JP2006071270A - Heat exchanger, intermediate heat exchanger, and refrigeration cycle - Google Patents

Heat exchanger, intermediate heat exchanger, and refrigeration cycle Download PDF

Info

Publication number
JP2006071270A
JP2006071270A JP2005224926A JP2005224926A JP2006071270A JP 2006071270 A JP2006071270 A JP 2006071270A JP 2005224926 A JP2005224926 A JP 2005224926A JP 2005224926 A JP2005224926 A JP 2005224926A JP 2006071270 A JP2006071270 A JP 2006071270A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
inner tube
heat exchange
circulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005224926A
Other languages
Japanese (ja)
Inventor
Koichiro Take
幸一郎 武
Shigeji Ichiyanagi
茂治 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005224926A priority Critical patent/JP2006071270A/en
Publication of JP2006071270A publication Critical patent/JP2006071270A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger that can improve the heat exchanging performance and is excellent in bending workability. <P>SOLUTION: An inner tube 20 having a plurality of fins 21 formed on the external periphery is inserted into an outer tube 30, and the heat exchanger is designed to exchange heat between first fluid passing through the inner tube 20 and second fluid passing between both tubes 20 and 30. A gap S is formed between an internal periphery of the outer tube 30 and a tip end of each of the fins 21 of the inner tube 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、例えばカーエアコン用冷凍システムに採用される冷凍サイクルや、そのサイクルに用いられる中間熱交換器及び熱交換器に関する。   The present invention relates to a refrigeration cycle employed in, for example, a car air conditioner refrigeration system, and an intermediate heat exchanger and a heat exchanger used in the cycle.

従来、蒸気圧縮式の冷凍サイクルにおいては、フロン系の冷媒が多く用いられていたが、近年では、地球環境保護の観点から、二酸化炭素(CO2 )等の自然冷媒を用いるようにした冷凍サイクルが注目されている。 Conventionally, in the vapor compression refrigeration cycle, a chlorofluorocarbon-based refrigerant has been used in many cases. However, in recent years, from the viewpoint of protecting the global environment, a refrigeration cycle in which a natural refrigerant such as carbon dioxide (CO 2 ) is used. Is attracting attention.

このような冷凍サイクルでは、圧縮機及びガス冷却器(凝縮器)を通った高圧冷媒が、減圧器及び蒸発器を通って低圧冷媒となって前記圧縮機に戻るように循環されるが、冷凍性能の向上を図るために、中間熱交換器を用いて、高圧冷媒と低圧冷媒との間で熱交換する技術が提案されている。   In such a refrigeration cycle, the high-pressure refrigerant that has passed through the compressor and gas cooler (condenser) is circulated back to the compressor as low-pressure refrigerant through the decompressor and evaporator. In order to improve performance, a technique for exchanging heat between a high-pressure refrigerant and a low-pressure refrigerant using an intermediate heat exchanger has been proposed.

CO2 冷凍サイクル用の中間熱交換器としては、例えば下記の特許文献1〜3に記載される管構造のものが周知である。 As the intermediate heat exchanger for the CO 2 refrigeration cycle, for example, those having a tube structure described in Patent Documents 1 to 3 below are well known.

特許文献1、2に示す熱交換器は、多孔構造のチューブ部材をもって構成されており、軸心に沿って中心流路が設けられるとともに、外周に複数の外周流路が設けられている。そして、中心流路に高圧冷媒を流通させるとともに、外周流路に低圧冷媒を流通させて、両冷媒間で熱交換させるようにしている。   The heat exchangers shown in Patent Literatures 1 and 2 are configured with a tube member having a porous structure, and are provided with a central flow path along an axis and a plurality of peripheral flow paths on the outer periphery. The high-pressure refrigerant is circulated through the central flow path, and the low-pressure refrigerant is circulated through the outer peripheral flow path so that heat is exchanged between the two refrigerants.

特許文献3に示す熱交換器は、外周に複数のフィンが設けられたインナーチューブが、アウターチューブ内に挿着されるものであり、インナーチューブ内に高圧冷媒を流通させるとともに、両チューブ間に低圧冷媒を流通させて、両冷媒間で熱交換させるようにしている。
特開2001−56188号(図5) 特開2002−181466号(図3) 国際公開第WO03/085344号(図1−2)
In the heat exchanger shown in Patent Document 3, an inner tube having a plurality of fins on the outer periphery is inserted into the outer tube, and a high-pressure refrigerant is circulated in the inner tube, and between the two tubes. A low-pressure refrigerant is circulated to exchange heat between the two refrigerants.
Japanese Patent Laid-Open No. 2001-56188 (FIG. 5) JP 2002-181466 (FIG. 3) International Publication No. WO03 / 085344 (Figure 1-2)

しかしながら、特許文献1、2に示す熱交換器は通常、押出成形によって一体に形成するものであるが、押出成形によって、多数の流通孔を有する熱交換器用チューブを形成するのは困難であり、例えば流通孔の孔径や形状が制約されてしまう。このため流通孔の孔径を大きく形成できずに、流通抵抗が増大してしまったり、流通孔間の仕切壁(フィン)の厚さも厚くなって、伝熱性能が低下し熱交換性能が低下してしまうという問題があった。更にチューブ全体が一体成形品によって形成されるとともに、流通孔間の仕切壁(フィン)も厚いため、曲げ加工が困難であり、例えばカーエアコン用の冷凍サイクルに採用する場合、自動車内の限られた設置スペース内の形状に加工することができず、設計の自由度が低下するという問題も抱えている。   However, although the heat exchangers shown in Patent Documents 1 and 2 are usually formed integrally by extrusion, it is difficult to form a heat exchanger tube having a large number of flow holes by extrusion, For example, the diameter and shape of the flow hole are restricted. For this reason, the hole diameter of the flow holes cannot be increased, the flow resistance increases, the thickness of the partition walls (fins) between the flow holes also increases, the heat transfer performance decreases, and the heat exchange performance decreases. There was a problem that. Furthermore, since the entire tube is formed by an integrally molded product and the partition walls (fins) between the flow holes are thick, bending is difficult. For example, when it is used in a refrigeration cycle for a car air conditioner, it is limited in the automobile. In addition, there is a problem that the shape in the installation space cannot be processed and the degree of freedom in design is reduced.

また特許文献3に示す熱交換器は、インナーチューブがアウターチューブによって拘束されているため、例えばアウターチューブに加わる外力がインナーチューブに影響し易く、曲げ加工した際に、インナーチューブの曲げ外側のフィンに亀裂が生じて、耐圧性、耐久性が低下する等、上記と同様、曲げ加工が困難であるという問題を抱えている。   Further, in the heat exchanger shown in Patent Document 3, since the inner tube is restrained by the outer tube, for example, an external force applied to the outer tube is likely to affect the inner tube, and when bent, a fin on the outer side of the inner tube is bent. As described above, there is a problem that bending work is difficult, such as cracks occurring in the film and pressure resistance and durability being lowered.

この発明は、上記従来技術の問題を解消し、熱交換性能を向上できる上更に、曲げ加工性に優れた熱交換器、中間熱交換器及び冷凍サイクルを提供することが目的とする。   An object of the present invention is to provide a heat exchanger, an intermediate heat exchanger, and a refrigeration cycle that can solve the above-described problems of the prior art, improve heat exchange performance, and have excellent bending workability.

上記目的を達成するため、本発明は以下の構成を要旨とするものである。   In order to achieve the above object, the present invention has the following structure.

[1] 外周に複数のフィンが設けられたインナーチューブ(内管)がアウターチューブ(外管)内に挿入配置され、前記インナーチューブ内を流通する第1流体と、両チューブ間を流通する第2流体との間で熱交換させるようにした熱交換器であって、
前記アウターチューブの内周面と前記フィンの先端との間に隙間が形成されてなることを特徴とする熱交換器。
[1] An inner tube (inner tube) provided with a plurality of fins on the outer periphery is inserted and arranged in an outer tube (outer tube), and a first fluid that circulates in the inner tube and a first fluid that circulates between both tubes. A heat exchanger configured to exchange heat between two fluids,
A heat exchanger, wherein a gap is formed between the inner peripheral surface of the outer tube and the tip of the fin.

[2] 前記複数のフィンは、インナーチューブの長さ方向に沿って連続し、かつ周方向に間隔をおいて配置されてなる前項1に記載の熱交換器。   [2] The heat exchanger according to the above item 1, wherein the plurality of fins are arranged along the length direction of the inner tube and arranged at intervals in the circumferential direction.

[3] 前記アウターチューブの内周面と前記フィンの先端との間隙が0.2〜1mmに設定されてなる前項1又は2に記載の熱交換器。   [3] The heat exchanger according to item 1 or 2, wherein a gap between the inner peripheral surface of the outer tube and the tip of the fin is set to 0.2 to 1 mm.

[4] 前記フィンは、周方向に13〜18枚形成されてなる前項1ないし3のいずれかに記載の熱交換器。   [4] The heat exchanger according to any one of items 1 to 3, wherein 13 to 18 fins are formed in a circumferential direction.

[5] 前記フィンは、厚みが0.3〜1.3mmに設定されてなる前項1ないし4のいずれかに記載の熱交換器。   [5] The heat exchanger according to any one of items 1 to 4, wherein the fin has a thickness set to 0.3 to 1.3 mm.

[6] 隣合うフィンにおける周方向の開き角度が、15〜30°に設定されてなる前項1〜5のいずれかに記載の熱交換器。   [6] The heat exchanger according to any one of the preceding items 1 to 5, wherein an opening angle in a circumferential direction between adjacent fins is set to 15 to 30 °.

[7] 前記フィンは、前記インナーチューブに一体に形成されてなる前項1ないし6のいずれかに記載の熱交換器。   [7] The heat exchanger according to any one of items 1 to 6, wherein the fin is formed integrally with the inner tube.

[8] 前記両チューブが曲げ加工されてなる前項1ないし7のいずれかに記載の熱交換器。   [8] The heat exchanger according to any one of 1 to 7 above, wherein both the tubes are bent.

[9] 前記第1流体が高圧熱媒体によって構成されるとともに、前記第2流体が低圧熱媒体によって構成されてなる前項1ないし8のいずれかに記載の熱交換器。   [9] The heat exchanger according to any one of items 1 to 8, wherein the first fluid is configured by a high-pressure heat medium, and the second fluid is configured by a low-pressure heat medium.

[10] 前記インナーチューブの内周面にインナーフィンが設けられてなる前項1ないし9のいずれかに記載の熱交換器。   [10] The heat exchanger according to any one of items 1 to 9, wherein an inner fin is provided on an inner peripheral surface of the inner tube.

[11] 冷凍サイクルを循環する冷媒のうち、高圧冷媒と、低圧冷媒との間で熱交換させるようにした中間熱交換器であって、
外周に複数のフィンが設けられたインナーチューブと、
内周面と前記フィンの先端との間に隙間が形成される態様に、前記インナーチューブが挿入配置されるアウターチューブとを備え、
高圧冷媒及び低圧冷媒のうち一方の冷媒を、前記インナーチューブ内の第1熱交換路に流通させるとともに、他方の冷媒を両チューブ間の第2熱交換路に流通させるようにしたことを特徴とする中間熱交換器。
[11] Among the refrigerants circulating in the refrigeration cycle, an intermediate heat exchanger configured to exchange heat between the high-pressure refrigerant and the low-pressure refrigerant,
An inner tube provided with a plurality of fins on the outer periphery;
In an aspect in which a gap is formed between an inner peripheral surface and the tip of the fin, an outer tube into which the inner tube is inserted and disposed,
One of the high-pressure refrigerant and the low-pressure refrigerant is circulated through the first heat exchange path in the inner tube, and the other refrigerant is circulated through the second heat exchange path between the tubes. Intermediate heat exchanger.

[12] 高圧冷媒を前記第1熱交換路に流通させるとともに、低圧冷媒を前記第2熱交換路に流通させるようにした前項11に記載の中間熱交換器。   [12] The intermediate heat exchanger according to [11], wherein high-pressure refrigerant is circulated through the first heat exchange path and low-pressure refrigerant is circulated through the second heat exchange path.

[13] 前記冷媒が、二酸化炭素冷媒をもって構成されてなる前項11又は12に記載の中間熱交換器。   [13] The intermediate heat exchanger according to the above item 11 or 12, wherein the refrigerant is composed of a carbon dioxide refrigerant.

[14] 冷凍サイクルを循環する冷媒のうち、高温冷媒と、低温冷媒との間で熱交換させるようにした中間熱交換器であって、
外周に複数のフィンが設けられたインナーチューブと、
内周面と前記フィンとの間に隙間が形成される態様に、前記インナーチューブが挿入配置されるアウターチューブとを備え、
高温冷媒及び低温冷媒のうち一方の冷媒を、前記インナーチューブ内の第1熱交換路に流通させるとともに、他方の冷媒を両チューブ間の第2熱交換路に流通させるようにしたことを特徴とする中間熱交換器。
[14] An intermediate heat exchanger configured to exchange heat between a high-temperature refrigerant and a low-temperature refrigerant among refrigerants circulating in the refrigeration cycle,
An inner tube provided with a plurality of fins on the outer periphery;
In an aspect in which a gap is formed between an inner peripheral surface and the fin, the outer tube is provided with the inner tube inserted and arranged,
One of the high-temperature refrigerant and the low-temperature refrigerant is circulated through the first heat exchange path in the inner tube, and the other refrigerant is circulated through the second heat exchange path between the tubes. Intermediate heat exchanger.

[15] 冷媒が、圧縮機、凝縮器、減圧器及び蒸発器を通って前記圧縮機に戻るように循環する冷凍サイクルであって、
前記圧縮機から前記減圧器にかけての高圧回路を流通する高圧冷媒と、前記減圧器から前記圧縮機にかけての低圧回路を流通する低圧冷媒との間で熱交換させるための中間熱交換器を備え、
前記中間熱交換器は、
外周に複数のフィンが設けられたインナーチューブと、
内周面と前記フィンの先端との間に隙間が形成される態様に、前記インナーチューブが挿入配置されるアウターチューブとを有し、
高圧冷媒及び低圧冷媒のうち一方の冷媒を、前記インナーチューブ内の第1熱交換路に流通させるとともに、他方の冷媒を両チューブ間の第2熱交換路に流通させるようにしたことを特徴とする冷凍サイクル。
[15] A refrigeration cycle in which the refrigerant circulates back through the compressor, condenser, decompressor and evaporator back to the compressor,
An intermediate heat exchanger for exchanging heat between the high-pressure refrigerant flowing through the high-pressure circuit from the compressor to the decompressor and the low-pressure refrigerant flowing through the low-pressure circuit from the decompressor to the compressor;
The intermediate heat exchanger is
An inner tube provided with a plurality of fins on the outer periphery;
In an aspect in which a gap is formed between an inner peripheral surface and the tip of the fin, an outer tube into which the inner tube is inserted and arranged,
One of the high-pressure refrigerant and the low-pressure refrigerant is circulated through the first heat exchange path in the inner tube, and the other refrigerant is circulated through the second heat exchange path between the tubes. Refrigeration cycle to be.

[16] 冷媒が、圧縮機、凝縮器、減圧器及び蒸発器を通って前記圧縮機に戻るように循環する冷凍サイクルであって、
前記凝縮器及び前記減圧器間を流通する高圧冷媒と、前記蒸発器及び前記圧縮機間を流通する低圧冷媒との間で熱交換させるための中間熱交換器を備え、
前記中間熱交換器は、
外周に複数のフィンが設けられたインナーチューブと、
内周面と前記フィンの先端との間に隙間が形成される態様に、前記インナーチューブが挿入配置されるアウターチューブとを有し、
高圧冷媒及び低圧冷媒のうち一方の冷媒を、前記インナーチューブ内の第1熱交換路に流通させるとともに、他方の冷媒を両チューブ間の第2熱交換路に流通させるようにしたことを特徴とする冷凍サイクル。
[16] A refrigeration cycle in which refrigerant circulates back through the compressor, condenser, decompressor and evaporator back to the compressor,
An intermediate heat exchanger for exchanging heat between the high-pressure refrigerant flowing between the condenser and the decompressor and the low-pressure refrigerant flowing between the evaporator and the compressor;
The intermediate heat exchanger is
An inner tube provided with a plurality of fins on the outer periphery;
In an aspect in which a gap is formed between an inner peripheral surface and the tip of the fin, an outer tube into which the inner tube is inserted and arranged,
One of the high-pressure refrigerant and the low-pressure refrigerant is circulated through the first heat exchange path in the inner tube, and the other refrigerant is circulated through the second heat exchange path between the tubes. Refrigeration cycle to be.

[17] 高圧冷媒を前記第1熱交換路に流通させるとともに、低圧冷媒を前記第2熱交換路に流通させるようにした前項16に記載の冷凍サイクル。   [17] The refrigeration cycle according to item 16, wherein the high-pressure refrigerant is circulated through the first heat exchange path and the low-pressure refrigerant is circulated through the second heat exchange path.

[18] 前記凝縮器が、ガス冷却器により構成されてなる前項16又は17に記載の冷凍サイクル。   [18] The refrigeration cycle according to the above item 16 or 17, wherein the condenser is configured by a gas cooler.

[19] 前記冷媒が、二酸化炭素冷媒により構成されてなる前項16ないし18のいずれかに記載の冷凍サイクル。   [19] The refrigeration cycle according to any one of [16] to [18], wherein the refrigerant is composed of a carbon dioxide refrigerant.

[20] 前記中間熱交換器としての両チューブが曲げ加工されてなる前項16ないし19のいずれかに記載の冷凍サイクル。   [20] The refrigeration cycle according to any one of items 16 to 19, wherein both tubes as the intermediate heat exchanger are bent.

[1]の発明によれば、フィン付きインナーチューブと、アウターチューブとを組み合わせて形成できるため、例えば一度の押出成形により熱交換器用多孔性チューブを形成する場合と比較して、フィンや、チューブ壁等を薄く形成できるとともに、緻密な構造に形成することができ、熱交換性能を向上させることができる。   According to the invention of [1], since it can be formed by combining a finned inner tube and an outer tube, for example, compared to the case of forming a heat exchanger porous tube by a single extrusion, a fin or tube The wall and the like can be formed thin and can be formed in a dense structure, and the heat exchange performance can be improved.

更にインナーチューブのフィン先端と、アウターチューブの内周面との間に隙間を形成しているため、インナーチューブがアウターチューブに過度に拘束されることがなく、曲げ加工時の応力によってインナーチューブのフィンが損傷する等の不具合を防止できる。従って所望の形状に精度良く曲げ加工することができ、優れた曲げ加工性を具備するものである。   Furthermore, since a gap is formed between the fin tip of the inner tube and the inner peripheral surface of the outer tube, the inner tube is not excessively restrained by the outer tube, and the inner tube is subjected to stress during bending. Problems such as damage to the fins can be prevented. Therefore, it can be accurately bent into a desired shape and has excellent bending workability.

またフィン先端に隙間が形成されているため、その隙間を介して第2流体が混ざり合うことにより、温度分布の偏りを防止でき、熱交換効率をより一層向上させることができる。   Moreover, since the clearance gap is formed in the fin front-end | tip, when the 2nd fluid mixes through the clearance gap, the bias of temperature distribution can be prevented and heat exchange efficiency can be improved further.

[2]の発明によれば、熱交換効率を向上させることができる。   According to the invention [2], the heat exchange efficiency can be improved.

[3]の発明によれば、より優れた曲げ加工性を得ることができる。   According to the invention of [3], better bending workability can be obtained.

[4]〜[6]の発明によれば、より一層熱交換効率を向上させることができる。   According to the inventions [4] to [6], the heat exchange efficiency can be further improved.

[7]〜[10]の発明によれば、上記の効果をより確実に得ることができる。   According to the inventions [7] to [10], the above effects can be obtained more reliably.

[11]〜[14]の発明によれば、上記と同様の効果を有する中間熱交換器を提供することができる。   According to the inventions [11] to [14], an intermediate heat exchanger having the same effects as described above can be provided.

[15]〜[20]の発明によれば、上記と同様の効果を有する冷凍サイクルを提供することができる。   According to the inventions [15] to [20], a refrigeration cycle having the same effect as described above can be provided.

図1はこの発明の実施形態である熱交換器が採用されたカーエアコン用冷凍サイクルを示す冷媒回路図である。同図に示すように、この冷凍サイクルは、冷媒として二酸化炭素冷媒を用いるものであって、圧縮機(1)と、ガス冷却器(凝縮器2)と、膨張弁(3)等の減圧器と、蒸発器(4)と、後に詳述する中間熱交換器(10)とを備え、圧縮機(1)によって圧縮された冷媒が、ガス冷却器(2)によって冷却され更に、膨張弁(3)によって減圧される。更にその冷媒が、蒸発器(4)によって蒸発されてから、上記圧縮機(1)に戻るという冷媒循環経路が形成される。更にガス冷却器(2)から膨張弁(3)に向かう高圧冷媒(往き冷媒)が中間熱交換器(10)の高圧冷媒用熱交換路(25)に流通されるとともに、蒸発器(4)から圧縮機(1)に向かう低圧冷媒(戻り冷媒)が中間熱交換器(10)の低圧冷媒用熱交換路(35)に流通されて、両冷媒間で熱交換されるように構成されている。   FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle for a car air conditioner in which a heat exchanger according to an embodiment of the present invention is employed. As shown in the figure, this refrigeration cycle uses carbon dioxide refrigerant as a refrigerant, and is a decompressor such as a compressor (1), a gas cooler (condenser 2), and an expansion valve (3). And an evaporator (4) and an intermediate heat exchanger (10), which will be described in detail later. The refrigerant compressed by the compressor (1) is cooled by the gas cooler (2) and is further expanded by an expansion valve ( The pressure is reduced by 3). Further, a refrigerant circulation path is formed in which the refrigerant is evaporated by the evaporator (4) and then returned to the compressor (1). Further, high-pressure refrigerant (outward refrigerant) from the gas cooler (2) toward the expansion valve (3) is circulated through the high-pressure refrigerant heat exchange path (25) of the intermediate heat exchanger (10) and the evaporator (4). The low-pressure refrigerant (return refrigerant) heading from the compressor to the compressor (1) is circulated through the low-pressure refrigerant heat exchange path (35) of the intermediate heat exchanger (10) to exchange heat between the two refrigerants. Yes.

図2に示すように、中間熱交換器(10)は、二重管構造を有するものであり、アルミニウム(その合金を含む)の押出成形品からなるインナーチューブ(20)と、同様にアルミニウム押出成形品からなるアウターチューブ(30)とを具備している。   As shown in FIG. 2, the intermediate heat exchanger (10) has a double-pipe structure, and an inner tube (20) made of an extruded product of aluminum (including its alloy), as well as an aluminum extrusion. And an outer tube (30) made of a molded product.

インナーチューブ(20)は、外周に複数のフィン(21)が一体に形成されている。このフィン(21)は、チューブ長さ方向に連続して延び、かつ周方向に所定間隔おきに均等配置に設けられている。またインナーチューブ(20)の内部には、チューブ長さ方向に連続して延び、かつ周方向に所定間隔おきに複数のインナーフィン(22)が一体に形成されている。   The inner tube (20) is integrally formed with a plurality of fins (21) on the outer periphery. The fins (21) extend continuously in the tube length direction and are provided at equal intervals in the circumferential direction. In the inner tube (20), a plurality of inner fins (22) are integrally formed at a predetermined interval in the circumferential direction and extending continuously in the tube length direction.

アウターチューブ(30)は、チューブ孔の内径がインナーチューブ(20)のフィン(21)を含む外径よりも大きく形成されており、そのチューブ孔内にインナーチューブ(20)が軸心を一致させるようにして挿入配置されている。そしてインナーチューブ(20)の内部によって、高圧冷媒(第1流体)が流通する第1熱交換路(25)が形成されるとともに、インナーチューブ(20)及びアウターチューブ(30)間によって、低圧冷媒(第2流体)が流通する第2熱交換路(35)が形成される。   The outer tube (30) is formed such that the inner diameter of the tube hole is larger than the outer diameter including the fin (21) of the inner tube (20), and the inner tube (20) has the axial center aligned in the tube hole. It is inserted and arranged in this way. A first heat exchange path (25) through which the high-pressure refrigerant (first fluid) flows is formed inside the inner tube (20), and a low-pressure refrigerant is formed between the inner tube (20) and the outer tube (30). A second heat exchange path (35) through which (second fluid) flows is formed.

ここで本実施形態において、インナーチューブ(20)は、フィン(21)の先端とアウターチューブ(30)の内周面との間に隙間(S)が形成されるよう配置されて、インナーチューブ(20)が、アウターチューブ(30)に拘束されないよう構成されている。   Here, in the present embodiment, the inner tube (20) is disposed so that a gap (S) is formed between the tip of the fin (21) and the inner peripheral surface of the outer tube (30). 20) is configured not to be restrained by the outer tube (30).

具体的に上記隙間(S)の寸法(Ls)は、0.2〜1mmに調整するのが良い。換言すれば、アウターチューブ(30)の内径とインナーチューブ(20)のフィン(21)を含む外径との差が、0.4〜2mmに調整するのが良い。すなわち上記隙間(S)が小さ過ぎる場合には、インナーチューブ(20)がアウターチューブ(30)によって拘束されるため、アウターチューブ(30)に加わる応力がインナーチューブ(20)に大きく影響し、例えば両チューブ(20)(30)からなる中間熱交換器(10)を曲げ加工した際に、曲げ応力がインナーチューブ(20)のフィン(21)における曲げ加工部外側に集中して、フィン(21)に亀裂が生じる等の不具合が生じる恐れがある。逆に隙間(S)が大き過ぎる場合には、フィン(21)のサイズ(長さ)が小さくなり、伝熱性が低下して熱交換性能が低下する恐れがある。   Specifically, the dimension (Ls) of the gap (S) is preferably adjusted to 0.2 to 1 mm. In other words, the difference between the inner diameter of the outer tube (30) and the outer diameter including the fins (21) of the inner tube (20) is preferably adjusted to 0.4 to 2 mm. That is, when the gap (S) is too small, the inner tube (20) is restrained by the outer tube (30), so that the stress applied to the outer tube (30) greatly affects the inner tube (20). When the intermediate heat exchanger (10) composed of both the tubes (20) and (30) is bent, bending stress concentrates outside the bent portion of the fin (21) of the inner tube (20), and the fin (21 ) May cause problems such as cracks. On the other hand, when the gap (S) is too large, the size (length) of the fin (21) becomes small, and the heat transfer performance may be lowered and the heat exchange performance may be lowered.

また本実施形態において、フィン(21)の形成数は、13〜18枚、より好ましくは15〜17枚に設定するのが良い。すなわちフィン数が少な過ぎる場合には、伝熱性が低下して熱交換性能が低下する恐れがある。逆にフィン数が多過ぎる場合には、フィンピッチが小さくなり、フィン間の幅が狭くなり、その間を通過する冷媒の流通抵抗が増大して、熱交換性能が低下する恐れがある。   In the present embodiment, the number of fins (21) formed is preferably set to 13 to 18, more preferably 15 to 17. That is, when the number of fins is too small, the heat transfer performance may be reduced and the heat exchange performance may be reduced. On the other hand, when the number of fins is too large, the fin pitch is decreased, the width between the fins is decreased, the flow resistance of the refrigerant passing between the fins is increased, and the heat exchange performance may be deteriorated.

更に本実施形態においては、フィン(21)の厚さ(T)を0.3〜1.3mm、より好ましくは0.5〜1.1mmに設定するのが良い。すなわちフィン厚さ(T)が薄過ぎる場合には、十分な強度を得ることが困難になる恐れがある。逆にフィン厚さ(T)が厚過ぎる場合には、伝熱性の低下及び流通抵抗の増大を招いて、熱交換性能が低下する恐れがある。   Further, in the present embodiment, the thickness (T) of the fin (21) is set to 0.3 to 1.3 mm, more preferably 0.5 to 1.1 mm. That is, if the fin thickness (T) is too thin, it may be difficult to obtain sufficient strength. On the other hand, if the fin thickness (T) is too thick, the heat transfer performance and flow resistance are increased, which may reduce the heat exchange performance.

更に隣合うフィンにおける周方向の開き角度(θ)を15〜30°、より好ましくは18〜26°に設定するのが良い。すなわちこの開き角度(θ)が小さ過ぎる場合には、フィン間の幅が狭くなり、その間を通過する冷媒の流通抵抗が増大して、熱交換性能が低下する恐れがある。逆に開き角度(θ)が大き過ぎる場合には、フィン数が小さくなって、伝熱性が低下して熱交換性能も低下する恐れがある。   Further, the circumferential opening angle (θ) between adjacent fins is preferably set to 15 to 30 °, more preferably 18 to 26 °. That is, when the opening angle (θ) is too small, the width between the fins is narrowed, the flow resistance of the refrigerant passing between them increases, and the heat exchange performance may be deteriorated. On the other hand, when the opening angle (θ) is too large, the number of fins becomes small, and there is a possibility that the heat transfer performance is lowered and the heat exchange performance is also lowered.

以上のように本実施形態の中間熱交換器(10)によれば、フィン付きのインナーチューブ(20)をアウターチューブ(30)内に挿入配置されるものであるため、両チューブ(20)(30)を別々に形成した後、両チューブ(20)(30)を組み合わせて製作することができる。このため例えば、一度の押出成形により熱交換器用多孔性チューブを形成する場合と比較して、フィン(21)や、チューブ壁等を薄く形成できるとともに、緻密な構造に形成することができ、所望の伝熱性及び熱交換性能を確実に得ることができる。   As described above, according to the intermediate heat exchanger (10) of the present embodiment, since the finned inner tube (20) is inserted and arranged in the outer tube (30), both tubes (20) ( 30) can be formed separately and then both tubes (20) (30) can be combined. For this reason, for example, the fin (21), the tube wall, etc. can be formed thinly as compared with the case where the porous tube for heat exchanger is formed by a single extrusion, and a dense structure can be formed. The heat transfer performance and heat exchange performance can be reliably obtained.

更に本実施形態においては、インナーチューブ(20)のフィン先端と、アウターチューブ(30)の内周面との間に隙間(S)を形成しているため、インナーチューブ(20)がアウターチューブ(30)に過度に拘束されることがなく、中間熱交換器(10)を曲げ加工した際に、曲げ応力がインナーチューブ(20)のフィン(21)における曲げ部外側に集中するのを防止でき、フィン(21)に亀裂が生じたり、破損する等の不具合を確実に防止できる。従って所望の形状に簡単かつ精度良く曲成することができ、優れた曲げ特性を有しており、特にカーエアコン用冷凍サイクルに適用した場合、自動車内の限られた設置スペースに合わせて所望の形状に曲げ加工することができ、設計の自由度を格段に向上させることができる。   Furthermore, in this embodiment, since the clearance (S) is formed between the fin tip of the inner tube (20) and the inner peripheral surface of the outer tube (30), the inner tube (20) is connected to the outer tube ( 30), and when bending the intermediate heat exchanger (10), it is possible to prevent the bending stress from being concentrated outside the bent portion of the fin (21) of the inner tube (20). In addition, it is possible to reliably prevent problems such as cracks or breakage in the fin (21). Therefore, it can be easily and accurately bent into a desired shape, has excellent bending characteristics, and when applied to a refrigeration cycle for a car air conditioner, the desired shape can be adapted to the limited installation space in the automobile. It can be bent into a shape, and the degree of design freedom can be greatly improved.

しかも本実施形態は、第2熱交換路(35)内においてフィン先端に隙間(S)が形成されているため、その隙間(S)を介して熱交換路(35)内の冷媒が混ざり合うことにより、冷媒の温度分布の偏りを有効に防止でき、熱交換効率をより一層向上させることができる。   In addition, in the present embodiment, since the gap (S) is formed at the tip of the fin in the second heat exchange path (35), the refrigerant in the heat exchange path (35) mixes with the gap (S). Accordingly, it is possible to effectively prevent the temperature distribution of the refrigerant from being biased, and to further improve the heat exchange efficiency.

なお、上記実施形態においては、インナーチューブ及びアウターチューブとして、アルミニウム又はアルミニウム合金製のものを用いているが、本発明においては、インナーチューブ及びアウターチューブの素材は特に、限定されるものでない。   In the above embodiment, the inner tube and the outer tube are made of aluminum or aluminum alloy. However, in the present invention, the materials of the inner tube and the outer tube are not particularly limited.

更に上記実施形態においては、本発明をカーエアコン用冷凍システムに適用する場合を例に挙げて説明しているが、本発明は、カーエアコン以外の他の冷凍システムにも適用可能である。   Furthermore, in the said embodiment, although the case where this invention is applied to the refrigerating system for car air conditioners is mentioned as an example, the present invention is applicable also to other refrigerating systems other than a car air conditioner.

以下、本発明に関連した実施例について説明する。   Examples relating to the present invention will be described below.

<実施例1>
上記実施形態と同様に外周にフィン(21)が形成されたインナーチューブ(20)を、アウターチューブ(30)内に挿入して作製した中間熱交換器(10)を、上記図1に示すカーエアコン用冷凍システムに適用した場合、中間熱交換器(10)において、フィン数を変化させた際の熱交換量(フィン数が「0」のときを100%とする)を、コンピュータシミュレーションにより測定した。その結果を下表1に示す。
<Example 1>
The intermediate heat exchanger (10) produced by inserting the inner tube (20) having the fins (21) formed on the outer periphery into the outer tube (30) as in the above embodiment is shown in the car shown in FIG. When applied to a refrigeration system for an air conditioner, the amount of heat exchange when changing the number of fins in the intermediate heat exchanger (10) (100% when the number of fins is “0”) is measured by computer simulation. did. The results are shown in Table 1 below.

このときの諸条件は、中間熱交換器の長さ(アウターチューブの長さ)を500mmとし、アウターチューブ(30)の外径を21.0mm、内径15.0mmとし、インナーチューブ(20)におけるアウターフィン(21)を含む外径を14.0mm、アウターフィン(21)を含まない管部の外径を7.0mm、インナーチューブ(20)におけるインナーフィン(22)を含まない管部の内径を4.0mm、インナーフィン(22)を含む管部の内径を3.5mmとした。   The conditions at this time were as follows: the length of the intermediate heat exchanger (length of the outer tube) was 500 mm, the outer diameter of the outer tube (30) was 21.0 mm, the inner diameter was 15.0 mm, and the inner tube (20) The outer diameter including the outer fin (21) is 14.0 mm, the outer diameter of the tube portion not including the outer fin (21) is 7.0 mm, and the inner diameter of the tube portion not including the inner fin (22) in the inner tube (20). Was 4.0 mm, and the inner diameter of the tube portion including the inner fin (22) was 3.5 mm.

Figure 2006071270
Figure 2006071270

<実施例2>
上記実施例1と同様の条件で、フィン数に対する低圧側冷媒用熱交換路(インナーチューブ及びアウターチューブ間の流路)の通路抵抗(フィン数が「0」のときを100%とする)を、コンピュータシミュレーションにより測定した。その結果を下表2に示す。
<Example 2>
Under the same conditions as in Example 1 above, the passage resistance of the low-pressure refrigerant heat exchange path (the flow path between the inner tube and the outer tube) relative to the number of fins (when the number of fins is “0” is 100%) Measured by computer simulation. The results are shown in Table 2 below.

Figure 2006071270
Figure 2006071270

表1に示すように、フィン数が多くなる程、伝熱性が向上して熱交換量が多くなる一方、表2に示すように、フィン数が多くなる程、通路抵抗が大きくなり熱交換性が低下する。これらを総合的に判断すると、フィン数が13〜18枚の場合、通路抵抗をある程度抑制しつつ、適度な熱交換量を得ることができ、特にフィン数が15〜17枚の場合には、通路抵抗を十分に抑制しつつ、十分な熱交換量を得ることができる。   As shown in Table 1, as the number of fins increases, the heat transfer improves and the amount of heat exchange increases. As shown in Table 2, as the number of fins increases, the passage resistance increases and the heat exchange performance increases. Decreases. When these are judged comprehensively, when the number of fins is 13 to 18, an appropriate amount of heat exchange can be obtained while suppressing the passage resistance to some extent, and particularly when the number of fins is 15 to 17, A sufficient amount of heat exchange can be obtained while sufficiently suppressing the passage resistance.

なお言うまでもなく、フィン数が過度に少ない場合には、通路抵抗は低くなるものの、十分な熱交換量を得ることが困難であり、全体として熱交換性は低下する。またフィン数が過度に多い場合には、熱交換量は向上できるものの、通路抵抗が大きくなり、全体として熱交換性能は低下する。   Needless to say, when the number of fins is excessively small, the passage resistance is low, but it is difficult to obtain a sufficient amount of heat exchange, and the heat exchange performance is lowered as a whole. In addition, when the number of fins is excessively large, the heat exchange amount can be improved, but the passage resistance is increased and the heat exchange performance is lowered as a whole.

この発明の熱交換器、中間熱交換器及び冷凍サイクルは、例えばカーエアコン用の冷凍システムに採用可能である。   The heat exchanger, intermediate heat exchanger, and refrigeration cycle of the present invention can be employed in a refrigeration system for car air conditioners, for example.

この発明の実施形態である中間熱交換器が適用されたカーエアコン用冷凍システムの冷媒回路図である。1 is a refrigerant circuit diagram of a refrigeration system for a car air conditioner to which an intermediate heat exchanger according to an embodiment of the present invention is applied. 実施形態の中間熱交換器を示す断面図である。It is sectional drawing which shows the intermediate heat exchanger of embodiment.

符号の説明Explanation of symbols

10…中間熱交換器
20…インナーチューブ
21…フィン
22…インナーフィン
25…高圧冷媒用熱交換路(第1熱交換路)
30…アウターチューブ
35…低圧冷媒用熱交換路(第2熱交換路)
S…隙間
DESCRIPTION OF SYMBOLS 10 ... Intermediate heat exchanger 20 ... Inner tube 21 ... Fin 22 ... Inner fin 25 ... Heat exchange path for high-pressure refrigerant (first heat exchange path)
30 ... Outer tube 35 ... Low-pressure refrigerant heat exchange path (second heat exchange path)
S ... Gap

Claims (20)

外周に複数のフィンが設けられたインナーチューブがアウターチューブ内に挿入配置され、前記インナーチューブ内を流通する第1流体と、両チューブ間を流通する第2流体との間で熱交換させるようにした熱交換器であって、
前記アウターチューブの内周面と前記フィンの先端との間に隙間が形成されてなることを特徴とする熱交換器。
An inner tube provided with a plurality of fins on the outer periphery is inserted and arranged in the outer tube, and heat exchange is performed between the first fluid flowing through the inner tube and the second fluid flowing between the tubes. A heat exchanger,
A heat exchanger, wherein a gap is formed between the inner peripheral surface of the outer tube and the tip of the fin.
前記複数のフィンは、インナーチューブの長さ方向に沿って連続し、かつ周方向に間隔をおいて配置されてなる請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the plurality of fins are continuous along the length direction of the inner tube and are arranged at intervals in the circumferential direction. 前記アウターチューブの内周面と前記フィンの先端との間隙が0.2〜1mmに設定されてなる請求項1又は2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein a gap between an inner peripheral surface of the outer tube and a tip of the fin is set to 0.2 to 1 mm. 前記フィンは、周方向に13〜18枚形成されてなる請求項1ないし3のいずれかに記載の熱交換器。   The heat exchanger according to claim 1, wherein 13 to 18 fins are formed in a circumferential direction. 前記フィンは、厚みが0.3〜1.3mmに設定されてなる請求項1ないし4のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 4, wherein the fin has a thickness set to 0.3 to 1.3 mm. 隣合うフィンにおける周方向の開き角度が、15〜30°に設定されてなる請求項1〜5のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 5, wherein an opening angle in a circumferential direction between adjacent fins is set to 15 to 30 °. 前記フィンは、前記インナーチューブに一体に形成されてなる請求項1ないし6のいずれかに記載の熱交換器。   The heat exchanger according to claim 1, wherein the fin is formed integrally with the inner tube. 前記両チューブが曲げ加工されてなる請求項1ないし7のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 7, wherein both the tubes are bent. 前記第1流体が高圧熱媒体によって構成されるとともに、前記第2流体が低圧熱媒体によって構成されてなる請求項1ないし8のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 8, wherein the first fluid is constituted by a high-pressure heat medium, and the second fluid is constituted by a low-pressure heat medium. 前記インナーチューブの内周面にインナーフィンが設けられてなる請求項1ないし9のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 9, wherein an inner fin is provided on an inner peripheral surface of the inner tube. 冷凍サイクルを循環する冷媒のうち、高圧冷媒と、低圧冷媒との間で熱交換させるようにした中間熱交換器であって、
外周に複数のフィンが設けられたインナーチューブと、
内周面と前記フィンの先端との間に隙間が形成される態様に、前記インナーチューブが挿入配置されるアウターチューブとを備え、
高圧冷媒及び低圧冷媒のうち一方の冷媒を、前記インナーチューブ内の第1熱交換路に流通させるとともに、他方の冷媒を両チューブ間の第2熱交換路に流通させるようにしたことを特徴とする中間熱交換器。
Among the refrigerants circulating in the refrigeration cycle, an intermediate heat exchanger that exchanges heat between the high-pressure refrigerant and the low-pressure refrigerant,
An inner tube provided with a plurality of fins on the outer periphery;
In an aspect in which a gap is formed between an inner peripheral surface and the tip of the fin, an outer tube into which the inner tube is inserted and disposed,
One of the high-pressure refrigerant and the low-pressure refrigerant is circulated through the first heat exchange path in the inner tube, and the other refrigerant is circulated through the second heat exchange path between the tubes. Intermediate heat exchanger.
高圧冷媒を前記第1熱交換路に流通させるとともに、低圧冷媒を前記第2熱交換路に流通させるようにした請求項11に記載の中間熱交換器。   The intermediate heat exchanger according to claim 11, wherein high-pressure refrigerant is circulated through the first heat exchange path and low-pressure refrigerant is circulated through the second heat exchange path. 前記冷媒が、二酸化炭素冷媒をもって構成されてなる請求項11又は12に記載の中間熱交換器。   The intermediate heat exchanger according to claim 11 or 12, wherein the refrigerant comprises carbon dioxide refrigerant. 冷凍サイクルを循環する冷媒のうち、高温冷媒と、低温冷媒との間で熱交換させるようにした中間熱交換器であって、
外周に複数のフィンが設けられたインナーチューブと、
内周面と前記フィンとの間に隙間が形成される態様に、前記インナーチューブが挿入配置されるアウターチューブとを備え、
高温冷媒及び低温冷媒のうち一方の冷媒を、前記インナーチューブ内の第1熱交換路に流通させるとともに、他方の冷媒を両チューブ間の第2熱交換路に流通させるようにしたことを特徴とする中間熱交換器。
Among the refrigerants circulating in the refrigeration cycle, an intermediate heat exchanger that exchanges heat between a high-temperature refrigerant and a low-temperature refrigerant,
An inner tube provided with a plurality of fins on the outer periphery;
In an aspect in which a gap is formed between an inner peripheral surface and the fin, the outer tube is provided with the inner tube inserted and arranged,
One of the high-temperature refrigerant and the low-temperature refrigerant is circulated through the first heat exchange path in the inner tube, and the other refrigerant is circulated through the second heat exchange path between the tubes. Intermediate heat exchanger.
冷媒が、圧縮機、凝縮器、減圧器及び蒸発器を通って前記圧縮機に戻るように循環する冷凍サイクルであって、
前記圧縮機から前記減圧器にかけての高圧回路を流通する高圧冷媒と、前記減圧器から前記圧縮機にかけての低圧回路を流通する低圧冷媒との間で熱交換させるための中間熱交換器を備え、
前記中間熱交換器は、
外周に複数のフィンが設けられたインナーチューブと、
内周面と前記フィンの先端との間に隙間が形成される態様に、前記インナーチューブが挿入配置されるアウターチューブとを有し、
高圧冷媒及び低圧冷媒のうち一方の冷媒を、前記インナーチューブ内の第1熱交換路に流通させるとともに、他方の冷媒を両チューブ間の第2熱交換路に流通させるようにしたことを特徴とする冷凍サイクル。
A refrigeration cycle in which the refrigerant circulates back through the compressor, condenser, decompressor and evaporator back to the compressor,
An intermediate heat exchanger for exchanging heat between the high-pressure refrigerant flowing through the high-pressure circuit from the compressor to the decompressor and the low-pressure refrigerant flowing through the low-pressure circuit from the decompressor to the compressor;
The intermediate heat exchanger is
An inner tube provided with a plurality of fins on the outer periphery;
In an aspect in which a gap is formed between an inner peripheral surface and the tip of the fin, an outer tube into which the inner tube is inserted and arranged,
One of the high-pressure refrigerant and the low-pressure refrigerant is circulated through the first heat exchange path in the inner tube, and the other refrigerant is circulated through the second heat exchange path between the tubes. Refrigeration cycle to be.
冷媒が、圧縮機、凝縮器、減圧器及び蒸発器を通って前記圧縮機に戻るように循環する冷凍サイクルであって、
前記凝縮器及び前記減圧器間を流通する高圧冷媒と、前記蒸発器及び前記圧縮機間を流通する低圧冷媒との間で熱交換させるための中間熱交換器を備え、
前記中間熱交換器は、
外周に複数のフィンが設けられたインナーチューブと、
内周面と前記フィンの先端との間に隙間が形成される態様に、前記インナーチューブが挿入配置されるアウターチューブとを有し、
高圧冷媒及び低圧冷媒のうち一方の冷媒を、前記インナーチューブ内の第1熱交換路に流通させるとともに、他方の冷媒を両チューブ間の第2熱交換路に流通させるようにしたことを特徴とする冷凍サイクル。
A refrigeration cycle in which the refrigerant circulates back through the compressor, condenser, decompressor and evaporator back to the compressor,
An intermediate heat exchanger for exchanging heat between the high-pressure refrigerant flowing between the condenser and the decompressor and the low-pressure refrigerant flowing between the evaporator and the compressor;
The intermediate heat exchanger is
An inner tube provided with a plurality of fins on the outer periphery;
In an aspect in which a gap is formed between an inner peripheral surface and the tip of the fin, an outer tube into which the inner tube is inserted and arranged,
One of the high-pressure refrigerant and the low-pressure refrigerant is circulated through the first heat exchange path in the inner tube, and the other refrigerant is circulated through the second heat exchange path between the tubes. Refrigeration cycle to be.
高圧冷媒を前記第1熱交換路に流通させるとともに、低圧冷媒を前記第2熱交換路に流通させるようにした請求項16に記載の冷凍サイクル。   The refrigeration cycle according to claim 16, wherein high-pressure refrigerant is circulated through the first heat exchange path and low-pressure refrigerant is circulated through the second heat exchange path. 前記凝縮器が、ガス冷却器により構成されてなる請求項16又は17に記載の冷凍サイクル。   The refrigeration cycle according to claim 16 or 17, wherein the condenser comprises a gas cooler. 前記冷媒が、二酸化炭素冷媒により構成されてなる請求項16ないし18のいずれかに記載の冷凍サイクル。   The refrigeration cycle according to any one of claims 16 to 18, wherein the refrigerant comprises a carbon dioxide refrigerant. 前記中間熱交換器としての両チューブが曲げ加工されてなる請求項16ないし19のいずれかに記載の冷凍サイクル。   The refrigeration cycle according to any one of claims 16 to 19, wherein both tubes as the intermediate heat exchanger are bent.
JP2005224926A 2004-08-06 2005-08-03 Heat exchanger, intermediate heat exchanger, and refrigeration cycle Pending JP2006071270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224926A JP2006071270A (en) 2004-08-06 2005-08-03 Heat exchanger, intermediate heat exchanger, and refrigeration cycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004230778 2004-08-06
JP2005224926A JP2006071270A (en) 2004-08-06 2005-08-03 Heat exchanger, intermediate heat exchanger, and refrigeration cycle

Publications (1)

Publication Number Publication Date
JP2006071270A true JP2006071270A (en) 2006-03-16

Family

ID=38126333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224926A Pending JP2006071270A (en) 2004-08-06 2005-08-03 Heat exchanger, intermediate heat exchanger, and refrigeration cycle

Country Status (5)

Country Link
US (1) US20080066488A1 (en)
JP (1) JP2006071270A (en)
CN (1) CN1977139A (en)
DE (1) DE112005001885T5 (en)
WO (1) WO2006014032A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204166A (en) * 2008-02-26 2009-09-10 Showa Denko Kk Double pipe heat exchanger
JP2009204271A (en) * 2008-02-29 2009-09-10 Tgk Co Ltd Refrigerating cycle
JP2009204165A (en) * 2008-02-26 2009-09-10 Showa Denko Kk Double pipe heat exchanger
JP2014181870A (en) * 2013-03-21 2014-09-29 Panasonic Corp Refrigeration cycle device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162395A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger
US8919117B2 (en) * 2008-12-22 2014-12-30 Exencotech Ab Energy cell operable to generate a pressurized fluid via bladder means and a phase change material
WO2010078686A1 (en) * 2009-01-06 2010-07-15 昆山开思拓空调技术有限公司 Capillary tube for heat exchange
CN101561210B (en) * 2009-03-16 2012-10-03 黄洪滔 Wavelike finned type cold accumulation heat exchanger
US20100313589A1 (en) * 2009-06-13 2010-12-16 Brent Alden Junge Tubular element
CN103348208A (en) * 2010-12-29 2013-10-09 康蒂泰克屈纳有限及两合公司 Internal heat exchanger
CN102425971B (en) * 2011-11-10 2014-02-19 上海交通大学 Heat exchanger tube with staggered fins as well as manufacturing method and application of heat exchange tube
EP2821745A4 (en) * 2012-02-17 2015-11-11 Obschestvo S Ogranichennoi Otvetstvennostju Proryvnye Innovatsionnye T Heat-exchange apparatus
DE102014200820A1 (en) * 2014-01-17 2015-07-23 Siemens Aktiengesellschaft Method for producing a heat exchanger having at least one heat transfer surface
CN104949540B (en) * 2014-03-26 2017-02-08 上海福宜真空设备有限公司 Gas condensing device
US20170356692A1 (en) * 2016-06-08 2017-12-14 Savannah River Nuclear Solutions, Llc Finned Heat Exchanger
CN106907943B (en) * 2017-03-02 2019-04-23 青岛海尔空调器有限总公司 Heat exchanger
CN110871049B (en) * 2018-09-03 2021-07-27 中国石油化工股份有限公司 High-efficiency heat exchange reaction tube
CN110030772A (en) * 2019-04-12 2019-07-19 浙江吉利控股集团有限公司 A kind of air conditioning condenser for vehicle
MX2022010846A (en) * 2020-03-03 2023-01-05 Daikin Applied Americas Inc System and method for manufacturing and operating a coaxial tube heat exchanger.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129161A (en) * 1986-11-17 1988-06-01 Toyo Kosan Kk Fuel magnetization processing device
JPH09210577A (en) * 1995-11-30 1997-08-12 Komatsu Ltd Controlling equipment of temperature of fluid
JP2001091103A (en) * 1999-09-20 2001-04-06 Behr Gmbh & Co Air conditioning apparatus provided with inner heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590175U (en) * 1991-05-17 1993-12-07 株式会社日本アルミ Double tube heat exchanger
GB9417623D0 (en) * 1994-09-02 1994-10-19 Sustainable Engine Systems Ltd Heat exchanger element
JPH10339588A (en) * 1997-06-06 1998-12-22 Denso Corp Heat exchanger and manufacture thereof
JP2002156162A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Intercooler and air conditioner for vehicle using co2 refrigerant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129161A (en) * 1986-11-17 1988-06-01 Toyo Kosan Kk Fuel magnetization processing device
JPH09210577A (en) * 1995-11-30 1997-08-12 Komatsu Ltd Controlling equipment of temperature of fluid
JP2001091103A (en) * 1999-09-20 2001-04-06 Behr Gmbh & Co Air conditioning apparatus provided with inner heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204166A (en) * 2008-02-26 2009-09-10 Showa Denko Kk Double pipe heat exchanger
JP2009204165A (en) * 2008-02-26 2009-09-10 Showa Denko Kk Double pipe heat exchanger
JP2009204271A (en) * 2008-02-29 2009-09-10 Tgk Co Ltd Refrigerating cycle
JP2014181870A (en) * 2013-03-21 2014-09-29 Panasonic Corp Refrigeration cycle device

Also Published As

Publication number Publication date
US20080066488A1 (en) 2008-03-20
WO2006014032A1 (en) 2006-02-09
CN1977139A (en) 2007-06-06
DE112005001885T5 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP2006071270A (en) Heat exchanger, intermediate heat exchanger, and refrigeration cycle
EP2565561B1 (en) Heat exchanging device and connecting tube used therein
JP4738401B2 (en) Air conditioner
US6928833B2 (en) Finned tube for heat exchangers, heat exchanger, process for producing heat exchanger finned tube, and process for fabricating heat exchanger
US20110094258A1 (en) Heat exchanger and air conditioner provided with heat exchanger
JP2007032949A (en) Heat exchanger
US20130340986A1 (en) Heat exchanger, refrigerator provided with same and air-conditioning apparatus provided with the heat exchanger
JP2006322661A (en) Heat transfer tube for heat dissipation, and radiator
WO2015059832A1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP2009041798A (en) Heat exchanger
JP2007255785A (en) Heat exchanger with fin and air conditioner
EP3191784B1 (en) Turbulators in enhanced tubes
JP2006194476A (en) Outdoor heat exchanger
US9777964B2 (en) Micro-port shell and tube heat exchanger
JP2009192148A (en) Fin and tube type heat exchanger
JP2005106329A (en) Subcool type condenser
EP1843109A2 (en) Cooling System
JP5591285B2 (en) Heat exchanger and air conditioner
JP5063765B2 (en) Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner
JP2008309443A (en) Heat transfer pipe connecting structure
JP4899655B2 (en) Heat exchanger
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP2006153437A (en) Heat exchanger
JP2013011401A (en) Heat exchanger, refrigeration cycle circuit using the same, refrigerator and air conditioner using the refrigeration cycle circuit
JP4874320B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329