JP2007117175A - Electromagnetic cooker - Google Patents

Electromagnetic cooker Download PDF

Info

Publication number
JP2007117175A
JP2007117175A JP2005309841A JP2005309841A JP2007117175A JP 2007117175 A JP2007117175 A JP 2007117175A JP 2005309841 A JP2005309841 A JP 2005309841A JP 2005309841 A JP2005309841 A JP 2005309841A JP 2007117175 A JP2007117175 A JP 2007117175A
Authority
JP
Japan
Prior art keywords
temperature
magnetic material
heated
heating
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005309841A
Other languages
Japanese (ja)
Inventor
Hiroko Ishikawa
浩子 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINSHOHIN IDEA KIKAKU KENKYUS
SHINSHOHIN IDEA KIKAKU KENKYUSHO KK
Original Assignee
SHINSHOHIN IDEA KIKAKU KENKYUS
SHINSHOHIN IDEA KIKAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINSHOHIN IDEA KIKAKU KENKYUS, SHINSHOHIN IDEA KIKAKU KENKYUSHO KK filed Critical SHINSHOHIN IDEA KIKAKU KENKYUS
Priority to JP2005309841A priority Critical patent/JP2007117175A/en
Publication of JP2007117175A publication Critical patent/JP2007117175A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein a generally used electromagnetic cooker uses a steel plate with magnetism as a base, and the temperature of the steel plate is controlled by a sensor to prevent an excessive temperature rise, but actually, it is difficult to control a cooking device such as a frying pan and a pot to 200°C or less. <P>SOLUTION: Generally, an object having conductivity and magnetism is heated in the electromagnetic cooker, but, it is found that, when reaching a Curie temperature of the conductive and magnetic material or more, the magnetic cooker is hard to be heated and the rising temperature is restricted. Alternatively, it is also found that, in a state where a heating power of the electromagnetic cooker is same, when a coercive force is a small, the magnetic cooker is hard to be heated as the characteristics of the material and, when the conductivity is low, the magnetic cooker is also hard to be heated. Consequently, the coercive force is required to be 0.5 A/m or more at the minimum, and the conductivity of the magnetic material is required to be 100 Scm-1 or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電磁波加熱調理器を用いて、食材の調理や、食品の包装紙、缶ジュース、レトロ食品や容器等の化成品の温度制御加熱ができるようにする方法に関する。 The present invention relates to a method for cooking foods and controlling temperature of chemical products such as food wrapping paper, can juice, retro food and containers using an electromagnetic heating cooker.

一般的に使われているレトロ食品や缶詰、缶ジュース等の食品では加熱する方法として、お湯に入れて暖めるか、赤外線加熱方法があった。一部のもので直接、保存容器内の飲食物を電子レンジで加熱するものもあった。また、一般的に使用されている数十キロヘルツの電磁波で加熱する電磁調理器では鉄板に流す渦電流で加熱するものであるため、金属製のフライパンや、やかん、なべを加熱するものとして用いられている。 As for a method of heating foods such as retro foods, canned foods, and canned juices that are generally used, there are warming methods in hot water or infrared heating methods. Some of them directly heated food and drink in the storage container with a microwave oven. In addition, the electromagnetic cookers that are heated by electromagnetic waves of several tens of kilohertz that are generally used are heated by eddy currents that flow through the iron plate, so they are used to heat metal frying pans, kettles, and pans. ing.

特開2004−35105号公報JP 2004-35105 A

一般に使用されている数十キロヘルツの電磁波で加熱する電磁調理器は磁性を持った鉄板をベースにしたものであり、鉄板の温度制御はセンサーを用いて過昇温防止を行っているが、実際にはフライパンや鍋等の調理器具を200℃程度以下に制御することは困難であった。また金属製のフライパンや鍋が加熱されると、接触する電磁調理器具のガラス板も加熱するために、調理後の残留熱でやけどをするという問題もあった。 Generally used electromagnetic cookers that are heated by electromagnetic waves of several tens of kilohertz are based on a magnetic iron plate, and the temperature control of the iron plate uses a sensor to prevent overheating, but actually It was difficult to control cooking utensils such as frying pans and pans to about 200 ° C. or lower. In addition, when a metal frying pan or pan is heated, the glass plate of the electromagnetic cooking utensil that comes in contact with it is also heated, so there is a problem of burns due to residual heat after cooking.

特に電磁波加熱で大きな問題となることは加熱される調理器具の温度がセンサーを持たない安いものであると、温度が無制限に上がるという問題があり、食材の調理や、レトロ食品や冷凍品の加温や解凍の際に焦げ付くという問題もあった。   A major problem with electromagnetic wave heating is that if the temperature of the cooking utensil to be heated is cheap without a sensor, the temperature rises indefinitely, and cooking of ingredients and the addition of retro foods and frozen products There was also a problem of scorching during warming and thawing.

電磁調理器による加熱方法において、調理器具に過昇温しないように温度制御機構を持たせることにより、食材やレトロ食品の加熱、冷凍食品の解凍において適度に加熱することができるようにするものである。以下に詳細に本発明を説明する。 In the heating method using an electromagnetic cooker, the cooking utensil is provided with a temperature control mechanism so as not to overheat, so that it can be heated moderately in heating foods and retro foods and thawing frozen foods. is there. The present invention is described in detail below.

一般的に導電性を有するもので、且つ磁性を持つものが電磁調理装置で加熱材料として使用されているが、本発明では導電性磁性材料においてキュリー温度以上の温度になると電磁調理器具が加熱しにくくなり、昇温する温度に制限がかかることを見出した。 In general, a material having conductivity and magnetism is used as a heating material in an electromagnetic cooking apparatus. However, in the present invention, when the temperature of the conductive magnetic material exceeds the Curie temperature, the electromagnetic cooking utensil heats up. It became difficult, and it found out that the temperature to raise temperature was restricted.

この際、電磁調理器の加熱パワーを同じにした時、材料の特性として保磁力が大きいと加熱しやすくなり、また、導電性は大きい方が加熱しやすいことが分かった。特に保磁力としては最低でも0.5A/m以上の大きさを持ち、且つ磁性材料の導電率として100Scm−1以上が望ましいことが分かった。 At this time, it was found that when the heating power of the electromagnetic cooker was the same, heating was easier when the coercive force was large as a material characteristic, and heating was easier when the conductivity was higher. In particular, it has been found that the coercive force is at least 0.5 A / m or more, and the conductivity of the magnetic material is preferably 100 Scm −1 or more.

化成品、セラミックス容器、金属容器からなる調理器具を数十キロヘルツの電磁波で加熱する電磁調理器により加熱するために、このような導電性磁性素材を化成品やセラミックス容器、金属容器の構成材料に初期から添加するものではなく、このような導電性磁性材料を塗料化して調理器具の表面に塗布したり、調理器具の構成材料として添加し充填することにより加熱できるようにすることもできる。電磁波加熱する周波数としては、数十キロヘルツに固定したものではなく、低くても高くても効果は同じである。 In order to heat cooking utensils composed of chemical products, ceramic containers, and metal containers with an electromagnetic cooker that heats with electromagnetic waves of several tens of kilohertz, such conductive magnetic materials are used as constituent materials for chemical products, ceramic containers, and metal containers. Instead of adding from the beginning, such a conductive magnetic material can be made into a paint and applied to the surface of the cooking utensil, or can be heated by adding and filling as a constituent material of the cooking utensil. The frequency of electromagnetic wave heating is not fixed to several tens of kilohertz, and the effect is the same whether it is low or high.

また、金属からなる調理器具を作製する場合には、本発明の磁性材料と同じ性質を持つものにするか、または銅やアルミ等からなる非磁性材料からなるものに、本発明の導電性磁性材料を張り合わせたり、組み合わせることにより、同様な効果が得られる。図4にアルミの鍋を用いた時の加熱方法を示した。 In addition, when producing a cooking utensil made of metal, the conductive magnetic material of the present invention should have the same properties as the magnetic material of the present invention or a non-magnetic material made of copper, aluminum or the like. Similar effects can be obtained by bonding or combining materials. FIG. 4 shows a heating method when an aluminum pan is used.

また、本発明の導電性磁性材料では昇温に上限が設定できるために、例えばキュリー温度を200℃以下に設定し、フッ素樹脂の耐熱温度よりも低くして、フッ素樹脂からなるフライパンの中に、本発明の磁性材料のプレートを置くことで加熱することができる。この時、断熱性の高いフッ素樹脂のフライパンには熱が伝わらないために、フッ素樹脂と電磁調理器のプレートも熱くならないので安全性が高く、触っても火傷にならない効果が得られる。フッ素樹脂としては、PTFE,PVDF,PFA,FEP,ETFE,PCTFE等が用いられる。 In the conductive magnetic material of the present invention, since an upper limit can be set for the temperature rise, for example, the Curie temperature is set to 200 ° C. or lower, and lower than the heat resistant temperature of the fluororesin, and placed in the frying pan made of the fluororesin. It can be heated by placing a plate of the magnetic material of the present invention. At this time, since heat is not transmitted to the highly heat-insulating fluororesin frying pan, the fluororesin and the electromagnetic cooker plate do not become hot, so the safety is high and the effect of not being burned even when touched is obtained. As the fluororesin, PTFE, PVDF, PFA, FEP, ETFE, PCTFE or the like is used.

導電性磁性体として、キュリー点が800℃以下であることを用いて、電磁波による化成品の加熱温度を磁性材料のキュリー温度を変えることにより制御する場合には、化合物の結晶を変えることや、化合物の基本組成を変えることによりキュリー温度を変えることができる。特に磁性体のキュリー温度を越えると熱吸収が低下するために、キュリー温度を少なくとも50℃以上であることが望ましい。 When the heating temperature of the chemical product by electromagnetic waves is controlled by changing the Curie temperature of the magnetic material using the Curie point of 800 ° C. or less as the conductive magnetic material, the crystal of the compound can be changed, The Curie temperature can be changed by changing the basic composition of the compound. In particular, when the temperature exceeds the Curie temperature of the magnetic material, the heat absorption decreases, so it is desirable that the Curie temperature is at least 50 ° C. or higher.

導電性磁性材料の粉を用いて塗料化する方法としては、これらの粉を少なくとも数μ以下にまで粉砕し、望ましくは0.5μ以下にした方が沈殿凝集を防ぐのに適している。特にインクにする場合では液粘度が小さいために沈殿しやすく、0.3μ以下が好ましい。また、液との親和性を高めることにより凝集を抑えることができるので、液中の粉の表面電荷状態により、界面活性剤の種類をカチオン系、アニオン系で選択することで分散がよくなり凝集を防ぐことができる。粉の表面電位がプラスならば、例えばアニオン系としては―NH、―NHR、―NR (R:アルキル基等)を分子に含む界面活性剤が妥当である。また、粉の表面電位がマイナスならばカチオン系としては―COOH、―SOH等を分子に含む界面活性剤が妥当である。 As a method of forming a paint using conductive magnetic material powder, it is more suitable to prevent precipitation and aggregation by grinding these powders to at least several μ or less, and desirably 0.5 μ or less. In particular, in the case of using ink, since the liquid viscosity is small, precipitation tends to occur, and 0.3 μm or less is preferable. In addition, since the aggregation can be suppressed by increasing the affinity with the liquid, depending on the surface charge state of the powder in the liquid, the dispersion can be improved by selecting the type of surfactant as cationic or anionic. Can be prevented. If the surface potential of the powder is positive, for example, a surfactant containing —NH 2 , —NHR, —NR 2 (R: alkyl group or the like) in the molecule is appropriate as an anionic system. If the surface potential of the powder is negative, a surfactant containing —COOH, —SO 3 H or the like in the molecule is appropriate as the cationic system.

化成品やセラミックス製品の表面に形成する形成する膜の組成物として、本発明の導電性磁性材料の粉に1300℃以下の軟化点を持つSiO,Al,B等を含んだガラス構成物を0.1から99重量%の範囲で添加し塗膜を形成した後に、加熱して化成品に固定化して付ける。膜厚としては0.1μ以上、望ましくは100μ以上が良い。 As a composition of a film to be formed on the surface of a chemical product or a ceramic product, SiO 2 , Al 2 O 3 , B 2 O 3 or the like having a softening point of 1300 ° C. or less is used for the conductive magnetic material powder of the present invention. The contained glass composition is added in the range of 0.1 to 99% by weight to form a coating film, and then heated and fixed to the chemical product. The film thickness is 0.1 μm or more, preferably 100 μm or more.

また、膜を形成する塗料として、シロキサン、またはシラン化合物を含んだ硬化性樹脂に本発明の導電性磁性粉を0.1から90重量%の範囲で添加し、塗料膜を形成することによりガラス構成物を主成分にしなくても耐熱性を持たせることが可能である。更に、膜を形成した後に数百℃の加熱処理をすることにより、シロキサン結合で固定化された導電性磁性体等ができるために耐熱性が非常に強いものができる。 Further, as a paint for forming a film, the conductive magnetic powder of the present invention is added in a range of 0.1 to 90% by weight to a curable resin containing siloxane or a silane compound to form a paint film. Heat resistance can be imparted without using a constituent as a main component. Furthermore, by conducting a heat treatment at several hundreds of degrees centigrade after forming the film, a conductive magnetic body fixed with a siloxane bond can be obtained, so that the heat resistance is very strong.

以上のような電磁波で加熱することができる化成品として、保存容器、食器またはシ−トやフィルム、缶等の形状であっても良く、これらの様々な形状品に対して、前述の導電性磁性体を用いることにより、所定の温度で加熱することができる。 The chemical product that can be heated by the electromagnetic wave as described above may be in the shape of a storage container, tableware, a sheet, a film, a can, or the like. By using a magnetic material, it can be heated at a predetermined temperature.

このような導電性磁性体による加熱方法により加熱することができる容器として、例えばレトロ食品、缶ジュ−ス等の飲食物を含んだ容器があり、また飲食物を含まないものでもビニ−ル袋、包装紙、茶碗、皿等に応用することにより電磁波加熱装置で加熱ができるようになる。具体的には電磁波を反射するスチ−ル缶の缶材質として本発明の導電性磁性体を用いるか、または表面に、本発明の導電性磁性体を100〜1000μ程度の範囲で塗膜して、電磁波加熱により缶を加熱することができる。また、包装材料や容器材料としてポリエチレン(直鎖状低密度ポリエチレン(LLDPE)を含む)、ポリプロピレン、ポリ塩化ビニリデン(PVCD;塩化ビニルとの共重合体を含む)などのポリオレフィン、ポリエステル(PET)、ポリアミド、エチレン・酢酸ビニル共重合体(EVA)、エチレン・ビニルアルコール(EVOH)などの合成樹脂フィルム、セルロースなどの天然高分子系フィルム、或は天然パルプ繊維及び/又は熱可塑性繊維から製造した紙類(ビスコース加工紙を含む)を材質とするものでも良く、またフィルムとしては例えばポリエチレン系プラスチックフィルム、ポリプロピレン系プラスチックフィルム、塩化ビニル系プラスチックフィルム、ポリエステル系プラスチックフィルム、アクリル系プラスチックフィルム、ポリアミド系プラスチックフィルムなどが挙げられ、これらフィルムに本発明の導電性磁性体による加熱層を形成したり、または材料自体に本発明の導電性磁性体を添加することにより電磁波による加熱ができる。 As a container that can be heated by such a heating method using a conductive magnetic material, for example, there are containers containing food and drink such as retro foods and can juices. Application to wrapping paper, teacups, dishes, etc. enables heating with an electromagnetic wave heating device. Specifically, the conductive magnetic material of the present invention is used as a material for a steel can that reflects electromagnetic waves, or the conductive magnetic material of the present invention is coated on the surface in a range of about 100 to 1000 μm. The can can be heated by electromagnetic heating. In addition, polyolefins such as polyethylene (including linear low-density polyethylene (LLDPE)), polypropylene, and polyvinylidene chloride (PVCD; including a copolymer with vinyl chloride), polyester (PET), etc. Polyamide, synthetic resin film such as ethylene / vinyl acetate copolymer (EVA), ethylene / vinyl alcohol (EVOH), natural polymer film such as cellulose, or paper made from natural pulp fiber and / or thermoplastic fiber (Including viscose-processed paper) may be used as the material, and examples of the film include a polyethylene plastic film, a polypropylene plastic film, a vinyl chloride plastic film, a polyester plastic film, and an acrylic plastic. Films, polyamide-based plastic films, etc. can be mentioned. Heating by electromagnetic waves can be performed by forming a heating layer of the conductive magnetic material of the present invention on these films, or by adding the conductive magnetic material of the present invention to the material itself. .

また、これらの電磁波により加熱することができる容器に対して、示温材料を形成して加熱されて状態を視覚化できるようにすることにより、加熱状態を確認することができるために効率的な加熱をすることができる。示温材料としては加熱温度によるが、酸化鉄や有機色素系、HgI系の化合物等があるが、具体的には示温材料や示温シ−ル等を用いても良い。 In addition, for the containers that can be heated by these electromagnetic waves, the heating state can be confirmed by forming a temperature indicating material and being heated so that the state can be visualized. Can do. Although the temperature indicating material depends on the heating temperature, there are iron oxide, an organic dye-based compound, an HgI-based compound, and the like. Specifically, a temperature indicating material, a temperature indicating seal, or the like may be used.

本発明の導電性磁性材料の代表的なものとして、主成分としてマグネタイト、γFe、NiZnフェライトのNi1−xZnFe、MnZnフェライトのMn1−xZnFe、バリウムフェライトのBaFe19、ストロンチウムフェライトのSrFe19やパ−マロイ、珪素鋼板、センダスト、サマリウムコバルト、Nd2Fe14B1などが挙げられ、金属、塩類、酸化物、窒化物、硫化物のいずれにしても同様な効果を持つ。但し、これらの磁性材料では、中には導電性がないものがあるので、酸化物系であれば酸素欠陥を作る、または他の元素を入れて導電性を付与することが必要であり、またキュリー温度を低下させるために、主成分以外の元素を添加する必要がある。これら材料中でもCoが主成分の金属アモルファス材料が望ましく、単ロール法や、水アトマイズ法等による超急冷で原料を作製し、粉砕または成型することにより、所定の厚みと形状を持つものにするのが良い。 Typical examples of the conductive magnetic material of the present invention include magnetite, γFe 2 O 3 , Ni 1-x Zn x Fe 2 O 4 of NiZn ferrite, and Mn 1-x Zn x Fe 2 O of MnZn ferrite as main components. 4 , BaFe 6 O 19 of barium ferrite, SrFe 6 O 19 of strontium ferrite, permalloy, silicon steel sheet, sendust, samarium cobalt, Nd2Fe14B1, etc., and any of metals, salts, oxides, nitrides, sulfides But it has the same effect. However, some of these magnetic materials do not have electrical conductivity, so if they are oxides, it is necessary to create oxygen defects or to add electrical conductivity by adding other elements. In order to lower the Curie temperature, it is necessary to add an element other than the main component. Among these materials, a metal amorphous material containing Co as a main component is desirable, and a raw material is prepared by ultra-rapid cooling by a single roll method or a water atomizing method, and is made to have a predetermined thickness and shape by pulverization or molding. Is good.

本方法によりフライパンや鍋等の調理器具において、調理器具の加熱温度が材料特性により制限できる。更に構成の仕方として加熱されるところを調理器具の内側にし、且つ調理器具の非加熱の部分は温度が上昇しにくいために、触れても火傷をすることがなく、且つ数十キロヘルツの電磁波で加熱する電磁調理器と調理器具の接触界面の温度も火傷する程度に温度が上昇しないために、調理器具を加熱した後に電磁調理器に触れても火傷をすることがなくなった。 With this method, the cooking temperature of a cooking utensil such as a frying pan or a pan can be limited by the material characteristics. Further, as a method of construction, the portion to be heated is placed inside the cooking utensil, and the temperature of the non-heating portion of the cooking utensil does not rise easily, so there is no burn even when touched, and electromagnetic waves of several tens of kilohertz are used. Since the temperature at the contact interface between the electromagnetic cooker to be heated and the cooking utensil does not rise to such a level as to cause burns, even if the electromagnetic cooker is touched after heating the cooking utensils, there is no longer any burn.

下記の通りである。 It is as follows.

本発明の導電性磁性体による加熱を行った実施例を以下に説明する。厚み5mmのCoBFeNd系合金において、導電率が1000Scm−1程度、磁気特性が保磁力0.1A/cm以上で、飽和磁束密度80000A/m、キュリー温度240℃となっている鋼板を用いて直径25センチの板を作製し、数十キロヘルツの電磁波で加熱する電磁波装置で加熱した結果、材料のキュリー温度240℃において昇温が止まり、この温度の上下限10℃以内に維持できることが分かった。この鋼板の組成を変えて、キュリー温度を変えて評価した結果、表1のようにキュリー温度と維持される温度とは相関関係があることが分かった。 Examples in which heating is performed with the conductive magnetic material of the present invention will be described below. In a CoBFnN-based alloy having a thickness of 5 mm, a steel plate having a conductivity of about 1000 Scm −1 , a magnetic property of coercive force of 0.1 A / cm or more, a saturation magnetic flux density of 80000 A / m, and a Curie temperature of 240 ° C. is used. As a result of producing a centimeter plate and heating it with an electromagnetic wave device heated with electromagnetic waves of several tens of kilohertz, it was found that the temperature rise stopped at a Curie temperature of 240 ° C., and the temperature could be maintained within the upper and lower limits of 10 ° C. As a result of changing the composition of the steel sheet and changing the Curie temperature, it was found that there is a correlation between the Curie temperature and the maintained temperature as shown in Table 1.

(表1)

Figure 2007117175
(Table 1)
Figure 2007117175

次にこのCoBFeNd系合金の鋼板として、キュリー温度180℃の材料を用いて作製した直径25cm厚み5mmの板をフッ素樹脂で作製されたフライパン、内側に直径26cmの平坦な部分を持つところに図1のように設置した。この時のフッ素樹脂のフライパンの底と該鋼板が接する内側の面との厚みは5mmとした。この状態で、数十キロヘルツの電磁波で加熱する電磁調理器により500Wで加熱した結果、該鋼板のキュリー温度で昇温がとまった。更にフッ素樹脂から作製されたフライパンの部分は加熱されていなかった。この結果、キュリー温度で制御されたフライパンでは、フライパンが加熱されないので、火傷にはならないことが分かった。 Next, as a CoBFnNd-based alloy steel plate, a plate having a diameter of 25 cm and a thickness of 5 mm prepared using a material having a Curie temperature of 180 ° C. is a frying pan made of a fluororesin, and has a flat portion having a diameter of 26 cm inside. It was installed as follows. At this time, the thickness of the bottom surface of the fluororesin frying pan and the inner surface in contact with the steel plate was 5 mm. In this state, as a result of heating at 500 W with an electromagnetic cooker heated with electromagnetic waves of several tens of kilohertz, the temperature rise stopped at the Curie temperature of the steel sheet. Furthermore, the part of the frying pan made from the fluororesin was not heated. As a result, it was found that in the frying pan controlled at the Curie temperature, the frying pan is not heated, and thus does not cause burns.

次にキュリー温度が約650℃程度のSUS316を用いて作製した直径25cm厚み5mmの板をフッ素樹脂で作製されたフライパン、内側に直径26cmの平坦な部分を持つところに設置した。この時のフッ素樹脂のフライパンの底と該鋼板が接する内側の面との厚みは5mmとした。この状態で、温度を感知する数十キロヘルツの電磁波で加熱する電磁調理器により180℃で設定した結果、該鋼板の温度は設定値で昇温がとまった。この時、フッ素樹脂から作製されたフライパンと電磁調理器底の接触界面は50℃程度となり、火傷する温度にはならなかった。この結果、温度を感知する電磁調理器により加熱した場合でも鋼板が加熱されてもフライパン自体が加熱されないので、火傷にはならないことが分かった。 Next, a plate having a diameter of 25 cm and a thickness of 5 mm prepared using SUS316 having a Curie temperature of about 650 ° C. was placed in a frying pan made of fluororesin and having a flat portion having a diameter of 26 cm inside. At this time, the thickness of the bottom surface of the fluororesin frying pan and the inner surface in contact with the steel plate was 5 mm. In this state, as a result of setting at 180 ° C. with an electromagnetic cooker heated with electromagnetic waves of several tens of kilohertz that senses the temperature, the temperature of the steel plate stopped rising at the set value. At this time, the contact interface between the frying pan made of the fluororesin and the bottom of the electromagnetic cooker was about 50 ° C., and did not reach the burn temperature. As a result, it was found that even when heated by an electromagnetic cooker that senses the temperature, the frying pan itself is not heated even if the steel plate is heated, so that it does not cause burns.

CoBFeNd系合金において、導電率が1000Scm−1、磁気特性が保磁力0.5A/cm以上で、飽和磁束密度50000A/m、キュリー温度160℃となっている鋼板を粉砕して、10μm以下の粉にして、フライパン形状にプレス成型し水素雰囲気中1200℃で焼結させた。このフライパンを用いて、電磁調理器により500Wで加熱した結果、該鋼板のキュリー温度で昇温がとまった。 In a CoBFnN-based alloy, a steel sheet having an electrical conductivity of 1000 Scm −1 , a magnetic property of coercive force of 0.5 A / cm or more, a saturation magnetic flux density of 50000 A / m, and a Curie temperature of 160 ° C. is pulverized to obtain a powder of 10 μm or less. Then, it was press-molded into a frying pan shape and sintered at 1200 ° C. in a hydrogen atmosphere. As a result of heating at 500 W with an electromagnetic cooker using this frying pan, the temperature rise stopped at the Curie temperature of the steel plate.

CoBFeNd系合金の組成を変えて、導電率がほぼ10000Scm−1程度に固定し、飽和磁束密度50000A/m、キュリー温度160℃を変わらない程度にして、保磁力のみを変えて鋼板を作製して評価した。評価は同様に電磁調理器により500W加熱で行った。この結果を表2に示した。この結果から、少なくとも0.1A/cm以上が加熱に必要なことが分かった。好ましくは0.5A/m以上であることが良い。加熱時評価試験としては、保磁力が10A/cmでキュリー温度までに昇温する時間を基準にし、この数値を1と規格化して示した。 The composition of the CoBFnN-based alloy is changed, the electric conductivity is fixed at about 10000 Scm −1 , the saturation magnetic flux density is 50000 A / m, the Curie temperature is 160 ° C. and the coercive force is changed, and the steel plate is produced. evaluated. Evaluation was similarly performed by heating with 500 W with an electromagnetic cooker. The results are shown in Table 2. From this result, it was found that at least 0.1 A / cm or more is necessary for heating. Preferably it is 0.5 A / m or more. As the evaluation test at the time of heating, this numerical value was normalized to 1 with reference to the time to raise the temperature to the Curie temperature with a coercive force of 10 A / cm.

(表2)

Figure 2007117175
(Table 2)
Figure 2007117175

CoBFeNd系合金の組成を変えて、飽和磁束密度50000A/m程度にして、保磁力を0.5A/mにほぼ固定し、Bを増やすように組成を変えて導電率のみを変えて鋼板を作製して評価した。評価は同様に電磁調理器により500W加熱を100℃まで昇温して昇温時間の比較を行った。この結果を表3に示した。この結果から、導電率は少なくとも100Scm−1程度以上であることが加熱に必要なことが分かった。加熱時評価試験としては、導電率は112Scm−1でキュリー温度までに昇温する時間を基準にし、この数値を1と規格化して示した。 The composition of the CoBFnN-based alloy is changed to a saturation magnetic flux density of about 50000 A / m, the coercive force is substantially fixed to 0.5 A / m, and the composition is changed so as to increase B, and only the conductivity is changed to produce a steel plate. And evaluated. The evaluation was similarly performed by heating 500 W to 100 ° C. using an electromagnetic cooker and comparing the heating time. The results are shown in Table 3. From this result, it was found that the electrical conductivity is required to be at least about 100 Scm-1 or more. As an evaluation test at the time of heating, the conductivity was 112 Scm −1 , based on the time to raise the temperature to the Curie temperature, and this value was normalized to 1 and indicated.

(表3)

Figure 2007117175
(Table 3)
Figure 2007117175

CoBFeNd系合金の組成を変えて、保磁力を0.5A/mにほぼ固定し、導電率を10000Scm−1以上になるようにして、飽和磁束密度を30000から50000A/mの範囲で変化させて、昇温速度を比較した。この時の評価は同様に電磁調理器により500W加熱を100℃まで昇温して昇温時間の比較を行った。この結果、飽和磁束密度が高いほうが昇温時間を短くすることが分かった。また、この時、初透磁率が高いほうが昇温時間を短くすることも確認された。 By changing the composition of the CoBFeNd-based alloy so that the coercive force is substantially fixed at 0.5 A / m, the conductivity is 10000 Scm −1 or more, and the saturation magnetic flux density is changed in the range of 30000 to 50000 A / m. The heating rate was compared. The evaluation at this time was similarly performed by heating the 500 W heating to 100 ° C. using an electromagnetic cooker and comparing the temperature raising time. As a result, it was found that the higher the saturation magnetic flux density, the shorter the temperature raising time. At this time, it was also confirmed that the higher the initial permeability, the shorter the temperature raising time.

キュリー温度が900℃程度のSUS316を用いて作製したフライパンを用いて加熱する際に、図2のようにフライパンと電磁調理器の間にPTFEフッ素樹脂の板を置いて加熱した。この際フッ素樹脂板の厚みを変えて、電磁調理器の表面の加熱温度を調べた。加熱は、温度を感知する電磁調理器により150℃で設定し、五分間維持した。フッ素樹脂の厚みと電磁調理器の表面の温度の関係は表4のようになった。この結果、電磁調理器の表面に1mm以上の厚みのフッ素樹脂の板が必要であることが分かった。フッ素樹脂の代わりにシリコン樹脂やポリイミド樹脂等を用いても同様な結果になり、樹脂の材質には依存しないことが分かった。 When heating using a frying pan manufactured using SUS316 having a Curie temperature of about 900 ° C., a PTFE fluororesin plate was placed between the frying pan and the electromagnetic cooker as shown in FIG. At this time, the heating temperature of the surface of the electromagnetic cooker was examined by changing the thickness of the fluororesin plate. Heating was set at 150 ° C. with a temperature-sensitive electromagnetic cooker and maintained for 5 minutes. Table 4 shows the relationship between the thickness of the fluororesin and the surface temperature of the electromagnetic cooker. As a result, it was found that a fluororesin plate having a thickness of 1 mm or more is required on the surface of the electromagnetic cooker. Similar results were obtained when silicon resin, polyimide resin, or the like was used instead of fluororesin, and it was found that it did not depend on the material of the resin.

(表4)

Figure 2007117175
(Table 4)
Figure 2007117175

CoBFeNd系合金の組成を変えて、導電率がほぼ10000Scm−1程度に固定し、飽和磁束密度50000A/m、キュリー温度160℃、保磁力0.5 A/mの材料を用いて、数ミクロンの粉とした。この粉に弗素樹脂のPTFEを5重量パーセントで加えて、混合し金型プレスで図3に示した20センチの厚み1センチの円盤を底に持つようなフライパンに成型した。この成型体の導電率は1000Scm−1以上であった。この成型体を電磁調理器により加熱した。この結果、キュリー温度に近い150℃程度で昇温が停止した。このように樹脂とのコンポジット材料でも同様な効果が得られた。 By changing the composition of the CoBFeNd-based alloy, the conductivity is fixed to about 10000 Scm −1 , a material having a saturation magnetic flux density of 50000 A / m, a Curie temperature of 160 ° C., and a coercive force of 0.5 A / m is used. Powdered. PTFE, a fluororesin, was added to this powder at 5 weight percent, mixed and molded into a frying pan having a 1 cm thick disk at the bottom as shown in FIG. The conductivity of the molded body was 1000 Scm −1 or more. This molded body was heated with an electromagnetic cooker. As a result, the temperature rise stopped at about 150 ° C. close to the Curie temperature. Thus, the same effect was obtained with a composite material with resin.

弗素樹脂で成型されたフライパンの断面図Cross section of a frying pan molded with fluororesin 通常の鉄製フライパンを数十キロヘルツの電磁波で加熱する電磁調理器で加熱する際にPTFEフッ素樹脂の板を鉄製フライパンと加熱面の間に設置した図The figure which installed the board of PTFE fluororesin between an iron frying pan and a heating surface, when heating an ordinary iron frying pan with an electromagnetic cooker heated with electromagnetic waves of several tens of kilohertz 本発明の導電性磁性金属粉とPTFE樹脂で成型されたフライパンの図Figure of frying pan molded with conductive magnetic metal powder and PTFE resin of the present invention 本発明の導電性磁性金属板を中に入れたアルミ製鍋の図Illustration of an aluminum pan with the conductive magnetic metal plate of the present invention inside

符号の説明Explanation of symbols

1 弗素樹脂で成型されたフライパン
2 本発明の導電性磁性体から作製された金属板
3 通常の鉄製フライパン
4 PTFEフッ素樹脂の板
5 数十キロヘルツの電磁波で加熱する電磁波加熱器の加熱側の硝子板
6 本発明の導電性磁性金属粉とPTFE樹脂で成型されたフライパン
7 把手
8 アルミ製鍋
9 本発明の導電性磁性金属板
DESCRIPTION OF SYMBOLS 1 Frying pan shape | molded with fluororesin 2 Metal plate produced from the electroconductive magnetic body of this invention 3 Normal iron frying pan 4 PTFE fluororesin plate 5 Glass of the heating side of the electromagnetic wave heater heated with electromagnetic waves of several tens of kilohertz Plate 6 Frying Pan 7 Handle 8 Aluminum Pan 9 Molded with Conductive Magnetic Metal Powder and PTFE Resin of the Present Invention Conductive Magnetic Metal Plate of the Present Invention

Claims (6)

電磁波により加熱する電磁波加熱方法において、調理器具の加熱できる部材が磁性材料より構成され、且つこの磁性材料の導電率が100Scm−1以上であり、且つこの磁性材料のキュリー温度が400℃以下であり、保磁力が0.5A/m以上からなることを特徴とする調理器具。 In the electromagnetic wave heating method of heating by electromagnetic waves, the member that can be heated by the cooking utensil is made of a magnetic material, the electrical conductivity of the magnetic material is 100 Scm −1 or more, and the Curie temperature of the magnetic material is 400 ° C. or less. A cooking utensil having a coercive force of 0.5 A / m or more. 請求項1の調理器具の温度制御がキュリー温度により加熱温度の上限値が設定されることを特徴とする調理器具。 The temperature control of the cooking utensil according to claim 1, wherein the upper limit value of the heating temperature is set by the Curie temperature. 請求項1の磁性材料を用いて、粉末焼結法、または金属板のプレス成型法により作製されたことを特徴とする調理器具。 A cooking utensil produced using the magnetic material of claim 1 by a powder sintering method or a metal plate press molding method. 請求項1の磁性材料の表面に、珪素酸化物を主成分に持つガラス、またはフッ素樹脂、シリコン樹脂等からなる耐熱性の被膜を形成したことを特徴とする磁性材料。 A magnetic material comprising a glass having silicon oxide as a main component or a heat-resistant film made of a fluorine resin, a silicon resin or the like formed on the surface of the magnetic material according to claim 1. 鍋やフライパン等の調理器具において、電磁波による加熱部分として磁性材料を用い、他の部材を電磁波で加熱されないガラスやプラスチック素材等より構成され、この素材を磁性材料の表面から1mm以上の厚みで形成し、電磁調理器との接触界面での温度が50℃以下とすることを特徴とした調理器具。 In cooking utensils such as pots and pans, magnetic materials are used as heating parts by electromagnetic waves, and other members are made of glass or plastic materials that are not heated by electromagnetic waves, and this material is formed with a thickness of 1 mm or more from the surface of the magnetic material. And the temperature in a contact interface with an electromagnetic cooker shall be 50 degrees C or less. 鍋やフライパン等の調理器具を加熱する電磁調理器において、電磁調理器の表面に断熱樹脂からなる板を1mm以上の厚みで形成したことを特徴としたIH電磁調理器。
An electromagnetic cooker that heats cooking utensils such as pots and pans, an IH electromagnetic cooker, wherein a plate made of heat insulating resin is formed on the surface of the electromagnetic cooker with a thickness of 1 mm or more.
JP2005309841A 2005-10-25 2005-10-25 Electromagnetic cooker Pending JP2007117175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309841A JP2007117175A (en) 2005-10-25 2005-10-25 Electromagnetic cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309841A JP2007117175A (en) 2005-10-25 2005-10-25 Electromagnetic cooker

Publications (1)

Publication Number Publication Date
JP2007117175A true JP2007117175A (en) 2007-05-17

Family

ID=38141682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309841A Pending JP2007117175A (en) 2005-10-25 2005-10-25 Electromagnetic cooker

Country Status (1)

Country Link
JP (1) JP2007117175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108784386A (en) * 2017-05-02 2018-11-13 佛山市顺德区美的电热电器制造有限公司 Cookware and preparation method thereof, cooking apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079516A (en) * 2002-08-26 2003-03-18 Matsushita Electric Ind Co Ltd Pot for electromagnetic induction heating cooking device and its manufacturing method
JP2004174085A (en) * 2002-11-28 2004-06-24 Mitsubishi Electric Corp Cooking vessel
JP2005158658A (en) * 2003-11-28 2005-06-16 Fujimak Corp Electromagnetic induction heating cooker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079516A (en) * 2002-08-26 2003-03-18 Matsushita Electric Ind Co Ltd Pot for electromagnetic induction heating cooking device and its manufacturing method
JP2004174085A (en) * 2002-11-28 2004-06-24 Mitsubishi Electric Corp Cooking vessel
JP2005158658A (en) * 2003-11-28 2005-06-16 Fujimak Corp Electromagnetic induction heating cooker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108784386A (en) * 2017-05-02 2018-11-13 佛山市顺德区美的电热电器制造有限公司 Cookware and preparation method thereof, cooking apparatus

Similar Documents

Publication Publication Date Title
CN1132505C (en) Heat retentive food servingware with temperature self-regulating phase change core
EP0187966B1 (en) Heating apparatus having a heat storage device
JP2005516357A (en) Induction heating using dual susceptors
JP2008518723A (en) Induction-heatable cooking utensil and serving utensil, method for producing induction-heatable product, and coating method for producing induction-heatable product
GB2445464A (en) A self-regulating electrical resistance heating element
KR101247617B1 (en) Container for electromagnetic cookers
JP2008522758A (en) Heat-resistant dishes for microwave ovens
JP2007117175A (en) Electromagnetic cooker
JP2014050526A (en) Cooking utensil
JP5301258B2 (en) Cooking aids for electromagnetic heating products and microwave oven heating
JP4161351B2 (en) Electromagnetic induction heating cooker and electromagnetic induction heating cooking device
JPH034479A (en) Container for electromagnetic cooker
JP2004035105A (en) Coating material and resin for electromagnetic wave heating, and chemical product such as container
CN108652440A (en) Anti-overflow health preserving kettle
JP5081318B1 (en) Exothermic rubber
WO2017072658A1 (en) Insert made of an alloy of non-magnetic material and ferromagnetic or ferrimagnetic material, kitchenware for induction cooking comprising such an insert and method for making such a kitchenware
CN208369888U (en) A kind of electromagnetic induction heating ceramic wafer
CN210204476U (en) Cooking utensil
JP2006185752A (en) Container for electromagnetic cooker
JP4830641B2 (en) rice cooker
JP6692707B2 (en) Microwave absorption heating element
JP4503528B2 (en) Cooking pot and rice cooker equipped with the pot
JP2005334351A (en) Pan for electromagnetic induction cooker
KR101908478B1 (en) Shielding material for ir sensor with high stability under high temperature heating
JP2007319453A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100828

A521 Written amendment

Effective date: 20101104

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20101226

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A02