JP2011238400A - 走査電子顕微鏡及び走査電子顕微鏡による試料検査方法 - Google Patents

走査電子顕微鏡及び走査電子顕微鏡による試料検査方法 Download PDF

Info

Publication number
JP2011238400A
JP2011238400A JP2010107340A JP2010107340A JP2011238400A JP 2011238400 A JP2011238400 A JP 2011238400A JP 2010107340 A JP2010107340 A JP 2010107340A JP 2010107340 A JP2010107340 A JP 2010107340A JP 2011238400 A JP2011238400 A JP 2011238400A
Authority
JP
Japan
Prior art keywords
system peak
scanning electron
objective lens
electron microscope
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010107340A
Other languages
English (en)
Inventor
Masaomi Ono
正臣 大野
Koichiro Takeuchi
恒一郎 竹内
Kotaro Hosoya
幸太郎 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010107340A priority Critical patent/JP2011238400A/ja
Publication of JP2011238400A publication Critical patent/JP2011238400A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

【課題】本発明は対物レンズ絞り上で散乱する電子の量を制限し、主電子線軌道から外れ、分析点以外に照射される電子を制御することでシステムピークを抑制し、試料の元素スペクトルの信憑性または定量精度の高い走査電子顕微鏡または走査電子顕微鏡による試料検査方法を提供することである。
【解決手段】本発明は、電子線から放出された一次電子線を集束レンズで集束し対物レンズ絞りに照射し、コンデンサー絞りで該照射のビーム径を絞り、対物レンズの孔中心を通過し集束させ、前記電子線の照射によって試料から発生した二次電子または散乱電子を検出し前記試料を検査する際に、前記対物レンズ絞り、前記コンデンサー絞り及び前記集束レンズを含む電子光学系の有するシステムピーク強度を抑制するように前記ビーム径を定めることを特徴とする。
【選択図】図1

Description

本発明は電子走査顕微鏡及び走査電子顕微鏡による試料検査方法に関し、特に一次電子線軌道から外れる電子を抑制し、X線分析時のシステムピークを抑制する走査電子顕微鏡及び走査電子顕微鏡による試料検査方法に関する。
エネルギー分散型分光装置(EDX)の高性能化の一つに検出器素子の拡大がある。これによりX線を取り込む立体角が大きくなり、短時間での分析が可能となったが、一次電子線の散乱や反射電子の散乱などにより、試料上の電子線照射点(分析点)以外の領域からのX線も取り込まれやすくなった。このため、図10に示すように分析点に含まれない元素のピークがスペクトルに現れる。このピークはシステムピークと呼ばれ、試料の元素スペクトルの信憑性の低下、定量精度の低下に繋がるためスペクトルに現れないことが望ましい。しかし、一次電子線経路での散乱や対物レンズ磁場の影響による反射電子の試料上への再照射などの要因から、システムピークが現れる。
従来技術として特許文献1には、EDX装置を備える走査電子顕微鏡において、EDX測定結果を走査電子顕微鏡の加速電圧、倍率などの測定条件にフィードバックすることが開示されている。
特開2007−86011号公報
発明者等は、システムピークの大きな発生要因の一つは対物レンズ絞り6上での一次電子の散乱であることを注目して、そのメカニズムからシステムピークを低減することができることが解った。対物レンズ絞り6上での一次電子の散乱とそれによるシステムピーク発生のメカニズムを図2、図3を用いて説明する。
対物レンズ絞り6を通過する電子の中には、対物レンズ絞り上で散乱した後に鏡体内壁などで再度散乱して通過する主電子線軌道から外れる二点鎖線で示す電子がある。この電子は試料上では主電子線の照射点(分析点)以外に照射される。図3に軌道から外れた電子の試料上までの軌道の一例を示す。図3は近似的に主電子軌道から外れ二点鎖線で示す電子が対物レンズ絞り6の位置で一旦集束して後段のレンズ系で再度集束した様子を表す。このように試料上の分析点以外に照射され、EDX分析の際に分析点以外からX線を発生させ、スペクトルにシステムピークが現れる。
特許文献1には、システムピークの大きな発生要因の一つは対物レンズ絞り6上での一次電子の散乱であることの認識はなく、まして、その認識に基づいてEDX装置による分析点以外からシステムピークの測定結果を、走査電子顕微鏡における一次電子の散乱の抑制に反映させることの開示はない。
本発明の目的は、対物レンズ絞り上で散乱する電子の量を制限し、主電子線軌道から外れ、分析点以外に照射される電子を制御することでシステムピークを抑制し、試料の元素スペクトルの信憑性または定量精度の高い走査電子顕微鏡または走査電子顕微鏡による試料検査方法を提供することである。
本発明は、上記の目的を達成するために、電子線から放出された一次電子線を集束レンズで集束し対物レンズ絞りに照射し、コンデンサー絞りで該照射のビーム径を絞り、対物レンズの孔中心を通過し集束させ、前記電子線の照射によって試料から発生した二次電子または散乱電子を検出し前記試料を検査する際に、前記対物レンズ絞り、前記コンデンサー絞り及び前記集束レンズを含む電子光学系の有するシステムピーク強度を抑制するように前記ビーム径を定めることを第1の特徴とする。
また、本発明は、上記の目的を達成するために、第1の特徴に加え、前記システムピーク強度の抑制は前記電子光学系の有するシステムピーク強度特性に基づいて前記ビーム径を定めることを第2の特徴とする。
さらに、本発明は、上記の目的を達成するために、第2の特徴に加え、前記ビーム径の定めは前記コンデンサー絞りの孔径を定めることで行われることを第3の特徴とする。
また、本発明は、上記の目的を達成するために、第2の特徴に加え、前記ビーム径の定めは、前記集束レンズのクロスオーバ位置を定めることで行うことを第4の特徴とする。
さらに、本発明は、上記の目的を達成するために、第2の特徴に加え、前記システムピーク強度特性に基づいてシステムピークの低減の限界を評価することを第5の特徴とする。
また、本発明は、上記の目的を達成するために、第2の特徴に加え、前記システムピーク強度の抑制は所望の前記システムピーク強度に基づいて前記ビーム径を定めることを第6の特徴とする。
さらに、本発明は、上記の目的を達成するために、第1の特徴に加え、前記システムピーク強度の抑制は前記電子線源、前記対物レンズ絞り、前記コンデンサー絞り及び前記集束レンズのクロスオーバ位置の位置関係に応じて前記ビーム径を定めることを第7の特徴とする。
本発明によれば、対物レンズ絞り上で散乱する電子の量を制限し、主電子線軌道から外れ、分析点以外に照射される電子を制御することでシステムピークを抑制し、試料の元素スペクトルの信憑性または定量精度の高い走査電子顕微鏡または走査電子顕微鏡による試料検査方法を提供できる。
本発明の一実施形態である電子走査顕微鏡の概略図である。 対物レンズ絞り上での一次電子の散乱とそれによるシステムピーク発生のメカニズムを説明する説明図である。 対物レンズ絞り上での一次電子の散乱とそれによるシステムピーク発生のメカニズムを説明する説明図である。 本発明の実施形態におけるシステムピークを抑制するための電子光学系の説明図である。 本発明の実施形態におけるコンデンサー絞り径を小、中および大としたときのシステムピークの依存データ(強度特性)を示す図である。 本発明の第一の実施形態におけるコンデンサー絞りの孔径を求めるフローチャートを示す図である。 本発明の第一の実施形態における図6Aのフローチャートにおいて再設定通知を示す図である。 システムピークを評価することができる第2の実施形態おけるフローチャートを示す図である。 図7Aの評価結果の表示例を示す図である。 コンデンサー絞りの孔径を与えてステムピーク強度が許容値内になるように第一集束レンズのクロスオーバ位置(光学条件)を設定する第3の実施形態におけるフローチャートを示す図である。 図8に示すフローチャートにおける再設定通知または光学条件選択画面等を示す図である。 システムピークの1例を示す図である。
(実施形態1) 以下、図面を参照し、本発明の実施例について詳細に説明する。図1は本発明の一実施形態である電子走査顕微鏡50の概略図である。陰極1と第一陽極2に印加される電圧V1によって陰極1から放出された一次電子線3は第二陽極4に印加される電圧Vaccにより加速されて、後段の電磁レンズ系に進行する。加速電圧VaccおよびV1は、高電圧制御部20で制御されている。一次電子線は第一集束レンズ制御部22で制御された第一集束レンズ5で集束される。ここで一次電子線3は対物レンズ絞り6で電子線の試料照射電流が制限されるが、電子線の中心を対物レンズ絞り6の孔中心へ通過させるために、電子線中心軸調節用アライナー18およびアライナー制御部21と、対物レンズ絞り6上で電子線を走査するための電子線中心調整用偏向器19が設けられている。さらに、一次電子線3は第二収束レンズ制御部23で制御される第二収束レンズ7で再び集束され、対物レンズ制御部25によって制御される対物レンズ10によって試料15に細く絞られ、さらに偏向制御部24が接続された上段偏向コイル8および下段偏向コイル9で試料15上を二次元的に走査される。試料15は試料微動制御部27によって制御される試料微動装置14上にある。
また、電子走査顕微鏡50にはシステムピーク強度を検出するためにEDX検出器17を常時又は必要なときに設置可能となっており、EDX検出器17の出力をEDX分光装置に取り込み、分析結果が制御部(コンピュータ)40を介して記憶手段(内部メモリ)23に格納される。
図4を用いてシステムピークを抑制するための電子光学系を説明する。陰極1から放出された一次電子線3は第二陽極4で加速された後、コンデンサー絞り38で形成され、第一集束レンズ5に進行する。第一集束レンズ5で集束された電子は対物レンズ絞り6の孔で制限され、対物レンズ絞り6の孔を通り抜けた電子が後段のレンズ系に進行する。対物レンズ絞り6の孔を通り抜けた電子の量が試料に照射されるプローブ電流となる。
システムピークの原因の一つは主電子線軌道から外れた電子(軌道は二点鎖線)によるものである。この電子は対物レンズ絞り6で散乱し、一次電子線3とは反対方向に進行するが、鏡体内壁等で散乱し対物レンズ絞り6の孔を通過して、分析点以外に照射される。この分析点以外に照射される電子は対物レンズ絞り6上で一次電子線3が散乱することが原因であるから、対物レンズ絞り6上で散乱する電子の数を少なくすることでシステムピークを低減可能である。
対物レンズ絞り6上で散乱する電子の数を少なくするためには対物レンズ絞り6上でのビーム径を小さくすれば良い。
対物レンズ絞り6上でのビーム径を小さくする方法は2つあり、一つは第一集束レンズ5のクロスオーバを対物レンズ絞り6側に近づける方法、もう一つはコンデンサー絞り38の孔径を小さくする方法である。前者の場合は第一集束レンズ5のクロスオーバ位置が移動するので、それに伴ってプローブ電流が変化する。この方法では元素分析時に所望のプローブ電流に設定できない場合があるが、所望のプローブ電流が設定できる場合には有効な手段である。一方、後者のコンデンサー絞り38の孔径を小さくする方法ではクロスオーバ位置が移動しないので、プローブ電流を変化させることなく対物レンズ絞り6上でのビーム径を小さくすることできる。そこで、一義的には対物レンズ絞り6上でのビーム径をコンデンサー絞り38を用いて制限することが有効である。
そこで、本実施形態では、分析されたシステムピーク強度の検出結果に基づいて、システムピークを抑制するようにコンデンサー絞り孔径、第一集束レンズ5のクロスオーバ位置の少なくとも一方を決定し、決定内容に基づいてコンデンサー絞り孔径制御部28または第一集束レンズ制御部22を介してそれぞれを制御する。本実施形態では、コンデンサー絞り孔径をコンデンサー絞り駆動手段29を介してコンデンサー絞り孔径制御部により自動的に制御しているが、表示装置により指示された内容に基づき孔径をコンデンサー絞り駆動手段を手動で操作し変更してもよい。前記決定は、図1に示すシステムピーク抑制計算手段33で行われる。
図5はコンデンサー絞り38径を小、中および大としたときのシステムピークの依存データ(強度特性)である。縦軸をシステムピーク強度(重量(wt)%)とし、横軸を第一集束レンズのクロスオーバの位置(=b:図4参照)としたグラフである。クロスオーバ位置が同一の場合でも、コンデンサー絞り38の孔径が小さいとシステムピークが小さくなっていることがわかる。第一集束レンズ5からクロスオーバ位置までの距離であるbの位置が移動すると対物レンズ絞り6の孔を通過する電子の量が変わるので、その場合は前述したように元素分析時に所望のプローブ電流に設定できない場合がある。
次に、図4を用いて、任意の第一集束レンズ5のクロスオーバ位置bにおけるシステムピーク強度、コンデンサー絞り38の孔径dc、対物レンズ絞り6上でのビーム径d及び照射面積S等の関係を説明する
対物レンズ絞り6は一次電子線3を形成し試料上での開き角を決定する役割があるので、システムピークが許容される程度まで対物レンズ絞り6上でのビーム径を制限する。
対物レンズ絞り6上でのビーム径をdとして、コンデンサー絞り38孔径をd、陰極1と第一集束レンズ5間距離a、第一集束レンズ38と対物レンズ絞り6間距離L、第一集束レンズ5とコンデンサー絞り38間距離l、第一集束レンズ5のクロスオーバ位置bとすると、対物レンズ絞り6上でのビーム径dは、
Figure 2011238400
と表される。陰極1と第一集束レンズ5、対物レンズ絞り6は機械的に位置が決まっているから、あるクロスオーバ位置bにおいてコンデンサー絞り38の孔径dと対物レンズ絞り6上でビーム径d
Figure 2011238400
と表される。
ここで主電子線軌道の電子の量をIp、対物レンズ絞り6上で散乱し軌道を外れた電子の量をIstrayとする。対物レンズ絞り6の孔径をdとして、対物レンズ絞り6上でのビーム径dを用いれば、IpとIstrayは、陰極1から放出される一次電子の密度をPとすればそれぞれの面積Sp、Sstrayの関数として表すことできる。
Figure 2011238400
Figure 2011238400
式2を式4に代入すれば、IpとIstrayの比は
Figure 2011238400
となる。
分析点から発生するX線、分析点以外から発生するX線はそれぞれIp、Istrayによって励起されるX線であるから、Istrayが十分小さくなるような光学条件を実現すればよい。Istrayは、式4で示すように対物レンズ6上に照射される電子ビームの面積Sstrayで表されるので、所望の面積S以下にすればよいので、
Figure 2011238400
を満たせば良い。式6を変形し所望の面積S以下とするためのコンデンサー絞り38の孔径dを式7で求めることができる。
Figure 2011238400
コンデンサー絞り38の孔径dに対する対物レンズ絞り6上の面積Sstrayは、図4及び式2、式4から分かるように、a、L、lは固定値であるので第一集束レンズ5のクロスオーバ位置bの関数として求められる。一方、システムピーク強度と一集束レンズ5のクロスオーバ位置bの関係は図5に示す実データにより関係付けられる。従って、クロスオーバ位置bを介してシステムピーク強度と対物レンズ絞り6上の面積Sstrayとの関係を規定できる。
その結果、任意の第一集束レンズ5のクロスオーバ位置bにおいて、図5で定まるシステムピーク強度とコンデンサー絞り38の孔径dcのデータテーブルを図1で示すシステムピーク抑制計算手段33で作成し、記憶手段34に登録する。これにより、システムピーク強度に対応した対物レンズ絞り6上でのビーム径及び照射面積Sstrayが判明する。
図6Aは本発明の第一の実施形態におけるコンデンサー絞り38の孔径をdを求めるフローチャートを示す図である。まず所望のプローブ電流となるように第一集束レンズ5のクロスオーバ位置を決定する(Step1)。次にシステムピーク強度(許容値)を選択し(Step2)、システムピーク強度と対物レンズ絞り6上での照射面積Sstrayとの関係から、それを実現するための対物レンズ絞り6上でのビーム径及び照射面積Sstrayを求める(Step3)。式7により予め計算・登録されたコンデンサー絞り38d孔径を求める(Step4)。求めたコンデンサー絞り38の孔径dcを装置に装着されている最小のコンデンサー絞り38の孔径(=dcmin)と比較する(Step5)。dcがdcminより大きければ、コンデンサー絞り38の孔径をコンデンサー絞り駆動手段を自動または手動で操作し前記求めた孔径に設定(Step6)し、元素分析を実施する(Step7)。もし小さければ、光学条件(第一集束レンズのクロスオーバ位置)の再設定通知(図6B(a))を表示装置30に表示しStep1に行く(Step7)、またはシステムピーク許容値の再設定通知(図6B(b))を表示装置30に表示しStep2に行く(Step8)。
以上説明した実施形態1によれば、コンデンサー絞りの孔径や第一集束レンズのクロスオーバ位置を設定または制御することで、対物レンズ絞り上で散乱する電子の量を制限し、主電子線軌道から外れ、分析点以外に照射される電子を制御することでシステムピークを抑制し、試料の元素スペクトルの信憑性または定量精度の高い走査電子顕微鏡または走査電子顕微鏡による元素分析方法を提供できる。
以上の説明では、システムピーク強度と対物レンズ絞り6上でのビーム径及び照射面積の関係を求めているが、システムピーク強度の絶対値が分からないが照射面積が小さい程システムピーク強度が小さいと考えれば、単に所望のプローブ電流が得られ照射面積を小さくなるようにコンデンサー絞りの孔径や第一集束レンズのクロスオーバ位置を決定することも可能である。この場合は、試料の元素スペクトルの信憑性または定量精度の高さは確定できないが相対的にそれを高めた走査電子顕微鏡または走査電子顕微鏡による元素分析方法を提供できる。
(実施形態2)
図7Aはシステムピークの低減の限界を評価することができる第2の実施形態おけるフローチャートを示す図である。まず、第一集束レンズ5のクロスオーバ位置bを決定する(Step1)。第一集束レンズ5のクロスオーバ位置と装置に装着されている最小のコンデンサー絞り38の孔径から対物レンズ絞り6上での実現できるビームの最小径(=dbmin)を算出する(Step2)。対物レンズ絞り6上で実現可能なビームの最小径dbminは式1から
Figure 2011238400
で算出する。陰極1から放出される一次電子の密度はPであるので、式8と対物レンズ絞り6の孔径から、対物レンズ絞り6上で散乱する電子の量Istrayは、
Figure 2011238400
で算出する(Step3)。
式9で対物レンズ絞り6上で散乱する電子の量がわかるので、予め図5に示すようなデータを取得しておけばシステムピーク強度と対応付けられ(Step4)、システムピークの低減の限界を評価することができる。この結果を表示装置30に表示する(Step5)。図7Bはこの結果の表示例を示す。
本第2の実施形態によれば、システムピークの低減の限界を評価することができるので、試料の元素スペクトルの信憑性または定量精度を把握できる。
(実施形態3)
図8のフローチャートを用いて第3の実施形態を示す。第1及び第2の実施形態では第一集束レンズのクロスオーバ位置bを与えてコンデンサー絞りの孔径を求めた。第3の実施形態は、逆にコンデンサー絞りの孔径を与えてステムピーク強度が許容値内になるように第一集束レンズのクロスオーバ位置b(光学条件)を設定する例である。
例えば異なる孔径のコンデンサー絞り38が設定された場合(Step2)にも、図7Aで示した同様な方法でシステムピークを推測する(Step5)。
この方法を用いれば、任意の孔径のコンデンサー絞り38に対してシステムピーク強度が推測できるので、例えばユーザが所望のシステムピーク強度を設定したとき、それを実現可能かを判定する(Step6)。実現不能な場合は、Step1に行くために、図9(a)に示す光学条件の再設定を促す通知を行う(Step9)。所望のシステムピーク強度を実現可能な場合でも、一般に光学条件(第一集束レンズクロスオーバ位置)には範囲があるから、図9(c)に示す光学条件リスト(本例ではH1〜H16,N1〜N16の32種類)の中から、図9(d)に示すように実現可能な光学条件のみを選択し表示装置30に表示する(Step7)。図9(d)のリストの中から光学条件を選択し設定する(Step8)、その後元素分析を実施する(Step9)。
以上説明した第3の実施形態によれば、任意の孔径のコンデンサー絞り38に対し所望のシステムピーク強度を実現できる光学条件(第一集束レンズのクロスオーバ位置)を設定できる。
以上第1から第3の実施形態において、コンデンサー絞りを第一集束レンズ5の陰極1側に設けたが、対物レンズ絞り及び鏡体内壁などから散乱した電子を絞り、システムピークを抑制するという意味では、第一集束レンズ5の対物レンズ絞り6側に設けてもよい。
また、以上第1から第3の実施形態において、元素分析を対象に説明したが試料の観察などの検査に適用できる。
1: 陰極 2: 第一陽極
3: 電子線 4: 第二陽極
5: 第一収束レンズ 6: 対物レンズ絞り
7: 第二収束レンズ 8: 上段偏向コイル
9: 下段偏向コイル 10:対物レンズ
12:二次電子検出器 13:直交電磁界装置
14:微動装置 15:試料
16:増幅器 17:EDX検出器
18:電子線中心軸調整用アライナー 19:電子線中心軸調整用偏向器
20:高電圧制御部 21:アライナー制御部
22:第一収束レンズ制御部 23:第二収束レンズ制御部
24:偏向制御部 25:対物レンズ制御部
26:信号制御部 27:試料微動制御部
28:コンデンサー絞り孔径制御部 29:コンデンサー絞り孔径駆動手段
30:表示装置 31:画像取得手段
32:画像処理手段 33:システムピーク抑制計算手段
34:記憶手段 35:入力手段
40:コンピュータ 45:EDX分析装置
50:電子走査顕微鏡。

Claims (17)

  1. 電子線源と、該電子線源から放出された一次電子線を絞る対物レンズ絞りと、該対物レンズ絞りの前記電子線側に設けられた集束レンズと、前記対物レンズ絞りへの前記一次電子線のビーム径を絞るコンデンサー絞りと、前記対物レンズの孔中心を通過した前記一次電子線を試料上に集束させるための対物レンズと、前記一次電子線の照射によって前記試料から発生した二次電子または散乱電子を検出する検出手段を備えた走査電子顕微鏡において、
    前記対物レンズ絞り、前記コンデンサー絞り及び前記集束レンズを含む電子光学系の有するシステムピーク強度を抑制するように前記ビーム径を定めるシステムピーク抑制手段を有することを特徴とする走査電子顕微鏡。
  2. 前記システムピーク抑制手段は前記電子光学系の有するシステムピーク強度特性に基づいて前記ビーム径を定めることを特徴とする請求項1に記載の走査電子顕微鏡。
  3. 前記システムピーク抑制手段は前記コンデンサー絞りの孔径を定める手段であることを特徴とする請求項2に記載の走査電子顕微鏡。
  4. 前記コンデンサー絞りは前記対物レンズ絞りと前記電子線源の間に設けたことを特徴とする請求項2に記載の走査電子顕微鏡。
  5. 前記システムピーク抑制手段は前記集束レンズのクロスオーバ位置を定める手段であることを特徴とする請求項2に記載の走査電子顕微鏡。
  6. 前記システムピーク強度を測定するシステムピーク強度測定手段を有するまたは該システムピークを測定可能とする接続手段を有することを特徴とする請求項2に記載の走査電子顕微鏡。
  7. 前記システムピーク強度特性に基づいてシステムピークの低減の限界を評価することを特徴とする請求項2に記載の走査電子顕微鏡。
  8. 前記システムピーク抑制手段は所望のシステムピーク強度に基づいて前記ビーム径を定めることを特徴とする請求項2に記載の走査電子顕微鏡。
  9. 前記所望のシステムピーク強度を設定し、それを実現する前記第一集束レンズのクロスオーバ位置を表示画面に表示することを特徴とする請求項8に記載の走査電子顕微鏡。
  10. 前記システムピーク抑制手段は前記電子線源、前記対物レンズ絞り、コンデンサー絞り及び前記集束レンズのクロスオーバ位置の位置関係に応じて前記ビーム径を定めることを特徴とする請求項1に記載の走査電子顕微鏡。
  11. 電子線源から放出された一次電子線を集束レンズで集束し対物レンズ絞りに照射し、コンデンサー絞りで該照射のビーム径を絞り、対物レンズの孔中心を通過し集束させ、前記電子線の照射によって試料から発生した二次電子または散乱電子を検出し前記試料を検査する走査電子顕微鏡による試料検査方法において、
    前記対物レンズ絞り、前記コンデンサー絞り及び前記集束レンズを含む電子光学系の有するシステムピーク強度を抑制するように前記ビーム径を定めることを特徴とする走査電子顕微鏡による試料検査方法。
  12. 前記システムピーク強度の抑制は前記電子光学系の有するシステムピーク強度特性に基づいて前記ビーム径を定めることを特徴とする請求項11に記載の走査電子顕微鏡による試料検査方法。
  13. 前記ビーム径の定めは前記コンデンサー絞りの孔径を定めることで行われることを特徴とする請求項12に記載の走査電子顕微鏡による試料検査方法。
  14. 前記ビーム径の定めは前記集束レンズのクロスオーバ位置を定めることで行うことを特徴とする請求項12に記載の走査電子顕微鏡による試料検査方法。
  15. 前記システムピーク強度特性に基づいてシステムピークの低減の限界を評価することを特徴とする請求項12に記載の走査電子顕微鏡による試料検査方法。
  16. 前記システムピーク強度の抑制は所望のシステムピーク強度に基づいて前記ビーム径を定めることを特徴とする請求項12に記載の走査電子顕微鏡による試料検査方法。
  17. 前記システムピーク強度の抑制は前記電子線源、前記対物レンズ絞り、前記コンデンサー絞り及び前記集束レンズのクロスオーバ位置の位置関係に応じて前記ビーム径を定めることを特徴とする請求項11に記載の走査電子顕微鏡による試料検査方法。
JP2010107340A 2010-05-07 2010-05-07 走査電子顕微鏡及び走査電子顕微鏡による試料検査方法 Pending JP2011238400A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010107340A JP2011238400A (ja) 2010-05-07 2010-05-07 走査電子顕微鏡及び走査電子顕微鏡による試料検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010107340A JP2011238400A (ja) 2010-05-07 2010-05-07 走査電子顕微鏡及び走査電子顕微鏡による試料検査方法

Publications (1)

Publication Number Publication Date
JP2011238400A true JP2011238400A (ja) 2011-11-24

Family

ID=45326175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107340A Pending JP2011238400A (ja) 2010-05-07 2010-05-07 走査電子顕微鏡及び走査電子顕微鏡による試料検査方法

Country Status (1)

Country Link
JP (1) JP2011238400A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093094A (zh) * 2016-07-19 2016-11-09 西安交通大学 一种介质材料的二次电子能谱测量装置及测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343250A (ja) * 1986-08-08 1988-02-24 Shimadzu Corp 電子線マツピング装置
JP2007086011A (ja) * 2005-09-26 2007-04-05 Hitachi High-Technologies Corp 電子顕微鏡制御装置、電子顕微鏡システムおよび電子顕微鏡の制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343250A (ja) * 1986-08-08 1988-02-24 Shimadzu Corp 電子線マツピング装置
JP2007086011A (ja) * 2005-09-26 2007-04-05 Hitachi High-Technologies Corp 電子顕微鏡制御装置、電子顕微鏡システムおよび電子顕微鏡の制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093094A (zh) * 2016-07-19 2016-11-09 西安交通大学 一种介质材料的二次电子能谱测量装置及测量方法

Similar Documents

Publication Publication Date Title
US8405025B2 (en) Scanning electron microscope and method for detecting an image using the same
US8258475B2 (en) Charged particle radiation device provided with aberration corrector
JP4644617B2 (ja) 荷電粒子線装置
JP5404008B2 (ja) 粒子光機器においてサンプルの走査型透過画像を取得する方法
JP5948084B2 (ja) 走査電子顕微鏡
JP5202071B2 (ja) 荷電粒子顕微鏡装置及びそれを用いた画像処理方法
JP4553889B2 (ja) 粒子光学レンズの収差関数における収差係数の決定方法
US9324540B2 (en) Charged particle beam device
TWI836541B (zh) 非暫時性電腦可讀媒體及用於監測檢測系統中之束的系統
JP2005310602A (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP2007141804A (ja) 荷電粒子線装置、それに用いられるコンピュータプログラム、及び試料像観察方法
JP6266467B2 (ja) 電子顕微鏡、およびモノクロメーターの調整方法
US8294118B2 (en) Method for adjusting optical axis of charged particle radiation and charged particle radiation device
KR102001715B1 (ko) 상대적 임계 치수의 측정을 위한 방법 및 장치
JP2011238400A (ja) 走査電子顕微鏡及び走査電子顕微鏡による試料検査方法
JP5397060B2 (ja) 荷電粒子顕微鏡及び解析方法
JP4895525B2 (ja) 走査透過電子顕微鏡装置
JP6858722B2 (ja) 電子ビーム装置及び試料検査方法
JP4431624B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP5470194B2 (ja) 荷電粒子線装置
JP4719699B2 (ja) 走査型電子顕微鏡
JP2019169362A (ja) 電子ビーム装置
WO2015125395A1 (ja) X線検査システム、制御方法、制御プログラム及び制御装置
JP2013251212A (ja) 走査型電子顕微鏡および画像評価方法
JP2010016007A (ja) 荷電粒子線調整方法及び荷電粒子線装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008