JP2011506072A5 - - Google Patents

Download PDF

Info

Publication number
JP2011506072A5
JP2011506072A5 JP2010537343A JP2010537343A JP2011506072A5 JP 2011506072 A5 JP2011506072 A5 JP 2011506072A5 JP 2010537343 A JP2010537343 A JP 2010537343A JP 2010537343 A JP2010537343 A JP 2010537343A JP 2011506072 A5 JP2011506072 A5 JP 2011506072A5
Authority
JP
Japan
Prior art keywords
reaction
heat medium
medium
reactor
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010537343A
Other languages
Japanese (ja)
Other versions
JP2011506072A (en
JP5587200B2 (en
Filing date
Publication date
Priority claimed from DE102007059967A external-priority patent/DE102007059967A1/en
Application filed filed Critical
Publication of JP2011506072A publication Critical patent/JP2011506072A/en
Publication of JP2011506072A5 publication Critical patent/JP2011506072A5/ja
Application granted granted Critical
Publication of JP5587200B2 publication Critical patent/JP5587200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (12)

リアクター内で、少なくとも1つの第1反応性物質を含む反応媒体を加熱し、第1反応性物質中、または第1と第2の反応性物質の間で化学結合を形成または修飾することにより目的化合物を製造するための化学反応を行う方法であって、電磁誘導により加熱することができ、かつリアクターの内側にあり反応媒体により囲まれている固形熱媒体と反応媒体を接触させ、前記熱媒体を誘導子を用いて電磁誘導により加熱し、目的化合物を第1反応性物質からまたは第1反応性物質と第2反応性物質とから形成し、前記目的化合物を電熱媒体から分離する方法であり、リアクター内の反応媒体が液体として存在し、誘導子が1〜100kHzの範囲の交番磁場を生じる方法。 In the reactor, the reaction medium containing at least one first reactive substance is heated to form or modify a chemical bond in the first reactive substance or between the first and second reactive substances. A method for performing a chemical reaction for producing a compound, wherein the reaction medium is brought into contact with a solid heat medium that can be heated by electromagnetic induction and is surrounded by the reaction medium inside the reactor. Is heated by electromagnetic induction using an inductor, the target compound is formed from the first reactive substance or from the first reactive substance and the second reactive substance, and the target compound is separated from the heating medium . A method in which the reaction medium in the reactor is present as a liquid and the inductor generates an alternating magnetic field in the range of 1 to 100 kHz. 熱媒体が導電性および/または磁化性固体の粒子から選択され、該粒子の平均粒度径が1〜1000nmである請求項1に記載の方法。   The method according to claim 1, wherein the heat medium is selected from particles of a conductive and / or magnetizable solid, and the average particle size of the particles is 1-1000 nm. 熱媒体が磁化性固体の粒子から選択され、各粒子が非磁性物質によりカプセル化された少なくとも1つの磁化性物質のコアを含んでなる請求項2に記載の方法。   3. A method according to claim 2, wherein the heat medium is selected from particles of a magnetizable solid, each particle comprising a core of at least one magnetizable material encapsulated by a non-magnetic material. 熱媒体が磁化性固体の粒子から選択され、これらが電磁誘導により加熱できないさらなる粒子との混合物中に存在している、請求項2または3に記載の方法。   The method according to claim 2 or 3, wherein the heat medium is selected from particles of a magnetizable solid, which are present in a mixture with further particles that cannot be heated by electromagnetic induction. 固形熱媒体が、化学反応に対する触媒活性物質により表面被覆されている、請求項1〜4のいずれかに記載の方法。   The method according to claim 1, wherein the solid heat medium is surface-coated with a catalytically active substance for chemical reaction. 化学反応をバッチ式で行い、反応中、反応媒体および固形熱媒体が互いに移動し合う、請求項1〜5のいずれかに記載の方法。   The method according to any one of claims 1 to 5, wherein the chemical reaction is carried out batchwise, and the reaction medium and the solid heat medium move with each other during the reaction. 反応媒体が反応槽中に熱媒体の粒子とともに存在し、反応媒体に誘導子として配置された可動素子により反応媒体を移動させることにより熱媒体の粒子を加熱する、請求項6に記載の方法。   The method according to claim 6, wherein the reaction medium is present together with the particles of the heat medium in the reaction tank, and the particles of the heat medium are heated by moving the reaction medium with a movable element arranged as an inductor in the reaction medium. 少なくとも部分的に固形熱媒体が充填されることにより、電磁誘導によって加熱し得る少なくとも1つの加熱領域を有するフロー型リアクターで化学反応を行い、反応媒体がフロー型リアクター内を流れ、誘導子がリアクター外部に配置されている、請求項1〜5のいずれかに記載の方法。   At least partially filled with a solid heat medium, a chemical reaction is performed in a flow type reactor having at least one heating region that can be heated by electromagnetic induction, the reaction medium flows in the flow type reactor, and the inductor is the reactor. The method according to claim 1, wherein the method is arranged outside. 反応媒体と熱媒体との総接触時間が1秒〜2時間の範囲になるような速度で、反応媒体がフロー型リアクター内を1回または複数回流れる、請求項8に記載の方法。   The method according to claim 8, wherein the reaction medium flows through the flow reactor one or more times at a rate such that the total contact time between the reaction medium and the heat medium is in the range of 1 second to 2 hours. リアクターが圧力リアクターとして構成され、化学反応を大気圧より高い圧力で、好ましくは少なくとも1.5barの圧力下で行う、請求項1〜9のいずれかに記載の方法。   10. A method according to any of the preceding claims, wherein the reactor is configured as a pressure reactor and the chemical reaction is carried out at a pressure above atmospheric pressure, preferably at a pressure of at least 1.5 bar. 熱媒体が強磁性体であって、40〜250℃の範囲のキュリー温度を示し、かつ、キュリー温度が選択された反応温度から20℃より大きく異ならないように熱媒体を選択する、請求項1〜10のいずれかに記載の方法。 The heat medium is ferromagnetic and exhibits a Curie temperature in the range of 40-250 ° C, and the heat medium is selected such that the Curie temperature does not differ more than 20 ° C from the selected reaction temperature. The method according to any one of 10 to 10 . 化学反応において、化学結合を2つの炭素原子の間に、または炭素原子と原子X〔Xは、H、B、O、N、S、P、Si、Ge、Sn、Pb、As、Sb、Biおよびハロゲンから選択される〕との間に形成する、請求項1〜11のいずれかに記載の方法。 In a chemical reaction, a chemical bond is formed between two carbon atoms, or a carbon atom and an atom X [X is H, B, O, N, S, P, Si, Ge, Sn, Pb, As, Sb, Bi. and formed between selected from halogen], the method of any of claims 1-11.
JP2010537343A 2007-12-11 2008-10-14 Method for performing chemical reaction using inductively heated heat medium Expired - Fee Related JP5587200B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007059967A DE102007059967A1 (en) 2007-12-11 2007-12-11 Method for carrying out chemical reactions by means of an inductively heated heating medium
DE102007059967.8 2007-12-11
PCT/EP2008/063763 WO2009074373A1 (en) 2007-12-11 2008-10-14 Method for carrying out chemical reactions with the aid of an inductively heated heating medium

Publications (3)

Publication Number Publication Date
JP2011506072A JP2011506072A (en) 2011-03-03
JP2011506072A5 true JP2011506072A5 (en) 2011-12-01
JP5587200B2 JP5587200B2 (en) 2014-09-10

Family

ID=40383705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010537343A Expired - Fee Related JP5587200B2 (en) 2007-12-11 2008-10-14 Method for performing chemical reaction using inductively heated heat medium

Country Status (9)

Country Link
US (2) US20100249404A1 (en)
EP (1) EP2219778B1 (en)
JP (1) JP5587200B2 (en)
KR (1) KR20100098387A (en)
CN (1) CN101896263B (en)
AT (1) ATE516077T1 (en)
DE (1) DE102007059967A1 (en)
ES (1) ES2367467T3 (en)
WO (1) WO2009074373A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009027546A1 (en) 2009-07-08 2011-01-13 Henkel Ag & Co. Kgaa Process for transesterification by means of an inductively heated heating medium
DE102009027545A1 (en) 2009-07-08 2011-02-03 Henkel Ag & Co. Kgaa Process for the preparation of cyanoacrylates in the presence of transition metal catalysts
DE102009028856A1 (en) 2009-08-25 2011-03-03 Henkel Ag & Co. Kgaa Process for preparative fragmentation using an inductively heated heating medium
DE102009045636A1 (en) 2009-10-13 2011-04-14 Henkel Ag & Co. Kgaa Method for carrying out sequential reactions using an inductively heated heating medium
DE102009045861A1 (en) 2009-10-20 2011-04-21 Henkel Ag & Co. Kgaa Method for carrying out a phase transformation
DE102009046131A1 (en) * 2009-10-29 2011-05-05 Henkel Ag & Co. Kgaa Alternative synthesis of 1.1-substituted olefins with electron-withdrawing substituents
EP2552581A1 (en) * 2010-04-01 2013-02-06 Giorgio Pecci Apparatus for transforming long molecular chain organic matter
DE102010050152B4 (en) 2010-11-02 2016-02-11 Adam Handerek Reactor and method for at least partial decomposition, in particular depolymerization, and / or cleaning of plastic material
KR101364062B1 (en) * 2011-08-26 2014-02-21 재단법인 포항산업과학연구원 Process for producing biodiesel
US10174223B2 (en) * 2013-11-30 2019-01-08 Hrl Laboratories, Llc Formulations, methods, and apparatus for remote triggering of frontally cured polymers
CN104060236B (en) * 2014-05-14 2016-07-06 中国科学院广州能源研究所 A kind of continuous coating production system of sheet-form substrate
US10035124B2 (en) * 2014-08-12 2018-07-31 Empire Technology Development Llc Methods, materials, and systems for converting alcohols
CN105600832A (en) * 2014-11-19 2016-05-25 正大天晴药业集团股份有限公司 Method for preparing modified superparamagnetic iron oxide
US11577210B2 (en) * 2015-08-28 2023-02-14 Haldor Topsøe A/S Induction heating of endothermic reactions
CN108136353A (en) 2015-10-28 2018-06-08 托普索公司 The dehydrogenation of alkane
WO2017186608A1 (en) * 2016-04-26 2017-11-02 Haldor Topsøe A/S Ferromagnetic materials for induction heated catalysis
CN210045214U (en) 2016-04-26 2020-02-11 托普索公司 Reactor system
MY197926A (en) * 2016-05-11 2023-07-25 Basf Corp Catalyst composition comprising magnetic material adapted for inductive heating
US10207241B2 (en) * 2016-11-29 2019-02-19 Kontak LLC Inductively heated microchannel reactor
US20180318802A1 (en) * 2017-05-03 2018-11-08 James Dorman Catalytic reaction
US11555473B2 (en) 2018-05-29 2023-01-17 Kontak LLC Dual bladder fuel tank
US11638331B2 (en) 2018-05-29 2023-04-25 Kontak LLC Multi-frequency controllers for inductive heating and associated systems and methods
TWI804654B (en) * 2018-07-16 2023-06-11 丹麥商托普索公司 Thermolytic fragmentation of sugars using resistance heating
GB2582614A (en) * 2019-03-28 2020-09-30 Johnson Matthey Plc An exhaust gas treatment system and the use thereof for the treatment of an exhaust gas
CN110064404A (en) * 2019-05-06 2019-07-30 东南大学 A kind of preparation of cellulose hydrogenation magnetic catalyst and its application method
WO2020254184A1 (en) * 2019-06-20 2020-12-24 Haldor Topsøe A/S Ferromagnetic catalyst support for induction heated catalysis
CN112058192B (en) * 2020-09-04 2021-12-14 湖南大学 Continuous flow micro-reactor, manufacturing method and application
EP4225491A1 (en) * 2020-10-08 2023-08-16 Basf Corporation Catalyst composition comprising ferrite-based magnetic material adapted for inductive heating
WO2023017209A1 (en) * 2021-08-10 2023-02-16 Teknologian Tutkimuskeskus Vtt Oy Method and apparatus for treating raw material and use

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8724561D0 (en) * 1987-10-20 1987-11-25 Ici Plc Production process
US5272216A (en) * 1990-12-28 1993-12-21 Westinghouse Electric Corp. System and method for remotely heating a polymeric material to a selected temperature
WO1995021126A1 (en) * 1994-02-01 1995-08-10 E.I. Du Pont De Nemours And Company Preparation of hydrogen cyanide
US6110239A (en) * 1996-05-31 2000-08-29 Marathon Ashland Petroleum Llc Molten metal hydrocarbon gasification process
BR9810275A (en) * 1997-07-03 2000-09-05 Du Pont Apparatus for continuously conducting a catalyzed gas phase reaction
DE19800294A1 (en) 1998-01-07 1999-07-08 Mueller Schulte Detlef Dr Inductively heatable polymer encapsulated magnetic particles for coupling bio-ligands
WO2000038831A1 (en) 1998-12-31 2000-07-06 Hexablock, Inc. Magneto absorbent
US6953659B2 (en) * 2000-07-14 2005-10-11 Massachusetts Institute Of Technology Direct, externally imposed control of nucleic acids
US6953656B2 (en) * 2000-07-14 2005-10-11 Massachusetts Institute Of Technology Direct, externally imposed control of polypeptides
DE10140089A1 (en) * 2001-08-16 2003-02-27 Degussa Superparamagnetic oxidic particles, process for their production and their use
JP4320258B2 (en) * 2001-11-13 2009-08-26 エボニック デグサ ゲーエムベーハー Curable and re-peelable adhesive conjugate
DE10163399A1 (en) * 2001-12-21 2003-07-10 Sustech Gmbh & Co Kg Nanoparticulate preparation
WO2003075368A2 (en) * 2002-03-01 2003-09-12 Board Of Control Of Michigan Technological University Method and apparatus for induction heating of thin films
US7070743B2 (en) * 2002-03-14 2006-07-04 Invista North America S.A R.L. Induction-heated reactors for gas phase catalyzed reactions
JP2004224595A (en) * 2003-01-20 2004-08-12 Sekisui Chem Co Ltd Hydrogen storage/supply apparatus
JP2004250255A (en) * 2003-02-18 2004-09-09 Sekisui Chem Co Ltd Hydrogen storage and generation system
TWI326713B (en) 2005-02-18 2010-07-01 Nippon Steel Corp Induction heating device for heating a traveling metal plate
JP4786365B2 (en) * 2005-02-18 2011-10-05 新日本製鐵株式会社 Induction heating apparatus and induction heating method for metal plate
DE102005051637A1 (en) * 2005-10-26 2007-05-03 Atotech Deutschland Gmbh Reactor system with a microstructured reactor and method for carrying out a chemical reaction in such a reactor
DE102006062651B4 (en) * 2006-11-14 2009-12-31 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Method and device for thermochromatographic heating of solid beds

Similar Documents

Publication Publication Date Title
JP2011506072A5 (en)
JP5587200B2 (en) Method for performing chemical reaction using inductively heated heat medium
US8569526B2 (en) Method for carrying out oxidation reactions using inductively heated heating medium
Cannas et al. CoFe2O4 and CoFe2O4/SiO2 core/shell nanoparticles: magnetic and spectroscopic study
Houlding et al. Application of alternative energy forms in catalytic reactor engineering
Ishaq et al. Characterization and antibacterial activity of nickel ferrite doped α-alumina nanoparticle
KR102359631B1 (en) Method for start-up heating of ammonia synthesis converter
US20120215023A1 (en) Method for Preparative Fragmenting Using an Inductively Heated Heating Medium
Xu et al. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores
US20110018662A1 (en) Method of using a diamagnetic materials for focusing magnetic field lines
US20120283449A1 (en) Method for carrying out sequential reactions using a heating medium heated by means of induction
Bhattacharya et al. Stabilization of O–Mn–O clusters (Mn 5) in three dimensionally extended MOF structures: synthesis, structure and properties
Mündlein et al. Facile synthesis of magnetic nanoparticles optimized towards high heating rates upon magnetic induction
Ni et al. A cyanide-bridged one-dimensional CrIIICoII metamagnet based on the trans-dicyanidechromate (III) building block
JP2011179070A (en) Liquid alkali metal with dispersed nanoparticle and method for manufacturing the same
JP2005223001A (en) Carbon layer coated transition metal nano structure, pattern thereof, and manufacturing methods for both
KR20130105363A (en) Method for classifying articles and method for fabricating a magnetocalorically active working component for magnetic heat exchange
Bala et al. Effect of dimensionality on transition-metal elements of groups 3–7
CN205446783U (en) Resistive connection geode valve
Gao et al. First-principle study on bulk and (1 1 1) surface of MP (M= K and Rb) in rocksalt structure
Adachi et al. The effect of pressure on the magnetic and structural transition temperatures of the shape memory alloys Ni50+ x (Mn0. 5Fe0. 5) 25Ga25–x
Kornienkov et al. Magnetic Properties of the Amorphous Fe–P–Si and Fe–P–Si–Mn–V–C Alloys Fabricated from Naturally Alloyed Ferrophosphorus and a 2NSR Alloy
JP4515736B2 (en) Amorphous complex oxide fine particles and method and apparatus for producing the same
JP2007117175A (en) Electromagnetic cooker
JP2012228826A (en) Two-layer shape-memory ribbon and method of producing the same