JPH09124337A - Production of optical material of quartz glass for ultraviolet laser - Google Patents

Production of optical material of quartz glass for ultraviolet laser

Info

Publication number
JPH09124337A
JPH09124337A JP7306438A JP30643895A JPH09124337A JP H09124337 A JPH09124337 A JP H09124337A JP 7306438 A JP7306438 A JP 7306438A JP 30643895 A JP30643895 A JP 30643895A JP H09124337 A JPH09124337 A JP H09124337A
Authority
JP
Japan
Prior art keywords
quartz glass
hydrogen
molecules
wavelength
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7306438A
Other languages
Japanese (ja)
Other versions
JP3674793B2 (en
Inventor
Akira Fujinoki
朗 藤ノ木
Hiroyuki Nishimura
裕幸 西村
Toshiki Mori
利樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP30643895A priority Critical patent/JP3674793B2/en
Priority to PCT/EP1996/004746 priority patent/WO1997016382A1/en
Publication of JPH09124337A publication Critical patent/JPH09124337A/en
Application granted granted Critical
Publication of JP3674793B2 publication Critical patent/JP3674793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/002Other surface treatment of glass not in the form of fibres or filaments by irradiation by ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a synthetic quartz glass material for ultraviolet laser optics having excellent stability against ArF excimer laser of 193nm in wave length and a 5-times harmonic of YAG laser of 213nm in wave length by removing defects attributable to hydrogen generated during the production of a synthetic quartz glass by oxyhydrogen flame or defects attributable to hydrogen in a high-temperature hydrogen treatment. SOLUTION: In order to modify a quartz glass optical material to endure the irradiation of a laser having a short wave length, the quartz glass optical material is doped with hydrogen atoms of >=2×10<17> molecules/cm<3> and <=5×10<19> molecules/cm<3> , preferably >=5×10<17> molecules/cm<3> and <=5×10<18> molecules/cm<3> during the production of a synthetic quartz glass and/or in a tail-end process. Reductive defects caused by hydrogen in these processes are removed by irradiating ultraviolet rays of 150nm to 300nm in wavelength without damaging the structure of quartz glass. This process enables the production of the quartz glass having strong resistance even against the irradiation of the above- mentioned laser.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸水素炎による合
成石英ガラス製造時に発生する水素起因欠陥若しくは高
温水素処理によって生じる水素起因欠陥を除去し、紫外
線、特に波長193nmのArFエキシマレーザ、波長
213nmのYAGレーザの5倍高調波に対して優れた
安定性を有する紫外線レーザ光学用合成石英ガラス部材
を提供することにあり、特にこれらのレーザを光源とす
る露光装置の光学系を構成するのに好適な、例えば露光
光源としてレーザ光を用いた露光装置を構成し得る紫外
線レーザ用石英ガラス光学部材に関する。
TECHNICAL FIELD The present invention eliminates hydrogen-induced defects generated during the production of synthetic quartz glass by an oxyhydrogen flame or hydrogen-induced defects caused by high-temperature hydrogen treatment, and uses ultraviolet rays, particularly an ArF excimer laser with a wavelength of 193 nm and a wavelength of 213 nm. To provide a synthetic quartz glass member for ultraviolet laser optics, which has excellent stability against the fifth harmonic of the YAG laser, and particularly to configure an optical system of an exposure apparatus using these lasers as a light source. For example, the present invention relates to a quartz glass optical member for an ultraviolet laser, which is capable of forming an exposure device using a laser beam as an exposure light source.

【0002】[0002]

【従来の技術】近年、LSIの高集積化に伴い、ウエー
ハ上に集積回路パターンを描画する光リソグラフィ技術
においてもサブミクロン単位の描画技術が要求されてお
り、この為より微細な線幅描画を行う為に、露光系の光
源の短波長化が進められてきている。例えばリソグラフ
ィ用ステッパの光源は、従来のG線(436nm)、i
線(365nm)から波長248nmのKrFエキシマ
レーザが用いられてきており、特に最近では前記KrF
エキシマレーザから波長が更に短いArFエキシマレー
ザ(193nm)やYAGレーザ5倍高調波(213n
m)によるレーザ光源による露光の検討が進んでいる。
2. Description of the Related Art In recent years, with the high integration of LSIs, a submicron drawing technique is required also in an optical lithography technique for drawing an integrated circuit pattern on a wafer. Therefore, finer line width drawing is required. To do so, the wavelength of the light source of the exposure system has been shortened. For example, the light source of a stepper for lithography is a conventional G line (436 nm), i
Lines (365 nm) to 248 nm wavelength KrF excimer lasers have been used.
ArF excimer laser (193 nm) or YAG laser 5th harmonic (213n)
The examination of the exposure by the laser light source according to m) is progressing.

【0003】一方前記i線(365nm)より短い短波
長紫外線域では、従来用いられてきた多成分系光学ガラ
スでは十分なる光透過性が得られない為に、石英ガラ
ス、それも紫外線吸収を極力低減するために、不純物含
有量の少ない高純度合成石英ガラスを用いている。しか
しながら合成石英ガラスの純度を向上させて紫外線レー
ザの透過率を向上させる方法は、ある程度効果はあるも
のの、エキシマレーザ光が、寿命が20n秒程度のパル
ス光である為に、通常の水銀ランプ等から放射される紫
外線に比較して時間当たりのエネルギーが非常に高いた
めに、ガラスに加わる負荷が極めて大きく、このため前
記レーザ光の長期照射によりダメージを受けやすい。か
かる欠点を解消するために、本出願人は前記石英ガラス
体中に水素ガスをドープ、具体的には水素ガスを1017
cm3以上含有させた技術を提案している。(USP
5,086,352他)
On the other hand, in the short-wavelength ultraviolet region shorter than the i-line (365 nm), quartz glass, which absorbs ultraviolet rays as much as possible, cannot be obtained because the multi-component optical glass that has been conventionally used cannot obtain sufficient light transmittance. In order to reduce the amount, high-purity synthetic quartz glass with a low content of impurities is used. However, although the method of improving the purity of the synthetic quartz glass and the transmittance of the ultraviolet laser has some effect, the excimer laser light is a pulsed light having a life of about 20 nsec. Since the energy per unit time is much higher than that of the ultraviolet rays emitted from the glass, the load applied to the glass is extremely large, and therefore the glass is easily damaged by the long-term irradiation. To overcome such drawbacks, the present applicant has the quartz glass body doped with hydrogen gas in the specific hydrogen gas in the 10 17
We propose a technology that contains more than 3 cm 3 . (USP
5,086,352, etc.)

【0004】[0004]

【発明が解決しようとする課題】さて最近のLSIの更
なる高集積化の結果、波長248nmのKrFエキシマレーザか
ら波長が更に短いArFエキシマレーザ(193nm)やYAGレー
ザ5倍高調波(213nm)による露光の検討が進んでいる。こ
れらのレーザ光源ではKrFエキシマレーザに比べて波長
が短いため、光のエネルギーが更に大きく、従来に増し
て大きなダメージを石英ガラスに対して与える。この為
エネルギーの高いArFエキシマレーザやYAG 5倍高調はレ
ーザに対する十分なレーザ耐性を与えるにはより高濃度
の水素が必要となる。しかしながら特開平6-166528号に
示されるように、合成石英ガラス成長時に石英ガラス中
にドープされる水素、あるいは後工程として合成石英ガ
ラスに600℃以上の温度でドープされた水素は、石英ガ
ラスに還元性の欠陥をもたらし、これがエキシマレーザ
照射開始直後から波長215nmに吸収を持つE*センターと
呼ばれる常磁性欠陥を生じさせる為に、水素をドープす
るために最も効率の良い石英ガラスの成長時に水素をド
ープするという方法が用いられない。そしてこのE*セン
ターは、KrFレーザでは波長が長いために問題となら
ないが、波長193nmのArFエキシマレーザ若しく
は波長213nmのYAGレーザの5倍高調波では前記
E*センターに起因する常磁性欠陥が問題となる。
As a result of the recent higher integration of LSIs, a KrF excimer laser with a wavelength of 248 nm is changed to an ArF excimer laser (193 nm) with a shorter wavelength or a YAG laser fifth harmonic (213 nm). Exposure is under consideration. Since these laser light sources have shorter wavelengths than the KrF excimer laser, the energy of light is larger, and the quartz glass is damaged more than ever before. Therefore, high energy ArF excimer laser and YAG 5th harmonic require higher concentration of hydrogen to provide sufficient laser resistance to the laser. However, as shown in JP-A-6-166528, hydrogen doped in the quartz glass during the growth of the synthetic quartz glass, or hydrogen doped into the synthetic quartz glass at a temperature of 600 ° C. or higher as a post-process is Reducing defects cause paramagnetic defects called E * centers, which have absorption at a wavelength of 215 nm, immediately after the start of excimer laser irradiation. Is not used. This E * center is not a problem because the wavelength is long in a KrF laser, but the 5th harmonic of an ArF excimer laser with a wavelength of 193 nm or a YAG laser with a wavelength of 213 nm causes
A paramagnetic defect caused by the E * center becomes a problem.

【0005】この為本出願人は、先に出発母材の水素起
因還元性欠陥を除去する為に、1500℃以下の温度領
域で、酸化熱処理をした後、600℃以下、好ましくは
400℃以下の温度で水素をドープする技術を提案して
いる。(特開平6−166528号) しかしながら600℃以下、好ましくは400℃以下の
低温で、必要な高濃度の水素をドープすることは可能で
あるが、非常に時間がかかり非効率である。
Therefore, in order to remove the hydrogen-induced reducing defects of the starting base material, the applicant of the present invention first performed oxidation heat treatment in a temperature range of 1500 ° C. or lower, and then 600 ° C. or lower, preferably 400 ° C. or lower. We propose a technique to dope hydrogen at this temperature. (JP-A-6-166528) However, it is possible to dope the required high concentration of hydrogen at a low temperature of 600 ° C. or lower, preferably 400 ° C. or lower, but it is very time-consuming and inefficient.

【0006】本発明はかかる従来技術の欠点に鑑み、4
00℃以上、好ましくは600℃以上の温度で水素をド
ープした場合においても、容易に水素起因還元性欠陥を
除去することの出来る紫外線レーザ用石英ガラス光学部
材の製造方法を提供することを目的とする。本発明の他
の目的が、酸水素炎による合成石英ガラス製造時に発生
する水素起因欠陥若しくは高温水素処理によって生じる
水素起因欠陥を除去し、紫外線、特に波長193nmの
ArFエキシマレーザ、波長213nmのYAGレーザ
の5倍高調波に対して優れた安定性を有する紫外線レー
ザ光学用合成石英ガラス部材を提供することにある。
In view of the drawbacks of the prior art, the present invention is
An object of the present invention is to provide a method for producing a quartz glass optical member for an ultraviolet laser, which can easily remove hydrogen-induced reducing defects even when hydrogen is doped at a temperature of 00 ° C. or higher, preferably 600 ° C. or higher. To do. Another object of the present invention is to remove hydrogen-induced defects generated during the production of synthetic quartz glass by an oxyhydrogen flame or hydrogen-induced defects caused by high-temperature hydrogen treatment, and to emit ultraviolet rays, particularly ArF excimer laser with a wavelength of 193 nm and YAG laser with a wavelength of 213 nm. It is an object of the present invention to provide a synthetic quartz glass member for ultraviolet laser optics, which has excellent stability with respect to the fifth harmonic of the above.

【0007】[0007]

【課題を解決するための手段】本発明者は、合成石英ガ
ラス製造時若しくは高温水素処理によって生じる水素起
因欠陥が、波長150nmないし300nmの範囲にある、連続光
(continuous wave)紫外線の照射により石英ガラスの構
造を破壊することなく、前記欠陥のみを選択的に破壊し
取り除くことが出来る事を見いだした。即ち紫外線はパ
ルス光である紫外線レーザと異なり、連続光(continuou
s wave)なので時間辺りのエネルギー密度は低く、この
ような還元性欠陥の除去には効果的であるが、石英ガラ
スの構造を破壊するにはいたらない。但し、このような
連続光の紫外線であっても、そのエネルギーが100W/cm2
を越えると石英ガラスによっては構造的なダメージを与
えられうる事が判明した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have found that the defects caused by hydrogen generated during the production of synthetic quartz glass or by the high temperature hydrogen treatment have a continuous wavelength of 150 nm to 300 nm.
It has been found that irradiation with (continuous wave) ultraviolet rays can selectively destroy and remove only the above defects without destroying the structure of the quartz glass. That is, ultraviolet rays are different from pulsed ultraviolet lasers in that
Since it is a s wave), the energy density around time is low and it is effective for removing such reducing defects, but it is not enough to destroy the structure of quartz glass. However, even with such continuous light, the energy is 100 W / cm 2
It has been found that if it exceeds, structural damage can be caused depending on the quartz glass.

【0008】そこで、本発明は、石英ガラス光学部材に
ArFエキシマレーザあるいはYAGレーザ5倍高調波のよう
に波長の短いレーザの照射に耐えられるように2×1017
分子/cm3以上5×1019分子/cm3以下の、好ましくは5×10
17分子以上5×1018分子/cm3以下の水素分子を合成石英
ガラスの製造時、及び/又は後工程でドーピングする工
程と、このとき水素によって生じる還元性の欠陥を波長
150nmないし300nmの紫外線の照射によって石英ガラスの
構造を破壊することなく除去する事によって、ArFエキ
シマレーザあるいはYAGレーザ5倍高調波のように波長の
短いレーザの照射に対しても耐性の強い石英ガラスを得
るものである。ここで水素濃度の上限値を5×1019分子/
cm3以下、好ましくは5×1018分子/cm3以下に限定した理
由は前記上限値以上では前記した紫外線の照射のみでは
十分に水素起因還元性欠陥を除去し得ないことによる。
Therefore, the present invention provides a quartz glass optical member.
ArF excimer laser or YAG laser 2 × 10 17 to withstand irradiation with lasers with short wavelengths such as 5th harmonic
Molecule / cm 3 or more 5 × 10 19 molecule / cm 3 or less, preferably 5 × 10
A step of doping hydrogen molecules of 17 molecules or more and 5 × 10 18 molecules / cm 3 or less at the time of manufacturing synthetic quartz glass and / or in a subsequent step, and at the time of reducing defects caused by hydrogen at this time
By removing the quartz glass structure without destroying it by irradiating it with UV light of 150 nm to 300 nm, quartz glass that is highly resistant to the irradiation of short wavelength laser such as ArF excimer laser or YAG laser 5th harmonic. Is what you get. Here, the upper limit of hydrogen concentration is 5 × 10 19 molecules /
cm 3 or less, preferably due to the reason for limiting to less than 5 × 10 18 molecules / cm 3 to not be sufficiently removed hydrogen due reducing defects irradiation alone ultraviolet described above is in the upper limit or more.

【0009】そして請求項1記載の発明は、前記石英ガ
ラス中に2×1017分子/cm3以上5×1019分子/cm3以下の水
素を含有する工程と、該水素ガスを含有した石英ガラス
部材に波長150nmないし300nmの範囲内の紫外線を、該石
英ガラス部材の照射表面における照度として少なくとも
1μW/cm2以上、100W/cm2以下のエネルギーで20時間以
上照射する工程と、を含むことを特徴とするものであ
る。
According to the first aspect of the present invention, a step of containing 2 × 10 17 molecules / cm 3 or more and 5 × 10 19 molecules / cm 3 or less of hydrogen in the quartz glass, and quartz containing the hydrogen gas Ultraviolet rays within a wavelength range of 150 nm to 300 nm is applied to the glass member as at least illuminance on the irradiation surface of the quartz glass member.
Irradiation with energy of 1 μW / cm 2 or more and 100 W / cm 2 or less for 20 hours or more is included.

【0010】ここで前記水素を含有する工程には合成石
英ガラスの製造時、及び/又は後工程でドーピングする
工程のいずれをも含む。尚、エネルギー照射工程は20
時間以上と、上限を規定していないが、その上限照射時
間は還元性欠陥の程度によって定まり、また無用に長時
間照射した場合でも石英ガラスの構造を破壊することが
ないために問題がない。尚、エネルギー照射工程におけ
る照射紫外線は、低圧水銀ランプから放射される184.9n
m及び/または253.7nmの波長の発光線、若しくは前記照
射紫外線がキセノンランプまたはD2ランプから放射され
る150nm乃至300nmの波長の連続スペクトルで
あるのがよい。
Here, the step of containing hydrogen includes both the step of doping synthetic quartz glass and / or the step of doping in the subsequent step. The energy irradiation process is 20
Although the upper limit of time is not specified, the upper limit of irradiation time is determined by the degree of reducing defects, and there is no problem because the structure of the quartz glass is not destroyed even if irradiation is performed for a long time unnecessarily. Incidentally, the irradiation ultraviolet light in the energy irradiation step is 184.9n emitted from the low pressure mercury lamp.
The emission line having a wavelength of m and / or 253.7 nm, or the irradiation ultraviolet ray may be a continuous spectrum having a wavelength of 150 nm to 300 nm emitted from a xenon lamp or a D2 lamp.

【0011】又請求項2記載の発明は、前記発明のうち
特に水素を所定の濃度範囲に均等にドープさせることを
目的とするもので、特に石英ガラス製造時に水素を1×1
018分子/cm3以上含有させる点、及び前記水素ガスを含
有した石英ガラスを少なくとも1方向に均質化処理した
後若しくは均質化処理中において、水素濃度を2×1017
分子/cm3以上5×1019分子/cm3以下の範囲でドープする
ことを特徴とするものである。
A second aspect of the present invention is intended to evenly dope hydrogen in a predetermined concentration range among the above-mentioned inventions, and in particular, hydrogen is produced in an amount of 1 × 1 when silica glass is manufactured.
0 18 molecules / cm 3 or more, and after the quartz glass containing the hydrogen gas is homogenized in at least one direction or during the homogenization treatment, the hydrogen concentration is 2 × 10 17
The feature is that the doping is performed in the range of 5 molecules / cm 3 or more and 5 × 10 19 molecules / cm 3 or less.

【0012】この場合前記水素ガスのドープ前に均質化
処理を行うことにより水素ガスが均等にドープされる。
又石英ガラス製造時に水素を1×1018分子/cm3以上含有
させる理由は次の理由による。合成石英ガラスは高純度
の四塩化ケイ素原料を用いて酸水素炎加水分解法の直接
火炎法(ダイレクト法)やCVDス−ト再溶融法(スート
法)にて製造するわけであるが、前記製造の際に酸素ガ
スを多くして酸素過多雰囲気下で合成を行った場合、当
然のように水素ガスは実質的に含有されず、水素は5×
1016分子/cm3以下となる。
In this case, the hydrogen gas is uniformly doped by performing the homogenization treatment before the doping of the hydrogen gas.
The reason for containing hydrogen at 1 × 10 18 molecules / cm 3 or more during the production of quartz glass is as follows. Synthetic quartz glass is produced by using a high-purity silicon tetrachloride raw material by a direct flame method of an oxyhydrogen flame hydrolysis method (direct method) or a CVD soot remelting method (soot method). When the synthesis is carried out in an oxygen-rich atmosphere by increasing the amount of oxygen gas at the time of production, as a matter of course, hydrogen gas is not substantially contained, and hydrogen is 5 ×.
10 16 molecule / cm 3 or less.

【0013】そしてこのような水素が実質的に含有され
ていない状態で後工程で水素ドープを行ってもリソグラ
フィー用のレンズの様な大型の光学部材の場合、水素の
拡散速度等の問題で十分に均等で且つ所定濃度の水素分
子をドープするのは困難である。
Even in the case where hydrogen is doped in the subsequent step in a state where hydrogen is not substantially contained, in the case of a large optical member such as a lens for lithography, problems such as the diffusion rate of hydrogen are sufficient. It is difficult to dope hydrogen molecules with a uniform and predetermined concentration.

【0014】そこで請求項2記載の発明においては、前
記合成石英ガラス製造の際に水素ガスを多くして還元雰
囲気下で合成を行って水素分子を1×1018分子/cm以上含
有させておく。しかしながら前記のように水素分子を1
×1018分子/cm以上含有させても、その後の帯域溶融に
よる均質化処理やアニール処理により水素分子が放散し
てしまう。そこで本発明においてはその後の水素ドープ
処理若しくはアニール処理と同時に行われる水素ドープ
処理により前記放散した水素分子の補充と共に、水素分
子の均質拡散を行っている。即ち本発明は「合成石英ガ
ラス製造時の水素分子含有+均質化処理後若しくは均質
化処理中(アニール処理中)の水素ドープ工程」の2つ
の組合せにより始めて成立つものである。尚、前記均質
化処理中(アニール処理中)の水素ドープ工程とは水素
ガス雰囲気でアニール処理を行うことにより合成石英ガ
ラス製造時の水素分子の拡散を抑制し、水素濃度を2×1
017分子/cm3以上5×1019分子/cm3以下の範囲に設定(ド
ープ処理)することが出来るものである。
Therefore, in the second aspect of the present invention, when the synthetic quartz glass is manufactured, hydrogen gas is increased and synthesis is performed in a reducing atmosphere so that hydrogen molecules are contained at 1 × 10 18 molecules / cm 3 or more. . However, as described above,
Even if the content of x10 18 molecules / cm 3 or more is included, hydrogen molecules are diffused by the subsequent homogenization treatment and annealing treatment by zone melting. Therefore, in the present invention, the hydrogen molecules are homogeneously diffused by supplementing the diffused hydrogen molecules with the hydrogen doping process which is performed simultaneously with the subsequent hydrogen doping process or annealing process. That is, the present invention is first established by a combination of two of "hydrogen molecule inclusion in the production of synthetic quartz glass + hydrogen doping step after homogenization treatment or during homogenization treatment (during annealing treatment)". The hydrogen doping step during the homogenization treatment (during the annealing treatment) is performed by annealing in a hydrogen gas atmosphere to suppress the diffusion of hydrogen molecules during the production of synthetic quartz glass, and to reduce the hydrogen concentration to 2 × 1.
It can be set (dope treatment) in the range of 17 molecules / cm 3 or more and 5 × 10 19 molecules / cm 3 or less.

【0015】請求項3の発明は、均質化処理後若しくは
均質化処理中における水素ドープ工程を、400℃〜1
200℃、好ましくは600〜1200℃の高温度で水
素を含有せしめる高温水素ドーピング工程であることを
特徴とする。
According to the third aspect of the present invention, the hydrogen doping step after the homogenization treatment or during the homogenization treatment is performed at 400 ° C. to 1 ° C.
It is characterized by a high temperature hydrogen doping step in which hydrogen is contained at a high temperature of 200 ° C., preferably 600 to 1200 ° C.

【0016】前記した400℃以下の温度で水素をドー
プする技術では拡散速度がきわめて遅いために非常に時
間がかかってしまい、特に製品の大型化に対応するため
には水素ドープ時間を短縮する必要があり、どうしても
高温で水素ドープを行わなくてはならないが、本発明で
はこれに対応するものである。そしてこのように600
℃以上の高温でドープ出来ることは、該ドープ時の熱処
理温度を利用して歪除去アニールを並行して行い屈折率
の均質性をΔnで2×10-6以下に設定することが可能とな
り、特に光学部材の特性を向上させる面で極めて有効で
ある。
In the above-mentioned technique of doping hydrogen at a temperature of 400 ° C. or lower, it takes a very long time because the diffusion rate is extremely slow, and it is necessary to shorten the hydrogen doping time in order to cope with the increase in size of products. However, hydrogen doping must be performed at a high temperature by any means, but the present invention corresponds to this. And like this 600
℃ Vacation doped with more high temperature, the homogeneity of the performed refractive index by utilizing the heat treatment temperature for the dope in parallel distortion removal annealing 2 × 10 in [Delta] n - it is possible to set the 6 or less, In particular, it is extremely effective in improving the characteristics of the optical member.

【0017】請求項5記載の発明においては、水素ドー
プ処理直前における合成石英ガラス水素濃度を規定した
もので、合成石英ガラス製造時に水素を含有させた石英
ガラスを少なくとも1方向に均質化処理した後、若しく
は該均質化処理中において水素濃度が1×1017分子/cm3
以上含有する石英ガラスを用いて水素ドープ処理を行
い、ドープ後の水素濃度を2×1017分子/cm3以上5×1019
分子/cm3以下の範囲に設定することを特徴とするもので
ある。
In the invention of claim 5, the hydrogen concentration of the synthetic quartz glass immediately before the hydrogen doping treatment is defined, and after the quartz glass containing hydrogen at the time of producing the synthetic quartz glass is homogenized in at least one direction. Or the hydrogen concentration during the homogenization treatment is 1 × 10 17 molecule / cm 3
Hydrogen doping was performed using the above-containing quartz glass, and the hydrogen concentration after doping was 2 × 10 17 molecules / cm 3 or more 5 × 10 19
The feature is that it is set in the range of numerator / cm 3 or less.

【0018】請求項6及び7記載の発明は、主として合
成石英ガラスの製造方法に着目したもので、請求項6記
載の発明は主として直接火炎法に関するもので、還元性
酸水素火炎中で火炎加水分解し、得られるシリカ微粒子
を回転する基体上に堆積しつつ溶融する、いわゆる直接
火炎法にて合成された石英ガラスを少なくとも1方向に
均質化処理した後若しくは均質化処理中において、水素
ドープ処理を行い、ドープ後の水素濃度を2×1017分子/
cm3以上5×1019分子/cm3以下の範囲に設定することを特
徴とするものである。
The inventions of claims 6 and 7 mainly focus on the method for producing synthetic quartz glass, and the invention of claim 6 mainly relates to the direct flame method, in which flame hydration is carried out in a reducing oxyhydrogen flame. After the silica glass synthesized by the so-called direct flame method is decomposed and melted while depositing the resulting silica fine particles on a rotating substrate, it is hydrogen-doped after or after homogenizing in at least one direction. And the hydrogen concentration after doping is 2 × 10 17 molecules /
It is characterized in that it is set in the range of not less than cm 3 and not more than 5 × 10 19 molecule / cm 3 .

【0019】請求項7記載の発明は、揮発性硅素化合物
を酸素水素火炎にて火炎加水分解して得られるシリカ微
粒子を回転する基体上に堆積させ多孔質シリカ母材(ス
ート)を作成し、これを水素含有雰囲気下で透明ガラス
化させた石英ガラスを少なくとも1方向に均質化処理し
た後若しくは均質化処理中において、水素ドープ処理を
行い、ドープ後の水素濃度を2×1017分子/cm3以上5×10
19分子/cm3以下の範囲に設定することを特徴とするもの
である。従って本発明は直接火炎法でもCVDスート法
のいずれでも適用できる。
According to a seventh aspect of the present invention, silica fine particles obtained by flame hydrolysis of a volatile silicon compound with an oxygen-hydrogen flame are deposited on a rotating substrate to form a porous silica base material (soot). After homogenizing the quartz glass transparent vitrified in a hydrogen-containing atmosphere in at least one direction or during the homogenizing treatment, hydrogen doping is performed, and the hydrogen concentration after doping is 2 × 10 17 molecules / cm 3. 3 or more 5 × 10
The feature is that it is set within the range of 19 molecules / cm 3 or less. Therefore, the present invention can be applied to either the direct flame method or the CVD soot method.

【0020】[0020]

【発明の実施の形態】以下図面を参照して本発明の実施
形態を説明する。但し、この実施形態に記載されている
温度、圧力、材質、時間等、及びこれらに基づく製造方
法等は特に特定的な記載がないかぎりは、この発明の範
囲をそれに限定する趣旨ではなく、単なる説明例にすぎ
ない。
Embodiments of the present invention will be described below with reference to the drawings. However, unless otherwise specified, the temperature, pressure, material, time, etc. described in this embodiment, and the manufacturing method and the like based on these are not intended to limit the scope of the present invention thereto, but are merely It's just an example.

【0021】「実施例1」先ず本発明に用いる合成石英
ガラスの製造方法について説明する。合成に用いる揮発
性珪素化合物には、化学的に合成され、蒸留に依って純
化された高純度の発揮性珪素化合物、例えば四塩化けい
素(SiCl4 )等のハロゲン化けい素類、テトラエト
キシシラン(Si(OC254 )、テトラメトキシシ
ラン(Si(OCH34)等のアルコキシシラン類、メ
チルトリメトキシシシラン(SiCH3(OCH33
等のアルキルアルコキシシラン類を用いる。この際四塩
化珪素(SiCl4 )等のCl含有の揮発性化合物を用
いると生成された合成石英ガラスに塩素が残留し好まし
くない。
[Example 1] First, a method for producing the synthetic quartz glass used in the present invention will be described. The volatile silicon compound used in the synthesis includes a highly pure volatile silicon compound which has been chemically synthesized and purified by distillation, for example, silicon halides such as silicon tetrachloride (SiCl 4 ) and tetraethoxy. Alkoxysilanes such as silane (Si (OC 2 H 5 ) 4 ), tetramethoxysilane (Si (OCH 3 ) 4 ) and methyltrimethoxysilane (SiCH 3 (OCH 3 ) 3 ).
And other alkylalkoxysilanes are used. At this time, if a Cl-containing volatile compound such as silicon tetrachloride (SiCl 4 ) is used, chlorine remains in the synthetic quartz glass produced, which is not preferable.

【0022】そして例えば高純度のメチルトリメトキシ
シシラン(SiCH3(OCH33)を、水素流量を酸
素流量の5倍流して得られる還元性酸水素火炎中で火炎
加水分解し、得られるシリカ微粒子を回転する基体上に
堆積しつつ溶融する、いわゆる直接火炎法にて外径10
0mm、長さ800mmの合成石英ガラスインゴットを
生成した。この時インゴットに含有されるOH基濃度は赤
外分光光度法による3800cm-1の吸収強度から公知
の換算式により900ppmであることが解った。ま
た、このインゴットに含まれる水素分子濃度をラマン散
乱分光光度法にて測定したところ、含有される水素濃度
は2×1018分子/cm3 であった。使用機器は日本分
光工業製NR−1000、励起波長488nmのArレ
ーザーで出力は700mW、浜松ホトニクス社製R94
3−02ホトマルを使用し、ホトンカウンティングにて
測定を行なった。ここで、本例における水素分子濃度の
測定は、文献「Zurnal Pril;adnoi Spektroskopii Vol.4
6 No.6 pp987 to 991 June 1987」に示される方法で行っ
た。即ち、SiO2に関する波長800cm-1のラマンバンドの
強度と合成石英ガラス中に含有される水素分子に関する
4135cm-1の強度比により合成石英ガラス中の水素分子濃
度を求めるものであり、水素分子濃度Cは次の式(1)によ
り算出される。 C=k(l4135/l800)...(1) 式(1)中、l4135は、4135cm-1のラマンバンドの面積強度
である。l800は、800cm-1のラマンバンドの面積強度で
ある。kは定数で1.22×1021である。
Then, for example, it is obtained by flame hydrolysis of high-purity methyltrimethoxysilane (SiCH 3 (OCH 3 ) 3 ) in a reducing oxyhydrogen flame obtained by making the hydrogen flow rate 5 times the oxygen flow rate. An outer diameter of 10 by a so-called direct flame method in which silica fine particles are melted while being deposited on a rotating substrate.
A synthetic quartz glass ingot having a length of 0 mm and a length of 800 mm was produced. OH group concentration contained in the case ingot 3800cm by infrared spectrometry - was found to be 900ppm by known conversion equation from an absorption intensity of 1. The concentration of hydrogen molecules contained in this ingot was measured by Raman scattering spectrophotometry, and the concentration of hydrogen molecules contained was 2 × 10 18 molecules / cm 3 . The instrument used is NR-1000 manufactured by JASCO Corporation, an Ar laser with an excitation wavelength of 488 nm and an output of 700 mW, R94 manufactured by Hamamatsu Photonics.
The measurement was performed by photon counting using 3-02 Photomaru. Here, the measurement of the hydrogen molecule concentration in this example was carried out according to the literature “Zurnal Pril; adnoi Spektroskopii Vol.
6 No. 6 pp987 to 991 June 1987 ”. That is, regarding the intensity of the Raman band at a wavelength of 800 cm -1 with respect to SiO 2 and the hydrogen molecules contained in the synthetic quartz glass
The hydrogen molecule concentration in the synthetic quartz glass is obtained from the intensity ratio of 4135 cm -1 , and the hydrogen molecule concentration C is calculated by the following equation (1). C = k (l 4135 / l 800 ) ... (1) In the formula (1), l 4135 is the area intensity of the Raman band at 4135 cm −1 . l 800 is the area intensity of the Raman band at 800 cm -1 . k is a constant and is 1.22 × 10 21 .

【0023】この合成石英ガラスインゴット30の両端
に同径の石英ガラスの支持棒32を溶接し、図4に示す
均質化処理装置のチャック31、31で両端把持した。
この左右のチャック31、31の回転を同期させ、合成
石英ガラスインゴット30を所定角度往復回転させつ
つ、その端部を酸素/水素バーナー34で強加熱し溶融
帯域を形成した。溶融帯域30aが形成された後、前記
左右のチャック31、31の回転をそれぞれが相対する
方向に回転させることにより、溶融帯域30a内の石英
ガラスに周方向に練り込み力を与え混練をした。35は
チャック31を往復回転させるモ−タである。次に酸素
/水素バーナー34をゆっくりと合成石英ガラスインゴ
ット30の他端側に移動させることにより合成石英ガラ
スインゴット30全体を均質化した。均質化後、合成石
英ガラスインゴット30を支持棒32から切り放し、サ
ンプルを切り出し脈理を観察したところ、インゴットの
回転軸と垂直に見た場合の脈理は観察されたものの、イ
ンゴットの断面方向には脈理は観察されなかった。
Quartz glass support rods 32 having the same diameter were welded to both ends of this synthetic quartz glass ingot 30, and both ends were held by chucks 31 and 31 of the homogenizing apparatus shown in FIG.
The synthetic quartz glass ingot 30 was reciprocally rotated by a predetermined angle while the rotations of the left and right chucks 31, 31 were synchronized, and the end portion thereof was strongly heated by an oxygen / hydrogen burner 34 to form a melting zone. After the melting zone 30a was formed, the left and right chucks 31 and 31 were rotated in opposite directions to give a kneading force in the circumferential direction to the quartz glass in the melting zone 30a for kneading. 35 is a motor for rotating the chuck 31 back and forth. Next, the oxygen / hydrogen burner 34 was slowly moved to the other end side of the synthetic quartz glass ingot 30 to homogenize the entire synthetic quartz glass ingot 30. After the homogenization, the synthetic quartz glass ingot 30 was cut off from the support rod 32, and a sample was cut out and the striae were observed. The striae when viewed perpendicularly to the rotation axis of the ingot was observed, but in the cross-sectional direction of the ingot. No striae was observed.

【0024】この均質化を終わった合成石英ガラス体
を、グラファイト型内で窒素雰囲気下、1800℃以上の高
温で直径φ200×100の円盤に成型、取り出し後、大気雰
囲気中で1150℃×40時間保持後、-5℃/hの降温速度で除
冷し、1方向に脈理がなく使用方向の屈折率の均質性が6
33nmの波長に対するΔnで1×10-6の高均質な石英ガラス
光学部材を得た。ここに得られた石英ガラス光学部材に
含有される水素分子濃度は前記と同様なラマン分光法で
5×1017分子/cm3であった。
The homogenized synthetic quartz glass body is molded in a graphite mold in a nitrogen atmosphere at a high temperature of 1800 ° C. or higher into a disk with a diameter of 200 × 100, taken out, and then taken out in the atmosphere at 1150 ° C. × 40 hours. After holding, it is cooled at a temperature decrease rate of -5 ° C / h, and there is no striae in one direction and the homogeneity of the refractive index in the direction of use is
A highly homogeneous silica glass optical member having a Δn for the wavelength of 33 nm of 1 × 10 -6 was obtained. The hydrogen molecule concentration contained in the silica glass optical member obtained here was measured by the same Raman spectroscopy as described above.
It was 5 × 10 17 molecules / cm 3 .

【0025】この石英ガラス光学部材から30×30×50mm
3の直方体を切り出し6面全面を鏡面に研磨した試料を2
個作成し、一方を低圧水銀灯から放射される波長が184.
37nmと253.7nmの連続光を照度480μW/cm2で2週間照射し
た(試料A)。残りはそのまま試料Bとした。試料A及び
試料Bを出力5W(50mJ/cm2p,100Hz)のArFエキシマレーザ
ーで照射し、レーザーエネルギーの透過率を測定したと
ころ図1に示すように、試料Bでは照射開始直後から透
過率の低下が認められるのに対し、試料Aではこの透過
率の低下がほとんど認められなかった。
30 × 30 × 50 mm from this quartz glass optical member
A rectangular parallelepiped of 3 was cut out and 6 surfaces were polished to mirror surface
The number of light emitted from the low-pressure mercury lamp is 184.
Irradiation with continuous light of 37 nm and 253.7 nm was performed for 2 weeks at an illuminance of 480 μW / cm 2 (Sample A). The rest was sample B as it was. Sample A and sample B were irradiated with an ArF excimer laser with an output of 5 W (50 mJ / cm 2 p, 100 Hz), and the laser energy transmittance was measured. As shown in Fig. 1, sample B had a transmittance immediately after the start of irradiation. While the decrease in the transmittance was observed, in Sample A, the decrease in the transmittance was hardly observed.

【0026】「実施例2」前記と同様にメチルトリメト
キシシラン(CH3(OCHH3)3Si)を水素流量を酸素流量の3
倍流して得られる還元性酸水素火炎中で火炎加水分解
し、得られるシリカ微粒子を回転する基体上に堆積しつ
つ溶融する、前記と同様な直接火炎法にて合成石英ガラ
スインゴットを作成した。この合成石英ガラスインゴッ
トに含まれる水素濃度はラマン分光法で測定したとこ
ろ、4×1017分子/cm3であった。
Example 2 As described above, methyltrimethoxysilane (CH3 (OCHH3) 3Si) was used at a hydrogen flow rate and an oxygen flow rate of 3
A synthetic quartz glass ingot was prepared by flame hydrolysis in a reducing oxyhydrogen flame obtained by double-flowing, and melting the silica fine particles obtained while being deposited on a rotating substrate while melting, by the same direct flame method as described above. The hydrogen concentration contained in this synthetic quartz glass ingot was 4 × 10 17 molecules / cm 3 as measured by Raman spectroscopy.

【0027】次に該石英ガラスインゴットを旋盤で把持
し、前記と同様に溶融帯域法により1方向に均質化処理
を行った後、グラファイト型内で窒素雰囲気下、1800℃
以上の高温で直径φ200×100の円盤に成型、取り出し
後、大気雰囲気中で1150℃×40時間保持後、-5℃/hの降
温速度で除冷し、1方向に脈理がなく使用方向の屈折率
の均質性が633nmの波長に対するΔnで1×10-6の高均質
な石英ガラス光学部材を得た。ここに得られた石英ガラ
ス光学部材に含有される水素分子濃度はラマン分光法で
1×1017分子/cm3であった。
Next, the quartz glass ingot was held by a lathe, homogenized in one direction by the melting zone method in the same manner as described above, and then 1800 ° C. in a graphite mold in a nitrogen atmosphere.
Molded into a disc with a diameter of 200 x 100 at the above high temperature, taken out, kept in the air atmosphere at 1150 ° C for 40 hours, then cooled at a cooling rate of -5 ° C / h, and used in one direction without striae. A highly homogeneous silica glass optical member having a refractive index homogeneity of 1 × 10 -6 in Δn with respect to a wavelength of 633 nm was obtained. The hydrogen molecule concentration contained in the quartz glass optical member obtained here was measured by Raman spectroscopy.
It was 1 × 10 17 molecule / cm 3 .

【0028】この石英ガラス光学部材から30×30×50mm
3の直方体を切り出し6面全面を鏡面に研磨した試料を5
個作成し、一つを低圧水銀灯から放射される波長が184.
37nmと253.7nmの連続光を照度480μW/cm2で2週間照射し
た(試料C)。残りはそのまま試料Dとした。更にもう2
つの試料を水素雰囲気炉内で水素圧力2kgf/cm2で1000
℃、8時間処理して水素ドーピングを行った。この結果2
つの試料に於ける含有水素分子濃度はそれぞれ5×1017
分子/cm3であった。このうちの1つを実施例1の試料Aと
同様の条件で紫外線照射を行い(試料E)、残り1つはそ
のまま(試料F)、実施例1と同じ方法、条件でArFエキシ
マレーザー照射を行った。
30 × 30 × 50 mm from this quartz glass optical member
Cut out a rectangular parallelepiped of 3 and polish the entire 6 surfaces to a mirror surface.
Created individually, and one has a wavelength of 184 emitted from a low-pressure mercury lamp.
Irradiation with continuous light of 37 nm and 253.7 nm was performed for 2 weeks at an illuminance of 480 μW / cm 2 (Sample C). The rest was sample D as it was. 2 more
1000 samples with hydrogen pressure of 2kgf / cm 2 in a hydrogen atmosphere furnace
Hydrogen doping was carried out by treating at 8 ° C. for 8 hours. This result 2
Concentration of hydrogen molecules contained in each sample is 5 × 10 17
The molecule / cm 3 . One of them was irradiated with ultraviolet rays under the same conditions as in the sample A of Example 1 (Sample E), and the other one was left as it was (Sample F), and ArF excimer laser irradiation was performed under the same method and conditions as in Example 1. went.

【0029】次に前記鏡面研磨後の試料について、水素
雰囲気炉内で略50Pa(パスカル)の高圧水素ガスで
封入し、水素圧力50kgf/cm2で600℃、720時間
処理して水素ドーピングを行った。この結果該試料に於
ける含有水素分子濃度は5×1019分子/cm3であった。こ
れを実施例1の試料Aと同様の条件で紫外線照射を行い
(試料J)、実施例1と同じ方法、条件でArFエキシマレー
ザー照射を行った。
Next, the mirror-polished sample was filled with high-pressure hydrogen gas of about 50 Pa (Pascal) in a hydrogen atmosphere furnace, and treated at 600 ° C. for 720 hours at a hydrogen pressure of 50 kgf / cm 2 to perform hydrogen doping. It was The result in containing hydrogen molecule concentration in the sample was 5 × 10 1 9 molecules / cm 3. This is irradiated with ultraviolet rays under the same conditions as the sample A of Example 1.
(Sample J), ArF excimer laser irradiation was performed under the same method and conditions as in Example 1.

【0030】レーザーエネルギーの透過率を測定したと
ころ図2に示すように、試料Dでは照射開始直後から透
過率の低下が認められるのに対し、試料Cではこの透過
率の低下が認められなかった。又図3に示すように、試
料Fでは照射開始直後から透過率の低下が認められるの
に対し、試料Eではこの透過率の低下が認められなかっ
た。一方図には示さないが、資料試料Jでは試料D、Fほ
どではないにしても透過率の低下が認められることが確
認された。
When the transmittance of laser energy was measured, as shown in FIG. 2, in Sample D, a decrease in transmittance was observed immediately after the start of irradiation, whereas in Sample C, this decrease in transmittance was not observed. . Further, as shown in FIG. 3, in Sample F, a decrease in transmittance was observed immediately after the start of irradiation, whereas in Sample E, this decrease in transmittance was not observed. On the other hand, although not shown in the figure, it was confirmed that in the sample sample J, a decrease in transmittance was recognized, though not as much as samples D and F.

【0031】「実施例3」四塩化硅素を酸素水素火炎に
て火炎加水分解して得られるシリカ微粒子を回転する基
体上に堆積させ多孔質シリカ母材(スート)を作成し、こ
れを水素を含むヘリウム雰囲気下で透明ガラス化し、含
有する水素分子濃度が2×1018分子/cm3のシリカガラス
インゴットを得た。このシリカガラスインゴットを実施
例1と同じ方法で均質化、成型、アニールを行い含有さ
れる水素分子濃度が4×1017分子/cm3の石英ガラス光学
部材を得た。
[Example 3] Silica fine particles obtained by flame hydrolysis of silicon tetrachloride with an oxygen-hydrogen flame were deposited on a rotating substrate to prepare a porous silica base material (soot). Transparent vitrification was carried out in an atmosphere containing helium to obtain a silica glass ingot having a hydrogen molecule concentration of 2 × 10 18 molecules / cm 3 . The silica glass ingot was homogenized, molded and annealed in the same manner as in Example 1 to obtain a silica glass optical member having a hydrogen molecule concentration of 4 × 10 17 molecules / cm 3 .

【0032】この石英ガラス光学部材から30×30×50mm
の直方体を切り出し6面全面を鏡面に研磨した試料を3個
作成し、一つを低圧水銀灯から放射される波長が184.37
nmと253.7nmの連続光を照度480μW/cm2で2週間照射した
(試料G)。またもう1つはより出力の高い低圧水銀灯を
複数個用意しレンズで集光することにより照射エネルギ
ーを100W/cm2にして、100時間照射を行った(試料H)。
残りはそのまま試料Iとした。これらの試料を実施例1
と同様の方法、条件でArFエキシマレーザーを照射し
た。レーザーエネルギーの透過率を測定したところ、図
には示さないが、試料Hでは照射前から、試料Gでは照
射開始直後から透過率の低下が認められたのに対し、試
料Iでは透過率の低下は認められなかった。
30 × 30 × 50 mm from this quartz glass optical member
A rectangular parallelepiped was cut out, and three samples were prepared by polishing the entire 6 surfaces to mirror surfaces, one of which had a wavelength of 184.37 emitted from a low-pressure mercury lamp.
and continuous light of 253.7 nm at 480 μW / cm 2 for 2 weeks
(Sample G). On the other hand, a plurality of low-pressure mercury lamps with higher output were prepared, and the irradiation energy was set to 100 W / cm 2 by focusing with a lens, and irradiation was performed for 100 hours (Sample H).
The rest was sample I as it was. These samples were tested in Example 1
IrF excimer laser was irradiated under the same method and conditions. When the transmittance of laser energy was measured, although not shown in the figure, a decrease in transmittance was observed in Sample H before irradiation and in Sample G immediately after the start of irradiation, whereas in Sample I, decrease in transmittance was observed. Was not recognized.

【0033】[0033]

【発明の効果】以上記載の如く本発明によれば、酸水素
炎による合成石英ガラス製造時に発生する水素起因欠陥
若しくは高温水素処理によって生じる水素起因欠陥を除
去し、紫外線、特に波長193nmのArFエキシマレ
ーザー、波長213nmのYAGレーザーの5倍高調波
に対して優れた安定性を有する紫外線レーザー光学用合
成石英ガラス部材を得ることが出来、特に400℃以
上、好ましくは600℃以上の温度で水素をドープした
場合においても、容易に水素起因還元性欠陥を除去する
ことの出来る紫外線レーザー用石英ガラス光学部材を得
ることが出来る。
As described above, according to the present invention, hydrogen-induced defects generated during the production of synthetic quartz glass by an oxyhydrogen flame or hydrogen-induced defects caused by high-temperature hydrogen treatment are removed, and ultraviolet rays, especially ArF excimer having a wavelength of 193 nm is removed. It is possible to obtain a synthetic quartz glass member for ultraviolet laser optics, which has excellent stability against the laser and the fifth harmonic of the YAG laser having a wavelength of 213 nm, and particularly hydrogen at a temperature of 400 ° C or higher, preferably 600 ° C or higher. Even in the case of doping, it is possible to obtain a quartz glass optical member for an ultraviolet laser capable of easily removing hydrogen-induced reducing defects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】前記試料A、及びBにArFレーザを出力した
場合の内部透過率変化を示すグラフ図である。
FIG. 1 is a graph showing changes in internal transmittance when an ArF laser is output to the samples A and B.

【図2】前記試料C、DにArFレーザを出力した場合
の内部透過率変化を示すグラフ図である。
FIG. 2 is a graph showing changes in internal transmittance when an ArF laser is output to the samples C and D.

【図3】前記試料E、FにArFレーザを出力した場合
の内部透過率変化を示すグラフ図である。
FIG. 3 is a graph showing changes in internal transmittance when an ArF laser is output to the samples E and F.

【図4】本発明の実施例を製造するために用いた脈理除
去装置の概略図である。
FIG. 4 is a schematic view of a striae removing device used for manufacturing an embodiment of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 合成石英ガラス中に2×1017分子/cm3
上5×1019分子/cm3以下の水素を含有する工程と、 該水素ガスを含有した石英ガラス部材に波長150nmない
し300nmの範囲内の紫外線を、該石英ガラス部材の照射
表面における照度として少なくとも1μW/cm2以上、100W
/cm2以下のエネルギーで20時間以上照射する工程と、 を含むことを特徴とする紫外線レーザ用石英ガラス光学
部材の製造方法。
1. A step of containing 2 × 10 17 molecules / cm 3 or more and 5 × 10 19 molecules / cm 3 or less of hydrogen in synthetic quartz glass, and a quartz glass member containing the hydrogen gas having a wavelength of 150 nm to 300 nm. Ultraviolet rays within the range of at least 1 μW / cm 2 or more and 100 W as the illuminance on the irradiation surface of the quartz glass member.
and a step of irradiating with energy of not more than / cm 2 for 20 hours or more, and a method for producing a quartz glass optical member for an ultraviolet laser.
【請求項2】 合成石英ガラス製造時に水素を1×1018
分子/cm3以上含有させた石英ガラスを少なくとも1方向
に均質化処理した後若しくは均質化処理中において、水
素濃度を2×1017分子/cm3以上5×1019分子/cm3以下の範
囲でドープすることを特徴とする請求項1記載の紫外線
レーザ用石英ガラス光学部材の製造方法。
2. Hydrogen is produced in an amount of 1 × 10 18 during the production of synthetic quartz glass.
After homogenizing quartz glass containing at least one molecule / cm 3 in at least one direction, or during homogenizing, the hydrogen concentration is in the range of 2 × 10 17 molecules / cm 3 or more and 5 × 10 19 molecules / cm 3 or less. The method for producing a quartz glass optical member for an ultraviolet laser according to claim 1, wherein the optical element is doped with.
【請求項3】 前記ドープ工程が400℃〜1200
℃、好ましくは600〜1200℃の温度で水素を含有
せしめる高温水素ドーピング工程であることを特徴とす
る紫外線レーザ用石英ガラス光学部材の製造方法。
3. The doping step is 400.degree. C. to 1200.
A method for producing a silica glass optical member for an ultraviolet laser, which is a high temperature hydrogen doping step of containing hydrogen at a temperature of 60 ° C., preferably 600 to 1200 ° C.
【請求項4】 前記照射紫外線が低圧水銀ランプから放
射される184.9nm及び/または253.7nmの波長の発光線、
若しくは前記照射紫外線がキセノンランプまたはD2ラン
プから放射される150nm乃至300nmの波長の連続スペクト
ルであることを特徴とする特許請求項1記載の紫外線レ
ーザ用石英ガラス光学部材の製造方法。
4. An emission line having a wavelength of 184.9 nm and / or 253.7 nm in which the irradiation ultraviolet light is emitted from a low-pressure mercury lamp,
Alternatively, the method for producing a quartz glass optical member for an ultraviolet laser according to claim 1, wherein the irradiated ultraviolet rays are a continuous spectrum having a wavelength of 150 nm to 300 nm emitted from a xenon lamp or a D2 lamp.
【請求項5】 合成石英ガラス製造時に水素を含有させ
た石英ガラスを少なくとも1方向に均質化処理した後、
若しくは該均質化処理中において水素濃度が1×1017
子/cm3以上含有する石英ガラスを用いて水素ドープ処理
を行い、ドープ後の水素濃度を2×1017分子/cm3以上5×
1019分子/cm3以下の範囲に設定することを特徴とする請
求項1記載の紫外線レーザ用石英ガラス光学部材の製造
方法。
5. A quartz glass containing hydrogen during the production of synthetic quartz glass is homogenized in at least one direction,
Alternatively, during the homogenization treatment, hydrogen doping treatment is performed using quartz glass containing hydrogen at a concentration of 1 × 10 17 molecule / cm 3 or more, and the hydrogen concentration after doping is 2 × 10 17 molecule / cm 3 or more 5 ×
The method for producing a silica glass optical member for an ultraviolet laser according to claim 1, wherein the ratio is set to 10 19 molecules / cm 3 or less.
【請求項6】 還元性酸水素火炎中で火炎加水分解し、
得られるシリカ微粒子を回転する基体上に堆積しつつ溶
融する、いわゆる直接火炎法にて合成された石英ガラス
を少なくとも1方向に均質化処理した後若しくは均質化
処理中において、水素ドープ処理を行い、ドープ後の水
素濃度を2×1017分子/cm3以上5×1019分子/cm3以下の範
囲に設定することを特徴とする請求項1記載の紫外線レ
ーザ用石英ガラス光学部材の製造方法。
6. Flame hydrolysis in a reducing oxyhydrogen flame,
Melting while depositing the resulting silica fine particles on a rotating substrate, after or after homogenizing the quartz glass synthesized by a so-called direct flame method in at least one direction, hydrogen doping treatment is performed, 2. The method for producing a quartz glass optical member for an ultraviolet laser according to claim 1, wherein the hydrogen concentration after doping is set in the range of 2 × 10 17 molecule / cm 3 or more and 5 × 10 19 molecule / cm 3 or less.
【請求項7】 揮発性硅素化合物を酸素水素火炎にて火
炎加水分解して得られるシリカ微粒子を回転する基体上
に堆積させ多孔質シリカ母材(スート)を作成し、これを
水素含有雰囲気下で透明ガラス化させた石英ガラスを少
なくとも1方向に均質化処理した後若しくは均質化処理
中において、水素ドープ処理を行い、ドープ後の水素濃
度を2×1017分子/cm3以上5×1019分子/cm3以下の範囲に
設定することを特徴とする請求項1記載の紫外線レーザ
用石英ガラス光学部材の製造方法。
7. A porous silica base material (soot) is prepared by depositing silica fine particles obtained by flame hydrolysis of a volatile silicon compound with an oxygen-hydrogen flame onto a rotating substrate, which is prepared in a hydrogen-containing atmosphere. After homogenizing the quartz glass transparentized in at least one direction or during the homogenizing treatment, hydrogen doping treatment is performed, and the hydrogen concentration after doping is 2 × 10 17 molecule / cm 3 or more 5 × 10 19 The method for producing a quartz glass optical member for an ultraviolet laser according to claim 1, wherein the molecular weight is set to a range of not more than molecule / cm 3 .
【請求項8】 前記石英ガラス光学部材が、波長193
nmのArFエキシマレーザ若しくは波長213nmの
YAGレーザの5倍高調波を光源とする光学系に用いら
れる光学用合成石英ガラス部材であることを特徴とする
請求項1記載の紫外線レーザ用石英ガラス光学部材の製
造方法。
8. The quartz glass optical member has a wavelength of 193
A quartz glass optical member for an ultraviolet laser according to claim 1, which is a synthetic quartz glass member for optics used in an optical system using a 5th harmonic of an ArF excimer laser having a wavelength of 213 nm or a YAG laser having a wavelength of 213 nm as a light source. Manufacturing method.
JP30643895A 1995-10-31 1995-10-31 Method for producing quartz glass optical member for ultraviolet laser Expired - Lifetime JP3674793B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30643895A JP3674793B2 (en) 1995-10-31 1995-10-31 Method for producing quartz glass optical member for ultraviolet laser
PCT/EP1996/004746 WO1997016382A1 (en) 1995-10-31 1996-10-31 Process for producing quartz glass optical body for ultraviolet-emitting lasers and quartz glass body produced according to the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30643895A JP3674793B2 (en) 1995-10-31 1995-10-31 Method for producing quartz glass optical member for ultraviolet laser

Publications (2)

Publication Number Publication Date
JPH09124337A true JPH09124337A (en) 1997-05-13
JP3674793B2 JP3674793B2 (en) 2005-07-20

Family

ID=17957016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30643895A Expired - Lifetime JP3674793B2 (en) 1995-10-31 1995-10-31 Method for producing quartz glass optical member for ultraviolet laser

Country Status (2)

Country Link
JP (1) JP3674793B2 (en)
WO (1) WO1997016382A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0879799A3 (en) * 1997-05-16 1999-07-21 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6333283B1 (en) 1997-05-16 2001-12-25 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6578382B2 (en) 2000-03-29 2003-06-17 Heraeus Quarzglas Gmbh & Co. Kg Synthetic quartz glass for optical use, heat treatment method and heat treatment apparatus for the same
JP2009078968A (en) * 2008-11-04 2009-04-16 Shinetsu Quartz Prod Co Ltd METHOD OF MANUFACTURING SYNTHETIC QUARTZ GLASS MEMBER FOR ArF EXCIMER LASER LITHOGRAPHY
WO2014080840A1 (en) * 2012-11-20 2014-05-30 Hoya株式会社 Mask blank, transfer mask, method for producing mask blank, method for producing transfer mask, and method for manufacturing semiconductor device
US9603775B2 (en) 2013-04-24 2017-03-28 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
WO2018198774A1 (en) 2017-04-26 2018-11-01 東ソ-・エスジ-エム株式会社 Ultraviolet-resistant quartz glass and method for manufacturing same
KR20190135013A (en) 2017-04-26 2019-12-05 토소 에스지엠 가부시키가이샤 UV-resistant quartz glass and its manufacturing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052879A1 (en) * 1997-05-20 1998-11-26 Heraeus Quarzglas Gmbh Synthetic silica glass used with uv-rays and method producing the same
KR100554091B1 (en) 1997-12-08 2006-05-16 가부시키가이샤 니콘 Manufacture method of quartz glass with improved excimer laser resistance and quartz glass member
JP2000143258A (en) 1998-09-10 2000-05-23 Shinetsu Quartz Prod Co Ltd PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
JP4601022B2 (en) * 1999-03-04 2010-12-22 信越石英株式会社 Synthetic quartz glass member for ArF excimer laser lithography
JP4051805B2 (en) * 1999-03-25 2008-02-27 旭硝子株式会社 Exposure apparatus and photomask
KR100694554B1 (en) * 1999-03-25 2007-03-13 아사히 가라스 가부시키가이샤 Synthetic quartz glass for optical member, process for producing the same, and method of using the same
JP4462720B2 (en) * 2000-06-06 2010-05-12 信越石英株式会社 Heat treatment method for optical synthetic quartz glass
JP4107905B2 (en) * 2002-07-31 2008-06-25 信越石英株式会社 Synthetic silica glass optical material for YAG laser harmonics
JP2006219309A (en) * 2005-02-08 2006-08-24 Asahi Glass Co Ltd Method and apparatus for producing porous quartz glass preform
US20070049482A1 (en) * 2005-08-11 2007-03-01 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass substrate for excimer lasers and making method
CN111018329B (en) * 2019-12-23 2022-09-23 中国工程物理研究院核物理与化学研究所 Preparation and curing method of optical component/optical material color center

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143844A (en) * 1985-12-13 1987-06-27 Furukawa Electric Co Ltd:The Treatment of light-transmitting material
DE69015453T3 (en) * 1989-06-09 2001-10-11 Heraeus Quarzglas Optical parts and blanks made of synthetic silicon dioxide glass and process for their production.
US5410428A (en) * 1990-10-30 1995-04-25 Shin-Etsu Quartz Products Co. Ltd. Optical member made of high-purity and transparent synthetic silica glass and method for production thereof or blank thereof
JP2821074B2 (en) * 1992-11-30 1998-11-05 信越石英株式会社 Manufacturing method of optical member for UV resistant laser

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0879799A3 (en) * 1997-05-16 1999-07-21 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US5983673A (en) * 1997-05-16 1999-11-16 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6333283B1 (en) 1997-05-16 2001-12-25 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6709997B2 (en) 1997-05-16 2004-03-23 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6578382B2 (en) 2000-03-29 2003-06-17 Heraeus Quarzglas Gmbh & Co. Kg Synthetic quartz glass for optical use, heat treatment method and heat treatment apparatus for the same
JP2009078968A (en) * 2008-11-04 2009-04-16 Shinetsu Quartz Prod Co Ltd METHOD OF MANUFACTURING SYNTHETIC QUARTZ GLASS MEMBER FOR ArF EXCIMER LASER LITHOGRAPHY
WO2014080840A1 (en) * 2012-11-20 2014-05-30 Hoya株式会社 Mask blank, transfer mask, method for producing mask blank, method for producing transfer mask, and method for manufacturing semiconductor device
JP5753324B2 (en) * 2012-11-20 2015-07-22 Hoya株式会社 Mask blank, transfer mask, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method
US9625807B2 (en) 2012-11-20 2017-04-18 Hoya Corporation Mask blank, transfer mask, method of manufacturing a mask blank, method of manufacturing a transfer mask and method of manufacturing a semiconductor device
US9603775B2 (en) 2013-04-24 2017-03-28 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
WO2018198774A1 (en) 2017-04-26 2018-11-01 東ソ-・エスジ-エム株式会社 Ultraviolet-resistant quartz glass and method for manufacturing same
KR20190135013A (en) 2017-04-26 2019-12-05 토소 에스지엠 가부시키가이샤 UV-resistant quartz glass and its manufacturing method

Also Published As

Publication number Publication date
JP3674793B2 (en) 2005-07-20
WO1997016382A1 (en) 1997-05-09

Similar Documents

Publication Publication Date Title
JP3674793B2 (en) Method for producing quartz glass optical member for ultraviolet laser
JP4453939B2 (en) Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
KR20010039472A (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP4170719B2 (en) Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member
JP2588447B2 (en) Method of manufacturing quartz glass member for excimer laser
JP2010184860A (en) Method for producing synthetic quartz glass for excimer laser
JP4493060B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP2001019465A (en) Synthetic quartz glass member for excimer laser and its production
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP4193358B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP4011217B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JP3531870B2 (en) Synthetic quartz glass
JP3071362B2 (en) Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2000290026A (en) Optical quartz glass member for excimer laser
JP4191935B2 (en) Method for producing synthetic quartz glass member for excimer laser
JP4453936B2 (en) Manufacturing method of optical member for excimer laser
JP2001247318A (en) Synthesized silica glass optical member ahd method for producing the same
JP4085490B2 (en) Synthetic quartz glass for optical members and manufacturing method thereof
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050421

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term