of the metal microparticle as described in any one of.

〈5〉前記金属(A)が銅であり、金属(B)が銀であることを特徴とする、前記〈1〉から〈4〉のいずれかに記載の金属微粒子の製造方法。
〈6〉前記電解水溶液中に有機分散剤が含有されていることを特徴とする、前記〈1〉から〈5〉のいずれかに記載の金属微粒子の製造方法。
〈7〉前記電解水溶液中の陽極と陰極間に、20mA/cm以上の電流密度で通電することを特徴とする、前記〈1〉から〈6〉のいずれかに記載の金属微粒子の製造方法。
〈8〉前記陰極表面に表面活性の大きい金属からなる下地材を使用することを特徴とする、前記〈1〉から〈7〉のいずれかに記載の金属微粒子の製造方法。
〈9〉前記下地材が銀から形成されていることを特徴とする、前記〈8〉に記載の金属微粒子の製造方法。
<5> The method for producing fine metal particles according to any one of <1> to <4>, wherein the metal (A) is copper and the metal (B) is silver.
<6> The method for producing metal fine particles according to any one of <1> to <5>, wherein an organic dispersant is contained in the electrolytic aqueous solution.
<7> The method for producing fine metal particles according to any one of <1> to <6>, wherein electricity is passed between the anode and the cathode in the electrolytic aqueous solution at a current density of 20 mA / cm 2 or more. .
<8> The method for producing metal fine particles according to any one of <1> to <7>, wherein a base material made of a metal having high surface activity is used on the cathode surface.
<9> The method for producing fine metal particles according to <8>, wherein the base material is made of silver.

(イ)前記〈1〉、〈2〉、及び〈3〉に記載の金属微粒子の製造方法において、
金属(B)のイオンを含む電解水溶液から電解析出によりナノサイズの金属(A)の微粒子を形成する際に、金属微粒子を形成する主成分となる金属(A)よりも貴な金属(B)のイオンを添加することにより、金属(A)の微粒子を容易に形成することができる。
この場合、貴な金属である金属(B)の粒子の電解析出に伴い、また金属(B)のイオンの存在により、金属(A)が析出する際の粒子の結晶成長を妨げるとともに陰極上の金属(B)の粒子が金属(A)の粒子生成の核となり、微細な粒子の生成を促進させるように作用する。
また、電解水溶液中の陽極と陰極間に、銀/塩化銀の参照電極に対し陰極電極電位が−1V以下の電位となるように印加することにより、陰極上に微粒子の形成が促進されて、めっき状に金属が析出するのを防止できる。
(ロ)上記〈4〉、及び〈5〉に記載の金属微粒子の製造方法において、貴な金属(B)として、金、白金、パラジウム、イリジウム、銅、銀、ニッケル、コバルト、鉄、亜鉛、及びスズから選択される1種を使用し、卑な金属(A)として金を除く金属から選択される1種であり、かつ金属(B)のイオンの析出電位よりも卑な電位で析出するイオンを形成する金属を使用することにより、金属(A)の濃度の高い微粒子を電解還元により効率よく製造することが可能になる。金属(A)として銅を使用し、金属(B)として銀を使用すると、銅の微粒子を一層効率よく製造することができる。
(A) In the method for producing fine metal particles according to <1>, <2>, and <3>,
When forming nano-sized metal (A) fine particles by electrolytic deposition from an aqueous electrolytic solution containing metal (B) ions, the metal (B) is more noble than the metal (A) as the main component for forming the metal fine particles. ) Ions can be added to form metal (A) fine particles easily.
In this case, along with the electrolytic deposition of particles of the noble metal (B), the presence of ions of the metal (B) prevents the crystal growth of the particles when the metal (A) is deposited and The metal (B) particles serve as the core of metal (A) particle formation, and act to promote the formation of fine particles.
Also, by applying the cathode electrode potential to a silver / silver chloride reference electrode between the anode and the cathode in the electrolytic aqueous solution so as to be a potential of −1 V or less, the formation of fine particles on the cathode is promoted, It is possible to prevent the metal from being deposited in a plated form.
(B) In the method for producing fine metal particles according to the above <4> and <5>, as the noble metal (B), gold, platinum, palladium, iridium, copper, silver, nickel, cobalt, iron, zinc, And selected from metals other than gold as the base metal (A) and deposited at a base potential lower than the deposition potential of ions of the metal (B). By using a metal that forms ions, it is possible to efficiently produce fine particles having a high concentration of metal (A) by electrolytic reduction. When copper is used as the metal (A) and silver is used as the metal (B), copper fine particles can be produced more efficiently.

(ハ)上記〈6〉に記載の金属微粒子の製造方法において、電解水溶液中に有機分散剤を含有させと、有機分散剤は電解水溶液中で析出した金属微粒子の少なくとも一部の表面を覆うように存在して、金属微粒子の凝集を防止して分散性を良好に維持するように作用する。
(ニ)上記〈7〉に記載の金属微粒子の製造方法において、電解水溶液中の陽極と陰極間に、20mA/cm以上の電流密度で通電することにより、金属(A)の微粒子の析出が促進される。
(ホ)上記〈8〉、及び〈9〉に記載の金属微粒子の製造方法において、陰極表面に表面活性の大きい金属からなる下地材を使用することにより、金属(A)の微粒子が析出し易くなる。下地材として貴な金属の中でも銀を使用するとより粒子径の小さい金属(A)の微粒子を製造することができる。
本発明によって、電解還元により析出する金属(A)が膜状に析出したり、析出した微粒子がデンドライト状に成長するのを抑制して、比較的均一なナノサイズの金属(A)の微粒子を低コストで形成することが可能になる。
(C) In the method for producing metal fine particles according to the above <6>, when an organic dispersant is contained in the electrolytic aqueous solution, the organic dispersant covers the surface of at least a part of the metal fine particles deposited in the electrolytic aqueous solution. And acts to prevent the fine metal particles from agglomerating and maintain good dispersibility.
(D) In the method for producing metal fine particles according to the above <7>, the metal (A) fine particles are precipitated by passing a current between the anode and the cathode in the electrolytic aqueous solution at a current density of 20 mA / cm 2 or more. Promoted.
(E) In the method for producing fine metal particles according to <8> and <9>, the metal (A) fine particles are easily precipitated by using a base material made of a metal having a large surface activity on the cathode surface. Become. When silver is used among the noble metals as the base material, fine particles of metal (A) having a smaller particle diameter can be produced.
According to the present invention, the metal (A) deposited by electrolytic reduction is deposited in the form of a film or the deposited fine particles are prevented from growing in a dendrite shape, so that relatively uniform nano-sized metal (A) particles can be obtained. It can be formed at low cost.

実施例2の電解還元で陰極である銀下地材上に析出した銀粒子と銅微粒子の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of silver particles and copper fine particles deposited on a silver base material that is a cathode by electrolytic reduction in Example 2. FIG. 比較例2の電解還元で陰極である銀下地材上に析出した銀と銅の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of silver and copper deposited on a silver base material that is a cathode in electrolytic reduction of Comparative Example 2. FIG. 実施例3の電解還元で陰極である下地材(金、白金、銀)上にそれぞれ析出した銀粒子と銅微粒子の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of silver particles and copper fine particles deposited on a base material (gold, platinum, silver) that is a cathode in electrolytic reduction of Example 3, respectively. 比較例3の電解還元で陰極である下地材(金、白金、銀)上にそれぞれ析出した銀粒子と銅粒子の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of silver particles and copper particles deposited on a base material (gold, platinum, silver) that is a cathode in electrolytic reduction of Comparative Example 3, respectively.

以下に本発明の「金属微粒子の製造方法」を説明する。
本発明の「金属微粒子の製造方法」は、少なくとも金属(A)のイオンと金属(B)のイオンを含む電解水溶液中で陽極と陰極間に通電して、電解還元により金属(B)を析出させると共に金属(A)の微粒子を析出させる金属微粒子の製造方法において、
電解水溶液中で金属(B)のイオンと金属(A)のイオンのモル濃度比(B/A)が0.5以下であり、かつ金属(B)のイオンが金属(A)のイオンの析出電位よりも貴な電位で析出するイオンであり、
該電解水溶液中の陽極と陰極間に、銀/塩化銀の参照電極に対し陰極電極電位が−1V以下の電位となるように印加することにより、
該電解還元により陰極表面上に金属(B)を析出させて、より卑な金属である金属(A)の微粒子を前記析出した金属(B)上ないし金属(B)の近傍に析出させることを特徴とする。
本発明の「金属微粒子の製造方法」において、少なくとも、電解還元が行われる電解水溶液中に、以下に記載する微粒子を析出する金属(A)のイオンと、金属(A)の微粒子の析出を促進する金属(B)のイオンを含み、また、電解水溶液中に有機物分散媒等の添加剤を含有させることが好ましい。このような電解還元により、金属(A)のイオンを還元して一次粒子の粒子径が1〜150nmの範囲にある金属(A)の微粒子を析出させることが可能である。
尚、以下、本発明の電解還元において還元反応が行われる溶液を電解水溶液という。
The “metal fine particle production method” of the present invention will be described below.
The “method for producing fine metal particles” of the present invention is a method in which a metal (B) is deposited by electrolytic reduction by passing current between an anode and a cathode in an aqueous electrolytic solution containing at least metal (A) ions and metal (B) ions. In the method for producing fine metal particles in which fine particles of metal (A) are deposited,
The molar concentration ratio (B / A) of the metal (B) ion to the metal (A) ion is 0.5 or less in the electrolytic aqueous solution, and the metal (B) ion is a deposited metal (A) ion. It is an ion that precipitates at a potential nobler than the potential,
By applying the cathode electrode potential between the anode and the cathode in the electrolytic aqueous solution so that the cathode electrode potential is −1 V or less with respect to the silver / silver chloride reference electrode,
The metal (B) is deposited on the cathode surface by the electrolytic reduction, and fine particles of the metal (A), which is a more basic metal, are deposited on the deposited metal (B) or in the vicinity of the metal (B). Features.
In the “method for producing fine metal particles” of the present invention, at least the metal (A) ions for precipitating the fine particles described below and the precipitation of the fine metal (A) particles are promoted in the electrolytic aqueous solution in which the electrolytic reduction is performed. It is preferable that an additive such as an organic dispersion medium is contained in the electrolytic aqueous solution. By such electrolytic reduction, it is possible to reduce the metal (A) ions and deposit metal (A) fine particles having a primary particle diameter in the range of 1 to 150 nm.
Hereinafter, a solution in which a reduction reaction is performed in the electrolytic reduction of the present invention is referred to as an electrolytic aqueous solution.

(1)金属(A)と金属(B)
電解還元において、金属元素が溶解したり、析出したりする電位はそれぞれ異なる。電解水溶液中である金属板を正極とすると、ある電圧以上で該金属は溶解して(酸化されて)イオンとなる。一方、金属板を負極にすると、溶液中でイオン化していた金属はある電位以上で電子を受け取って(還元されて)金属原子となり該負極に析出する。このイオン化したり、還元したりする電位は金属によって異なり、この電位は標準電極電位といわれる。この順序はイオン化傾向といわれ、イオン化しやすい金属を卑な金属、イオン化しにくい金属を貴な金属という。電解還元において、卑な金属は相対的に大きなマイナスの電圧をかけなければ還元されて析出することはない、一方、貴な金属は相対的に小さいマイナス電圧で還元されて析出する。
本発明において、金属(B)は金属(A)より貴な金属であり、金属(B)の具体例として、金、白金、パラジウム、イリジウム、銀、銅、スズ、鉄、ニッケル、コバルト、亜鉛から選択される1種を例示することができる。金属(A)は金属(B)よりは卑な金属であり、上記例示中においては最も貴な金属である金を除く金属から選択される1種であり、かつ金属(B)のイオンの析出電位よりも卑な電位で析出するイオンを形成する金属から選択することができる。前記金属(B)の中でも金、銀、又は白金が好ましく、銀が特に好ましい。前記金属(A)としては実用上銅が好ましい。
(1) Metal (A) and Metal (B)
In the electrolytic reduction, the potential at which the metal element is dissolved or deposited is different. When a metal plate in an electrolytic aqueous solution is used as a positive electrode, the metal is dissolved (oxidized) into ions at a certain voltage or higher. On the other hand, when the metal plate is used as a negative electrode, the metal ionized in the solution receives electrons (reduced) at a certain potential or higher to be converted into metal atoms and deposited on the negative electrode. The potential for ionization or reduction varies depending on the metal, and this potential is referred to as a standard electrode potential. This order is called an ionization tendency. A metal that is easily ionized is called a base metal, and a metal that is difficult to ionize is called a noble metal. In electrolytic reduction, a base metal is not reduced and deposited unless a relatively large negative voltage is applied, while a noble metal is reduced and deposited with a relatively small negative voltage.
In the present invention, the metal (B) is a noble metal than the metal (A), and specific examples of the metal (B) include gold, platinum, palladium, iridium, silver, copper, tin, iron, nickel, cobalt, and zinc. 1 type selected from can be illustrated. Metal (A) is a base metal than metal (B), and is one type selected from metals other than gold, which is the most noble metal in the above examples, and precipitation of ions of metal (B) It can be selected from metals that form ions that are deposited at a potential lower than the potential. Among the metals (B), gold, silver, or platinum is preferable, and silver is particularly preferable. Practically copper is preferred as the metal (A).

(2)電解水溶液
電解水溶液を形成する金属(A)のイオンと、金属(B)のイオン、及び任意の成分である有機物分散媒とアルカリ金属イオンについて説明する。
尚、電解水溶液は水溶液、該水溶液にメタノール、エタノール等の親水性化合物を添加した混合溶液、及び親水性溶液が使用可能であるが水溶液の使用が好ましい。
(2−1)金属(A)のイオン
電解水溶液中で金属(A)のイオンを形成するイオン性化合物として、酢酸塩、硫酸塩、ピロリン酸塩、硝酸塩、シアン化金属等が挙げられるが、これらの中でも酢酸塩、硫酸塩等の使用が好ましい。金属(A)として銅を使用する場合には、具体例として、酢酸銅、硫酸銅、硝酸銅、ピロリン酸銅、シアン化銅等が挙げられるが、実用上酢酸銅(II)の1水和物((CHCOO)Cu・1HO)又は硫酸銅の5水和物(CuSO・5HO)の使用が特に望ましい。
電解水溶液中の好ましい金属(A)のイオン濃度は、0.01〜4.0 mol/L(又はmol/dm)である。該イオン濃度が0.01(mol/L)未満では、金属(A)微粒子の生成量が低減し電解水溶液からの収率が低下するという不都合を生じ、4.0(mol/L)を超えると生成される粒子間での粗大な凝集がおこるおそれがある。よリ好ましい銅イオン濃度は、0.05〜0.5モル(mol/L)である。
(2) Electrolytic aqueous solution The metal (A) ions, the metal (B) ions, and the organic dispersion medium and alkali metal ions, which are optional components, will be described.
The electrolytic aqueous solution may be an aqueous solution, a mixed solution obtained by adding a hydrophilic compound such as methanol or ethanol to the aqueous solution, or a hydrophilic solution, but the aqueous solution is preferably used.
(2-1) Examples of ionic compounds that form metal (A) ions in an aqueous ionic electrolytic solution of metal (A) include acetates, sulfates, pyrophosphates, nitrates, and metal cyanides. Of these, the use of acetate, sulfate and the like is preferable. When copper is used as the metal (A), specific examples include copper acetate, copper sulfate, copper nitrate, copper pyrophosphate, copper cyanide, etc., but practically monohydrate copper (II) acetate. The use of the product ((CH 3 COO) 2 Cu · 1H 2 O) or copper sulfate pentahydrate (CuSO 4 · 5H 2 O) is particularly desirable.
A preferable ion concentration of the metal (A) in the electrolytic aqueous solution is 0.01 to 4.0 mol / L (or mol / dm 3 ). If the ion concentration is less than 0.01 (mol / L), the production amount of the metal (A) fine particles is reduced, resulting in a disadvantage that the yield from the electrolytic aqueous solution is lowered, and exceeds 4.0 (mol / L). There is a possibility that coarse aggregation occurs between the generated particles. A more preferable copper ion concentration is 0.05 to 0.5 mol (mol / L).

(2−2)金属(B)のイオン
金属(B)のイオンは電解水溶液中で、金(B)のイオンが電解還元されて金属粒子が析出する際、及び金属(B)のイオンの存在により、金属(A)が金属微粒子として析出する際の微粒子の結晶成長を妨げるとともに陰極上の金属(B)の粒子が金属(A)の粒子生成の核となり、微細な粒子の生成を促進させるように作用する。
電解水溶液中で金属(B)のイオンを形成するイオン性化合物として、硝酸塩、酢酸塩、硫酸塩、ピロリン酸塩、シアン化金属等が挙げられるが、これらの中でも硝酸塩、酢酸塩、硫酸塩等の使用が好ましい。
電解水溶液中の金属(B)のイオン濃度は0.0001(mol/L)から0.1(mol/L)であることが好ましい。該イオン濃度が0.0001(mol/L)未満では上記金属(A)の微粒子形成を促進する効果が十分でなく、一方、該イオン濃度が0.1(mol/L)を超えると金属(A)の微粒子中に含有される金属(B)の粒子が増加して好ましくない。
(2−3)金属(A)のイオンと金属(B)のイオンのモル濃度比
電解水溶液中で、金属(B)のイオンと金属(A)のイオンのモル濃度比(B/A)は0.5以下であり、0.001から0.5であることが好ましい。該モル濃度比(B/A)が0.5を超えると金属(A)の微粒子中に含有される金属(B)の粒子が増加して好ましくなく、該モル濃度比(B/A)が0.001未満では上記金属(A)の微粒子形成を促進する効果が十分でない。
(2-2) ions of the metal (B) ion metal (B) in an aqueous electrolyte solution, when the ions of metals (B) is electrolytically reduced to deposit metal particles, and the ions of the metal (B) Presence of the metal (A) hinders the crystal growth of the fine particles when they are deposited as metal fine particles, and the metal (B) particles on the cathode serve as the nucleus of metal (A) particle formation, thereby promoting the formation of fine particles. It works to let you.
Examples of ionic compounds that form metal (B) ions in an aqueous electrolytic solution include nitrates, acetates, sulfates, pyrophosphates, metal cyanides, etc. Among these, nitrates, acetates, sulfates, etc. Is preferred.
The ion concentration of the metal (B) in the electrolytic aqueous solution is preferably 0.0001 (mol / L) to 0.1 (mol / L). If the ion concentration is less than 0.0001 (mol / L), the effect of promoting the formation of fine particles of the metal (A) is not sufficient, whereas if the ion concentration exceeds 0.1 (mol / L), the metal (A The metal (B) particles contained in the fine particles of A) increase, which is not preferable.
(2-3) Molar concentration ratio of metal (A) ion to metal (B) ion In the aqueous electrolytic solution, the molar concentration ratio (B / A) of the metal (B) ion to the metal (A) ion is 0.5 or less, preferably 0.001 to 0.5. When the molar concentration ratio (B / A) exceeds 0.5, the metal (B) particles contained in the fine particles of the metal (A) are undesirably increased, and the molar concentration ratio (B / A) is not preferable. If it is less than 0.001, the effect of promoting fine particle formation of the metal (A) is not sufficient.

(3)添加剤
(3−1)有機物分散剤
本発明の電解還元により金属微粒子を形成する際に、電解水溶液中に有機物分散剤を添加することが好ましい。有機物分散剤は、水に対して溶解性を有していると共に、電解水溶液中で析出した金属微粒子の少なくとも表面の一部を覆うように存在して、金属粒子の微粒子化を促進すると共に分散性を良好に維持する作用を有する。
有機物分散剤の添加量は、電解水溶液から析出する金属微粒子の濃度にもよるが、電解水溶液中の金属原子100重量部に対して、0.1〜500重量部が好ましく、5〜100重量部がより好ましい。有機物分散剤の添加量が前記0.1重量部未満では微粒子化を促進する効果が十分に得られない場合があり、一方、前記500重量部を超える場合には、電解水溶液中での分散性に不都合がなくとも、金属(A)の微粒子分散溶液を塗布後、乾燥・焼成して導電性の焼結金属を得る際に、過剰の有機物分散剤が、金属微粒子の焼結を阻害して、焼結金属の緻密さが低下する場合があると共に、有機物分散剤の焼成残渣が、導電膜又は導電回路中に残存して、導電性を低下させるおそれがある。本発明の有機物分散剤は上記分散作用を奏するものであれば、特に制限されるものではない。
(3) Additive (3-1) Organic Dispersant When forming fine metal particles by electrolytic reduction of the present invention, it is preferable to add an organic dispersant in the aqueous electrolytic solution. The organic dispersant has solubility in water and is present so as to cover at least a part of the surface of the metal fine particles deposited in the electrolytic aqueous solution, and promotes the formation of fine metal particles and disperses them. Has the effect of maintaining good properties.
The amount of the organic dispersant added is preferably 0.1 to 500 parts by weight, preferably 5 to 100 parts by weight with respect to 100 parts by weight of metal atoms in the aqueous electrolytic solution, although it depends on the concentration of metal fine particles deposited from the aqueous electrolytic solution. Is more preferable. When the amount of the organic dispersant added is less than 0.1 parts by weight, the effect of promoting the formation of fine particles may not be sufficiently obtained. On the other hand, when the amount exceeds 500 parts by weight, the dispersibility in the electrolytic aqueous solution may not be obtained. Even when there is no inconvenience, when applying a fine particle dispersion solution of metal (A), drying and baking to obtain a conductive sintered metal, an excessive organic dispersant inhibits sintering of the metal fine particles. In addition, the denseness of the sintered metal may be reduced, and the firing residue of the organic dispersant may remain in the conductive film or the conductive circuit to reduce the conductivity. The organic dispersant of the present invention is not particularly limited as long as it exhibits the above dispersing action.

前記有機物分散剤としては、その化学構造にもよるが分子量が100〜100,000程度の、水に対して溶解性を有し、かつ電解水溶液で金属イオンから還元反応で析出した金属粒子の微粒子化を促進させることが可能なもので、かつ炭素原子、水素原子、酸素原子、及び窒素原子から選択された2種以上の原子からなる化合物(高分子化合物も含む)の分散剤が好ましい。
上記有機物分散剤として好ましいのは、ポリビニルピロリドン、ポリエチレンイミン等のアミン系の高分子;ポリアクリル酸、カルボキシメチルセルロース等のカルボン酸基を有する炭化水素系高分子;ポリアクリルアミド等のアクリルアミド;ポリビニルアルコール、ポリエチレンオキシド、更にはデンプン、及びゼラチンの中から選択される1種又は2種以上である。
上記例示した有機物分散剤化合物の具体例として、ポリビニルピロリドン(分子量:1000〜500、000)、ポリエチレンイミン(分子量:100〜100,000)、カルボキシメチルセルロース(アルカリセルロースのヒドロキシル基Na塩のカルボキシメチル基への置換度:0.4以上、分子量:1000〜100,000)、ポリアクリルアミド(分子量:100〜6,000,000)、ポリビニルアルコール(分子量:1000〜100,000)、ポリエチレングリコール(分子量:100〜50,000)、ポリエチレンオキシド(分子量:50,000〜900,000)、ゼラチン(平均分子量:61,000〜67,000)、水溶性のデンプン等が挙げられる。
The organic dispersant is a fine particle of metal particles having a molecular weight of about 100 to 100,000, which is soluble in water, and deposited by reduction reaction from metal ions in an electrolytic aqueous solution, depending on the chemical structure. A dispersant for a compound (including a polymer compound) comprising two or more kinds of atoms selected from carbon atoms, hydrogen atoms, oxygen atoms, and nitrogen atoms is preferable.
The organic dispersant is preferably an amine polymer such as polyvinylpyrrolidone or polyethyleneimine; a hydrocarbon polymer having a carboxylic acid group such as polyacrylic acid or carboxymethylcellulose; an acrylamide such as polyacrylamide; a polyvinyl alcohol; One or more selected from polyethylene oxide, starch, and gelatin.
Specific examples of the organic dispersant compound exemplified above include polyvinylpyrrolidone (molecular weight: 1000 to 500,000), polyethyleneimine (molecular weight: 100 to 100,000), carboxymethyl cellulose (carboxymethyl group of hydroxyl group Na salt of alkali cellulose) Degree of substitution: 0.4 or more, molecular weight: 1000-100,000), polyacrylamide (molecular weight: 100-6,000,000), polyvinyl alcohol (molecular weight: 1000-100,000), polyethylene glycol (molecular weight: 100-50,000), polyethylene oxide (molecular weight: 50,000-900,000), gelatin (average molecular weight: 61,000-67,000), water-soluble starch and the like.

(3−2)アルカリ金属イオン
本発明の電解還元により金属微粒子を形成する際に、電解水溶液中にアルカリ金属イオンを添加することが好ましい。アルカリ金属イオンの存在下に電解還元を行うと得られる金属(A)の微粒子のデンドライト化を抑制する効果が発揮される。
該アルカリ金属イオンとしてはリチウムイオン、ナトリウムイオン、及びカリウムイオンから選択される1種又は2種以上が例示できる。このようなアルカリ金属イオンの供給源としてフッ化物、塩化物、臭化物、沃化物、酢酸塩、炭酸塩、炭酸水素塩、硫酸塩、ピロリン酸塩、及びシアン化物から選択される1種又は2種以上が挙げられる。電解水溶液におけるアルカリ金属イオン濃度は0.002〜1.0(mol/L)が好ましい。
(3-2) Alkali Metal Ion When forming fine metal particles by electrolytic reduction of the present invention, it is preferable to add an alkali metal ion to the aqueous electrolytic solution. When electrolytic reduction is performed in the presence of an alkali metal ion, the effect of suppressing dendrite formation of the fine metal (A) particles is exhibited.
Examples of the alkali metal ion include one or more selected from lithium ions, sodium ions, and potassium ions. One or two kinds selected from fluoride, chloride, bromide, iodide, acetate, carbonate, bicarbonate, sulfate, pyrophosphate, and cyanide as a source of such alkali metal ions The above is mentioned. The alkali metal ion concentration in the electrolytic aqueous solution is preferably 0.002 to 1.0 (mol / L).

(4)電極
本発明の電解水溶液中で使用する陰極材料としては、特に限定されるものではないが白金、カーボン等の棒状、板状電極等の電極が例示でき、陽極としては、Cu、カーボン、白金等の棒状・板状・網状の形状電極が例示できる。
尚、陰極表面には金属(A)の微粒子の形成を促進する、表面形状に基づく表面活性の大きい金属からなる下地材を使用することが好ましい。このような下地材を形成する金属として貴な金属である金、白金、銀等が好ましく、これらの中でも銀がより好ましい。
陰極表面をこのような下地材で覆うことにより、金属(A)の結晶核生成の駆動力が小さくて済むことが期待できる。
(4) Electrode The cathode material used in the electrolytic aqueous solution of the present invention is not particularly limited, but examples thereof include rods such as platinum and carbon, and electrodes such as plate electrodes, and the anode includes Cu and carbon. Examples thereof include rod-like, plate-like, and net-like electrodes such as platinum.
In addition, it is preferable to use the base material which consists of a metal with large surface activity based on the surface shape which accelerates | stimulates formation of the metal (A) microparticles | fine-particles on the cathode surface. Gold, platinum, silver, and the like, which are noble metals, are preferable as the metal for forming such a base material, and among these, silver is more preferable.
By covering the cathode surface with such a base material, it can be expected that the driving force for generating crystal nuclei of the metal (A) may be small.

(5)電解還元条件
本発明の電解還元は、電解水溶液中の陽極と陰極間に、銀/塩化銀の参照電極に対し陰極電極電位が−1V以下の電位となるように印加する。該陰極電極電位が−1V以下の場合に電解還元で金属(A)が微粒子状で析出するが、該陰極電極電位が−1Vを超える場合には電解還元で金属(A)が陰極表面にめっき状態で析出する場合が多い。
また、電解水溶液中の陽極と陰極間に、20mA/cm以上の電流密度で通電することが好ましく、25〜200mA/cmがより好ましい。電流密度が20mA/cm未満では金属(A)の微粒子金属の析出速度が遅くなり歩留まりが低下する問題があると共に析出形態が膜状となり、ナノサイズの金属微粒子の生成量は減少する。
電解還元温度は、10〜70℃が好ましく、10〜40℃がより好ましい。電解還元温度は高温になるほど電解還元速度は速くなり、低温になるほど析出する粒子の粒子径は小さくなる傾向がある。電解還元開始後数秒から数分でナノサイズの微粒子が生成し、生成した粒子はその後電解水溶液中に沈殿する。
(5) Electrolytic reduction conditions The electrolytic reduction of the present invention is applied between the anode and the cathode in the electrolytic aqueous solution so that the cathode electrode potential is -1 V or less with respect to the silver / silver chloride reference electrode. When the cathode electrode potential is -1 V or less, the metal (A) is precipitated in the form of fine particles by electrolytic reduction. When the cathode electrode potential exceeds -1 V, the metal (A) is plated on the cathode surface by electrolytic reduction. It often precipitates in a state.
Moreover, it is preferable to supply with a current density of 20 mA / cm 2 or more between the anode and the cathode in the electrolytic aqueous solution, and 25 to 200 mA / cm 2 is more preferable. If the current density is less than 20 mA / cm 2 , the deposition rate of the metal (A) particulate metal becomes slow, resulting in a decrease in yield, and the deposition form becomes a film, and the amount of nano-sized metal particulates produced decreases.
The electrolytic reduction temperature is preferably 10 to 70 ° C, more preferably 10 to 40 ° C. The higher the electrolytic reduction temperature, the faster the electrolytic reduction rate, and the lower the temperature, the smaller the particle size of the precipitated particles. Nano-sized fine particles are formed within a few seconds to several minutes after the start of electrolytic reduction, and the generated particles are then precipitated in the electrolytic aqueous solution.

(6)析出金属微粒子
上記電解還元で得られる金属微粒子の一次粒子の平均粒径の制御は、使用する金属(A)のイオン、金属(B)のイオン、これらの濃度、有機物分散剤、アルカリ金属イオンの種類、かく拌速度、温度、時間、pH等の調整により行うことが可能である。上記した電解還元により得られる金属微粒子は、一次粒子の平均粒径が好ましくは500nm以下、より好ましくは1〜500nm程度の範囲にあり、その形状は凝集性の少ない微粒子状である。
ここで、一次粒子の平均粒径とは、二次粒子を構成する個々の金属微粒子の一次粒子の直径の意味である。該一次粒子径は、電子顕微鏡を用いて測定することができる。また、平均粒径とは、一次粒子の数平均粒径を意味する。
(6) Precipitated metal fine particles The control of the average particle diameter of the primary particles of the metal fine particles obtained by the above electrolytic reduction is carried out by using the ions of the metal (A), the ions of the metal (B), their concentrations, organic dispersants, alkalis. It can be performed by adjusting the kind of metal ion, the stirring speed, temperature, time, pH and the like. The metal fine particles obtained by the above-described electrolytic reduction preferably have an average primary particle size in the range of 500 nm or less, more preferably in the range of about 1 to 500 nm, and the shape thereof is in the form of fine particles with little cohesiveness.
Here, the average particle size of the primary particles means the diameter of the primary particles of the individual metal fine particles constituting the secondary particles. The primary particle diameter can be measured using an electron microscope. Moreover, an average particle diameter means the number average particle diameter of a primary particle.

(7)金属微粒子の回収
上記電解還元終了後に、電解水溶液中に下記の凝集促進剤を添加して有機物分散剤の分散作用を減じ、粗金属微粒子を該水溶液中で沈殿(スラリー状の濃縮も含む)させると共に必要により水、又はアルコール溶液等で洗浄して回収、又は粗金属微粒子を該水溶液中で沈殿させて回収後に必要により水、又はアルコール溶液等で洗浄して、その表面が有機物分散剤で覆われた金属微粒子を得ることが出来る。以下に、前記した凝集促進剤について説明する。
このような凝集促進剤としては、酸化性物質、又はハロゲン化合物を例示することができる。前記酸化性物質としては、酸素ガス、過酸化水素、硝酸等が例示できる。
前記ハロゲン化合物としては、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、塩化エチル、1,1−ジクロルエタン、1,2−ジクロルエタン、1,1−ジクロルエチレン、1,2−ジクロルエチレン、トリクロルエチレン、四塩化アセチレン、エチレンクロロヒドリン、1,2−ジクロルプロパン、塩化アリル、クロロプレン、クロルベンゼン、塩化ベンジル、o−ジクロルベンゼン、m−ジクロルベンゼン、p−ジクロルベンゼン、α−クロルナフタリン、β−クロルナフタリン、ブロモホルム、及びブロムベンゼンの中から選択される1種又は2種以上が例示できる。
また、陰極表面付近に析出した粒子を脱離、回収するために陰極に超音波振動等の揺動を与えることが可能な構造とすることもできる。
(7) Recovery of metal fine particles After the electrolytic reduction is completed, the following aggregation accelerator is added to the electrolytic aqueous solution to reduce the dispersing action of the organic dispersant, and the coarse metal fine particles are precipitated in the aqueous solution (slurry concentration is also possible). In addition, the surface is washed with water or an alcohol solution if necessary, or collected, or the coarse metal fine particles are precipitated in the aqueous solution and then washed with water or an alcohol solution if necessary, and the surface is dispersed with an organic substance. Metal fine particles covered with the agent can be obtained. Hereinafter, the above-described aggregation accelerator will be described.
As such an aggregation accelerator, an oxidizing substance or a halogen compound can be exemplified. Examples of the oxidizing substance include oxygen gas, hydrogen peroxide, and nitric acid.
Examples of the halogen compound include methyl chloride, methylene chloride, chloroform, carbon tetrachloride, ethyl chloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloroethylene, and trichloro. Ethylene, acetylene tetrachloride, ethylene chlorohydrin, 1,2-dichloropropane, allyl chloride, chloroprene, chlorobenzene, benzyl chloride, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, α- Examples thereof include one or more selected from chloronaphthalene, β-chloronaphthalene, bromoform, and bromobenzene.
Further, in order to desorb and collect particles deposited in the vicinity of the cathode surface, it is also possible to have a structure capable of imparting oscillation such as ultrasonic vibration to the cathode.

以下に、参考例、実施例等により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
金属微粒子を形成する金属イオンとして酢酸銅を使用し、銅より貴な金属として銀を使用して、以下に示す電解条件で定電位での電解還元を行い、電解水溶液から銅微粒子を析出させた。
(1)電解還元の条件
電解水溶液中に、酢酸銅((CHCOO)Cu・HO)0.1(mol/L)、硝酸銀0.005(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)5(g/L)、アルカリ金属イオンとして酢酸ナトリウム(CHCOONa)0.01(mol/L)を添加して電解還元により、銅微粒子を析出させた。
電極として、陰極に銀膜付きSi基板、陽極にTi/Ptメッシュ基板を使用した。
銀/塩化銀の参照電極に対し陰極電極電位を−1.5(V)とし、電解還元の時間は10分とした。
(2)結果
陰極上に銀粒子が析出し、該銀粒子上に微細な銅微粒子が形成されていた。電解還元時間が10分を経過すると形成された銅微粒子が電解水溶液中に沈殿していくことが確認され、銅微粒子を容易に回収することができた。回収された銅微粒子は略球状で、平均粒子径は0.1μm以下で、粒子径のバラツキは少なく、デンドライト状の粒子は観察されなかった。得られた銅微粒子中には少量の銀粒子が含まれていた。
The present invention will be specifically described below with reference examples and examples, but the present invention is not limited to these examples.
[Example 1]
Copper acetate was used as the metal ion forming the metal fine particles, silver was used as a noble metal than copper, and electrolytic reduction was performed at a constant potential under the electrolytic conditions shown below to deposit copper fine particles from the aqueous electrolytic solution. .
(1) Conditions for electrolytic reduction In an aqueous electrolytic solution, copper acetate ((CH 3 COO) 2 Cu · H 2 O) 0.1 (mol / L), silver nitrate 0.005 (mol / L), as an organic dispersant Polyvinylpyrrolidone (average molecular weight: 3500) 5 (g / L), sodium acetate (CH 3 COONa) 0.01 (mol / L) was added as an alkali metal ion, and copper fine particles were precipitated by electrolytic reduction.
As electrodes, a Si substrate with a silver film was used as the cathode, and a Ti / Pt mesh substrate was used as the anode.
The cathode electrode potential was −1.5 (V) with respect to the silver / silver chloride reference electrode, and the electrolytic reduction time was 10 minutes.
(2) Results Silver particles were deposited on the cathode, and fine copper fine particles were formed on the silver particles. It was confirmed that when the electrolytic reduction time passed 10 minutes, the formed copper fine particles were precipitated in the electrolytic aqueous solution, and the copper fine particles could be easily recovered. The recovered copper fine particles were substantially spherical, the average particle size was 0.1 μm or less, there was little variation in particle size, and dendritic particles were not observed. A small amount of silver particles was contained in the obtained copper fine particles.

[比較例1]
硝酸銀を添加しなかった以外は、実施例1に記載したと同様の条件で、電解還元を行い、電解水溶液から銅粒子を析出させた。電解還元の結果、析出した銅粒子の平均粒子径が0.3μm以上と大きくなり、またナノサイズの微粒子の生成量も実施例1と比較して1/5程度に減少した。
[Comparative Example 1]
Except that silver nitrate was not added, electrolytic reduction was performed under the same conditions as described in Example 1 to precipitate copper particles from the aqueous electrolytic solution. As a result of the electrolytic reduction, the average particle diameter of the deposited copper particles was as large as 0.3 μm or more, and the amount of nano-sized fine particles produced was reduced to about 1/5 compared with Example 1.

[実施例2]
金属微粒子を形成する金属イオンとして硫酸銅を使用し、銅より貴な金属として銀を使用して、以下に示す電解条件で電解還元を行い、電解水溶液から銅微粒子を析出させた。
(1)電解還元の条件
水溶液中に、硫酸銅(CuSO・5HO)0.1(mol/L)、硝酸銀を0.005(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)5(g/L)、及びアルカリ金属イオンとして硫酸ナトリウム(NaSO)0.01(mol/L)を添加して定電位での電解還元により、銅微粒子を析出させた。
電極として、陰極に銀膜付きSi基板、陽極にTi/Ptメッシュ基板を使用した。
銀/塩化銀の参照電極に対し陰極電極電位を−1.5(V)とし、電解還元の時間は10分とした。
(2)結果
陰極上に銀粒子が析出し、該銀粒子上に微細な銅微粒子が形成されていた。電解還元時間が10分を経過すると形成された銅微粒子が電解水溶液中に沈殿していくことが確認され、銅微粒子を容易に回収することができた。
回収された銅微粒子は略球状で、平均粒子径は0.1μm以下で、粒子径のバラツキは少なく、デンドライト状の粒子は観察されなかった。得られた銅微粒子中には少量の銀粒子が含まれていた。陰極上に析出した銀粒子と銅微粒子の走査型電子顕微鏡の写真を図1に示す。
図1から、陰極の銀下地材上に、図1の右上部に存在する比較的大きな銀粒子(粒子径:300nm程度)と、銅の微粒子(粒子径:50〜100nm程度)が下地材前面に析出している状態が観察される。
[Example 2]
Copper sulfate was used as a metal ion forming metal fine particles, and silver was used as a noble metal than copper, and electrolytic reduction was performed under the following electrolytic conditions to precipitate copper fine particles from the aqueous electrolytic solution.
(1) Conditions for electrolytic reduction In an aqueous solution, copper sulfate (CuSO 4 .5H 2 O) 0.1 (mol / L), silver nitrate 0.005 (mol / L), polyvinylpyrrolidone (average molecular weight as an organic dispersant) : 3500) 5 (g / L), and sodium sulfate (Na 2 SO 4 ) 0.01 (mol / L) was added as an alkali metal ion, and copper fine particles were precipitated by electrolytic reduction at a constant potential.
As electrodes, a Si substrate with a silver film was used as the cathode, and a Ti / Pt mesh substrate was used as the anode.
The cathode electrode potential was −1.5 (V) with respect to the silver / silver chloride reference electrode, and the electrolytic reduction time was 10 minutes.
(2) Results Silver particles were deposited on the cathode, and fine copper fine particles were formed on the silver particles. It was confirmed that when the electrolytic reduction time passed 10 minutes, the formed copper fine particles were precipitated in the electrolytic aqueous solution, and the copper fine particles could be easily recovered.
The recovered copper fine particles were substantially spherical, the average particle size was 0.1 μm or less, there was little variation in particle size, and dendritic particles were not observed. A small amount of silver particles was contained in the obtained copper fine particles. A scanning electron microscope photograph of silver particles and copper fine particles deposited on the cathode is shown in FIG.
From FIG. 1, relatively large silver particles (particle diameter: about 300 nm) and copper fine particles (particle diameter: about 50 to 100 nm) present in the upper right part of FIG. A state of precipitation is observed.

[比較例2]
硝酸銀を添加しなかった以外は、実施例2に記載したと同様の条件で、電解還元を行い、電解水溶液から銅を析出させた。
電解還元の結果、銅が陰極下地材の全面に膜状に析出して、還元された銅が微粒子として殆ど析出しなかった。陰極上に析出した銀と銅の走査型電子顕微鏡の写真を図2に示す。
[Comparative Example 2]
Except that silver nitrate was not added, electrolytic reduction was performed under the same conditions as described in Example 2 to precipitate copper from the electrolytic aqueous solution.
As a result of electrolytic reduction, copper was deposited in the form of a film on the entire surface of the cathode base material, and the reduced copper was hardly deposited as fine particles. A photograph of a silver and copper scanning electron microscope deposited on the cathode is shown in FIG.

[実施例3]
金属微粒子を形成する金属イオンとして硫酸銅を使用し、銅より貴な金属として銀を使用して、以下に示す電解条件で電解還元を行い、電解水溶液から銅微粒子を析出させた。
以下に示す電解条件で電解還元を行い、電解水溶液から銅微粒子を析出させた。
(1)電解還元の条件
水溶液中に、硫酸銅(CuSO・5HO)0.1(mol/L)、硝酸銀を0.005(mol/L)、有機分散剤としてポリビニルピロリドン(平均分子量:3500)5(g/L)、及びアルカリ金属イオンとして硫酸ナトリウム(NaSO)0.01(mol/L)を添加して定電位での電解還元により、銅微粒子を析出させた。
電極として、陰極にSi基板、陽極にTi/Ptメッシュ基板を使用した。なお陰極表面は下地材として金(Au)、白金(Pt)、及び銀(Ag)をそれぞれ使用して、陰極表面を覆った。銀/塩化銀の参照電極に対し陰極電極電位を−1.2(V)とし、電解還元の時間は20秒とした。
(2)結果
陰極表面に下地材として、金(Au)、白金(Pt)、及び銀(Ag)を使用し、上記電位でこれらの下地材上に析出した銀粒子と銅微粒子の走査型電子顕微鏡の写真を図3に示す。
下地材として、金(Au)、白金(Pt)、銀(Ag)等の貴な金属で表面活性の大きい金属を使用した場合には銅微粒子の結晶核生成の駆動力が小さくてすむので、多くの銅微粒子が析出していることが観察された。
[Example 3]
Copper sulfate was used as a metal ion forming metal fine particles, and silver was used as a noble metal than copper, and electrolytic reduction was performed under the following electrolytic conditions to precipitate copper fine particles from the aqueous electrolytic solution.
Electrolytic reduction was performed under the electrolytic conditions shown below to precipitate copper fine particles from the electrolytic aqueous solution.
(1) Conditions for electrolytic reduction In an aqueous solution, copper sulfate (CuSO 4 .5H 2 O) 0.1 (mol / L), silver nitrate 0.005 (mol / L), polyvinylpyrrolidone (average molecular weight as an organic dispersant) : 3500) 5 (g / L), and sodium sulfate (Na 2 SO 4 ) 0.01 (mol / L) was added as an alkali metal ion, and copper fine particles were precipitated by electrolytic reduction at a constant potential.
As electrodes, a Si substrate was used for the cathode and a Ti / Pt mesh substrate was used for the anode. The cathode surface was covered with gold (Au), platinum (Pt), and silver (Ag), respectively, as a base material. The cathode potential was −1.2 (V) with respect to the silver / silver chloride reference electrode, and the electrolytic reduction time was 20 seconds.
(2) Results Using gold (Au), platinum (Pt), and silver (Ag) as the base material on the cathode surface, and scanning electrons of silver particles and copper fine particles deposited on these base materials at the above potential. A photo of the microscope is shown in FIG.
When using a precious metal such as gold (Au), platinum (Pt), silver (Ag), etc., which has a large surface activity, the driving force for crystal nucleation of the copper fine particles is small. It was observed that many copper fine particles were deposited.

[比較例3]
実施例3における、銀/塩化銀の参照電極に対し陰極電極電位−1.2(V)の代わりに−0.2(V)とした以外は、実施例3と同様にして電解還元を行い、電解水溶液から銅粒子を析出させた。
(2)結果
陰極表面に下地材として、金(Au)、白金(Pt)、及び銀(Ag)を使用し、上記電位でこれらの下地材上に金属粒子が析出した状態を図4にそれぞれ示す。
下地材として銀以外はいずれも銅微粒子の析出が十分でなかった。

[Comparative Example 3]
Electrolytic reduction was carried out in the same manner as in Example 3, except that the cathode / electrode potential was -0.2 (V) instead of -1.2 (V) with respect to the silver / silver chloride reference electrode in Example 3. Then, copper particles were precipitated from the electrolytic aqueous solution.
(2) Results Gold (Au), platinum (Pt), and silver (Ag) are used as the base material on the cathode surface, and the state in which metal particles are deposited on these base materials at the above potential is shown in FIG. Show.
Precipitation of copper fine particles was not sufficient except for silver as a base material.

Claims (9)

少なくとも金属(A)のイオンと金属(B)のイオンを含む電解水溶液中で陽極と陰極間に通電して、電解還元により金属(B)を析出させると共に金属(A)の微粒子を析出させる金属微粒子の製造方法において、
電解水溶液中で金属(B)のイオンと金属(A)のイオンのモル濃度比(B/A)が0.5以下であり、かつ金属(B)のイオンが金属(A)のイオンの析出電位よりも貴な電位で析出するイオンであり、
該電解水溶液中の陽極と陰極間に、銀/塩化銀の参照電極に対し陰極電極電位が−1V以下の電位となるように印加することにより、
該電解還元により陰極表面上に金属(B)を析出させて、より卑な金属である金属(A)の微粒子を前記析出した金属(B)上ないし金属(B)の近傍に析出させることを特徴とする、金属微粒子の製造方法。
A metal in which an electric current is passed between an anode and a cathode in an electrolytic aqueous solution containing at least metal (A) ions and metal (B) ions to deposit metal (B) by electrolytic reduction and to deposit metal (A) fine particles. In the method for producing fine particles,
The molar concentration ratio (B / A) of the metal (B) ion to the metal (A) ion is 0.5 or less in the electrolytic aqueous solution, and the metal (B) ion is a deposited metal (A) ion. It is an ion that precipitates at a potential nobler than the potential,
By applying the cathode electrode potential between the anode and the cathode in the electrolytic aqueous solution so that the cathode electrode potential is −1 V or less with respect to the silver / silver chloride reference electrode,
The metal (B) is deposited on the cathode surface by the electrolytic reduction, and fine particles of the metal (A), which is a more basic metal, are deposited on the deposited metal (B) or in the vicinity of the metal (B). A method for producing metal fine particles, which is characterized.
前記電解水溶液中で、金属(B)のイオン濃度が0.0001〜0.1(mol/L)であることを特徴とする、請求項1に記載の金属微粒子の製造方法。   2. The method for producing metal fine particles according to claim 1, wherein an ion concentration of the metal (B) is 0.0001 to 0.1 (mol / L) in the electrolytic aqueous solution. 前記電解水溶液中で、金属(B)のイオンと金属(A)のイオンのモル濃度比(B/A)が0.001から0.5であることを特徴とする、請求項1又は2に記載の金属微粒子の製造方法。   3. The molar concentration ratio (B / A) of metal (B) ions to metal (A) ions in the electrolytic aqueous solution is 0.001 to 0.5. The manufacturing method of the metal microparticle of description. 前記金属(B)が金、白金、パラジウム、イリジウム、銅、銀、ニッケル、コバルト、鉄、亜鉛、及びスズから選択される1種であり、金属(A)が金を除く金属から選択される1種であり、かつ金属(B)のイオンの析出電位よりも卑な電位で析出するイオンを形成する金属であることを特徴とする、請求項1から3のいずれかに記載の金属微粒子の製造方法。   The metal (B) is one selected from gold, platinum, palladium, iridium, copper, silver, nickel, cobalt, iron, zinc, and tin, and the metal (A) is selected from metals other than gold. The metal fine particle according to any one of claims 1 to 3, which is a metal that forms one type of ion that deposits at a base potential lower than that of the metal (B) ion. Production method. 前記金属(A)が銅であり、金属(B)が銀であることを特徴とする、請求項1から4のいずれかに記載の金属微粒子の製造方法。   The method for producing fine metal particles according to any one of claims 1 to 4, wherein the metal (A) is copper and the metal (B) is silver. 前記電解水溶液中に有機分散剤が含有されていることを特徴とする、請求項1から5のいずれかに記載の金属微粒子の製造方法。   The method for producing fine metal particles according to claim 1, wherein an organic dispersant is contained in the electrolytic aqueous solution. 前記電解水溶液中の陽極と陰極間に、20mA/cm以上の電流密度で通電することを特徴とする、請求項1から6のいずれかに記載の金属微粒子の製造方法。 7. The method for producing fine metal particles according to claim 1, wherein a current density of 20 mA / cm 2 or more is passed between an anode and a cathode in the electrolytic aqueous solution. 前記陰極表面に表面活性の大きい金属からなる下地材を使用することを特徴とする、請求項1から7のいずれかに記載の金属微粒子の製造方法。   The method for producing fine metal particles according to any one of claims 1 to 7, wherein a base material made of a metal having a high surface activity is used on the cathode surface. 前記下地材が銀から形成されていることを特徴とする、請求項8に記載の金属微粒子の製造方法。

The method for producing fine metal particles according to claim 8, wherein the base material is made of silver.

JP2010149456A 2010-06-30 2010-06-30 Method for producing metal fine particles Expired - Fee Related JP5566794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149456A JP5566794B2 (en) 2010-06-30 2010-06-30 Method for producing metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149456A JP5566794B2 (en) 2010-06-30 2010-06-30 Method for producing metal fine particles

Publications (2)

Publication Number Publication Date
JP2012012653A true JP2012012653A (en) 2012-01-19
JP5566794B2 JP5566794B2 (en) 2014-08-06

Family

ID=45599430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149456A Expired - Fee Related JP5566794B2 (en) 2010-06-30 2010-06-30 Method for producing metal fine particles

Country Status (1)

Country Link
JP (1) JP5566794B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618885A (en) * 2012-04-13 2012-08-01 陕西黄金集团西安秦金有限责任公司 Auxiliary reagent suitable for rapid electrorefining of high-silver alloyed gold
JP2015221921A (en) * 2014-05-22 2015-12-10 住友金属鉱山株式会社 Production method of electrolytic copper powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076054A (en) * 2002-08-13 2004-03-11 National Institute For Materials Science Method for producing copper-zinc alloy powder
JP2006028606A (en) * 2004-07-20 2006-02-02 Junichi Nishino Meshlike silver tree and its production method
JP2007327117A (en) * 2006-06-09 2007-12-20 Univ Waseda Electrode, apparatus for manufacturing metallic fine particle and method of manufacturing metallic fine particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076054A (en) * 2002-08-13 2004-03-11 National Institute For Materials Science Method for producing copper-zinc alloy powder
JP2006028606A (en) * 2004-07-20 2006-02-02 Junichi Nishino Meshlike silver tree and its production method
JP2007327117A (en) * 2006-06-09 2007-12-20 Univ Waseda Electrode, apparatus for manufacturing metallic fine particle and method of manufacturing metallic fine particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618885A (en) * 2012-04-13 2012-08-01 陕西黄金集团西安秦金有限责任公司 Auxiliary reagent suitable for rapid electrorefining of high-silver alloyed gold
CN102618885B (en) * 2012-04-13 2014-08-27 陕西黄金集团西安秦金有限责任公司 Auxiliary reagent suitable for rapid electrorefining of high-silver alloyed gold
JP2015221921A (en) * 2014-05-22 2015-12-10 住友金属鉱山株式会社 Production method of electrolytic copper powder

Also Published As

Publication number Publication date
JP5566794B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
Zhong et al. Recent advances in electrocatalysts for electro-oxidation of ammonia
Rao et al. Chemical and electrochemical depositions of platinum group metals and their applications
JP5768848B2 (en) Core-shell catalyst and method for producing core-shell catalyst
JP2008231564A (en) Method of manufacturing copper fine particle
US10749186B2 (en) Method for manufacturing platinum catalyst, and fuel cell including the same
Djokić et al. Electrodeposition and electroless deposition of metallic powders: A comparison
JP6116000B2 (en) Method for producing platinum core-shell catalyst and fuel cell using the same
JP4516618B2 (en) Anode for electrolytic collection of cobalt and electrolytic collection method
KR20110031121A (en) Method and apparatus for manufacturing metal nano-particles using alternating current electrolysis
CN1938453B (en) Electrode for generating hydrogen, manufacturing method therefor and electrolysis method using it
JP5569396B2 (en) Catalyst production method
Hsieh et al. One-step electrochemical fabrication of nanoporous gold wire arrays from ionic liquid
JP5064724B2 (en) Electrode, metal fine particle production apparatus, and metal fine particle production method
JP2009293117A (en) Anode for use in electrowinning zinc, and electrowinning method
JP6767202B2 (en) Metal-containing nanoparticles-supported electrode and carbon dioxide reduction device
JP2005330575A (en) Electrode for generating hydrogen, manufacturing method therefor and electrolysis method using it
JP5566794B2 (en) Method for producing metal fine particles
JP5922810B1 (en) Fine particles, fine particle dispersion solution, and method for producing fine particles
JP5566743B2 (en) Method for producing copper alloy fine particles
JP2009185348A (en) Method for producing copper fine particle
JP2009215569A (en) Method for producing alloy powder using molten salt reaction bath
JPWO2014069208A1 (en) Platinum core-shell catalyst, method for producing the same, and fuel cell using the same
JP6004643B2 (en) Method and apparatus for producing metal fine particles
JP2006118022A (en) Electrode for generating hydrogen, precursor of electrode for generating hydrogen, manufacturing method therefor, and electrolysis method using it
Avramović et al. The particle size distribution (PSD) as criteria for comparison of silver powders obtained by different methods of synthesis and by conditions of electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130829

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131011

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R150 Certificate of patent or registration of utility model

Ref document number: 5566794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees