JP2012012250A - Method for producing synthetic quartz glass preform, and synthetic quartz glass preform - Google Patents

Method for producing synthetic quartz glass preform, and synthetic quartz glass preform Download PDF

Info

Publication number
JP2012012250A
JP2012012250A JP2010149842A JP2010149842A JP2012012250A JP 2012012250 A JP2012012250 A JP 2012012250A JP 2010149842 A JP2010149842 A JP 2010149842A JP 2010149842 A JP2010149842 A JP 2010149842A JP 2012012250 A JP2012012250 A JP 2012012250A
Authority
JP
Japan
Prior art keywords
synthetic quartz
quartz glass
base material
reaction vessel
glass base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010149842A
Other languages
Japanese (ja)
Inventor
Yuichi Oga
裕一 大賀
Tadashi Enomoto
正 榎本
Moriaki Negishi
司明 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010149842A priority Critical patent/JP2012012250A/en
Publication of JP2012012250A publication Critical patent/JP2012012250A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • C03B19/1461Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering for doping the shaped article with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a low-cost synthetic quartz glass preform.SOLUTION: Regarding the method for producing a synthetic quartz glass preform 2 in which a glass fine particle-deposited body 1 formed using VAD (Vapor Phase Axial Deposition) is sintered in a reaction vessel A1 to be a transparent glass, the concentration of oxygen in the reaction vessel Al is controlled to 100 to 5,000 ppm, and also, fluorine is added to the glass fine particle-deposited body 1 during or before the sintering step.

Description

本発明は、合成石英ガラス母材の製造方法及び合成石英ガラス母材に関する。   The present invention relates to a method for producing a synthetic quartz glass preform and a synthetic quartz glass preform.

合成石英ガラス母材は、例えば、集積回路等のパターンを露光・転写するのに用いられるステッパの照明系、投影系に使用される光学系部材の材料として知られている。特に、下記特許文献1に記載のように、ガラス微粒子堆積体を堆積し、透明ガラス化された合成石英ガラス母材にあっては、高純度であり、大口径の光学系部材においても高い透過性を備えるため、前記短波長を用いたステッパ等の光学系部材の材料として多く用いられている。   A synthetic quartz glass base material is known as a material of an optical system member used for an illumination system and a projection system of a stepper used for exposing and transferring a pattern of an integrated circuit, for example. In particular, as described in Patent Document 1 below, a synthetic quartz glass base material in which a glass fine particle deposit is deposited and made into a transparent glass has high purity and high transmittance even in a large-diameter optical system member. Therefore, it is often used as a material for optical members such as steppers using the short wavelength.

ガラス微粒子堆積体は、基本的に、SiCl4(四塩化ケイ素)を火炎中で加水分解し、これを回転する出発棒に堆積させることによって製造する。そして、ガラス微粒子堆積体を焼結炉中で加熱しながら焼結することによって透明な円柱状の合成石英ガラス母材が製造される。このように製造された合成石英ガラス母材を、所定厚及び所定径に研削することにより、高い透過性を有する円板状の合成石英ガラスを複数製造することができる。 The glass particulate deposit is basically produced by hydrolyzing SiCl 4 (silicon tetrachloride) in a flame and depositing it on a rotating starting rod. And a transparent column-shaped synthetic quartz glass base material is manufactured by sintering a glass fine particle deposit body, heating in a sintering furnace. By grinding the synthetic quartz glass base material thus produced to a predetermined thickness and a predetermined diameter, a plurality of disc-shaped synthetic quartz glasses having high permeability can be manufactured.

2001−322819号公報No. 2001-322819

特許文献1に記載の発明では、高い透過性を有する合成石英ガラス母材を製造するため、多孔質シリカ母材をフッ素化合物ガス又はフッ素化合物ガスと不活性ガスとの混合雰囲気下で緻密化する第一の工程と、第一の工程で緻密化した母材を真空又は不活性ガス雰囲気下で溶融ガラス化する第二の工程からなり、且つ第一工程終了後の多孔質シリカ母材のかさ密度を第一工程前のかさ密度の1.5〜3倍とする方法により、ガラス中の欠陥構造((Si-Si結合(酸素欠乏欠陥)、163nm,245nmの光の吸収)と(Si-O-O-Si結合(酸素過剰型欠陥)、325nmの光の吸収))の発生を防ぐようにしている。   In the invention described in Patent Document 1, in order to produce a synthetic quartz glass base material having high permeability, the porous silica base material is densified under a mixed atmosphere of a fluorine compound gas or a fluorine compound gas and an inert gas. The first step and the bulk of the porous silica base material after the completion of the first step, comprising the second step of melting and vitrifying the base material densified in the first step in a vacuum or inert gas atmosphere Defect structure in glass ((Si-Si bond (oxygen deficiency defect), absorption of light at 163 nm, 245 nm)) and (Si- OO-Si bonds (oxygen-rich defects, absorption of light at 325 nm) are prevented.

しかしながら、特許文献1に記載の発明では、多孔質シリカ母材を2回に分けて焼結する必要があり、焼結工程が煩雑となる上に、コストも増加してしまう、という問題があった。   However, in the invention described in Patent Document 1, it is necessary to sinter the porous silica base material in two steps, and there is a problem that the sintering process becomes complicated and the cost increases. It was.

本発明は、特許文献1などに記載の発明を詳細に検討した結果、より簡便なやり方で、短波長の紫外域において優れた透過性を有する合成石英ガラス母材を製造する方法を見出したものである。すなわち、短波長の紫外域における高い透過率、高い透過率維持率を有する合成石英ガラス母材を効率よく、且つ低コストで製造することが本発明の目的である。   As a result of examining the invention described in Patent Document 1 in detail, the present invention has found a method for producing a synthetic quartz glass base material having excellent transparency in the ultraviolet region of a short wavelength in a simpler manner. It is. That is, an object of the present invention is to efficiently and inexpensively produce a synthetic quartz glass base material having a high transmittance in the ultraviolet region of a short wavelength and a high transmittance maintenance rate.

このような目的を達成するために、本発明による合成石英ガラス母材の製造方法は、以下の構成を少なくとも具備するものである。   In order to achieve such an object, a method for producing a synthetic quartz glass base material according to the present invention comprises at least the following configuration.

ガラス微粒子堆積体を反応容器内で焼結して透明ガラス化する焼結工程を備える合成石英ガラス母材の製造方法において、前記焼結工程における前記反応容器内の酸素濃度を100ppm〜5,000ppmとし、且つ前記焼結工程又は該焼結工程の前の何れかの工程で前記ガラス微粒子堆積体にフッ素を添加することを特徴とする。   In a method for producing a synthetic quartz glass base material comprising a sintering step of sintering a glass fine particle deposit in a reaction vessel to form a transparent glass, the oxygen concentration in the reaction vessel in the sintering step is set to 100 ppm to 5,000 ppm. Fluorine is added to the glass fine particle deposit in the sintering step or any step before the sintering step.

合成石英ガラス母材の透過率及び透過率維持率をより高いものとするためには、反応容器内の酸素濃度を300ppm〜1,000ppmとすることが好ましい。   In order to further increase the transmittance and transmittance maintenance rate of the synthetic quartz glass base material, the oxygen concentration in the reaction vessel is preferably set to 300 ppm to 1,000 ppm.

前述の合成石英ガラス母材の製造方法で製造された合成石英ガラス母材は、少なくとも、193nm域の光の初期透過率が90.0%以上、193nm域の光の透過率維持率が99.1%以上であることが好ましい。   The synthetic silica glass base material manufactured by the above-described method of manufacturing a synthetic silica glass base material has an initial transmittance of 90.0% or more for light in the 193 nm region and a transmittance maintenance factor of 99.1% or more for light in the 193 nm region. Preferably there is.

本発明によれば、焼結工程における反応容器内の酸素濃度を100ppm〜5,000ppmに制御し、フッ素を添加することにより、紫外域における高い透過率を有するとともに、高い透過率維持率を有する合成石英ガラス母材を効率よく製造できる。また、酸素濃度を管理するだけの簡便な方法なので、合成石英ガラス母材の製造を低コスト化でき、合成石英ガラス母材を安価に提供することができる。   According to the present invention, the oxygen concentration in the reaction vessel in the sintering process is controlled to 100 ppm to 5,000 ppm, and by adding fluorine, the composition has high transmittance in the ultraviolet region and high transmittance maintenance rate. Quartz glass base material can be manufactured efficiently. Moreover, since it is a simple method that only manages the oxygen concentration, the production of the synthetic quartz glass base material can be reduced in cost, and the synthetic quartz glass base material can be provided at a low cost.

(a)は本発明に係る合成石英ガラス母材の製造方法に用いられる加熱炉の一例を示す概略図、(b)はこの加熱炉により製造された合成石英ガラス母材の概略図。(A) is the schematic which shows an example of the heating furnace used for the manufacturing method of the synthetic quartz glass base material which concerns on this invention, (b) is the schematic of the synthetic quartz glass base material manufactured with this heating furnace.

以下、本発明に係る合成石英ガラス母材の製造方法及び合成石英ガラス母材の実施形態を説明する。本実施形態の合成石英ガラス母材は、次の各工程により製造される。   Embodiments of a method for producing a synthetic quartz glass base material and a synthetic quartz glass base material according to the present invention will be described below. The synthetic quartz glass base material of this embodiment is manufactured by the following steps.

第1工程:ガラス微粒子堆積工程(図示せず)
この第1工程では、ガラス微粒子堆積体1(図1(a)参照)をスス付け法により製造する。すなわち、排気装置を有する反応容器内において、少なくとも、ガラス原料と水素ガスと酸素ガスとをバーナに供給し、バーナが噴出する酸水素火炎中でガラス微粒子を生成させ、生成したガラス微粒子(以下「スス」という)を、軸を中心として回転する出発棒10(図1(a)参照)に対して堆積(以下「スス付け」という)させて、ガラス微粒子堆積体1を製造する。具体的なスス付け法としては、VAD(気相軸付け)、OVD法などが用いられる。
First step: Glass fine particle deposition step (not shown)
In the first step, the glass fine particle deposit 1 (see FIG. 1A) is manufactured by a sooting method. That is, in a reaction vessel having an exhaust device, at least a glass raw material, hydrogen gas, and oxygen gas are supplied to a burner, glass fine particles are generated in an oxyhydrogen flame ejected by the burner, and the generated glass fine particles (hereinafter “ The glass particulate deposit 1 is manufactured by depositing (hereinafter referred to as “soot”) on a starting rod 10 (see FIG. 1A) that rotates about an axis. As a specific sooting method, VAD (vapor phase axis attaching), OVD method or the like is used.

第2工程:ガラス微粒子堆積体焼結工程(図1(a))
第1工程で製造されたガラス微粒子堆積体1を、加熱炉Aの反応容器A1に挿入して焼結することにより、透明な円柱状の合成石英ガラス母材2が製造される(図1(b))。この工程では、反応容器A1内の酸素濃度が100ppm〜5,000ppmとなるように調整する。また、この工程において、反応容器A1に少なくとも1種のフッ素化合物を含むガスを導入することで、ガラス微粒子堆積体1にフッ素を添加してもよいし、前述の第1工程において、少なくとも1種のフッ素化合物を含むガスを導入して、ガラス微粒子堆積体1にフッ素を添加するようにしてもよい。また、この工程において、He、Ar等の不活性ガスやN2ガスを流してもよい。
Second step: Glass particulate deposit body sintering step (FIG. 1 (a))
By inserting the glass fine particle deposit 1 produced in the first step into the reaction vessel A1 of the heating furnace A and sintering it, a transparent cylindrical synthetic quartz glass base material 2 is produced (FIG. 1 ( b)). In this step, the oxygen concentration in the reaction vessel A1 is adjusted to be 100 ppm to 5,000 ppm. In this step, fluorine may be added to the glass fine particle deposit 1 by introducing a gas containing at least one fluorine compound into the reaction vessel A1. In the first step, at least one kind is added. Alternatively, a gas containing a fluorine compound may be introduced to add fluorine to the glass fine particle deposit 1. In this step, an inert gas such as He or Ar or N2 gas may be flowed.

合成石英ガラス母材の透過率及び透過率維持率をより高いものとするためには、反応容器内の酸素濃度を300ppm〜1,000ppmとすることが好ましい。   In order to further increase the transmittance and transmittance maintenance rate of the synthetic quartz glass base material, the oxygen concentration in the reaction vessel is preferably set to 300 ppm to 1,000 ppm.

また、本発明でいうフッ素化合物は、例えば、SiF4 SF6 CHF3 CF4 F2 等が挙げられる。 Examples of the fluorine compound used in the present invention include SiF 4 , SF 6 , CHF 3 , CF 4 , and F 2 .

図中、符号A2は、出発棒10を支持する支持棒A20を備えた昇降装置であり、ガラス微粒子堆積体1を昇降させるものである。符号A3は、Heガス、酸素、添加剤等を反応容器A1に導入するためのガス導入口である。符号A4は、反応容器A1の石英上蓋であり、Heガス、酸素、添加剤等を排気するためのガス排気口A40と、上蓋シール用のHeガス導入口A41と、反応容器A1内への大気の混入を抑制するための気密石英リング20(点線で示す)を装着するための空間A42とが備えられている。この気密石英リング20は、空間A42内に具備され、支持棒A20との隙間を調整できるように設計された石英製治具等が用いられる。符号A5は、反応容器A1内を加熱するためのヒータ、符号A6は、ヒータ温度測定用の覗き窓、符号A7は、ヒータ温度測定用の放射温度計である。   In the figure, symbol A2 is a lifting device provided with a support rod A20 for supporting the starting rod 10, and moves the glass particulate deposit 1 up and down. Reference sign A3 is a gas inlet for introducing He gas, oxygen, additives, and the like into the reaction vessel A1. Reference numeral A4 denotes a quartz upper lid of the reaction vessel A1, a gas exhaust port A40 for exhausting He gas, oxygen, additives, and the like, a He gas introduction port A41 for sealing the upper lid, and the atmosphere into the reaction vessel A1. And a space A42 for mounting an airtight quartz ring 20 (indicated by a dotted line) for suppressing the mixing of water. The airtight quartz ring 20 is provided in the space A42, and a quartz jig or the like designed so as to be able to adjust the gap with the support rod A20 is used. Reference numeral A5 is a heater for heating the inside of the reaction vessel A1, reference numeral A6 is a viewing window for measuring the heater temperature, and reference numeral A7 is a radiation thermometer for measuring the heater temperature.

尚、本発明に係る合成石英ガラス母材2の製造方法に用いる加熱炉Aは、例示した構造のものに限らない。   In addition, the heating furnace A used for the manufacturing method of the synthetic quartz glass base material 2 which concerns on this invention is not restricted to the thing of the illustrated structure.

前述の合成石英ガラス母材2の製造方法によると、少なくとも、193nm域の光の初期透過率が90.0%以上、193nm域の光の透過率維持率が99.1%以上の合成石英ガラス母材2を得ることができる。   According to the method for manufacturing the synthetic quartz glass base material 2 described above, the synthetic quartz glass base material 2 having at least an initial transmittance of 90.0% or more for light in the 193 nm region and 99.1% or more for light transmittance in the 193 nm region is obtained. Obtainable.

本発明で製造される合成石英ガラス母材は、短波長を用いたステッパ等の露光機に用いられる光学系部材の材料として好適なものであり、例えば、YAGレーザ等、固体レーザを用いた加工機、或いはドライ洗浄等に用いられる紫外線エキシマランプ等にも適用される光学系部材の材料として好適な、透過性に優れた高純度の合成石英ガラス母材である。   The synthetic quartz glass base material produced by the present invention is suitable as a material for an optical system member used in an exposure machine such as a stepper using a short wavelength. For example, processing using a solid laser such as a YAG laser It is a high-purity synthetic quartz glass base material excellent in transparency and suitable as a material for an optical system member that is also applied to an ultraviolet excimer lamp or the like used in a machine or dry cleaning.

以下、実施例を挙げて本発明を具体的に説明する。本実施例では、本発明の製造方法を用いて製造した合成石英ガラス母材2を実施例1〜実施例6とし、本発明の製造方法を用いずに製造した合成石英ガラス母材を比較例1及び比較例2とした。尚、本実施例は本発明の範囲を限定するものではない。   Hereinafter, the present invention will be specifically described with reference to examples. In this example, the synthetic quartz glass base material 2 manufactured using the manufacturing method of the present invention is referred to as Examples 1 to 6, and the synthetic silica glass base material manufactured without using the manufacturing method of the present invention is a comparative example. 1 and Comparative Example 2. In addition, a present Example does not limit the scope of the present invention.

<比較方法>
本発明の製造方法を用いて製造した合成石英ガラス母材2(実施例1〜6)と、本発明の製造方法を用いずに製造した合成石英ガラス母材との波長193nmにおける光の透過率及び透過率維持率を測定し、この測定した値を比較する。
<Comparison method>
Light transmittance at a wavelength of 193 nm between the synthetic quartz glass base material 2 (Examples 1 to 6) manufactured using the manufacturing method of the present invention and the synthetic silica glass base material manufactured without using the manufacturing method of the present invention Then, the transmittance maintenance ratio is measured, and the measured values are compared.

尚、以下の各実施例では、ガラス微粒子堆積体1が焼結工程で熱処理され、透明ガラス化された状態を、合成石英ガラス母材2として説明する。反応容器A1内の酸素濃度の測定は、ガス排気口A40付近のガスに含まれる酸素濃度を測定することで行った。反応容器A1内の酸素濃度の調整は、排気圧やHeガス流量を調整して行った。   In each of the following examples, a state in which the glass fine particle deposit 1 is heat-treated in the sintering process and converted into a transparent glass will be described as a synthetic quartz glass base material 2. The oxygen concentration in the reaction vessel A1 was measured by measuring the oxygen concentration contained in the gas near the gas exhaust port A40. The oxygen concentration in the reaction vessel A1 was adjusted by adjusting the exhaust pressure and the He gas flow rate.

<実施例1:酸素濃度300ppm>
VAD法を用いて直径が300mm、成長軸方向の長さが1,000mmとなるように形成されたガラス微粒子堆積体1を反応容器A1内に挿入し、この反応容器A1内を昇温すると同時に、反応容器A1内にHeガスを25リットル/minの量で導入し、温度が1,000℃になった時点で昇温を止め、ガラス微粒子堆積体1を5mm/minの速度で下降させて熱処理した。このとき、測定された酸素濃度は、300ppmであった。
<Example 1: Oxygen concentration 300 ppm>
A glass fine particle deposit 1 formed so as to have a diameter of 300 mm and a length in the growth axis direction of 1,000 mm using the VAD method is inserted into the reaction vessel A1, and the reaction vessel A1 is heated at the same time. He gas was introduced into the reaction vessel A1 at a rate of 25 liters / min. When the temperature reached 1,000 ° C., the temperature increase was stopped, and the glass particulate deposit 1 was lowered at a rate of 5 mm / min and heat treated. At this time, the measured oxygen concentration was 300 ppm.

次いで、反応容器A1内の温度を1,270℃になるまで昇温し、SiF4ガスを0.04リットル/min、Heガスを25リットル/minの量で導入しながら、ガラス微粒子堆積体1を3mm/minの下降速度で熱処理し、更に、反応容器A1内の温度が1,480℃になるまで昇温し、ガラス微粒子堆積体1を4mm/minの下降速度で熱処理することで透明ガラス化して合成石英ガラス母材(直径150mm、成長軸方向の長さ500mm)を得た。 Next, the temperature in the reaction vessel A1 is increased to 1,270 ° C., and the glass particulate deposit 1 is introduced at 3 mm / min while introducing SiF 4 gas at 0.04 liter / min and He gas at 25 liter / min. Heat treatment at a descending speed of 1, and further raise the temperature in the reaction vessel A1 to 1,480 ° C., and heat-treat the glass fine particle deposit 1 at a descending speed of 4 mm / min. A material (diameter 150 mm, growth axis length 500 mm) was obtained.

<実施例2:酸素濃度330ppm>
実施例2では、スス付け時において、原料であるSiCl4にCF4ガス1リットル/minで混合して、直径が300mm、成長軸方向の長さが1,000mmとなるように形成されたガラス微粒子堆積体1を用いた。このガラス微粒子堆積体1を、図1(a)に示す反応容器A1内に挿入し、この反応容器A1内を昇温すると同時に、反応容器A1内にHeガスを20リットル/minの量で導入し、温度が1,000℃になった時点で昇温を止め、ガラス微粒子堆積体1を5mm/minの速度で下降させて熱処理した。このとき、測定された酸素濃度は、330ppmであった。
<Example 2: Oxygen concentration 330 ppm>
In Example 2, glass fine particles formed so as to have a diameter of 300 mm and a length in the growth axis direction of 1,000 mm mixed with SiCl 4 as a raw material at 1 liter / min of CF 4 gas at the time of sooting. Deposit 1 was used. The glass particulate deposit 1 is inserted into the reaction vessel A1 shown in FIG. 1 (a), and the temperature inside the reaction vessel A1 is increased, and at the same time, He gas is introduced into the reaction vessel A1 at a rate of 20 liters / min. Then, when the temperature reached 1,000 ° C., the temperature increase was stopped, and the glass fine particle deposit 1 was lowered at a rate of 5 mm / min for heat treatment. At this time, the measured oxygen concentration was 330 ppm.

次いで、反応容器A1内の温度が1,560℃になるまで昇温し、ガラス微粒子堆積体1を4mm/分の下降速度で熱処理することで、透明ガラス化して合成石英ガラス母材(直径150mm、成長軸方向の長さ500mm)を得た。   Next, the temperature inside the reaction vessel A1 is increased to 1,560 ° C., and the glass fine particle deposit 1 is heat-treated at a descending rate of 4 mm / min. An axial length of 500 mm) was obtained.

<実施例3:酸素濃度1000ppm>
実施例3では、実施例2と同様の方法で形成されたガラス微粒子堆積体1を用いた。このガラス微粒子堆積体1を、図1(a)に示す反応容器A1内に挿入し、この反応容器A1内を昇温すると同時に、反応容器A1内にHeガスを15リットル/minの量で導入し、反応容器A1内の温度が1,000℃になった時点で昇温を止め、ガラス微粒子堆積体1を4mm/minの速度で下降させて熱処理した。このとき、測定された酸素濃度は、1000ppmであった。
<Example 3: Oxygen concentration 1000 ppm>
In Example 3, the glass fine particle deposit 1 formed by the same method as in Example 2 was used. The glass particulate deposit 1 is inserted into the reaction vessel A1 shown in FIG. 1 (a), the temperature inside the reaction vessel A1 is raised, and at the same time, He gas is introduced into the reaction vessel A1 at a rate of 15 liters / min. Then, when the temperature in the reaction vessel A1 reached 1,000 ° C., the temperature increase was stopped, and the glass fine particle deposit 1 was lowered at a rate of 4 mm / min and heat-treated. At this time, the measured oxygen concentration was 1000 ppm.

次いで、反応容器A1内を1,560℃まで昇温し、ガラス微粒子堆積体1を4mm/分の下降速度で熱処理することで、透明ガラス化して合成石英ガラス母材(直径150mm、成長軸方向の長さ500mm)を得た。   Next, the temperature inside the reaction vessel A1 is raised to 1,560 ° C., and the glass fine particle deposit 1 is heat-treated at a descending rate of 4 mm / min. 500 mm).

<比較例1:酸素濃度25ppm>
比較例1の合成石英ガラス母材の製造方法は、反応容器A1内の酸素濃度を25ppmとした以外は、実施例1の合成石英ガラス母材2の製造方法と同様であるが、本比較例では、酸素濃度を25ppmに調整する手段として、図1(a)において気密石英リングA20と支持棒A20との隙間をさらに狭める手段を採用した。
<Comparative Example 1: Oxygen concentration 25 ppm>
The method for producing the synthetic quartz glass base material of Comparative Example 1 is the same as the method for producing the synthetic quartz glass base material 2 of Example 1, except that the oxygen concentration in the reaction vessel A1 is 25 ppm. Then, as means for adjusting the oxygen concentration to 25 ppm, means for further narrowing the gap between the airtight quartz ring A20 and the support rod A20 in FIG.

<比較例2:酸素濃度10350ppm>
比較例2の合成石英ガラス母材の製造方法は、反応容器A1内の酸素濃度を10350ppmとした以外は、実施例1の合成石英ガラス母材2の製造方法と同様であるが、本比較例では、酸素濃度を10350ppmに調整する手段として、Heガスの導入と同時にO2ガスを250cc/minの量で導入する手段を採用した。
<Comparative Example 2: Oxygen concentration 10350 ppm>
The method for producing the synthetic quartz glass base material of Comparative Example 2 is the same as the method for producing the synthetic quartz glass base material 2 of Example 1, except that the oxygen concentration in the reaction vessel A1 is 10350 ppm. Therefore, as a means for adjusting the oxygen concentration to 10350 ppm, a means for introducing O 2 gas at a rate of 250 cc / min simultaneously with the introduction of He gas was adopted.

実施例1〜3で得られた合成石英ガラス母材2及び比較例1、2で得られた合成石英ガラス母材を切断、研磨した後、波長193nmにおける初期透過率(厚さ10mmに換算)、ArFエキシマレーザを照射し、その照射後の透過率維持率を測定した結果を表1に示す。ArFエキシマレーザの照射条件は、120mJ@100Hz x 1.1x106ショットでガラス面実際照射強度は、12.5mJ/pulse/cm2に相当する。また、実施例1〜3による合成石英ガラス母材2及び比較例1、2による合成石英ガラス母材のフッ素濃度を測定した結果を表1に示す。 After the synthetic quartz glass base material 2 obtained in Examples 1 to 3 and the synthetic quartz glass base material obtained in Comparative Examples 1 and 2 were cut and polished, the initial transmittance at a wavelength of 193 nm (converted to a thickness of 10 mm) Table 1 shows the results of measuring the transmittance maintenance rate after irradiation with an ArF excimer laser. The irradiation condition of ArF excimer laser is 120 mJ @ 100 Hz × 1.1 × 10 6 shots, and the actual irradiation intensity on the glass surface corresponds to 12.5 mJ / pulse / cm 2. Table 1 shows the results of measuring the fluorine concentration of the synthetic quartz glass base material 2 according to Examples 1 to 3 and the synthetic quartz glass base material according to Comparative Examples 1 and 2.

Figure 2012012250
Figure 2012012250

表1に示すように、比較例1、2の製造方法で製造された合成石英ガラス母材の初期透過率及び透過率維持率は、実施例1〜3の製造方法で製造された合成石英ガラス母材の初期透過率及び透過率維持率を、フッ素濃度がほぼ同じでありながら下回る結果となった。   As shown in Table 1, the initial transmittance and transmittance maintenance rate of the synthetic quartz glass base material produced by the production methods of Comparative Examples 1 and 2 are the synthetic quartz glass produced by the production methods of Examples 1 to 3. The results showed that the initial transmittance and transmittance maintenance ratio of the base material were below the fluorine concentration, although they were almost the same.

すなわち、比較例1の製造方法で製造された合成石英ガラス母材は、反応容器A1内の酸素濃度が低すぎたために、酸素欠乏欠陥(Si-Si結合163nm、245nmの吸収)が生じて、初期透過率及び透過率維持率が低下したものと考えられる。また、比較例2の製造方法で製造された合成石英ガラス母材は、反応容器A1内の酸素濃度が高すぎるために、酸素過剰型欠陥(Si-O-O-Si結合、325nmの吸収)が生じて、初期透過率及び透過率維持率が低下したものと考えられる。   That is, the synthetic quartz glass base material manufactured by the manufacturing method of Comparative Example 1 had oxygen deficiency defects (Si-Si bond 163 nm, absorption of 245 nm) because the oxygen concentration in the reaction vessel A1 was too low, It is considered that the initial transmittance and the transmittance maintenance rate were lowered. In addition, the synthetic quartz glass base material manufactured by the manufacturing method of Comparative Example 2 has an oxygen-rich defect (Si-OO-Si bond, absorption at 325 nm) because the oxygen concentration in the reaction vessel A1 is too high. Therefore, it is considered that the initial transmittance and the transmittance maintenance rate were lowered.

これに対し、実施例1〜3の製造方法では、反応容器1内の酸素濃度を300ppm〜1,000ppmの範囲に調整することにより、前述の酸素欠乏欠陥及び酸素過剰型欠陥を抑制することができ、良好な初期透過率(90.0%〜90.3%)及び透過率維持率(99.5%〜100%)を備えた合成石英ガラス母材2を製造することができる。   On the other hand, in the manufacturing methods of Examples 1 to 3, the oxygen deficiency defect and the oxygen excess type defect can be suppressed by adjusting the oxygen concentration in the reaction vessel 1 to the range of 300 ppm to 1,000 ppm. The synthetic quartz glass base material 2 having good initial transmittance (90.0% to 90.3%) and transmittance maintenance ratio (99.5% to 100%) can be manufactured.

次に、実施例4〜6によって、前述の酸素欠乏欠陥及び酸素過剰型欠陥を抑制するのに好ましい反応容器A1内の酸素濃度の範囲を特定した結果を表2に示す。実施例4〜6の製造方法は、反応容器A1内の酸素濃度以外の条件を実施例1と同様とした。   Next, Table 2 shows the results of specifying the preferable oxygen concentration range in the reaction vessel A1 for suppressing the above-described oxygen deficiency defect and oxygen excess type defect according to Examples 4 to 6. In the production methods of Examples 4 to 6, conditions other than the oxygen concentration in the reaction vessel A1 were the same as those in Example 1.

Figure 2012012250
Figure 2012012250

表2に示すように、反応容器A1内の酸素濃度が100ppm〜5,000ppmの範囲であれば、初期透過率が90%、透過率維持率が99.1%以上のレーザ耐性を達成した合成石英ガラス母材2を製造することができる。また、表2の結果から反応容器A1内の酸素濃度が100ppm未満、5,000ppmを越えた場合、初期透過率が90%を下回り、透過率維持率が99.1%を下回るものと思われる。   As shown in Table 2, when the oxygen concentration in the reaction vessel A1 is in the range of 100 ppm to 5,000 ppm, the synthetic quartz glass mother that has achieved laser resistance with an initial transmittance of 90% and a transmittance maintenance factor of 99.1% or more. The material 2 can be manufactured. Further, from the results in Table 2, when the oxygen concentration in the reaction vessel A1 is less than 100 ppm and exceeds 5,000 ppm, it is considered that the initial transmittance is less than 90% and the transmittance maintenance ratio is less than 99.1%.

実施例1〜6で示した通り、本発明の合成石英ガラス母材の製造方法によると、反応容器A1内の酸素濃度を100〜5,000ppmにするという簡単な方法で、短波長の紫外域における初期透過率90.0%以上、透過率維持率99.1%以上の透過性を有した合成石英ガラス母材2を効率よく製造することができ、特に、反応容器A1内の酸素濃度を300〜1,000ppmの範囲にすることによって、短波長の紫外域における初期透過率90.0%以上、透過率維持率99.5%以上の優れた透過性を有した合成石英ガラス母材2を効率よく製造することができる。このように、短波長の紫外域における優れた透過性を有する合成石英ガラス母材2の製造を簡単な方法で行うことができ、安価に提供することができる。   As shown in Examples 1 to 6, according to the method for producing a synthetic quartz glass base material of the present invention, the oxygen concentration in the reaction vessel A1 is set to 100 to 5,000 ppm in the short wavelength ultraviolet region. It is possible to efficiently produce a synthetic quartz glass base material 2 having an initial transmittance of 90.0% or more and a transmittance maintenance ratio of 99.1% or more. Particularly, the oxygen concentration in the reaction vessel A1 is 300 to 1,000 ppm. By setting the range, it is possible to efficiently produce the synthetic quartz glass base material 2 having excellent transmittance with an initial transmittance of 90.0% or more and a transmittance maintenance rate of 99.5% or more in the short wavelength ultraviolet region. Thus, the synthetic quartz glass base material 2 having excellent transparency in the short wavelength ultraviolet region can be manufactured by a simple method and can be provided at low cost.

尚、本発明は、例示した実施の形態に限定するものでは無く、特許請求の範囲の各項に記載された内容から逸脱しない範囲の構成による実施が可能である。   It should be noted that the present invention is not limited to the illustrated embodiments, and can be implemented with configurations within a range that does not deviate from the contents described in the respective claims.

1:ガラス微粒子堆積体 2:合成石英ガラス母材 A1:反応容器   1: Glass particulate deposit 2: Synthetic quartz glass base material A1: Reaction vessel

Claims (3)

ガラス微粒子堆積体を反応容器内で焼結して透明ガラス化する焼結工程を備える合成石英ガラス母材の製造方法において、前記焼結工程における前記反応容器内の酸素濃度を100ppm〜5,000ppmとし、且つ前記焼結工程又は該焼結工程の前の何れかの工程で前記ガラス微粒子堆積体にフッ素を添加することを特徴とする合成石英ガラス母材の製造方法。   In a method for producing a synthetic quartz glass base material comprising a sintering step of sintering a glass fine particle deposit in a reaction vessel to form a transparent glass, the oxygen concentration in the reaction vessel in the sintering step is set to 100 ppm to 5,000 ppm. A method for producing a synthetic quartz glass base material, comprising adding fluorine to the glass fine particle deposit in the sintering step or any step before the sintering step. 前記酸素濃度が300ppm〜1,000ppmであることを特徴とする請求項1記載の合成石英ガラス母材の製造方法。   The method for producing a synthetic quartz glass base material according to claim 1, wherein the oxygen concentration is 300 ppm to 1,000 ppm. 請求項1又は2記載の合成石英ガラス母材の製造方法で製造された合成石英ガラス母材であって、少なくとも、193nm域の光の初期透過率が90.0%以上、193nm域の光の透過率維持率が99.1%以上であることを特徴とする合成石英ガラス母材。   A synthetic quartz glass base material produced by the method for producing a synthetic quartz glass base material according to claim 1, wherein at least an initial transmittance of light in a 193 nm region is 90.0% or more and a light transmittance in a 193 nm region. A synthetic quartz glass base material having a maintenance rate of 99.1% or more.
JP2010149842A 2010-06-30 2010-06-30 Method for producing synthetic quartz glass preform, and synthetic quartz glass preform Pending JP2012012250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149842A JP2012012250A (en) 2010-06-30 2010-06-30 Method for producing synthetic quartz glass preform, and synthetic quartz glass preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149842A JP2012012250A (en) 2010-06-30 2010-06-30 Method for producing synthetic quartz glass preform, and synthetic quartz glass preform

Publications (1)

Publication Number Publication Date
JP2012012250A true JP2012012250A (en) 2012-01-19

Family

ID=45599131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149842A Pending JP2012012250A (en) 2010-06-30 2010-06-30 Method for producing synthetic quartz glass preform, and synthetic quartz glass preform

Country Status (1)

Country Link
JP (1) JP2012012250A (en)

Similar Documents

Publication Publication Date Title
JP5305585B2 (en) Method and apparatus for producing fused silica
TWI380957B (en) Fused silica having low oh, od levels and method of making
US20040118155A1 (en) Method of making ultra-dry, Cl-free and F-doped high purity fused silica
EP1900694B1 (en) Method for making a synthetic quartz glass substrate for excimer lasers
KR20080065703A (en) Deuteroxyl-doped silica glass, optical member and lithographic system comprising same and method of making same
CN104326646A (en) Titanium-doped quartz glass and preparation method and preparation device of quartz glass
CN101798168B (en) Method of producing synthetic quartz glass for excimer laser
TW201022167A (en) Process for production of synthetic quartz glass
JPH09124337A (en) Production of optical material of quartz glass for ultraviolet laser
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JPH06199532A (en) Production of quartz glass member for excimer laser
JP5630268B2 (en) Optical member made of silica glass containing TiO 2
JP2000264650A (en) Production of optical quartz glass for excimer laser and vertical type heating furnace
JP5287574B2 (en) Heat treatment method for synthetic quartz glass
JP2012012250A (en) Method for producing synthetic quartz glass preform, and synthetic quartz glass preform
JP3705501B2 (en) Method for producing synthetic quartz glass member for excimer laser optical material
TWI658011B (en) Heat treating silica-titania glass to induce a tzc gradient
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP3796653B2 (en) Fluorine-containing synthetic quartz glass and method for producing the same
JP4496421B2 (en) Method for producing synthetic quartz glass
JP2016534959A (en) Mirror blank for EUV lithography that does not expand under EUV irradiation
JP2012001415A (en) Method for manufacturing quartz glass
JP5418428B2 (en) Heat treatment method for synthetic quartz glass block
JP2008239454A (en) Method for producing synthetic silica glass
EP2371772A1 (en) Method for production of synthetic quartz glass