JP2011252635A - Preservation device, and method of preserving of the same - Google Patents

Preservation device, and method of preserving of the same Download PDF

Info

Publication number
JP2011252635A
JP2011252635A JP2010125584A JP2010125584A JP2011252635A JP 2011252635 A JP2011252635 A JP 2011252635A JP 2010125584 A JP2010125584 A JP 2010125584A JP 2010125584 A JP2010125584 A JP 2010125584A JP 2011252635 A JP2011252635 A JP 2011252635A
Authority
JP
Japan
Prior art keywords
frozen
temperature
microwave
freezing
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010125584A
Other languages
Japanese (ja)
Other versions
JP5304729B2 (en
Inventor
Yuko Fujii
優子 藤井
Tomonao Amayoshi
智尚 天良
Tomoko Tani
谷  知子
Tomotaka Nobue
等隆 信江
Yasuki Hamano
泰樹 浜野
Tadashi Adachi
正 足立
Ayuko Nakamura
亜有子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010125584A priority Critical patent/JP5304729B2/en
Publication of JP2011252635A publication Critical patent/JP2011252635A/en
Application granted granted Critical
Publication of JP5304729B2 publication Critical patent/JP5304729B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that a preservation method by conventional cooling performs cooling using heat conduction from outside and causes a needle crystal so that cell destruction occurs because of a large ice crystal.SOLUTION: A preservation device includes cooling unit 12 for cooling a refrigerated object 11, a cooling compartment 13 for containing the refrigerated object 11, and microwave generation unit 14 for generating microwaves to apply the microwaves to refrigerated object. By applying microwaves to the refrigerated object 11, the refrigerated object can be preserved under a non-frozen state even at a temperature equal to or less than a freezing point. Accordingly, hardly freezable foodstuff such as vegetables, konjac food, and tofu which are not suitable for freezing can be preserved for a long period of time. Further, vegetables and fruits can be preserved while keeping more deliciousness because tasty components such as nutrients and amino acid increase through biological defense reaction at equal to or less than a freezing point.

Description

本発明は、凍結点以下の温度帯における食品などの未凍結状態での保存方法およびそれを利用した保存装置に関するものである。   The present invention relates to a method for storing food in an unfrozen state in a temperature zone below the freezing point, and a storage device using the same.

生鮮食品等を冷凍して、その解凍時に鮮度や味を維持するためには、組織体の細胞を破壊しないこと、濃縮(細胞外に溶質が流出する)を抑制することが重要である。通常、低温環境に該食品をおくと、表面から除々に冷却され、最終的に中心部分までが周囲温度に至るため、表面が先に凍りはじめるという現象が起こる。   In order to freeze fresh food and the like and maintain freshness and taste at the time of thawing, it is important not to destroy the cells of the tissue body and to suppress concentration (the solute flows out of the cells). Normally, when the food is placed in a low temperature environment, the surface gradually cools and finally reaches the ambient temperature up to the central portion, so that the surface begins to freeze first.

このような場合、食品表面にできた氷結晶が食品内部の未凍結状態の水分を引き出しながら拡大するため、中心部分に向かって大きな針状結晶が生成される。この大きな針状結晶は食品の細胞を破壊するため、解凍時に液汁の流出(ドリップ)が発生して品質低下を招いてしまう。このため、品質評価に肉などの解凍時のドリップ流出量を比較する方法がある。そのため、水分を有する生鮮食品、加工食品などの細胞を破壊することなく冷凍するために、最大氷結晶生成帯(一般的には0℃〜−5℃の氷結晶が最も成長する温度帯)を通過する時間を短くすることが有効である。この時間を短くすることにより、氷結晶を小さくできるので細胞の破壊を防止できるとともに、濃縮を抑制することができる。   In such a case, ice crystals formed on the surface of the food expand while drawing unfrozen moisture inside the food, so that a large needle crystal is generated toward the central portion. Since these large needle crystals destroy the cells of the food, a spill (drip) of the juice occurs during thawing, leading to a decrease in quality. For this reason, there is a method for comparing the amount of drip outflow when thawing meat or the like in quality evaluation. Therefore, in order to freeze without destroying cells such as fresh foods and processed foods with moisture, the maximum ice crystal formation zone (generally the temperature zone where ice crystals of 0 ° C to -5 ° C grow the most) It is effective to shorten the passing time. By shortening this time, ice crystals can be made smaller, so that destruction of cells can be prevented and concentration can be suppressed.

こういった問題を解決し、高品位な冷凍を実現するための代表的な技術としては、急速冷凍が一般に知られている。この急速冷凍の方法として、大型冷凍機や、液体窒素や液体二酸化炭素などの極低温液体が用いられている。また具体構成としては、底面に金属板を有する急速冷凍容器と、急速冷凍容器の上面開口上方に急速冷凍容器内の食品を冷却するための冷気を吐出する冷気ダクトを設け、急速冷凍容器の収納深さ寸法を70〜100mmとした急速冷凍室を設置するなどして、冷蔵庫での急速冷凍を実施しようとしているもの(例えば、特許文献1参照)がある。   As a typical technique for solving such problems and realizing high-quality refrigeration, quick freezing is generally known. As a method for this quick freezing, a large-sized freezer or a cryogenic liquid such as liquid nitrogen or liquid carbon dioxide is used. Further, as a specific configuration, a quick freezing container having a metal plate on the bottom surface, and a cold air duct for discharging cold air for cooling food in the quick freezing container above the upper surface opening of the quick freezing container, and storing the quick freezing container Some have attempted to perform quick freezing in a refrigerator by installing a quick freezing room having a depth dimension of 70 to 100 mm (see, for example, Patent Document 1).

しかしながら、前者の大型冷凍機で急速冷凍すると、原理的に被冷凍体表面からの熱伝導
により内部を冷却されるため、大きな食品になると冷凍が完結するまでに数分〜 数時間要してしまう。そのため、この間に被冷凍体の表面と内部に温度差を生じ、被冷凍物の表面と内部との有効凍結期間差が大きくなり、特に被冷凍物表面の氷結晶が大きくなってしまうため、細胞が破壊されたり、濃縮がおこる場合があった。
However, when quick freezing with the former large refrigerator, the inside is cooled by heat conduction from the surface of the object to be frozen in principle, so it takes several minutes to several hours for the freezing to be completed for large foods. . Therefore, a temperature difference is generated between the surface and the inside of the object to be frozen during this time, and the difference in the effective freezing period between the surface and the inside of the object to be frozen becomes large, especially the ice crystals on the surface of the object to be frozen become large. May be destroyed or concentrated.

また、後者の極低温液体を用いる方法では、有効凍結期間を短くできるが、原料の供給が必要でコスト高になるという問題があった。さらに、急速冷凍時には極低温冷気を吹きつける必要があるため、省エネについては逆行しているといえる。また、極低温冷気をつくりだすためには、高性能で、巨大な圧縮機を搭載する必要があるなど、コスト的なデメリットも考えられる。また、被冷凍物と極低温液体との温度差が大きいので、被冷凍物の膨張収縮が急速になってしまい、被冷凍物自身に亀裂や破裂などが生じてしまい、外観を損ねてしまうという問題もあった。   In the latter method using a cryogenic liquid, the effective freezing period can be shortened, but there is a problem that the supply of raw materials is required and the cost is increased. Furthermore, since it is necessary to blow cryogenic cold air at the time of quick freezing, it can be said that it is going backwards about energy saving. In addition, in order to produce cryogenic cold, it is necessary to install a huge compressor with high performance, and there may be cost disadvantages. In addition, since the temperature difference between the object to be frozen and the cryogenic liquid is large, the object to be frozen expands and contracts rapidly, and the object to be frozen itself is cracked or ruptured. There was also a problem.

このような問題を解決する手段として、常温から氷結点付近まで比較的急速に冷却する急速冷却処理を行い、続いて、被冷凍体表面と内部との温度差を小さくするため、氷結点下まで0.01〜0.5℃/時間の緩慢な冷却速度で冷却するスロークーリング処理を行い、この後に急速冷凍を行う方法(例えば、特許文献2参照)が開示されている。   As a means to solve such problems, a rapid cooling process is performed in which cooling is performed relatively quickly from room temperature to the vicinity of the freezing point. Subsequently, in order to reduce the temperature difference between the surface of the object to be frozen and the inside, the temperature is below the freezing point. A method (for example, refer to Patent Document 2) is disclosed in which a slow cooling process of cooling at a slow cooling rate of 0.01 to 0.5 ° C./hour is performed, followed by quick freezing.

特開2005−83687号公報JP 2005-83687 A 特開平8−252082号公報JP-A-8-252082

しかしながら、冷却速度0.01〜0.5℃/時間のスロークーリングでは、冷凍完了までに時間がかかりすぎてしまうため、酸化や細菌繁殖などによって食品品質が低下する可能性があった。
また、食品の形状や重量によっては、上記スロークリーニングでも未凍結状態を維持するのは困難な場合があった。そのため、食品の形状や重量に関わらず過冷却状態を発現させ、未凍結状態を維持させる必要がある。
However, in slow cooling at a cooling rate of 0.01 to 0.5 ° C./hour, it takes too much time to complete freezing, so that food quality may be deteriorated due to oxidation, bacterial growth, or the like.
Also, depending on the shape and weight of the food, it may be difficult to maintain an unfrozen state even with the slow cleaning described above. Therefore, it is necessary to develop a supercooled state and maintain an unfrozen state regardless of the shape and weight of the food.

本発明は上記の問題を解決するためになされたもので、被冷凍物を冷却する冷却手段と、前記被冷凍物を収納する冷凍室と、マイクロ波を発生させて被冷凍物にマイクロ波を印加するマイクロ波発生手段とを設け、冷凍室の庫内温度を0℃〜−10℃のいずれかの温度、望ましくは0℃〜−5℃とするため、冷凍に不向きな野菜やこんにゃく、豆腐などの難冷凍食材の長期保存が可能となる。このように被冷凍物の温度を通常の冷凍温度帯より上げることで、新たに解凍する必要がなく、解凍による品質劣化を心配する必要も無い。   The present invention has been made to solve the above-described problem. A cooling means for cooling an object to be frozen, a freezing chamber for storing the object to be frozen, a microwave is generated and the microwave is generated on the object to be frozen. And a microwave generating means to be applied, and the freezer compartment temperature is set to any one of 0 ° C. to −10 ° C., preferably 0 ° C. to −5 ° C., so that it is not suitable for freezing vegetables, konjac, tofu Long-term storage of hard-frozen foods such as is possible. Thus, by raising the temperature of the object to be frozen from the normal freezing temperature zone, there is no need to newly defrost and there is no need to worry about quality degradation due to thawing.

また、被冷凍物を凍結点以下でも未凍結状態のまま保存することができるので凍結による細胞破壊の恐れもないためドリップを抑制することが可能となる。また、万が一、過冷却が解除して凍結しても、氷結晶が小さいため細胞破壊の影響を抑制することができる。   In addition, since the object to be frozen can be stored in an unfrozen state even below the freezing point, there is no risk of cell destruction due to freezing, and drip can be suppressed. Also, even if the supercooling is released and frozen, the effect of cell destruction can be suppressed because the ice crystals are small.

さらに、野菜や果物は凍結点以下になると生態防御反応により、栄養素やアミノ酸等の旨み成分が増加するため、より美味しい保存を実現することが可能となる。   In addition, when vegetables and fruits fall below the freezing point, umami components such as nutrients and amino acids increase due to the ecological defense reaction, which makes it possible to achieve more delicious preservation.

本発明の冷凍方法及び冷凍装置は、被冷凍物の美味しい保存を実現することが可能となる。   The refrigeration method and the refrigeration apparatus of the present invention can realize a delicious preservation of an object to be frozen.

本発明の実施の形態1におけるマイクロ波発生手段の動作の有無における被冷凍物の冷却曲線を示す特性図The characteristic view which shows the cooling curve of the to-be-frozen object in the presence or absence of operation | movement of the microwave generation means in Embodiment 1 of this invention 本発明の実施の形態1におけるマイクロ波発生手段動作時の被冷凍物の温度と過冷却度の関係を示す特性図The characteristic view which shows the relationship between the temperature of the to-be-frozen object at the time of microwave generation means operation | movement in Embodiment 1 of this invention, and a supercooling degree 本発明の実施の形態1におけるマイクロ波発生手段動作時の冷凍室の庫内温度と過冷却維持時間の関係を示す特性図The characteristic view which shows the relationship between the internal temperature of a freezer compartment at the time of microwave generation means operation | movement in Embodiment 1 of this invention, and supercooling maintenance time 本発明の実施の形態1における牛肉の旨み成分である遊離アミノ酸の量を初期と未凍結状態で保存した後で測定した結果を示す図The figure which shows the result measured after having preserve | saved the quantity of the free amino acid which is the flavor component of beef in Embodiment 1 of this invention in the initial stage and an unfrozen state 本発明の実施の形態2における冷凍装置の概略構造を表す概略図Schematic showing the schematic structure of the freezing apparatus in Embodiment 2 of this invention. 本発明の実施の形態2におけるマイクロ波発生手段の概略構造を表す概略図Schematic showing the schematic structure of the microwave generation means in Embodiment 2 of this invention. 本発明の実施の形態2における他の冷凍装置の概略構造を表す概略図Schematic showing the schematic structure of the other refrigeration apparatus in Embodiment 2 of this invention.

第1の発明は、被冷凍物を冷却する冷却手段と、前記被冷凍物を収納する冷凍室と、マ
イクロ波を発生させて被冷凍物にマイクロ波を印加するマイクロ波発生手段とを設け、被冷凍物にマイクロ波を印加することで被冷凍物を凍結点以下でも未凍結状態のまま保存できることを特徴とする保存装置であり、冷凍に不向きな野菜やこんにゃく、豆腐などの難冷凍食材の長期保存が可能となる。
さらに未凍結なので、新たに解凍する必要がなく、解凍による品質劣化を心配する必要も無い。また、未凍結なので凍結による細胞破壊の恐れもなく、また過冷却解除時に凍結しても、氷結晶が小さいため細胞破壊の影響を抑制することができる。
1st invention provides the cooling means which cools a to-be-frozen thing, the freezer compartment which stores the to-be-frozen thing, and the microwave generation means which generates a microwave and applies a microwave to a to-be-frozen object, It is a storage device characterized in that the object to be frozen can be stored in an unfrozen state even if it is below the freezing point by applying microwaves to the object to be frozen, and it is difficult to freeze vegetables such as vegetables, konjac, and tofu. Long-term storage is possible.
Furthermore, since it is not frozen, there is no need to newly defrost and there is no need to worry about quality degradation due to thawing. Moreover, since it is not frozen, there is no fear of cell destruction due to freezing, and even if it is frozen when the supercooling is released, the effect of cell destruction can be suppressed because the ice crystals are small.

また、野菜や果物は凍結点以下になると生態防御反応により、栄養素やアミノ酸等の旨み成分が増加するため、より美味しい保存を実現することが可能となる。   In addition, when vegetables and fruits fall below the freezing point, umami ingredients such as nutrients and amino acids increase due to an ecological defense reaction, which makes it possible to achieve more delicious preservation.

加えて、冷凍室の庫内温度を0℃〜−10℃のいずれかの温度、望ましくは0〜−5℃とすることによって、より安定的に過冷却状態を保持することができる。特に酵素反応が活性化した状態で未凍結保存できる−3℃付近の温度で保存することで、旨み成分であるアミノ酸や糖をより多く増加させることができ、美味しく長期保存することが可能となる。また、−3℃で未凍結を維持し、その後過冷却が解除されたとしても、過冷却度が低いため凍結される割合も少なく、さらに過冷却状態を経ての凍結のため氷結晶も小さいので冷凍前の状態を保持できており、生の状態を保持することができる。   In addition, by setting the internal temperature of the freezer compartment to any temperature of 0 ° C. to −10 ° C., preferably 0 ° C. to −5 ° C., the supercooled state can be maintained more stably. In particular, by storing at a temperature around −3 ° C., which can be stored in a frozen state with the enzyme reaction activated, amino acids and sugars, which are umami components, can be increased more and can be stored deliciously for a long time. . In addition, even if uncooled is maintained at -3 ° C and then the supercooling is released, the degree of freezing is small because the degree of supercooling is low, and the ice crystals are also small because of freezing after the supercooled state. The state before freezing can be maintained, and the raw state can be maintained.

第2の発明は、マイクロ波発生手段は被冷凍物の凍結点以上で被冷凍物の温度が10℃以下、望ましくは5℃以下になった時点で印加することを特徴とするものである。特に、被冷凍物中の水分子は10℃付近から集合しはじめ、特に5℃付近から水分子凝集力が強くなるため、これらの温度域でマイクロ波を印加することで水分子の凝集を効率よく抑制することが可能となり、氷結晶核の生成も抑制できる。このため、安定して過冷却状態にすることができるとともに、過冷却の状態を保持することが可能となる。   The second invention is characterized in that the microwave generating means is applied when the temperature of the object to be frozen is 10 ° C. or lower, preferably 5 ° C. or lower, above the freezing point of the object to be frozen. In particular, the water molecules in the object to be frozen start to gather from around 10 ° C, and the water molecule cohesive strength becomes strong especially from around 5 ° C. It becomes possible to suppress well and the formation of ice crystal nuclei can also be suppressed. For this reason, while being able to be stably made into a supercooled state, it becomes possible to hold | maintain the state of supercooling.

第3の発明は、加熱手段を設け、未凍結状態で保存後に加熱手段によって被冷凍物の温度を上昇させることで過冷却を解除させることなく未凍結状態にすることができるので、冷凍に不向きな野菜などの難冷凍食材の長期保存が可能となる。さらに未凍結なので、新たに解凍する必要がなく、解凍による品質劣化を心配する必要も無い。また、未凍結なので凍結による細胞破壊の恐れもないため、ドリップなどの心配も不要となる。   The third invention is not suitable for freezing because it can be brought into an unfrozen state without releasing supercooling by providing a heating means and raising the temperature of the object to be frozen by the heating means after storage in an unfrozen state. Long-term storage of hard-frozen foods such as fresh vegetables is possible. Furthermore, since it is not frozen, there is no need to newly defrost and there is no need to worry about quality degradation due to thawing. Moreover, since it is not frozen, there is no fear of cell destruction due to freezing, so there is no need to worry about drip.

第4の発明は、マイクロ波発生手段からマイクロ波を発生させる発生部を半導体素子で構成することによって、小型化設計が可能になるため、冷凍装置に搭載しても冷凍装置の容量を損わない構成にすることができる。さらに半導体素子は周波数を可変することができるので、被冷凍物の状態に応じた周波数を印加することが可能になる。   According to the fourth aspect of the present invention, since the generation unit for generating the microwave from the microwave generating means is configured by a semiconductor element, a miniaturization design becomes possible, so that the capacity of the refrigeration apparatus is impaired even when mounted on the refrigeration apparatus. There can be no configuration. Furthermore, since the frequency of the semiconductor element can be varied, it is possible to apply a frequency according to the state of the object to be frozen.

第5の発明は、マイクロ波発生手段から発生させた出力が印加されずに戻ってくる電力を検出する反射電力検出手段を設けることによって、様々な形状・量の被加熱物に対してマイクロ波供給量を最大化する周波数を検出することができる。そのため、効率よくマイクロ波を被冷凍物に吸収させることができる。さらに、形状・量の被加熱物に対してマイクロ波供給量を最大化する周波数を検出することが可能となるため、被冷凍物の重量を検知する重量センサや大きさを検出するイメージセンサなどを新たに設ける必要もないため、小型化及び低コスト化を実現することができる。
また、周波数を一定とした場合、被冷凍物の温度によっても反射電力は異なるため、
被冷凍物の温度を検出することも可能となる。そのため、新たに温度検出手段を設ける必要もなくなり、小型化及び低コスト化を実現することも可能となる。
According to a fifth aspect of the present invention, there is provided a reflected power detection means for detecting power that is returned without being applied with the output generated from the microwave generation means, thereby allowing microwaves to be heated to various shapes and amounts. The frequency that maximizes the supply amount can be detected. Therefore, the microwave can be efficiently absorbed by the object to be frozen. Furthermore, since it is possible to detect the frequency that maximizes the microwave supply amount for the object to be heated in shape and quantity, a weight sensor that detects the weight of the object to be frozen, an image sensor that detects the size, etc. Therefore, it is not necessary to provide a new one, so that downsizing and cost reduction can be realized.
Also, if the frequency is constant, the reflected power varies depending on the temperature of the object to be frozen.
It is also possible to detect the temperature of the object to be frozen. Therefore, it is not necessary to newly provide a temperature detecting means, and it is possible to realize downsizing and cost reduction.

第6の発明は、被冷凍物にマイクロ波を印加し、被冷凍物に吸収されるエネルギーよりも大きなエネルギーで冷却することで、被冷凍物を未凍結の状態で維持する保存方法であ
る。マイクロ波を印加することで水分子の凝集を抑制し、凍結に必要な氷結晶核の生成を抑制することができるので、未凍結状態を維持することが可能となる。
6th invention is a preservation | save method which maintains a to-be-frozen object in an unfrozen state by applying a microwave to to-be-frozen object and cooling with the energy larger than the energy absorbed by a to-be-frozen object. By applying a microwave, aggregation of water molecules can be suppressed and generation of ice crystal nuclei necessary for freezing can be suppressed, so that an unfrozen state can be maintained.

第7の発明は、未凍結状態のまま保存し、被冷凍物を冷凍室から取り出す前に庫内温度を凍結点付近に上げるもしくはマイクロ波の印加によって被冷凍物の温度を凍結点付近に上昇させることによって、野菜や果物、豆腐、コンニャクなどの難冷凍食品を凍結させることなく長期保存することが可能になる。また、野菜や果物などは未凍結状態で保存することで、生態防除反応で糖などが上昇するため美味しく保存することができる。また肉や魚などは熟成しやすくなり旨み成分であるアミノ酸を増加させることができる。   7th invention preserve | saves in an unfrozen state, raises the temperature in a warehouse to the freezing point vicinity before taking out a to-be-frozen thing from a freezing room, or raises the temperature of a to-be-frozen object to freezing point vicinity by application of a microwave This makes it possible to preserve hard-frozen foods such as vegetables, fruits, tofu, and konjac for a long period without freezing. In addition, by storing vegetables and fruits in an unfrozen state, sugars and the like are increased in the ecological control reaction, so that they can be stored deliciously. In addition, meat, fish, and the like can be easily ripened, and amino acids that are umami components can be increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
以下、本発明の実施の形態を図に基づいて説明する。図1及び図2は本発明の実施の形態1における被冷凍物の保存方法における時間と温度の関係を示した図であり、図3はマイクロ波発生手段動作時の冷凍室の庫内温度と過冷却維持時間の関係を示す特性図であり、る。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIGS. 1 and 2 are diagrams showing the relationship between time and temperature in the method for preserving the object to be frozen in Embodiment 1 of the present invention, and FIG. 3 shows the temperature inside the freezer compartment during operation of the microwave generating means. It is a characteristic view which shows the relationship of supercooling maintenance time.

図1には被冷凍物として水を用い、冷却中にマイクロ波を印加した場合と印加しない場合を示している。マイクロ波は水の温度が5℃に凍結した時点で印加した。印加電力は約3Wとし、被冷凍物を冷却するエネルギーは印加電力よりも大きい、約500Wとした。   FIG. 1 shows a case where water is used as an object to be frozen and a microwave is applied and not applied during cooling. The microwave was applied when the water temperature was frozen at 5 ° C. The applied power was about 3 W, and the energy for cooling the object to be frozen was about 500 W, which was larger than the applied power.

図1に示すように、マイクロ波を印加しない場合では、水の凍結点である0℃で凍結が始まり、温度の低下は緩やかになる。これは水が凍りになる際1グラム当たり80カロリーの潜熱を出すからで、大部分の水が凍るまで熱が供給され続けるため品温の急激な低下は起こらない。この温度範囲を最大氷結晶生成帯(−1〜−5℃)と呼び、この通過時間が短ければ急速凍結であり、通過時間が短ければ緩慢凍結になる。   As shown in FIG. 1, in the case where the microwave is not applied, freezing starts at 0 ° C., which is the freezing point of water, and the temperature decrease becomes gradual. This is because 80 calories per gram is generated when the water freezes, so that heat is continuously supplied until most of the water is frozen, so that the product temperature does not drop rapidly. This temperature range is called the maximum ice crystal formation zone (−1 to −5 ° C.), and if this passage time is short, rapid freezing will occur, and if the passage time is short, slow freezing will occur.

一方、マイクロ波を印加した水は凍結点を過ぎても温度は低下し凍結しない過冷却状態となっている。過冷却とは凍結点以下の温度に冷却されたとき、熱力学的に安定な結晶が現れずに、不安定な液体状態で保持されている状態を言う。   On the other hand, the water to which microwaves are applied is in a supercooled state in which the temperature drops and does not freeze even after the freezing point. Supercooling refers to a state in which, when cooled to a temperature below the freezing point, thermodynamically stable crystals do not appear and are held in an unstable liquid state.

一般的に、氷が生成し、凍結するためには、氷結晶の芽となる氷結晶核が生成する必要がある。この氷結晶核および氷結晶の成長の原因として、水の水素結合による分子集合状態の存在がある。水分子は通常25℃で約85%が5量体を作っている。凍結する前に水分子の集合を抑制し、単分子にすることによって、氷結晶核の生成や氷結晶の成長を抑制することができ、過冷却状態に導くことが可能となる。本発明は単分子にする方法として、マイクロ波を印加することで水分子を活性化させ、振動させることで水分子の集合を抑制した。図1に示すようにマイクロ波を印加しない場合では過冷却は発現しないが、マイクロ波を印加した場合では、約−6℃まで過冷却状態を保持しており、マイクロ波印加の効果を確認することができた。   In general, in order to generate and freeze ice, it is necessary to generate ice crystal nuclei that become buds of ice crystals. The cause of the growth of the ice crystal nuclei and ice crystals is the presence of a molecular aggregate state due to hydrogen bonding of water. About 85% of water molecules normally form pentamers at 25 ° C. By suppressing the aggregation of water molecules and freezing them before freezing, the formation of ice crystal nuclei and the growth of ice crystals can be suppressed, leading to a supercooled state. In the present invention, as a method for forming a single molecule, water molecules are activated by applying a microwave, and aggregation of water molecules is suppressed by vibrating. As shown in FIG. 1, when the microwave is not applied, the supercooling does not appear, but when the microwave is applied, the supercooled state is maintained up to about −6 ° C., and the effect of the microwave application is confirmed. I was able to.

図2にマイクロ波を印加するタイミングとして、冷却中の被冷凍物の物温と過冷却度(凍結点―過冷却解消温度)を示す。冷却前の水の温度は20℃とした。図2に示すように、冷却と同時にマイクロ波を印加すると過冷却は発現しないが、マイクロ波を印加する時の水の温度が低いほど、過冷却度が大きくなることが解る。これは、温度が高い時にマイクロ波を印加しても冷却スピードが低下するだけであるが、温度が低くなり水分子が集合し始める時にマイクロ波を印加すると、水分子の動きが活発化され、単分子になると考えられる。このため、図2に示すようにマイクロ波の印加は被冷凍物を冷却し、凍結点以上
で10℃以下、望ましくは5℃以下で印加することが望ましい。
FIG. 2 shows the temperature of the object to be frozen and the degree of supercooling (freezing point−supercooling elimination temperature) as the timing of applying the microwave. The temperature of water before cooling was 20 ° C. As shown in FIG. 2, it is understood that supercooling does not appear when microwaves are applied simultaneously with cooling, but the degree of supercooling increases as the temperature of water when applying microwaves is lower. This means that even if microwaves are applied when the temperature is high, the cooling speed only decreases, but if the microwaves are applied when the temperature becomes low and water molecules start to gather, the movement of the water molecules is activated, It is considered to be a single molecule. For this reason, as shown in FIG. 2, application of microwaves cools the object to be frozen and is applied at 10 ° C. or lower, preferably 5 ° C. or lower above the freezing point.

本実施の形態でマイクロ波の周波数は2.45GHzとしたが、300MHz〜300GHzであれば同様の効果を得ることができる。300MHz以下では、マイクロ波を食品に効率よく吸収させるためには、電極間に挟むなどの構成にする必要があり、装置自身が大型化してしまう。さらに300MHz以下では被冷凍物の形状によって、電磁波が集中し、均一な電波印加が難しい。そのため、水分子の単分子化が可能な場所と不可能な場所ができてしまい、氷結晶核生成につながってしまう。また300GHz以上においても、電磁波が表面のみに集中し、内部まで伝達しないため、被冷凍物の内部と表面で温度差が発生してしまい、氷結晶核が生成してしまい、過冷却状態にならない。   In the present embodiment, the microwave frequency is 2.45 GHz, but similar effects can be obtained if the frequency is 300 MHz to 300 GHz. Below 300 MHz, in order to efficiently absorb the microwave into the food, it is necessary to adopt a configuration such as sandwiching between the electrodes, and the apparatus itself becomes large. Further, at 300 MHz or lower, electromagnetic waves concentrate due to the shape of the object to be frozen, and it is difficult to apply uniform radio waves. As a result, a place where water molecules can be made into single molecules and a place where water molecules cannot be made are created, which leads to ice crystal nucleation. Even at 300 GHz or higher, electromagnetic waves concentrate only on the surface and do not transmit to the inside, so that a temperature difference occurs between the inside and the surface of the object to be frozen, ice crystal nuclei are generated, and the supercooled state is not achieved. .

また、装置自身を小型にするためには、マイクロ波の印加手段をアンテナにするのが最も良い方法である。さらにアンテナを用いる場合300MHz〜300GHzではアンテナの小型化が可能なため、マイクロ波発生手段の小型化が可能となる。   In order to reduce the size of the apparatus itself, it is best to use an antenna as the microwave application means. Further, when an antenna is used, the antenna can be miniaturized at 300 MHz to 300 GHz, so that the microwave generating means can be miniaturized.

なお、本実施の形態において、冷凍室の庫内温度を−7℃で行った。この冷凍室の庫内温度と過冷却状態のままで未凍結状態を保持できる時間には、図4に示すような相関があり、庫内温度が高いほど過冷却保持時間は長く維持することが確認できた。特に庫内温度が0℃〜−10℃の範囲内では過冷却の保持時間が数日以上可能であり、上記温度範囲内でも特に0℃〜−5℃の範囲ではより安定的に長期間未凍結状態を維持することが可能となった。そのため冷凍室の庫内温度を0℃〜−10℃のいずれかの温度、望ましくは0℃〜−5℃とすることが望ましい。   In the present embodiment, the temperature inside the freezer compartment was −7 ° C. There is a correlation as shown in FIG. 4 in the freezer compartment temperature and the time in which the unfrozen state can be maintained in the supercooled state, and the higher the internal temperature, the longer the supercooling holding time can be maintained. It could be confirmed. In particular, when the internal temperature is in the range of 0 ° C. to −10 ° C., the holding time of the supercooling can be several days or more. It became possible to maintain the frozen state. Therefore, it is desirable that the temperature in the freezer compartment is 0 ° C. to −10 ° C., preferably 0 ° C. to −5 ° C.

また、本実施の形態において、被冷凍物として牛肉200gを用いて庫内温度を0〜−18℃まで変化させ、各々の温度で未凍結状態を5日間保持させた。図4は牛肉の旨み成分である遊離アミノ酸の量を初期と未凍結状態で保存した後で測定した結果を示す図である。   Moreover, in this Embodiment, the inside temperature was changed to 0-18 degreeC using 200g of beef as a to-be-frozen thing, and the unfrozen state was hold | maintained at each temperature for 5 days. FIG. 4 is a diagram showing the results of measurement of the amount of free amino acids, which are beef flavor components, stored after initial storage and in an unfrozen state.

この結果より、0℃〜−10℃で保存中に熟成が進み、牛肉の旨み成分である遊離アミノ酸が増えることを確認した。さらに0〜−5℃の範囲ではその増加率が高い。特に0〜−5℃では過冷却が解除して、牛肉に氷結晶が瞬時に生成しても完全に凍結されていないので解凍する必要がなく、そのまま美味しく食べることができる。また、過冷却状態を経て凍結された場合は氷結晶が小さく、細胞破壊が抑制されているので、増加した旨み成分がドリップによって流出することを抑制することができ、美味しく被冷凍物を保存することが可能となる。   From this result, it was confirmed that aging progressed during storage at 0 ° C. to −10 ° C., and that free amino acids, which are beef flavor components, increased. Furthermore, the increase rate is high in the range of 0 to -5 ° C. In particular, at 0 to -5 [deg.] C., the supercooling is released, and even if ice crystals are instantly generated in the beef, it is not completely frozen, so it does not need to be thawed and can be eaten as it is. In addition, when frozen through a supercooled state, ice crystals are small and cell destruction is suppressed, so that the increased umami component can be prevented from flowing out by drip, and the frozen object is preserved deliciously. It becomes possible.

また、−10℃付近まで未凍結状態を保持し、その後−5℃以上に庫内温度を上げることでも同様にアミノ酸の増量を確認することができた。特に未凍結状態の温度が低いほど菌の繁殖が抑えられ長期保存が可能となるが、(表1)で示すように遊離アミノ酸の増加は低い。そのため低温で保存し、その後ヒータ加熱やマイクロ波の印加等によって、被冷凍物の温度を−10℃あるいは−5℃以上に上げることによって、遊離アミノ酸を増加することが可能になる。未凍結温度を変化させることで、長期保存とアミノ酸増量の両方を実現することができる。   Moreover, the increase in the amount of amino acids could be confirmed in the same manner by maintaining the unfrozen state up to about −10 ° C. and then raising the internal temperature to −5 ° C. or higher. In particular, the lower the temperature in the unfrozen state, the more the growth of bacteria is suppressed and long-term storage becomes possible, but the increase in free amino acids is low as shown in (Table 1). Therefore, it is possible to increase the free amino acid by storing at a low temperature and then raising the temperature of the object to be frozen to −10 ° C. or −5 ° C. or higher by heating with a heater or applying a microwave. By changing the non-freezing temperature, both long-term storage and amino acid increase can be realized.

よって、予め庫内温度を0℃〜−10℃望ましくは0℃〜−5℃にするか、もしくは未凍結保存中に加熱し、被冷凍物の温度を上昇させることによって、解凍工程が必要なく、さらにはアミノ酸の増量することができるので、美味しく被冷凍物を保存することが可能となる。   Therefore, the internal temperature is set to 0 ° C. to −10 ° C., preferably 0 ° C. to −5 ° C., or heated during non-freezing storage to increase the temperature of the object to be frozen, thereby eliminating the need for a thawing step. Furthermore, since the amount of amino acids can be increased, it is possible to preserve the object to be frozen deliciously.

また、未凍結状態を保持することによって冷凍に不向きな食品が凍結できるかについて
も検討を行った。一般的に冷凍に不向きな食材として、野菜や豆腐、こんにゃくなどがあげられる。特に野菜については冷凍できないため、冷蔵で保存しているのが一般的である。しかし野菜は新鮮さを長時間に亘って非常に困難な食材であり、一般の家庭用の冷蔵庫に関するアンケートなどでは、廃棄する食材の上位に上がっている。
We also examined whether foods unsuitable for freezing can be frozen by maintaining an unfrozen state. In general, vegetables, tofu, konjac and the like are suitable for freezing. In particular, vegetables cannot be frozen, so they are generally stored refrigerated. However, vegetables are a very difficult ingredient for a long period of time, and in a questionnaire on general refrigerators for home use, they are ranked higher than the discarded ingredients.

野菜が冷蔵温度帯で長期保存できない理由としては、野菜の乾燥や葉緑素等の有用成分の急激な分解、菌の繁殖などがあげられる。そのため肉や魚のように冷凍保存したいが、野菜などの植物の場合は肉や魚などの動物と細胞自身の構成が異なるため、細胞が破壊されやすい。つまり、肉や魚などの細胞は、脂質で作られている細胞膜に包まれているため柔軟性がある。一方、野菜などの植物は、細胞膜の外側にセルロースで作られた固い細胞壁が存在する。冷凍すると体積膨張によって柔軟性の無い細胞壁は破壊されてしまうため、解凍後には壊れた細胞壁から野菜の水分が流出し、食感が悪くなってしまう。
そのため、マイクロ波を印加することで被冷凍物を未凍結状態で保存し、調理や食事前に過冷却を解除させることなく庫内温度あるいは被冷凍物の温度を上げることで、野菜などの長期保存を実現することが可能となる。
Reasons why vegetables cannot be stored for a long time in a refrigerated temperature range include drying of vegetables, rapid decomposition of useful components such as chlorophyll, and bacterial growth. Therefore, it is desired to store frozen like meat and fish, but in the case of plants such as vegetables, the cells are easily destroyed because the structure of the cells themselves is different from animals such as meat and fish. In other words, cells such as meat and fish are flexible because they are encased in a cell membrane made of lipid. On the other hand, plants such as vegetables have a hard cell wall made of cellulose outside the cell membrane. When frozen, the inflexible cell wall is destroyed by volume expansion, so that after thawing, the moisture of vegetables flows out of the broken cell wall, and the texture becomes worse.
Therefore, by applying microwaves, the object to be frozen can be stored in an unfrozen state, and by increasing the internal temperature or the temperature of the object to be frozen without releasing the supercooling before cooking or eating, Saving can be realized.

本実施の形態において、野菜としてほうれん草を被冷凍物として評価した。
その結果、7℃雰囲気で放置した場合では約1週間で変色と乾燥が生じて鮮度が低下したが、−5℃で未凍結状態を維持しその後、庫内温度を上げてほうれん草の温度を5℃まで上昇させた場合では、色、硬さともに変化無く、初期と同等の鮮度状態を維持していた。さらに糖を測定した結果、初期に比べ約20%の増加していることを確認した。これは未凍結の状態で保持されていたため、ホウレン草自身の生態防御反応で糖が増加したと考えられる。このように、未凍結状態を維持しその後凍結させること無く温度を上昇させることで、野菜を美味しく長期間保存することが可能となった。
In this Embodiment, spinach was evaluated as a to-be-frozen thing as a vegetable.
As a result, when left in an atmosphere of 7 ° C, discoloration and drying occurred in about one week, and the freshness decreased. However, the unfrozen state was maintained at -5 ° C, and then the temperature of the spinach was increased by increasing the internal temperature. When the temperature was raised to 0 ° C., neither the color nor the hardness changed, and the freshness state equivalent to the initial state was maintained. Furthermore, as a result of measuring sugar, it was confirmed that it increased by about 20% compared to the initial stage. Since this was held in an unfrozen state, it is thought that sugar increased due to the ecological defense reaction of spinach itself. Thus, it became possible to preserve vegetables for a long period of time by maintaining the unfrozen state and raising the temperature without freezing thereafter.

(実施の形態2)
図4は、本発明の実施の形態2における生鮮食品等の冷凍方法を実現できる冷凍装置を示した構成図である。
(Embodiment 2)
FIG. 4 is a configuration diagram showing a refrigeration apparatus capable of realizing a refrigeration method for fresh food or the like according to Embodiment 2 of the present invention.

被冷凍物11を冷却する冷却手段12と、前記冷却手段12からの冷気により前記被冷凍物を収納する冷凍室13と、マイクロ波を発生させて被冷凍物12にマイクロ波を印加するマイクロ波発生手段14とを設け、冷却手段12は被冷凍物が前記マイクロ波発生手段14から吸収するエネルギーよりも大きなエネルギーで冷却する構成としている。   A cooling unit 12 that cools the object to be frozen 11, a freezing chamber 13 that stores the object to be frozen by the cool air from the cooling unit 12, and a microwave that generates microwaves and applies microwaves to the object to be frozen 12 The generating means 14 is provided, and the cooling means 12 is configured to cool the object to be frozen with energy larger than the energy absorbed from the microwave generating means 14.

さらに、冷凍室13に被冷凍物11の温度を検出する温度検知手段15を設け、被冷凍物11が所定の温度に達した時点でマイクロ波発生手段14を動作させ、発生させたマイクロをアンテナ16によって、被冷凍物11に印加する構成としている。また、重量センサや被冷凍物11の温度低下率から被冷凍物11の重量を算出し、マイクロ波のパワーを制御させる制御手段17を設けている。   Furthermore, a temperature detection means 15 for detecting the temperature of the object to be frozen 11 is provided in the freezer compartment 13, and when the object to be frozen 11 reaches a predetermined temperature, the microwave generating means 14 is operated, and the generated micro is an antenna. 16 is applied to the object to be frozen 11. Moreover, the weight of the to-be-frozen object 11 is calculated from the temperature sensor and the temperature decreasing rate of the to-be-frozen object 11, and the control means 17 which controls the power of a microwave is provided.

本実施の形態2において、図5に示すようにマイクロ波を発生させるマイクロ波発生手段14の発信部18は半導体素子を用いて構成している。
半導体素子としてはSiやGaAs、SiCやGaNが挙げられるが、本実施の形態においてはGaNを使用した。一般的にマイクロ波を発信させる発信部18としてはマグネトロンがあるが、半導体素子を用いることで、マグネトロンに比べて大幅に小型化が実現でき、冷凍室13内の容積を低減すること、あるいは、冷凍装置を大型化することなくマイクロ波発生手段14を搭載することが可能となる。さらにマグネトロンと違って半導体を使用することで、用意に印加電力や周波数を可変することが可能となる。
In the second embodiment, as shown in FIG. 5, the transmitting section 18 of the microwave generating means 14 for generating a microwave is configured using a semiconductor element.
Examples of semiconductor elements include Si, GaAs, SiC, and GaN. In this embodiment, GaN is used. Generally, there is a magnetron as the transmitter 18 for transmitting microwaves, but by using a semiconductor element, the size can be significantly reduced as compared with the magnetron, and the volume in the freezer compartment 13 can be reduced. The microwave generation means 14 can be mounted without increasing the size of the refrigeration apparatus. Furthermore, by using a semiconductor unlike a magnetron, it becomes possible to vary the applied power and frequency in advance.

さらに、発信部18からの出力を増幅器19によって増幅し、分配器20を介して冷凍
室13に設けられたアンテナ16からマイクロ波を印加するが、印加されずに反射される電力も存在するため、その反射電力を検出する反射電力検出手段21を設けることで、様々な形状・量の被加熱物に対してマイクロ波供給量を最大化する周波数を検出することが可能となる。さらに、制御部22を儲け、発信部18を制御することによって、最適な周波数を選択してその周波数でマイクロ波を印加することも可能になり、効率よくマイクロ波を被冷凍物に吸収させることができるという利点もある。
Furthermore, the output from the transmitter 18 is amplified by an amplifier 19 and a microwave is applied from the antenna 16 provided in the freezer compartment 13 via the distributor 20, but there is also power reflected without being applied. By providing the reflected power detection means 21 for detecting the reflected power, it is possible to detect the frequency that maximizes the microwave supply amount for the object to be heated having various shapes and amounts. Furthermore, by controlling the control unit 22 and controlling the transmission unit 18, it becomes possible to select an optimum frequency and apply a microwave at that frequency, and efficiently absorb the microwave to the object to be frozen. There is also an advantage of being able to.

さらに、形状・量の被加熱物に対してマイクロ波供給量を最大化する周波数を検出することが可能となるため、被冷凍物11の重量を検知する重量センサや大きさを検出するイメージセンサなどを新たに設ける必要もないため、小型化及び低コスト化を実現することができる。
また、周波数を一定とした場合、被冷凍物11の温度によっても反射電力は異なるため、被冷凍物11の温度を検出することも可能となる。そのため、新たに温度検出手段15を設ける必要もなくなり、小型化及び低コスト化を実現することも可能となる。
Furthermore, since it is possible to detect the frequency that maximizes the microwave supply amount for the object to be heated having a shape and quantity, a weight sensor for detecting the weight of the object to be frozen 11 and an image sensor for detecting the size thereof. Since it is not necessary to provide a new one or the like, downsizing and cost reduction can be realized.
In addition, when the frequency is constant, the reflected power varies depending on the temperature of the object to be frozen 11, so that the temperature of the object to be frozen 11 can be detected. Therefore, it is not necessary to newly provide the temperature detecting means 15, and it becomes possible to realize downsizing and cost reduction.

また、図6に示すように未凍結状態を維持した後、被冷凍物11の温度を上昇させるために加熱手段21を設けた。加熱手段21として遠赤ヒータや近赤ヒータを使用しても良いが、加熱手段21として半導体を用いたマイクロ波発生手段14で構成すれば、マイクロ波の電力を可変することができるため、新たに加熱手段を設ける必要が無く、小型化が実現できる。特に、加熱手段21としてヒータを用いた場合では、冷凍室13内の庫内温度を上昇させる必要があるため、時間とエネルギーが必要となるが、マイクロ波発生手段14を用いることにより、被冷凍物11自身の温度を上げることができるので、短時間で温度を上げることができ、省エネにつながる。
この加熱手段23もしくはマイクロ波発生手段14によって未凍結状態の被冷凍物14の温度を上げることによって、実施の形態1で述べたように、冷凍に不向きな食品である野菜を長期間保存することができるとともに、生態防御反応によって糖を増加することもでき、野菜を美味しく長期間保存することが可能となった。
Further, as shown in FIG. 6, after maintaining the unfrozen state, a heating means 21 is provided to raise the temperature of the object 11 to be frozen. A far-red heater or a near-red heater may be used as the heating means 21, but if the microwave generating means 14 using a semiconductor is used as the heating means 21, the microwave power can be varied. There is no need to provide a heating means in the case, and miniaturization can be realized. In particular, when a heater is used as the heating means 21, it is necessary to increase the temperature in the freezer compartment 13, and thus time and energy are required. However, by using the microwave generation means 14, Since the temperature of the object 11 itself can be raised, the temperature can be raised in a short time, which leads to energy saving.
By raising the temperature of the frozen object 14 in an unfrozen state by the heating means 23 or the microwave generating means 14, as described in Embodiment 1, vegetables that are food unsuitable for freezing are stored for a long period of time. It is possible to increase sugar by ecological defense reaction, and it becomes possible to preserve vegetables deliciously for a long time.

以上のように、本発明にかかる冷凍方法およびそれを用いた冷凍装置は、マイクロ波を
被冷凍体に印加することで被冷凍物を凍結点以下でも未凍結状態のまま保存することができる。このため、冷凍に不向きな野菜やこんにゃく、豆腐などの難冷凍食材の長期保存が可能となる。さらに、野菜や果物は凍結点以下になると生態防御反応により、栄養素やアミノ酸等の旨み成分が増加するため、より美味しい保存を実現することが可能となる。
As described above, the refrigeration method and the refrigeration apparatus using the refrigeration method according to the present invention can store the object to be frozen in an unfrozen state even at a temperature below the freezing point by applying a microwave to the object to be frozen. For this reason, it is possible to store for a long period of hard-frozen foods such as vegetables, konjac, and tofu that are not suitable for freezing. In addition, when vegetables and fruits fall below the freezing point, umami components such as nutrients and amino acids increase due to the ecological defense reaction, which makes it possible to achieve more delicious preservation.

このため、家庭用の冷蔵庫に適用できるほかに、業務用の冷蔵庫などにも適用できる。   For this reason, it can be applied to a refrigerator for home use as well as a refrigerator for business use.

さらにマイクロ波発生手段で解凍も実現できるという点から、冷凍と解凍を実現できる新たな調理機器として、幅広い調理器にも適用することができる。   Furthermore, it can be applied to a wide range of cooking appliances as a new cooking device that can realize freezing and thawing because microwaves can be used for thawing.

また、未凍結状態で保存ができるので、例えば動物や植物細胞などの生物の組織等の保
存が可能となり、医療分野への応用にも適用できる。
In addition, since it can be stored in an unfrozen state, it can store biological tissues such as animals and plant cells, and can be applied to the medical field.


11 被冷凍物
12 冷却手段
13 冷凍室
14 マイクロ波発生手段
15 温度検知手段
16 印加手段
17 制御手段
18 発信部
19 増幅器
20 分配器
21 反射電力検出手段
22 制御部

11 To-be-frozen object 12 Cooling means 13 Freezer compartment 14 Microwave generation means
DESCRIPTION OF SYMBOLS 15 Temperature detection means 16 Application means 17 Control means 18 Transmission part 19 Amplifier 20 Divider 21 Reflected power detection means 22 Control part

Claims (7)

被冷凍物を冷却する冷却手段と、前記被冷凍物を収納する冷凍室と、マイクロ波を発生させて被冷凍物にマイクロ波を印加するマイクロ波発生手段とを設け、冷凍室の庫内温度を0℃〜−10℃のいずれかの温度とすることを特徴とする保存装置。 There is provided a cooling means for cooling the object to be frozen, a freezing chamber for storing the object to be frozen, and a microwave generating means for generating microwaves and applying microwaves to the object to be frozen. Is a temperature between 0 ° C. and −10 ° C. マイクロ波発生手段は被冷凍物の凍結点以上で被冷凍物の温度が10℃以下、望ましくは5℃以下になった時点で印加することを特徴とする請求項1記載の保存装置。 2. The storage device according to claim 1, wherein the microwave generating means is applied when the temperature of the object to be frozen is 10 [deg.] C. or lower, preferably 5 [deg.] C. or lower above the freezing point of the object to be frozen. 加熱手段を設け、未凍結状態で保存後に加熱手段によって被冷凍物の温度を上昇させることを特徴とした請求項1または2に記載の保存装置。 The storage device according to claim 1, wherein a heating unit is provided, and the temperature of the object to be frozen is increased by the heating unit after storage in an unfrozen state. マイクロ波発生手段からマイクロ波を発生させる発生部を半導体素子で構成したことを特徴とする請求項1から3のいずれか一項記載の保存装置。 The storage device according to any one of claims 1 to 3, wherein the generation unit for generating the microwave from the microwave generation means is configured by a semiconductor element. マイクロ波発生手段から発生させた出力が印加されずに戻ってくる電力を検出する反射電力検出手段を設けたことを特徴とする請求項1から4のいずれか一項記載の保存装置。 The storage device according to any one of claims 1 to 4, further comprising reflected power detection means for detecting power that is returned without being applied with an output generated from the microwave generation means. 被冷凍物にマイクロ波を印加し、被冷凍物に吸収されるエネルギーよりも大きなエネルギーで冷却することで、被冷凍物を凍結点以下でも未凍結状態のまま保存させる保存方法。 A storage method in which a microwave is applied to an object to be frozen and cooled by energy larger than the energy absorbed by the object to be frozen, so that the object to be frozen is stored in an unfrozen state even below the freezing point. 未凍結状態のまま保存し、被冷凍物を冷凍室から取り出す前に被冷凍物の温度を上昇させることを特徴とする保存方法。 A storage method characterized by storing in an unfrozen state and raising the temperature of the object to be frozen before removing the object from the freezer.
JP2010125584A 2010-06-01 2010-06-01 Storage device and storage method thereof Expired - Fee Related JP5304729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010125584A JP5304729B2 (en) 2010-06-01 2010-06-01 Storage device and storage method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010125584A JP5304729B2 (en) 2010-06-01 2010-06-01 Storage device and storage method thereof

Publications (2)

Publication Number Publication Date
JP2011252635A true JP2011252635A (en) 2011-12-15
JP5304729B2 JP5304729B2 (en) 2013-10-02

Family

ID=45416710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010125584A Expired - Fee Related JP5304729B2 (en) 2010-06-01 2010-06-01 Storage device and storage method thereof

Country Status (1)

Country Link
JP (1) JP5304729B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110810496A (en) * 2019-09-18 2020-02-21 江南大学 Microwave treatment method and device for fruit and vegetable enzyme-inactive fresh-keeping in low-temperature environment
WO2020084866A1 (en) * 2018-10-23 2020-04-30 パナソニックIpマネジメント株式会社 Refrigerator
JP2020184531A (en) * 2019-04-26 2020-11-12 四国計測工業株式会社 Microwave maturation device and microwave maturation method
JP2020184532A (en) * 2019-04-26 2020-11-12 四国計測工業株式会社 Microwave maturation apparatus
JP2020184533A (en) * 2019-04-26 2020-11-12 四国計測工業株式会社 Microwave maturation device and microwave maturation method
JP2021508364A (en) * 2017-11-16 2021-03-04 アールエルエムビー グループ リミテッド ライアビリティ カンパニー Systems and methods for supercooling products
US11933537B2 (en) 2018-10-23 2024-03-19 Panasonic Intellectual Property Management Co., Ltd. Refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018363945B2 (en) * 2017-11-08 2023-02-02 Shikoku Instrumentation Co., Ltd. Device for microwave aging and method for microwave aging

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138055A (en) * 1995-11-15 1997-05-27 Matsushita Refrig Co Ltd Refrigerator
JP2002272436A (en) * 2001-03-23 2002-09-24 Mitsubishi Electric Corp Method for freezing, method for thawing, freezing device and thawing device
JP2002372358A (en) * 2001-06-14 2002-12-26 Matsushita Refrig Co Ltd Refrigerator
JP2004251498A (en) * 2003-02-19 2004-09-09 National Institute Of Advanced Industrial & Technology Refrigerating and freezing method and freezer for cell and tissue
JP2006292347A (en) * 2005-03-16 2006-10-26 Oyama Yoshio Electromagnetic wave freezer, electromagnetic wave freezing container, and electromagnetic wave freezing method
JP2006329521A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Refrigerator
JP2009222245A (en) * 2008-03-13 2009-10-01 Mitsubishi Electric Corp Refrigerator
JP2009229037A (en) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp Food storage device, refrigerator, ice making device, high frequency cooker and high frequency radiation device
JP2009238402A (en) * 2008-03-26 2009-10-15 Panasonic Corp Microwave processor
JP2009252619A (en) * 2008-04-09 2009-10-29 Panasonic Corp Microwave processing device
JP2010193769A (en) * 2009-02-25 2010-09-09 Toyo Eng Works Ltd Method for freezing food, and freezing apparatus employing the method
WO2011004597A1 (en) * 2009-07-10 2011-01-13 パナソニック株式会社 Storage apparatus, and storage method
WO2011135863A1 (en) * 2010-04-28 2011-11-03 パナソニック株式会社 Refrigeration device, refrigerator provided with refrigeration device, and refrigeration device operating method
WO2011152047A1 (en) * 2010-06-01 2011-12-08 パナソニック株式会社 Refrigerator

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138055A (en) * 1995-11-15 1997-05-27 Matsushita Refrig Co Ltd Refrigerator
JP2002272436A (en) * 2001-03-23 2002-09-24 Mitsubishi Electric Corp Method for freezing, method for thawing, freezing device and thawing device
JP2002372358A (en) * 2001-06-14 2002-12-26 Matsushita Refrig Co Ltd Refrigerator
JP2004251498A (en) * 2003-02-19 2004-09-09 National Institute Of Advanced Industrial & Technology Refrigerating and freezing method and freezer for cell and tissue
JP2006292347A (en) * 2005-03-16 2006-10-26 Oyama Yoshio Electromagnetic wave freezer, electromagnetic wave freezing container, and electromagnetic wave freezing method
JP2006329521A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Refrigerator
JP2009222245A (en) * 2008-03-13 2009-10-01 Mitsubishi Electric Corp Refrigerator
JP2009229037A (en) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp Food storage device, refrigerator, ice making device, high frequency cooker and high frequency radiation device
JP2009238402A (en) * 2008-03-26 2009-10-15 Panasonic Corp Microwave processor
JP2009252619A (en) * 2008-04-09 2009-10-29 Panasonic Corp Microwave processing device
JP2010193769A (en) * 2009-02-25 2010-09-09 Toyo Eng Works Ltd Method for freezing food, and freezing apparatus employing the method
WO2011004597A1 (en) * 2009-07-10 2011-01-13 パナソニック株式会社 Storage apparatus, and storage method
WO2011135863A1 (en) * 2010-04-28 2011-11-03 パナソニック株式会社 Refrigeration device, refrigerator provided with refrigeration device, and refrigeration device operating method
WO2011152047A1 (en) * 2010-06-01 2011-12-08 パナソニック株式会社 Refrigerator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508364A (en) * 2017-11-16 2021-03-04 アールエルエムビー グループ リミテッド ライアビリティ カンパニー Systems and methods for supercooling products
WO2020084866A1 (en) * 2018-10-23 2020-04-30 パナソニックIpマネジメント株式会社 Refrigerator
US11933537B2 (en) 2018-10-23 2024-03-19 Panasonic Intellectual Property Management Co., Ltd. Refrigerator
JP2020184531A (en) * 2019-04-26 2020-11-12 四国計測工業株式会社 Microwave maturation device and microwave maturation method
JP2020184532A (en) * 2019-04-26 2020-11-12 四国計測工業株式会社 Microwave maturation apparatus
JP2020184533A (en) * 2019-04-26 2020-11-12 四国計測工業株式会社 Microwave maturation device and microwave maturation method
JP7431653B2 (en) 2019-04-26 2024-02-15 四国計測工業株式会社 Microwave ripening device and microwave ripening method
JP7488100B2 (en) 2019-04-26 2024-05-21 四国計測工業株式会社 Microwave maturation device and microwave maturation method
JP7489227B2 (en) 2019-04-26 2024-05-23 四国計測工業株式会社 Microwave Aging Equipment
CN110810496A (en) * 2019-09-18 2020-02-21 江南大学 Microwave treatment method and device for fruit and vegetable enzyme-inactive fresh-keeping in low-temperature environment

Also Published As

Publication number Publication date
JP5304729B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5304729B2 (en) Storage device and storage method thereof
JP5281691B2 (en) Storage device and storage method
James et al. A review of novel and innovative food freezing technologies
JP5296792B2 (en) Improving the thawing quality of rapidly frozen vegetables and fruits by low frequency ultrasound
CN110671876B (en) Supercooling freezing method, refrigerator and refrigerator control method
CN104207021B (en) The method of the high static pressure quick-frozen of a kind of ultrasonic synergistic rice
JPH05502578A (en) Cooling methods and equipment
JP4775340B2 (en) refrigerator
Kang et al. Investigation of the effect of oscillating magnetic field on fresh-cut pineapple and agar gel as a model food during supercooling preservation
JP4845930B2 (en) Frozen storage device and frozen storage method
CN111066997A (en) Method and equipment for liquid nitrogen quick-freezing jam through continuous ultrasonic field assisted crystallization
CN111683535A (en) Storage device and refrigerator
CN110822809B (en) Control method for realizing rapid freezing of food and refrigerator
CN105248614A (en) Fresh fruit dehydrating and freezing preservation method
JP2005201533A (en) Storage
Kumar Cold preservation and processing
JP5840154B2 (en) refrigerator
CN110906616B (en) Instantaneous freezing control method of refrigeration equipment and refrigeration equipment
JP2006230257A (en) Method for utilizing below-zero electrostatic field device
CN1152226C (en) Electric refrigerator
WO2018225597A1 (en) Refrigerator
WO2019156009A1 (en) Storage device and refrigerator
Goswami et al. Principles of Novel Freezing and Thawing Technologies for Foods Application
WO2024134849A1 (en) Tissue-cooling device
JPH10309162A (en) Storage of perishable food

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

LAPS Cancellation because of no payment of annual fees