JP2012007767A - Double tube for heat exchanger - Google Patents

Double tube for heat exchanger Download PDF

Info

Publication number
JP2012007767A
JP2012007767A JP2010142240A JP2010142240A JP2012007767A JP 2012007767 A JP2012007767 A JP 2012007767A JP 2010142240 A JP2010142240 A JP 2010142240A JP 2010142240 A JP2010142240 A JP 2010142240A JP 2012007767 A JP2012007767 A JP 2012007767A
Authority
JP
Japan
Prior art keywords
tube
inner tube
double
pipe
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010142240A
Other languages
Japanese (ja)
Inventor
Shinichi Matsuda
眞一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2010142240A priority Critical patent/JP2012007767A/en
Priority to PCT/JP2011/063870 priority patent/WO2011162170A1/en
Publication of JP2012007767A publication Critical patent/JP2012007767A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section

Abstract

PROBLEM TO BE SOLVED: To provide a double tube for a heat exchanger, wherein the double tube can be used without generating noise during operation and has a structure exhibiting excellent heat exchange performance.SOLUTION: The double tube 1 for a heat exchanger has a double tube configuration having an inner tube 2 disposed within an outer tube 10, and is used for heat exchange between a fluid flowing inside the inner tube 2 and a fluid flowing between the inner tube 2 and the outer tube 10. The inner tube 2 has a shape, in which the apex parts 21 of a triangle are formed as circular arc curved surfaces in a cross-sectional shape and the positions of the apex parts 21 are helically displaced in the longitudinal direction. The the outer tube 10 has a shape of a smooth tube, in which a cross-sectional shape has a circular shape. The inner peripheral surface of the outer tube 10 and the apex parts 21 of the inner tube 2 are in contact with each other, and outer flow paths 31 which are divided in three segments in the circumferential direction are formed between the outer tube 10 and the inner tube 2. The inner tube 2 and the outer tube 10 preferably consist of an aluminum alloy or a copper alloy.

Description

本発明は、例えば自動車用空調装置などの熱交換サイクルに適用可能な熱交換器用二重管に関する。   The present invention relates to a double tube for a heat exchanger that can be applied to a heat exchange cycle such as an air conditioner for an automobile.

自動車用空調装置などの熱交換サイクル(冷凍サイクルともいう)は、凝縮器、蒸発器、圧縮機及び膨張弁を備え、これらを連結する循環経路に、フロン、CO2、アンモニアなどの冷媒を循環させるシステムである。かかる熱交換サイクルにおいて、循環経路中に二重管を配置し、当該二重管によって構成される二層の空間に、凝縮器から出てくる高温冷媒と、蒸発器から出てくる低温冷媒とを対向して流して熱交換することにより、熱交換性能を向上させることが提案されている(特許文献1、2参照)。 A heat exchange cycle (also referred to as a refrigeration cycle) such as an air conditioner for automobiles includes a condenser, an evaporator, a compressor, and an expansion valve, and a refrigerant such as CFC, CO 2 , and ammonia is circulated in a circulation path connecting them. It is a system to let you. In such a heat exchange cycle, a double pipe is disposed in the circulation path, and a high-temperature refrigerant coming out of the condenser and a low-temperature refrigerant coming out of the evaporator are disposed in a two-layer space constituted by the double pipe. It has been proposed that the heat exchange performance is improved by flowing the gas in the opposite direction to exchange heat (see Patent Documents 1 and 2).

一方、熱交換サイクルにおいて使用される冷媒としては、環境問題に対応するために、より地球温暖化係数の低い冷媒が検討されている。これらの環境問題を考慮した冷媒は、現行の冷媒に比べ熱交換性能が低下することが懸念されている。このため、熱交換サイクル全体の性能劣化を抑制するためには、装置構成として、上記の二重管を組み込むことにより熱交換性能をより向上させた構成を積極的に採用することが有効である。   On the other hand, as a refrigerant used in the heat exchange cycle, a refrigerant having a lower global warming potential has been studied in order to cope with environmental problems. There is a concern that the refrigerant considering these environmental problems has lower heat exchange performance than the current refrigerant. For this reason, in order to suppress the performance deterioration of the entire heat exchange cycle, it is effective to positively adopt a configuration in which the heat exchange performance is further improved by incorporating the above-described double pipe as the device configuration. .

蒸発器から排出された気体冷媒を圧縮機で圧縮するシステムの場合には、冷媒が十分に気化しきれない状態(液体が混入している状態)で圧縮機に流入すると熱交換できないという不具合を、上記二重管を組み込むことによって解消することができる。つまり、上記二重管において、圧縮機に流入させる前の冷媒を加熱することができ、冷媒を十分に気化させることができる。
これまで提案された二重管としては、その内管として、熱交換性能を向上させるためにねじり管がよく用いられる(特許文献1、2参照)。
In the case of a system that compresses the gaseous refrigerant discharged from the evaporator with a compressor, the problem is that heat cannot be exchanged if the refrigerant flows into the compressor in a state where the refrigerant cannot be sufficiently vaporized (liquid is mixed). The problem can be solved by incorporating the double pipe. That is, in the double pipe, the refrigerant before flowing into the compressor can be heated, and the refrigerant can be sufficiently vaporized.
As the double pipes proposed so far, torsion pipes are often used as the inner pipes in order to improve heat exchange performance (see Patent Documents 1 and 2).

特開2002−318015号公報Japanese Patent Laid-Open No. 2002-318015 特開2006−162241号公報JP 2006-162241 A

特許文献2は、らせん状に溝部を形成した内管と平滑外管を組み合わせたものであって、内管の外径よりも外管の内径を大きくしたものである。しかしながら、この構造では、少なくとも二重管の直線部分では内管と外管が接していないか1箇所のみでしか接していないため、熱交換システムの運転時の振動により騒音が発生するという問題がある。   Patent Document 2 is a combination of an inner tube having a spiral groove portion and a smooth outer tube, wherein the inner diameter of the outer tube is larger than the outer diameter of the inner tube. However, in this structure, since the inner tube and the outer tube are not in contact with each other at least in a straight portion of the double tube or only in one place, noise is generated due to vibration during operation of the heat exchange system. is there.

特許文献1には、熱交換サイクルに二重管構造を用いることが示され、かつ、内管の外周面または前記外管の内周面に螺旋状の溝部が形成されていることが示されているものの、それ以上の具体的な二重管の構造に関してはほとんど開示がなされていない。   Patent Document 1 shows that a double tube structure is used for a heat exchange cycle, and that an outer peripheral surface of the inner tube or an inner peripheral surface of the outer tube is formed with a spiral groove. However, there is almost no disclosure regarding the specific structure of the double tube beyond that.

本発明は、かかる背景に鑑みてなされたものであって、運転時において騒音を発することなく使用でき、かつ、優れた熱交換性能を発揮しうる構造を有する熱交換器用二重管を提供しようとするものである。   The present invention has been made in view of such a background, and is intended to provide a double tube for a heat exchanger having a structure that can be used without generating noise during operation and can exhibit excellent heat exchange performance. It is what.

本発明は、外管の内部に内管を配置してなる二重管構造を有し、上記内管の内側を流れる流体と、上記内管と上記外管の間を流れる流体との間の熱交換を行うための熱交換器用二重管であって、
上記内管は、断面形状が三角形の頂点部分を円弧状曲面とした形状を呈し、かつ、上記頂点部分の位置が長手方向において螺旋状に変位した形状を有しており、
上記外管は、断面形状が円形状の平滑管形状を呈しており、
該外管の内周面と上記内管の上記頂点部分とが接しており、上記外管と上記内管との間には周方向3箇所に区画された外側流路が形成されていることを特徴とする熱交換器用二重管にある(請求項1)。
The present invention has a double tube structure in which an inner tube is disposed inside an outer tube, and is between a fluid flowing inside the inner tube and a fluid flowing between the inner tube and the outer tube. A heat exchanger double pipe for performing heat exchange,
The inner tube has a shape in which the cross-sectional shape is a triangular arcuate curved portion, and the position of the apex portion is helically displaced in the longitudinal direction,
The outer tube has a smooth tube shape with a circular cross-sectional shape,
The inner peripheral surface of the outer tube and the apex portion of the inner tube are in contact with each other, and an outer flow path partitioned in three circumferential directions is formed between the outer tube and the inner tube. It is in the double pipe for heat exchangers characterized by these (Claim 1).

本発明の熱交換器用二重管は、上記のごとく、特殊な形状を呈する螺旋状にねじった内管と、円形状の平滑管よりなる外管とから構成されている。そして、内管の3つの上記頂点部分が外管の内周面に接している。これにより、上記内管と外管との間は、上記のごとく、内管の3つの頂点部分によって周方向3箇所に区画された外側流路となり、各外側流路は螺旋状に形成されたものとなる。   As described above, the double pipe for heat exchanger of the present invention is composed of an inner pipe twisted in a spiral shape having a special shape and an outer pipe made of a circular smooth tube. The three apex portions of the inner tube are in contact with the inner peripheral surface of the outer tube. Thereby, between the inner pipe and the outer pipe, as described above, the outer flow path is divided into three places in the circumferential direction by the three apex portions of the inner pipe, and each outer flow path is formed in a spiral shape. It will be a thing.

また、上記内管の内部も、螺旋状にねじれた外壁を有する内側流路となる。それ故、上記二重管の各外側流路と内側流路にそれぞれ流体(冷媒)を流せば、両流路において流体(冷媒)が適度に乱流を起こしながら流れ、効率よく熱交換することができる。   Further, the inside of the inner tube also becomes an inner flow path having an outer wall twisted in a spiral shape. Therefore, if a fluid (refrigerant) flows through each of the outer and inner channels of the double pipe, the fluid (refrigerant) flows in both channels while causing moderate turbulence and efficiently exchanges heat. Can do.

また、上記二重管は、上記内管と外管とが接して一体化している。そのため、上記二重管を組み込んだ熱交換サイクルを運転した際に振動が生じても、上記二重管において内管と外管が衝突して騒音が生じることを確実に防止することができる。   The double pipe is integrated with the inner pipe and the outer pipe in contact with each other. Therefore, even if vibration occurs when operating the heat exchange cycle in which the double pipe is incorporated, it is possible to reliably prevent noise from being generated due to collision between the inner pipe and the outer pipe in the double pipe.

このように、本発明によれば、運転時において騒音を発することなく使用でき、かつ、優れた熱交換性能を発揮しうる構造を有する熱交換器用二重管を提供することができる。   Thus, according to the present invention, it is possible to provide a double tube for a heat exchanger that can be used without generating noise during operation and has a structure that can exhibit excellent heat exchange performance.

実施例1における、二重管の外管のみを示す横断面図。FIG. 3 is a cross-sectional view showing only the outer pipe of the double pipe in the first embodiment. 実施例1における、二重管の内管のみを示す横断面図。FIG. 3 is a cross-sectional view showing only the inner pipe of the double pipe in the first embodiment. 実施例1における、二重管の横断面図。FIG. 2 is a cross-sectional view of a double pipe in Example 1. 実施例1における、二重管形成前の内管及び外管を示す説明図。Explanatory drawing which shows the inner tube | pipe and the outer tube | pipe before Example 2 in Example 1.

上記熱交換器用二重管において、上記内管及び上記外管は、アルミニウム合金あるいは銅合金よりなることが好ましい(請求項2)。ここでいうアルミニウム合金とは、純アルミニウムを含み、アルミニウムを主体とする合金全般を示す。また、銅合金とは、純銅を含み、銅を主体とする合金全般を示す。これらの金属材料は、比較的熱伝達特性に優れており、熱交換性能向上に有効である。また、軽量化を加味すれば、アルミニウム合金を用いることが最も好ましい。   In the double pipe for heat exchanger, the inner pipe and the outer pipe are preferably made of an aluminum alloy or a copper alloy. The aluminum alloy here refers to all alloys including pure aluminum and mainly composed of aluminum. The copper alloy refers to all alloys including pure copper and mainly copper. These metal materials are relatively excellent in heat transfer characteristics and are effective in improving heat exchange performance. In view of weight reduction, it is most preferable to use an aluminum alloy.

材質としてアルミニウム合金を選択する場合には、純アルミニウム(A1050、A1100)、アルミニウム合金(A3003、A6063)等が好ましい。銅を選択する場合には、純銅のりん脱酸銅や、熱伝導性の高い銅合金などがある。
なお材質としては、加工性の良好なものが望ましいが、耐食性や強度が必要な場合にはこれらの材質に限定されることはない。
When an aluminum alloy is selected as the material, pure aluminum (A1050, A1100), aluminum alloy (A3003, A6063), or the like is preferable. When copper is selected, there are pure copper phosphorous deoxidized copper, copper alloy with high thermal conductivity, and the like.
In addition, although a material with favorable workability is desirable as a material, when corrosion resistance and intensity | strength are required, it is not limited to these materials.

また、上記内管の上記螺旋状の変位の軸方向に対する角度が30〜60度の範囲にあることが好ましい(請求項3)。上記角度が上記範囲よりも小さい場合には、流体を流す場合の圧損を低減できる一方、乱流効果が少なく熱交換性能向上効果が小さくなるおそれがある。また、上記角度が上記範囲よりも大きい場合には、逆に、流体を流す場合の乱流効果を高めて熱交換性能向上効果を高めることができる一方、圧損が大きくなりすぎるおそれがある。   Moreover, it is preferable that the angle with respect to the axial direction of the said helical displacement of the said inner tube exists in the range of 30-60 degrees (Claim 3). When the angle is smaller than the above range, the pressure loss in flowing the fluid can be reduced, while the turbulent flow effect is small and the heat exchange performance improving effect may be reduced. On the other hand, when the angle is larger than the above range, the effect of improving the heat exchange performance can be enhanced by increasing the turbulent flow effect when flowing the fluid, while the pressure loss may be excessively increased.

また、上記二重管を製造するに当たっては、以下のような方法をとることができる。
まず、上記内管は、上記所望の螺旋形状に対応した形状の内孔を有するダイスを自由回転させながら、素材となる断面円形の平滑管を直線的に引き抜き加工することにより作製することができる。なお、この内管の加工方法としては、ダイスを回転させない加工方法など、その他の加工方法を採用することも可能である。
Moreover, when manufacturing the said double tube, the following methods can be taken.
First, the inner tube can be produced by linearly drawing a smooth tube having a circular cross section as a material while freely rotating a die having an inner hole having a shape corresponding to the desired spiral shape. . As the inner tube processing method, other processing methods such as a processing method in which the die is not rotated may be employed.

また、上記外管は、上記内管の外径よりも大きい内径を有する断面円形の平滑管を素材として用いる。この外管用素材に成形後の上記内管を挿入して、二重管構造とする。次に、この二重管構造のまま、上記外管用素材を縮径引き抜き加工する。これにより、上記内管の円弧状の頂点部先端と外管の内面とを強く当接させることができ、両者が一体化した上記二重管を得ることができる。   The outer tube uses a smooth tube with a circular cross section having an inner diameter larger than the outer diameter of the inner tube as a material. The molded inner pipe is inserted into the outer pipe material to form a double pipe structure. Next, the outer tube material is subjected to reduced diameter drawing while maintaining the double tube structure. As a result, the tip of the arcuate apex of the inner tube and the inner surface of the outer tube can be brought into strong contact, and the double tube in which both are integrated can be obtained.

上記二重管の両端部分については、上記内管の内側流路と、上記内管と外管との間の外側流路にそれぞれ配管が接続されることとなるが、これらの接続構造は、特に限定されるものではなく、種々の構造、種々の接合方法を採用できる。接合方法としては、例えば、かしめ接合法、ろう付け接合、接着接合、摩擦撹拌接合などがある。   For both ends of the double pipe, pipes will be connected to the inner flow path of the inner pipe and the outer flow path between the inner pipe and the outer pipe, respectively. It is not particularly limited, and various structures and various joining methods can be employed. Examples of the joining method include caulking joining method, brazing joining, adhesive joining, and friction stir welding.

また、上記二重管のサイズは、適用する熱交換サイクルの冷媒の流量などに応じて、適宜設計することができる。また、肉厚については、例えば二重管の材質をアルミニウム合金とした場合には、A1050を用いた場合には内管の肉厚は1.0〜1.5mm、外管の肉厚は1.2〜1.8mm、A3003を用いた場合には内管の肉厚は0.8〜1.2mm、外管の肉厚は1.0〜1.5mm、A6063を用いた場合には内管の肉厚は0.6〜1mm、外管の肉厚は0.8〜1.5mm程度にすることが好ましい。この範囲に設定すれば、上記二重管を曲げ加工する場合の加工が比較的容易であると共に、曲げ加工時に座屈することを抑制することができる。
同様の理由により、りん脱酸銅を用いた場合には内管の肉厚は0.6〜1.0mm、外管の肉厚は0.8〜1.5mm、が適当である。
Moreover, the size of the double pipe can be appropriately designed according to the flow rate of the refrigerant in the heat exchange cycle to be applied. As for the wall thickness, for example, when the material of the double tube is an aluminum alloy, when A1050 is used, the wall thickness of the inner tube is 1.0 to 1.5 mm, and the wall thickness of the outer tube is 1. When using A3003, the inner tube thickness is 0.8 to 1.2 mm, and the outer tube thickness is 1.0 to 1.5 mm. When A6063 is used, the inner tube thickness is 0.8 to 1.2 mm. The thickness of the tube is preferably 0.6 to 1 mm, and the thickness of the outer tube is preferably about 0.8 to 1.5 mm. If it sets to this range, while the said double pipe is bent, the process will be comparatively easy and it can suppress buckling at the time of a bending process.
For the same reason, when phosphorus deoxidized copper is used, it is appropriate that the inner tube has a thickness of 0.6 to 1.0 mm and the outer tube has a thickness of 0.8 to 1.5 mm.

(実施例1)
本発明の熱交換器用二重管につき、図1〜図4を用いて説明する。
本例の二重管1は、図3に示すごとく、外管10の内部に内管2を配置してなる二重管構造を有し、内管2の内側を流れる流体と、内管2と外管10の間を流れる流体との間の熱交換を行うための熱交換器用二重管である。
(Example 1)
The double pipe for heat exchangers of the present invention will be described with reference to FIGS.
As shown in FIG. 3, the double pipe 1 of this example has a double pipe structure in which an inner pipe 2 is disposed inside an outer pipe 10, and a fluid flowing inside the inner pipe 2 and an inner pipe 2. It is a double tube for heat exchangers for performing heat exchange between the fluid flowing between the outer tube 10 and the outer tube 10.

内管2は、図2、図4に示すごとく、断面形状が三角形の頂点部分21を円弧状曲面とした形状を呈している。さらに、図4に示すごとく、内管2は、頂点部分21の位置が長手方向において螺旋状に変位した形状を有している。
外管10は、図1、図4に示すごとく、断面形状が円形状の平滑管形状を呈している。
そして、図3に示すごとく、外管10の内周面と内管2の頂点部分21とが接しており、外管10と内管2との間には周方向3箇所に区画された外側流路31が形成されている。
As shown in FIGS. 2 and 4, the inner tube 2 has a shape in which the apex portion 21 whose cross-sectional shape is a triangle is an arcuate curved surface. Furthermore, as shown in FIG. 4, the inner tube 2 has a shape in which the position of the apex portion 21 is helically displaced in the longitudinal direction.
As shown in FIGS. 1 and 4, the outer tube 10 has a smooth tube shape with a circular cross section.
As shown in FIG. 3, the inner peripheral surface of the outer tube 10 and the apex portion 21 of the inner tube 2 are in contact with each other, and the outer tube 10 and the inner tube 2 are separated from each other in three circumferential directions. A flow path 31 is formed.

上記二重管1は、次のようにして作製した。
まず、素材として、材質A3003からなる外径10mmφ、肉厚1.0mm、長さ500mmの、断面円形状の押出平滑管を2本準備した。そのうち1本を内管用素材として用い、両端から100mmを内径8mmφのダイスに通し、縮径加工を行い、引き抜き加工の前処理を実施した。
The double tube 1 was produced as follows.
First, two extruded smooth tubes having an outer diameter of 10 mmφ, a thickness of 1.0 mm, and a length of 500 mm made of material A3003 were prepared as materials. One of them was used as a material for an inner tube, 100 mm from both ends was passed through a die having an inner diameter of 8 mmφ, diameter reduction processing was performed, and pretreatment for drawing processing was performed.

次に、所望の外形状に対応した螺旋状の内孔を有するダイスを用い、その内孔に上記内管用素材の縮径加工済みの先端部を通し、ダイスを自由回転可能な状態にして内管用素材を真っ直ぐに引き抜くことにより上記内管2を成形した。得られた内管2は、図2に示すごとく、軸方向に直交する横断面形状は、どこの位置において略三角形状であって、3つの頂点部分21が円弧状曲面となっている。また各頂点部分21の間の部分は、頂点部分21よりも曲率半径の大きな円弧状曲面となっている。   Next, a die having a spiral inner hole corresponding to the desired outer shape is used, and the inner diameter of the inner tube material is passed through the inner hole so that the die can be freely rotated. The inner pipe 2 was formed by straightly pulling out the pipe material. As shown in FIG. 2, the obtained inner tube 2 has a cross-sectional shape orthogonal to the axial direction that is approximately triangular at any position, and the three apex portions 21 are arc-shaped curved surfaces. Further, the portion between the vertex portions 21 is an arcuate curved surface having a radius of curvature larger than that of the vertex portion 21.

また、同図に示すごとく、内管2の横断面面を軸方向に見ると、上記の略三角形の断面形状の内側には、これに内接する円形状の境界線26が見え、断面形状の外側には、これに外接する円形状の境界線27が見える。これらの境界線26、27は、内管2が螺旋状にねじれていることによって、各部の最小径部及び最大径部が周方向に変位するために生じるものである。境界線26の直径d1は5mm、境界線27の直径d2は8mmである。また、図4に示すごとく、得られた内管2の螺旋状の変位の方向bの軸方向aに対する角度αはおよそ30°である。   Further, as shown in the figure, when the cross-sectional surface of the inner tube 2 is viewed in the axial direction, a circular boundary line 26 inscribed in the substantially triangular cross-sectional shape is seen inside the cross-sectional shape, and On the outside, a circular boundary line 27 circumscribing this can be seen. These boundary lines 26 and 27 are generated because the minimum diameter portion and the maximum diameter portion of each portion are displaced in the circumferential direction due to the spiral twist of the inner tube 2. The diameter d1 of the boundary line 26 is 5 mm, and the diameter d2 of the boundary line 27 is 8 mm. Further, as shown in FIG. 4, the angle α of the direction b of the helical displacement of the inner tube 2 obtained with respect to the axial direction a is approximately 30 °.

次に、図4に示すごとく、残りの1本の押出平滑管を外管用素材(以下、単に外管10という)として用い、その中に上記内管2を挿入して二重管構造とする。この状態では、外管10の内径と内管2の外径との間に差がある。そのため、外管10を、内径9mmの円形の内孔を有するダイスに通し、外管10を縮径加工することにより、外管10と内管2とを接合して一体化する。
これにより、本例の二重管1が得られる。
Next, as shown in FIG. 4, the remaining one extruded smooth tube is used as a material for an outer tube (hereinafter simply referred to as an outer tube 10), and the inner tube 2 is inserted therein to form a double tube structure. . In this state, there is a difference between the inner diameter of the outer tube 10 and the outer diameter of the inner tube 2. Therefore, the outer tube 10 and the inner tube 2 are joined and integrated by passing the outer tube 10 through a die having a circular inner hole having an inner diameter of 9 mm and reducing the diameter of the outer tube 10.
Thereby, the double pipe 1 of this example is obtained.

二重管1は、上記のごとく、特殊な形状を呈する螺旋状にねじった内管2と、円形状の平滑管よりなる外管10とから構成されている。そして、内管の3つの頂点部分21が外管10の内周面に接している。これにより、内管2と外管10との間は、内管2の3つの頂点部分21によって周方向3箇所に区画された外側流路となり、各外側流路31は螺旋状に形成されたものとなる。   As described above, the double tube 1 includes the inner tube 2 twisted in a spiral shape having a special shape and the outer tube 10 formed of a circular smooth tube. The three apex portions 21 of the inner tube are in contact with the inner peripheral surface of the outer tube 10. Thereby, between the inner pipe 2 and the outer pipe 10, it becomes the outer side flow path divided by the three vertex parts 21 of the inner pipe 2 in the circumferential direction three places, and each outer flow path 31 was formed in the helical form. It will be a thing.

また、内管2の内部も、螺旋状にねじれた外壁を有する内側流路32となる。それ故、二重管1の各外側流路31と内側流路32にそれぞれ流体(冷媒)を流せば、両流路において流体が適度に乱流を起こしながら流れ、効率よく熱交換することができる。   Further, the inside of the inner tube 2 also becomes an inner flow path 32 having an outer wall twisted in a spiral shape. Therefore, if a fluid (refrigerant) is caused to flow in each of the outer flow path 31 and the inner flow path 32 of the double pipe 1, the fluid flows in both flow paths while causing moderate turbulence, and heat can be exchanged efficiently. it can.

また、二重管1は、内管2と外管10とが接して一体化している。そのため、二重管1を組み込んだ熱交換サイクルを運転した際に振動が生じても、二重管1において内管2と外管20が衝突して騒音が生じることを確実に防止することができる。
このように、本例によれば、運転時において騒音を発することなく使用でき、かつ、優れた熱交換性能を発揮しうる構造を有する熱交換器用二重管1を提供することができる。
The double pipe 1 is integrated with the inner pipe 2 and the outer pipe 10 in contact with each other. Therefore, even if vibration occurs when the heat exchange cycle incorporating the double pipe 1 is operated, the inner pipe 2 and the outer pipe 20 collide with each other in the double pipe 1 to reliably prevent noise. it can.
Thus, according to this example, it is possible to provide the double pipe 1 for a heat exchanger that can be used without generating noise during operation and has a structure that can exhibit excellent heat exchange performance.

1 熱交換器用二重管
10 外管
2 内管
21 頂点部分
31 外側流路
DESCRIPTION OF SYMBOLS 1 Double pipe for heat exchangers 10 Outer pipe 2 Inner pipe 21 Apex part 31 Outer flow path

本発明は、外管の内部に内管を配置してなる二重管構造を有し、上記内管の内側を流れる流体と、上記内管と上記外管の間を流れる流体との間の熱交換を行うための熱交換器用二重管であって、
上記内管は、ダイスの内孔に素材となる断面円形の平滑管を通して上記ダイスを回転させながら直線的に引き抜き加工することにより作製してなり、断面形状が三角形の頂点部分を円弧状曲面とした形状であって上記頂点部分の間の部分を該頂点部分よりも曲率半径の大きな円弧状曲面とした形状を呈し、かつ、上記頂点部分の位置が長手方向において螺旋状に変位した形状を有しており、
上記外管は、断面形状が円形状の平滑管形状を呈しており、
上記外管と上記内管とは、外管用素材に上記内管を挿入して二重管構造とした後、上記外管用素材を縮径引き抜き加工することにより、上記内管の上記頂点部分と上記外管の内面とを当接させており、上記外管と上記内管との間には周方向3箇所に区画された外側流路が形成されていることを特徴とする熱交換器用二重管にある(請求項1)。
The present invention has a double tube structure in which an inner tube is disposed inside an outer tube, and is between a fluid flowing inside the inner tube and a fluid flowing between the inner tube and the outer tube. A heat exchanger double pipe for performing heat exchange,
The inner tube is produced by drawing straightly while rotating the die through a smooth tube having a circular cross section as a raw material in the inner hole of the die, and the apex portion having a triangular cross-sectional shape is an arcuate curved surface. The shape between the apex portions is an arcuate curved surface having a larger radius of curvature than the apex portion, and the apex portion position is helically displaced in the longitudinal direction. And
The outer tube has a smooth tube shape with a circular cross-sectional shape,
The outer tube and the inner tube are formed as a double tube structure by inserting the inner tube into the outer tube material, and then the outer tube material is reduced in diameter so that the apex portion of the inner tube An outer flow path partitioned into three circumferential directions is formed between the outer tube and the inner tube, and the inner surface of the outer tube is in contact with the inner surface of the outer tube. It exists in a heavy pipe (Claim 1).

Claims (3)

外管の内部に内管を配置してなる二重管構造を有し、上記内管の内側を流れる流体と、上記内管と上記外管の間を流れる流体との間の熱交換を行うための熱交換器用二重管であって、
上記内管は、断面形状が三角形の頂点部分を円弧状曲面とした形状を呈し、かつ、上記頂点部分の位置が長手方向において螺旋状に変位した形状を有しており、
上記外管は、断面形状が円形状の平滑管形状を呈しており、
該外管の内周面と上記内管の上記頂点部分とが接しており、上記外管と上記内管との間には周方向3箇所に区画された外側流路が形成されていることを特徴とする熱交換器用二重管。
It has a double tube structure in which an inner tube is arranged inside an outer tube, and performs heat exchange between a fluid flowing inside the inner tube and a fluid flowing between the inner tube and the outer tube. A double pipe for a heat exchanger for
The inner tube has a shape in which the cross-sectional shape is a triangular arcuate curved portion, and the position of the apex portion is helically displaced in the longitudinal direction,
The outer tube has a smooth tube shape with a circular cross-sectional shape,
The inner peripheral surface of the outer tube and the apex portion of the inner tube are in contact with each other, and an outer flow path partitioned in three circumferential directions is formed between the outer tube and the inner tube. A double tube for heat exchangers.
請求項1に記載の熱交換器用二重管において、上記内管及び上記外管は、アルミニウム合金あるいは銅合金よりなることを特徴とする熱交換器用二重管。   2. The double pipe for heat exchanger according to claim 1, wherein the inner pipe and the outer pipe are made of an aluminum alloy or a copper alloy. 請求項1又は2に記載の熱交換器用二重管において、上記内管の上記螺旋状の変位の軸方向に対する角度が30〜60度の範囲にあることを特徴とする熱交換器用二重管。   The double tube for a heat exchanger according to claim 1 or 2, wherein an angle of the inner tube with respect to the axial direction of the helical displacement is in a range of 30 to 60 degrees. .
JP2010142240A 2010-06-23 2010-06-23 Double tube for heat exchanger Pending JP2012007767A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010142240A JP2012007767A (en) 2010-06-23 2010-06-23 Double tube for heat exchanger
PCT/JP2011/063870 WO2011162170A1 (en) 2010-06-23 2011-06-17 Double tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142240A JP2012007767A (en) 2010-06-23 2010-06-23 Double tube for heat exchanger

Publications (1)

Publication Number Publication Date
JP2012007767A true JP2012007767A (en) 2012-01-12

Family

ID=45371358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142240A Pending JP2012007767A (en) 2010-06-23 2010-06-23 Double tube for heat exchanger

Country Status (2)

Country Link
JP (1) JP2012007767A (en)
WO (1) WO2011162170A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178079A (en) * 2012-02-01 2013-09-09 Sumitomo Light Metal Ind Ltd Double pipe for heat exchanger
KR101608996B1 (en) 2010-01-11 2016-04-05 엘지전자 주식회사 Heat exchanger
JP2020531790A (en) * 2017-09-06 2020-11-05 コンティテヒ・フルイド・コリア・リミテッド Double tube for heat exchange

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288873A (en) * 2015-06-05 2017-01-04 南京工业大学 A kind of double pipe heat exchanger being applicable to highly filled sewage
JP7474577B2 (en) * 2019-10-23 2024-04-25 株式会社Uacj Heat transfer double tube, inner tube for heat transfer double tube and manufacturing method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124346U (en) * 1976-03-19 1977-09-21
JPH11239817A (en) * 1998-02-25 1999-09-07 Mitsubishi Materials Corp Manufacture of special shaped tube
JP2002318015A (en) * 2001-04-17 2002-10-31 Orion Mach Co Ltd Freezer
JP2005265253A (en) * 2004-03-17 2005-09-29 T Rad Co Ltd Double tube type heat exchanger and its manufacturing method
JP2005351489A (en) * 2004-06-08 2005-12-22 Matsushita Electric Ind Co Ltd Method of manufacturing heat exchanger
JP2006170571A (en) * 2004-12-17 2006-06-29 Hitachi Cable Ltd Double multitubular heat exchanger
JP2007017079A (en) * 2005-07-07 2007-01-25 Tadashi Tsunoda Radiator tube and air conditioning system
JP2007064514A (en) * 2005-08-29 2007-03-15 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger, and heat exchanger incorporating the heat transfer tube
JP2007085595A (en) * 2005-09-20 2007-04-05 Hitachi Cable Ltd Liquid-liquid heat exchanger for water heater
JP2008116096A (en) * 2006-11-02 2008-05-22 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2008232449A (en) * 2007-03-16 2008-10-02 Sumitomo Light Metal Ind Ltd Double tube type heat exchanger and its manufacturing method
JP2008267791A (en) * 2007-03-27 2008-11-06 Kobelco & Materials Copper Tube Inc Leakage detecting tube and heat exchanger using the same
JP2009180452A (en) * 2008-01-31 2009-08-13 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124346U (en) * 1976-03-19 1977-09-21
JPH11239817A (en) * 1998-02-25 1999-09-07 Mitsubishi Materials Corp Manufacture of special shaped tube
JP2002318015A (en) * 2001-04-17 2002-10-31 Orion Mach Co Ltd Freezer
JP2005265253A (en) * 2004-03-17 2005-09-29 T Rad Co Ltd Double tube type heat exchanger and its manufacturing method
JP2005351489A (en) * 2004-06-08 2005-12-22 Matsushita Electric Ind Co Ltd Method of manufacturing heat exchanger
JP2006170571A (en) * 2004-12-17 2006-06-29 Hitachi Cable Ltd Double multitubular heat exchanger
JP2007017079A (en) * 2005-07-07 2007-01-25 Tadashi Tsunoda Radiator tube and air conditioning system
JP2007064514A (en) * 2005-08-29 2007-03-15 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger, and heat exchanger incorporating the heat transfer tube
JP2007085595A (en) * 2005-09-20 2007-04-05 Hitachi Cable Ltd Liquid-liquid heat exchanger for water heater
JP2008116096A (en) * 2006-11-02 2008-05-22 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2008232449A (en) * 2007-03-16 2008-10-02 Sumitomo Light Metal Ind Ltd Double tube type heat exchanger and its manufacturing method
JP2008267791A (en) * 2007-03-27 2008-11-06 Kobelco & Materials Copper Tube Inc Leakage detecting tube and heat exchanger using the same
JP2009180452A (en) * 2008-01-31 2009-08-13 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101608996B1 (en) 2010-01-11 2016-04-05 엘지전자 주식회사 Heat exchanger
JP2013178079A (en) * 2012-02-01 2013-09-09 Sumitomo Light Metal Ind Ltd Double pipe for heat exchanger
JP2020531790A (en) * 2017-09-06 2020-11-05 コンティテヒ・フルイド・コリア・リミテッド Double tube for heat exchange

Also Published As

Publication number Publication date
WO2011162170A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
JP6172950B2 (en) Double tube for heat exchanger
US20110094258A1 (en) Heat exchanger and air conditioner provided with heat exchanger
JP2007032949A (en) Heat exchanger
WO2011162170A1 (en) Double tube for heat exchanger
JP2008164245A (en) Heat exchanger
JP2006071270A (en) Heat exchanger, intermediate heat exchanger, and refrigeration cycle
JP2009243715A (en) Leakage detecting tube and heat exchanger
JP5911597B2 (en) Flat shape heat transfer tube, method of manufacturing cross fin tube type heat exchanger equipped with the same, cross fin tube type heat exchanger manufactured by the method
JP2006322661A (en) Heat transfer tube for heat dissipation, and radiator
WO2012017777A1 (en) Double pipe for heat exchanger
JP2009019799A (en) Heat exchanger tube
JP2009041798A (en) Heat exchanger
JP4947162B2 (en) Heat exchanger
JP2005030619A (en) Double tube, and double tube type heat exchanger using it
JP2010203726A (en) Heat exchanger and air conditioner
CN201396995Y (en) Parallel flow evaporator for automobile air conditioner
JP2012007771A (en) Heat exchanger
JP2013164215A (en) Fin tube-type heat exchanger
EP2668460A1 (en) Tube structures for heat exchanger
JP2011099620A (en) Heat exchanger
JP2012093053A (en) Heat exchanger, method for manufacturing the same, refrigerator, and air conditioner
JP2009250600A (en) Copper flat heat-transfer pipe
JP2007032943A (en) Composite heat exchanger tube
JP2009229032A (en) Leakage detecting tube and heat exchanger
JP2017223408A (en) Double pipe internal heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612