JP2011228239A - Negative electrode plate for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Negative electrode plate for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP2011228239A
JP2011228239A JP2010136989A JP2010136989A JP2011228239A JP 2011228239 A JP2011228239 A JP 2011228239A JP 2010136989 A JP2010136989 A JP 2010136989A JP 2010136989 A JP2010136989 A JP 2010136989A JP 2011228239 A JP2011228239 A JP 2011228239A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
metal
particles
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010136989A
Other languages
Japanese (ja)
Other versions
JP4677049B1 (en
Inventor
Shingo Komura
慎吾 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2010136989A priority Critical patent/JP4677049B1/en
Priority to PCT/JP2011/058062 priority patent/WO2011122671A1/en
Application granted granted Critical
Publication of JP4677049B1 publication Critical patent/JP4677049B1/en
Publication of JP2011228239A publication Critical patent/JP2011228239A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode plate for a lithium ion secondary battery having an excellent discharge rate characteristic.SOLUTION: The negative electrode plate for the lithium ion secondary battery including a negative electrode active material layer formed on a collector is provided. The negative electrode active material layer contains at least negative electrode active material particles and metal-containing particles and the negative electrode active material particles are fixed onto the collector by the metal-containing particles. The negative electrode active material particles are fixed with each other by the metal-containing particles.

Description

本発明は、リチウムイオン二次電池用負極板、及びリチウムイオン二次電池に関し、さらに詳しくは放電レート特性、出入力特性に優れたリチウムイオン二次電池用負極板、及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode plate for a lithium ion secondary battery and a lithium ion secondary battery, and more particularly to a negative electrode plate for a lithium ion secondary battery excellent in discharge rate characteristics and input / output characteristics, and a lithium ion secondary battery. .

リチウムイオン二次電池に代表される非水電解液二次電池は、高エネルギー密度、高電圧を有し、また充放電時におけるメモリ効果(完全に放電させる前に電池の充電を行なうと次第に電池容量が減少していく現象)が無いことから、携帯機器、及び大型機器など様々な分野で用いられている。   A non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery has a high energy density and a high voltage, and has a memory effect during charging / discharging (when the battery is charged before it is completely discharged, Since there is no phenomenon in which the capacity decreases, it is used in various fields such as portable devices and large devices.

現在、地球温暖化防止の対策として、世界規模でCO2排出抑制の取り組みが行われており、石油依存度を低減し、低環境負荷で走行可能とすることで、CO2削減に大いに寄与することができるプラグインハイブリッド自動車、電気自動車に代表される次世代クリーンエネルギー自動車の開発・普及が急務とされている。これらの次世代クリーンエネルギー自動車の開発・普及には、ガソリンに依存しない駆動力が必須であり、近時、ガソリンに依存しない駆動力としてリチウムイオン二次電池が期待されている。リチウムイオン二次電池をこれらの次世代クリーンエネルギー自動車の駆動力として利用することができれば、ガソリンに依存する必要がなく、CO2削減に大いに寄与することができる。一方で、次世代クリーンエネルギー自動車の駆動力としてリチウムイオン二次電池が利用されるためには、ガソリンに並ぶ出力要求を満たすことが必要であり、リチウムイオン二次電池には、高い出入力特性が要求されている。 Currently, as a measure to prevent global warming, efforts are being made to reduce CO 2 emissions on a global scale. By reducing the dependence on oil and allowing it to travel with low environmental impact, it contributes greatly to CO 2 reduction. There is an urgent need for the development and popularization of next-generation clean energy vehicles represented by plug-in hybrid vehicles and electric vehicles. For the development and popularization of these next-generation clean energy vehicles, driving power that does not depend on gasoline is essential. Recently, lithium-ion secondary batteries are expected as driving power that does not depend on gasoline. If a lithium ion secondary battery can be used as the driving force of these next-generation clean energy vehicles, it is not necessary to rely on gasoline and can greatly contribute to CO 2 reduction. On the other hand, in order for lithium ion secondary batteries to be used as the driving force for next-generation clean energy vehicles, it is necessary to meet the output requirements similar to gasoline. Lithium ion secondary batteries have high input / output characteristics. Is required.

また、近時の省エネルギー効果に対する要求に対応するため、リチウムイオン二次電池には、放電レート特性の向上が期待されている。さらに、携帯電話等の比較的小型の装置に用いられるリチウムイオン二次電池であっても、装置が多機能化される傾向にあるために、放電レート特性のみならず出入力特性の向上が期待されている。このとき、インピーダンスが高いリチウムイオン二次電池では、高速充放電時(大電流で充放電を行った時)にその容量を充分に生かすことができない問題や、容量がロスしてしまう問題が生ずる。リチウムイオン二次電池において、放電レート特性や、出入力特性の向上を実現するためには、電池のインピーダンスを下げる必要があり、インピーダンスの低い二次電池に対する市場の要求は高い。   Further, in order to meet the recent demand for energy saving effect, lithium ion secondary batteries are expected to have improved discharge rate characteristics. Furthermore, even for lithium ion secondary batteries used in relatively small devices such as mobile phones, the devices tend to be multi-functional, so it is expected to improve not only the discharge rate characteristics but also the input / output characteristics. Has been. At this time, in the case of a lithium ion secondary battery having a high impedance, there is a problem that the capacity cannot be fully utilized at the time of high-speed charging / discharging (when charging / discharging is performed with a large current) and a problem that the capacity is lost. . In a lithium ion secondary battery, in order to realize improvement in discharge rate characteristics and input / output characteristics, it is necessary to lower the impedance of the battery, and the market demand for a secondary battery with low impedance is high.

現在、各種の提案がされているリチウムイオン二次電池は、正極板、負極板、セパレータ、及び有機電解液から構成される。上記負極板としては、金属箔(例えば、銅箔)などの集電体表面に、負極活物質粒子を含む電極活物質層を備えたものが知られている。この負極板は、例えば、特許文献1、特許文献2に提案されているように、リチウムイオン挿入脱離反応を示すことにより充放電可能な負極活物質粒子、該負極活物質粒子を集電体上に固着させるとともに、該負極活物質粒子同士を固着させるための樹脂からなる結着物質(以下、樹脂製の結着物質という)、及び導電材(但し活物質粒子が導電効果も発揮する場合などには、導電材は省略される場合がある)、あるいはさらに、必要に応じてその他の材料を用い、有機溶媒中で混練及び/又は分散させて、スラリー状の電極活物質層形成溶液を調製し、この電極活物質層形成溶液を集電体表面に塗布・乾燥して集電体上に塗膜を形成し、必要に応じてプレスすることにより製造される。   Currently, various lithium ion secondary batteries that have been proposed include a positive electrode plate, a negative electrode plate, a separator, and an organic electrolyte. As said negative electrode plate, what equipped the electrode active material layer containing negative electrode active material particle | grains on collector surfaces, such as metal foil (for example, copper foil), is known. For example, as proposed in Patent Document 1 and Patent Document 2, this negative electrode plate is composed of negative electrode active material particles that can be charged and discharged by exhibiting a lithium ion insertion / release reaction, and the negative electrode active material particles as a current collector. In the case where the negative electrode active material particles are fixed on the binder material made of resin for fixing the negative electrode active material particles (hereinafter referred to as a resin-made binder material) and a conductive material (provided that the active material particles also exhibit a conductive effect) In some cases, the conductive material may be omitted), or, if necessary, other materials may be used and kneaded and / or dispersed in an organic solvent to form a slurry-like electrode active material layer forming solution. The electrode active material layer forming solution is prepared, applied to the surface of the current collector and dried to form a coating film on the current collector, and is manufactured by pressing as necessary.

このとき、電極活物質層形成溶液に含有される負極活物質粒子は、該溶液中に分散する粒子状の化合物であって、集電体表面に塗布されただけでは該集電体表面に固着され難い材料である。したがって、樹脂製の結着物質を含まない電極活物質層形成溶液を集電体に塗布して乾燥して塗膜を形成しても、該塗膜は集電体から容易に剥離してしまう。そのため、従来の負極板は、特許文献1、2に提案されているように、樹脂製の結着物質によって、負極活物質粒子同士を固着させるとともに、樹脂製の結着物質によって、負極活物質粒子を集電体表面に固着させている。すなわち、樹脂製の結着物質は実質的には、必須の構成物質であった。   At this time, the negative electrode active material particles contained in the electrode active material layer forming solution are particulate compounds dispersed in the solution, and are fixed to the current collector surface only by being applied to the current collector surface. It is a difficult material. Therefore, even when an electrode active material layer forming solution that does not contain a resin binder is applied to the current collector and dried to form a coating film, the coating film is easily peeled off from the current collector. . For this reason, as proposed in Patent Documents 1 and 2, the conventional negative electrode plate fixes negative electrode active material particles to each other with a resin binder, and the negative electrode active material with a resin binder. The particles are fixed to the current collector surface. That is, the resin-made binding substance is essentially an essential constituent substance.

特開2006−310010号公報JP 2006-310010 A 特開2006−107750号公報JP 2006-107750 A

しかしながら、上記特許文献1、特許文献2に提案されている方法により、負極活物質粒子と、樹脂製の結着物質を用いて電極活物質層を形成した場合には、樹脂製の結着物質の存在により、放電レート特性や高出入力特性が必要とされる分野における要求を満足できる程度までインピーダンスを下げることができない。これは、電極活物質層中に樹脂製の結着物質が存在することにより、リチウムイオン等の負極活物質イオン及び電子の移動距離が長くなり、また、電極活物質層における電解液の浸透性が低くなり、かつ電解液と負極活物質粒子との接触面積が小さくなることでインピーダンスが上がることによるものと考えられる。   However, when the electrode active material layer is formed using the negative electrode active material particles and the resin binder by the methods proposed in Patent Document 1 and Patent Document 2, the resin binder is used. Therefore, the impedance cannot be lowered to the extent that the requirements in the field where the discharge rate characteristic and the high output / input characteristic are required can be satisfied. This is because the movement distance of negative electrode active material ions such as lithium ions and electrons becomes longer due to the presence of a resin binder in the electrode active material layer, and the electrolyte permeability in the electrode active material layer This is considered to be due to the fact that the impedance is increased by decreasing the contact area between the electrolyte and the negative electrode active material particles.

本発明はこのような状況に鑑みてなされたものであり、放電レート特性、及び出入力特性に優れたリチウムイオン二次電池用負極板、及びリチウムイオン二次電池を提供することを主たる課題とする。   The present invention has been made in view of such a situation, and it is a main object to provide a negative electrode plate for a lithium ion secondary battery and a lithium ion secondary battery excellent in discharge rate characteristics and input / output characteristics. To do.

上記課題を解決するための本発明は、集電体上に負極活物質層が設けられてなるリチウムイオン二次電池用負極板であって、前記負極活物質層は、少なくとも負極活物質粒子と、金属含有粒子を含み、前記負極活物質粒子は、前記金属含有粒子によって集電体上に固着されており、また、負極活物質粒子同士も、前記金属含有粒子によって固着されていることを特徴とする。   The present invention for solving the above problems is a negative electrode plate for a lithium ion secondary battery in which a negative electrode active material layer is provided on a current collector, wherein the negative electrode active material layer includes at least negative electrode active material particles and The negative electrode active material particles are fixed on the current collector by the metal-containing particles, and the negative electrode active material particles are also fixed by the metal-containing particles. And

また、前記金属含有粒子が、金属粒子又は金属酸化物粒子であってもよい。また、前記金属粒子が、アルカリ金属、アルカリ土類金属、周期律表第4周期に属する遷移金属のいずれかの金属粒子であり、前記金属酸化物粒子が、アルカリ金属、アルカリ土類金属、周期律表第4周期に属する遷移金属のいずれかの金属酸化物粒子であってもよい。また、前記金属粒子が、銅粒子、ニッケル粒子又はリチウム粒子であり、前記金属酸化物粒子が、酸化銅粒子、酸化ニッケル粒子又は酸化リチウム粒子であってもよい。   Further, the metal-containing particles may be metal particles or metal oxide particles. Further, the metal particles are any one of an alkali metal, an alkaline earth metal, and a transition metal belonging to the fourth period of the periodic table, and the metal oxide particles are an alkali metal, an alkaline earth metal, a period It may be any metal oxide particle of a transition metal belonging to the fourth period of the table. The metal particles may be copper particles, nickel particles, or lithium particles, and the metal oxide particles may be copper oxide particles, nickel oxide particles, or lithium oxide particles.

また、前記金属含有粒子の大きさが、前記負極活物質粒子よりも小さくてもよく、前記金属含有粒子の平均粒子径が、0.05〜2μmであってもよい。また、前記金属含有粒子の平均体積が、0.00006〜5μm3であってもよい。また、1つの負極活物質粒子と固着している全ての金属含有粒子において、該1つの負極活物質粒子と固着している部分の合計面積が、該1つの負極活物質粒子の全表面積の20〜85%の範囲であってもよい。 Further, the size of the metal-containing particles may be smaller than that of the negative electrode active material particles, and the average particle size of the metal-containing particles may be 0.05 to 2 μm. The average volume of the metal-containing particles may be 0.00006 to 5 μm 3 . In all the metal-containing particles fixed to one negative electrode active material particle, the total area of the portions fixed to the one negative electrode active material particle is 20% of the total surface area of the one negative electrode active material particle. It may be in the range of -85%.

また、上記課題を解決するための本発明は、正極板と、負極板と、該正極板と負極板との間に設けられるセパレータと、電解液とを備えるリチウムイオン二次電池であって、前記負極板が上記の特徴を有するリチウムイオン二次電池用負極板であることを特徴とする。   Further, the present invention for solving the above problems is a lithium ion secondary battery comprising a positive electrode plate, a negative electrode plate, a separator provided between the positive electrode plate and the negative electrode plate, and an electrolyte solution, The negative electrode plate is a negative electrode plate for a lithium ion secondary battery having the above characteristics.

本発明のリチウムイオン二次電池用負極板、及びリチウムイオン二次電池によれば、放電レート特性、及び出入力特性に優れたリチウムイオン二次電池用負極板、及びリチウムイオン二次電池を提供することができる。   According to the negative electrode plate for a lithium ion secondary battery and the lithium ion secondary battery of the present invention, a negative electrode plate for a lithium ion secondary battery and a lithium ion secondary battery excellent in discharge rate characteristics and input / output characteristics are provided. can do.

本発明のリチウムイオン二次電池用負極板の断面図である。It is sectional drawing of the negative electrode plate for lithium ion secondary batteries of this invention. 本発明のリチウムイオン二次電池用負極板の負極活物質粒子と金属含有粒子との固着を説明するための概念図である。It is a conceptual diagram for demonstrating adhering with the negative electrode active material particle and metal containing particle | grains of the negative electrode plate for lithium ion secondary batteries of this invention. 樹脂製の結着物質としてPVDF樹脂を用いて作製した電極表面の表面状態を示すSEM像である。It is a SEM image which shows the surface state of the electrode surface produced using PVDF resin as a resin binder. グラファイト負極の初期充電カーブを示す図であり、図4(a)は、初期充電カーブの理想カーブを示す図であり、図4(b)は、還元反応が生じた場合の初期充電カーブを示す図である。FIG. 4A is a diagram illustrating an initial charge curve of a graphite negative electrode, FIG. 4A is a diagram illustrating an ideal curve of the initial charge curve, and FIG. 4B is a diagram illustrating an initial charge curve when a reduction reaction occurs. FIG. 本発明のリチウムイオン二次電池を示す図である。It is a figure which shows the lithium ion secondary battery of this invention. 実施例の負極板の表面状態を示すSEM像である。It is a SEM image which shows the surface state of the negative electrode plate of an Example. 実施例の負極板の表面状態を示すSEM像である。It is a SEM image which shows the surface state of the negative electrode plate of an Example. 実施例の負極板の表面状態を示すSEM像である。It is a SEM image which shows the surface state of the negative electrode plate of an Example. 比較例の負極板の表面状態を示すSEM像である。It is a SEM image which shows the surface state of the negative electrode plate of a comparative example.

本発明のリチウムイオン二次電池用負極板について、図1、図2を用いて具体的に説明する。なお、図1は本発明のリチウムイオン二次電池用負極板の断面図であり、図2は、本発明のリチウムイオン二次電池用負極板の負極活物質粒子と、金属含有粒子との固着を説明するための概念図である。図1に示すように、本発明のリチウムイオン二次電池用負極板10は、集電体1上に、負極活物質層2が設けられた構成をとる。また、図1、図2に示すように負極活物質層2は、複数の負極活物質粒子21と、複数の金属含有粒子22とを少なくとも含む。また、負極活物質粒子21は、金属含有粒子22によって集電体1上に固着されており、また、負極活物質粒子21同士も、金属含有粒子22によって固着されている(図2に示す場合にあっては、負極活物質粒子同士が、金属含有粒子22によって固着されている)。   The negative electrode plate for a lithium ion secondary battery of the present invention will be specifically described with reference to FIGS. FIG. 1 is a cross-sectional view of the negative electrode plate for a lithium ion secondary battery of the present invention, and FIG. 2 shows the adhesion between the negative electrode active material particles and the metal-containing particles of the negative electrode plate for a lithium ion secondary battery of the present invention. It is a conceptual diagram for demonstrating. As shown in FIG. 1, a negative electrode plate 10 for a lithium ion secondary battery of the present invention has a configuration in which a negative electrode active material layer 2 is provided on a current collector 1. As shown in FIGS. 1 and 2, the negative electrode active material layer 2 includes at least a plurality of negative electrode active material particles 21 and a plurality of metal-containing particles 22. The negative electrode active material particles 21 are fixed on the current collector 1 by metal-containing particles 22, and the negative electrode active material particles 21 are also fixed by metal-containing particles 22 (in the case shown in FIG. 2). In this case, the negative electrode active material particles are fixed to each other by the metal-containing particles 22).

本発明のリチウムイオン二次電池用負極板(以下、単に負極板という場合がある)の説明するに際し、負極活物質層における電子の授与と、放電レート特性及び出入力特性との関係について説明する。リチウムイオン二次電池内では、正極板における正極活物質中のリチウムが電解液に染み出し、電解液と溶媒和し、リチウムイオンの状態で電解液中に拡散し、負極板における負極活物質層に到達する。そしてリチウムイオンは、脱溶媒和するとともに、負極活物質粒子の層間へ挿入し、電子の授与が行われるものと考えられている。負極板における電解液に溶媒和したリチウムイオンが脱溶媒和し、電子の授与を行うメカニズムの詳細はいまだ明らかではないが、本発明者は、負極活物質層において、界面電荷移動抵抗が小さいほど、脱溶媒和反応がスムーズにおこなわれ、負極板における放電レート特性及び出入力特性が向上することを見出した。また、この場合において、樹脂製の結着物質を用いて負極活物質粒子を集電体上に固着させた場合には、この樹脂製の結着物質が脱溶媒和反応に対し阻害的に働き、放電レート特性及び出入力特性を低下させてしまうとの知見を得た。特に、図3に示すように、樹脂製の結着物質は、負極活物質層中に被膜の状態で存在しており、この被膜の状態で、集電体と負極活物質粒子とを固着させ、負極活物質粒子同士を固着させている。これにより、界面電荷移動抵抗が大きくなり、また、電解液と負極活物質粒子との接触面積が小さくなり放電レート特性及び出入力特性を低下させることとなる。なお、図3は、樹脂製の結着物質としてPVDF(ポリフッ化ビニリデン)樹脂を用いて作製した電極表面のSEM像である。   In describing the negative electrode plate for a lithium ion secondary battery of the present invention (hereinafter sometimes simply referred to as a negative electrode plate), the relationship between the electron donation in the negative electrode active material layer and the discharge rate characteristics and input / output characteristics will be described. . In the lithium ion secondary battery, lithium in the positive electrode active material in the positive electrode plate oozes out into the electrolyte solution, solvates with the electrolyte solution, diffuses into the electrolyte solution in the form of lithium ions, and the negative electrode active material layer in the negative electrode plate To reach. Lithium ions are considered to be desolvated and inserted between the layers of the negative electrode active material particles to give electrons. The details of the mechanism by which lithium ions solvated in the electrolyte solution in the negative electrode plate are desolvated and donate electrons are not yet clear, but the present inventor has shown that the smaller the interfacial charge transfer resistance, It was found that the desolvation reaction was carried out smoothly and the discharge rate characteristics and input / output characteristics of the negative electrode plate were improved. In this case, when the negative electrode active material particles are fixed on the current collector using a resin binder, the resin binder acts to inhibit the desolvation reaction. The present inventors have found that the discharge rate characteristics and the input / output characteristics are deteriorated. In particular, as shown in FIG. 3, the resin binder is present in the form of a film in the negative electrode active material layer, and in this state of the film, the current collector and the negative electrode active material particles are fixed. The negative electrode active material particles are fixed to each other. As a result, the interfacial charge transfer resistance is increased, and the contact area between the electrolytic solution and the negative electrode active material particles is reduced, thereby reducing the discharge rate characteristics and the input / output characteristics. FIG. 3 is an SEM image of the electrode surface produced using PVDF (polyvinylidene fluoride) resin as the resin binder.

本発明者らは、さらに結着物質について鋭意研究した結果、集電体上に負極活物質粒子を固着させるとともに、負極活物質粒子同士を固着させるための結着物質として、金属含有粒子を採用し、該金属含有粒子によって集電体上に負極活物質粒子を固着させるとともに、該金属含有粒子によって負極活物質粒子同士を固着させることで、放電レート特性、及び出入力特性が向上することを見出した。   As a result of earnest research on the binding material, the present inventors have fixed the negative electrode active material particles on the current collector and adopted metal-containing particles as a binding material for fixing the negative electrode active material particles to each other. In addition, the negative electrode active material particles are fixed on the current collector by the metal-containing particles, and the negative electrode active material particles are fixed to each other by the metal-containing particles, thereby improving discharge rate characteristics and input / output characteristics. I found it.

そこで、図1に示すように、本発明の負極板10は、集電体1上に、負極活物質層2が設けられてなり、負極活物質層2は、少なくとも負極活物質粒子21と、金属含有粒子22を含み、負極活物質粒子21は、金属含有粒子22によって集電体1上に固着されており、また、負極活物質粒子21同士も、金属含有粒子22によって固着されていることを特徴とする。つまり、本発明は、集電体1上に負極活物質粒子21を固着させるとともに、負極活物質粒子21同士を固着させる結着物質として、金属含有粒子22を採用した点に特徴を有するものである。   Therefore, as shown in FIG. 1, the negative electrode plate 10 of the present invention includes a negative electrode active material layer 2 provided on a current collector 1, and the negative electrode active material layer 2 includes at least negative electrode active material particles 21, The negative electrode active material particles 21 including the metal-containing particles 22 are fixed on the current collector 1 by the metal-containing particles 22, and the negative electrode active material particles 21 are also fixed by the metal-containing particles 22. It is characterized by. That is, the present invention is characterized in that the metal-containing particles 22 are used as the binding material for fixing the negative electrode active material particles 21 on the current collector 1 and fixing the negative electrode active material particles 21 to each other. is there.

上記特徴を有する本発明によれば、樹脂製の結着物質に依らず、金属含有粒子22によって、負極活物質粒子21が集電体1上に固着されているとともに、金属含有粒子22によって、負極活物質粒子21同士も固着されていることから脱溶媒和反応に対する阻害作用がなく、電子の授与が非常にスムーズに行うことができ、その結果、放電レート特性、及び出入力特性を向上させることが可能となる。以下、本発明の負極板10を構成する集電体1、及び負極活物質層2について更に具体的に説明する。   According to the present invention having the above features, the negative electrode active material particles 21 are fixed on the current collector 1 by the metal-containing particles 22 regardless of the resin binder, and the metal-containing particles 22 Since the negative electrode active material particles 21 are also fixed to each other, there is no inhibitory effect on the desolvation reaction, and electrons can be given very smoothly. As a result, the discharge rate characteristics and the input / output characteristics are improved. It becomes possible. Hereinafter, the current collector 1 and the negative electrode active material layer 2 constituting the negative electrode plate 10 of the present invention will be described more specifically.

(集電体)
集電体1について特に限定はなく、リチウムイオン二次電池用負極板に用いられる従来公知の集電体1を適宜選択して用いることができる。例えば、アルミニウム箔、ニッケル箔、銅箔などの単体又は合金から形成された集電体を好ましく用いることができる。
(Current collector)
There is no limitation in particular about the electrical power collector 1, The conventionally well-known electrical power collector 1 used for the negative electrode plate for lithium ion secondary batteries can be selected suitably, and can be used. For example, a current collector formed of a simple substance or an alloy such as an aluminum foil, a nickel foil, or a copper foil can be preferably used.

集電体1の厚みは、一般にリチウムイオン二次電池用負極板の集電体として使用可能な厚みであれば特に限定されないが、3〜100μmであることが好ましく、5〜50μmであることがより好ましい。   Although the thickness of the electrical power collector 1 will not be specifically limited if it is the thickness which can generally be used as an electrical power collector of the negative electrode plate for lithium ion secondary batteries, It is preferable that it is 3-100 micrometers, and it is 5-50 micrometers. More preferred.

(負極活物質層)
集電体1上に形成される負極活物質層2は、図1に示すように、負極活物質粒子21と、金属含有粒子22とから構成されている。また、負極活物質層2に含有される負極活物質粒子21は、金属含有粒子22によって、集電体1上に固着されているか、又は金属含有粒子22によって他の負極活物質粒子21と固着している。また、負極活物質粒子21は、金属含有粒子22を介して積層される構成をとっている。この構成により、負極活物質層2全体における界面電荷移動抵抗を小さくすることができ、負極板10における放電レート特性及び出入力特性を向上させることができる。なお、図1に示す金属含有粒子22a、22bは、集電体1と負極活物質粒子21とを固着させ、負極活物質粒子21同士を固着させるための金属含有粒子22であり、金属含有粒子22aによって、負極活物質粒子21と、集電体1とが固着されており、金属含有粒子22bによって、負極活物質粒子21同士が固着されている。
(Negative electrode active material layer)
As shown in FIG. 1, the negative electrode active material layer 2 formed on the current collector 1 is composed of negative electrode active material particles 21 and metal-containing particles 22. The negative electrode active material particles 21 contained in the negative electrode active material layer 2 are fixed on the current collector 1 by metal-containing particles 22 or fixed to other negative electrode active material particles 21 by metal-containing particles 22. is doing. Further, the negative electrode active material particles 21 are configured to be laminated via the metal-containing particles 22. With this configuration, the interfacial charge transfer resistance in the entire negative electrode active material layer 2 can be reduced, and the discharge rate characteristics and the input / output characteristics of the negative electrode plate 10 can be improved. The metal-containing particles 22a and 22b shown in FIG. 1 are metal-containing particles 22 for fixing the current collector 1 and the negative electrode active material particles 21 and fixing the negative electrode active material particles 21 to each other. The negative electrode active material particles 21 and the current collector 1 are fixed by 22a, and the negative electrode active material particles 21 are fixed by the metal-containing particles 22b.

負極活物質層2の層厚は、負極板10に求められる電気容量や出入力特性を勘案して、適宜設計することができるが、放電レート特性及び出入力特性を向上させつつも高容量を得るためには、層厚は、200μm以下であることが好ましく、100μm以下であることがより好ましく、50μm以下であることが更に好ましい。負極活物質層2の層厚を当該範囲とすることで、負極活物質層2と集電体1との距離を短くすることができ負極板10のインピーダンスを下げることができる。   The thickness of the negative electrode active material layer 2 can be appropriately designed in consideration of the electric capacity and input / output characteristics required for the negative electrode plate 10, but the high capacity is improved while improving the discharge rate characteristics and the input / output characteristics. In order to obtain the thickness, the layer thickness is preferably 200 μm or less, more preferably 100 μm or less, and further preferably 50 μm or less. By setting the layer thickness of the negative electrode active material layer 2 in this range, the distance between the negative electrode active material layer 2 and the current collector 1 can be shortened, and the impedance of the negative electrode plate 10 can be lowered.

なお、本発明において負極活物質層2の層厚の下限は、主として用いられる負極活物質粒子21の粒子径に依存し、使用可能な負極活物質粒子21の粒子径の縮小化に伴い、さらに層厚を薄くすることも可能である。   In the present invention, the lower limit of the layer thickness of the negative electrode active material layer 2 depends mainly on the particle size of the negative electrode active material particles 21 used, and as the particle size of the usable negative electrode active material particles 21 is reduced, It is also possible to reduce the layer thickness.

また、負極活物質層は、電解液が浸透可能な程度に空隙が存在していることが好ましい。電解液が浸透可能な範囲であれば、空隙率について特に限定はないが、空隙率が10%未満である場合には、電解液が浸透せずスムーズな充放電を行うことが困難となる虞がある。この点を考慮すると、負極活物質層の空隙率は、10%以上であることが好ましい。また、空隙率が70%より大きい場合には、体積エネルギー密度を下げることができず、リチウムイオン二次電池を小型化する際の支障となる虞がある。この点を考慮すると、空隙率は70%以下であることが好ましい。なお、空隙率の測定は、島津製作所製 オートポアIV 9500等で測定可能である。   Moreover, it is preferable that the negative electrode active material layer has voids so that the electrolytic solution can permeate. The porosity is not particularly limited as long as the electrolyte solution can permeate, but if the porosity is less than 10%, the electrolyte solution may not penetrate and it may be difficult to perform smooth charge and discharge. There is. Considering this point, the porosity of the negative electrode active material layer is preferably 10% or more. On the other hand, when the porosity is larger than 70%, the volume energy density cannot be lowered, which may hinder the downsizing of the lithium ion secondary battery. Considering this point, the porosity is preferably 70% or less. The porosity can be measured with Autopore IV 9500 manufactured by Shimadzu Corporation.

(負極活物質粒子)
負極活物質層2には、負極活物質粒子21が含まれる。なお、負極活物質粒子21は本発明における必須の構成である。負極活物質粒子21について特に限定はなく、リチウムイオン二次電池の分野で従来公知の負極活物質粒子21を適宜選択して用いることができる。例えば、天然黒鉛、人造黒鉛、アモルファス炭素、カーボンブラック、またはこれらの成分に異種元素を添加した炭素材料や、金属リチウム及びその合金、スズ、珪素及びそれらの合金や、珪素、チタンコバルトの酸化物、マンガン、鉄、コバルトの窒化物など、リチウムイオンを吸蔵放出可能な材料を挙げることができる。中でも、炭素材料はコストが安く、取り扱い性容易な上、単位質量あたりに取り出せるエネルギーが大きく、放電電位が卑であり、平坦性がよいなどの理由から負極活物質粒子として特に好適に使用可能である。
(Negative electrode active material particles)
The negative electrode active material layer 2 includes negative electrode active material particles 21. The negative electrode active material particles 21 are an essential component in the present invention. The negative electrode active material particles 21 are not particularly limited, and conventionally known negative electrode active material particles 21 can be appropriately selected and used in the field of lithium ion secondary batteries. For example, natural graphite, artificial graphite, amorphous carbon, carbon black, carbon materials obtained by adding different elements to these components, metallic lithium and its alloys, tin, silicon and their alloys, and oxides of silicon and titanium cobalt Examples thereof include materials capable of occluding and releasing lithium ions, such as nitrides of manganese, iron, and cobalt. Among these, carbon materials are particularly suitable as negative electrode active material particles because of their low cost, easy handling, large energy that can be taken out per unit mass, low discharge potential, and good flatness. is there.

負極活物質粒子の形状について特に限定はなく、例えば、鱗片形状、偏平形状、紡錘形状、球形状の負極活物質粒子21を好適に用いることができる。中でも、本発明においては、鱗片状の負極活物質粒子21を特に好適に用いることができる。   The shape of the negative electrode active material particles is not particularly limited, and for example, scale-shaped, flat-shaped, spindle-shaped, and spherical negative electrode active material particles 21 can be suitably used. Among these, in the present invention, the scaly negative electrode active material particles 21 can be particularly preferably used.

負極活物質粒子21の粒子径について特に限定はなく、設計される負極活物質層の厚みや、求められる電池性能などを勘案して、任意の大きさのものを適宜選択して使用することができる。たとえば、本発明では、負極活物質粒子21として、そのメジアン径が20μm以下のものを使用することができる。なお、本発明及び本明細書に示す負極活物質粒子21のメジアン径は、レーザー回折/散乱式粒度分布測定により測定される平均粒子径(体積中位粒径:D50)である。また、負極活物質層中に含有された負極活物質粒子21、及び後述する金属含有粒子22の平均粒子径は、測定された電子顕微鏡観察結果のデータを、粒子認識ツールを用いて識別し、認識された粒子の画像から取得した形状データをもとに粒度分布のグラフを作成し、この粒度分布のグラフから算出される体積中位粒径である。なお、粒度分布のグラフは、例えば、電子顕微鏡観察結果を画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製、MAC VIEW)を用いて作成することができる。   The particle diameter of the negative electrode active material particles 21 is not particularly limited, and a particle having an arbitrary size can be appropriately selected and used in consideration of the thickness of the negative electrode active material layer to be designed and required battery performance. it can. For example, in the present invention, the negative electrode active material particles 21 having a median diameter of 20 μm or less can be used. In addition, the median diameter of the negative electrode active material particles 21 shown in the present invention and the present specification is an average particle diameter (volume median particle diameter: D50) measured by laser diffraction / scattering particle size distribution measurement. Moreover, the average particle diameter of the negative electrode active material particles 21 contained in the negative electrode active material layer and the metal-containing particles 22 described later is identified by using the particle recognition tool, the data of the measured electron microscope observation results, A particle size distribution graph is created based on the shape data acquired from the recognized particle image, and the volume-median particle size is calculated from the particle size distribution graph. The graph of particle size distribution can be created, for example, using an image analysis type particle size distribution measurement software (manufactured by Mountec Co., Ltd., MAC VIEW) based on an electron microscope observation result.

負極活物質層における負極活物質粒子の含有量は、負極活物質層2の総質量に対し、50質量%以上が好ましく、65質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。   The content of the negative electrode active material particles in the negative electrode active material layer is preferably 50% by mass or more, more preferably 65% by mass or more, and more preferably 90% by mass or more with respect to the total mass of the negative electrode active material layer 2. Is more preferable, and 95% by mass or more is particularly preferable.

(金属含有粒子)
負極活物質層2には、金属含有粒子22が含まれる。金属含有粒子22は、本発明における必須の構成であり、負極活物質粒子21を集電体1上に固着させるとともに、負極活物質粒子21同士を固着させる結着物質としての機能を果たす。本発明においては、この結着物質としての機能のほか、リチウムイオン挿入脱離反応を示さない機能を有する金属含有粒子22を適宜選択して用いることができる。
(Metal-containing particles)
The negative electrode active material layer 2 includes metal-containing particles 22. The metal-containing particle 22 is an essential component in the present invention, and functions as a binding material for fixing the negative electrode active material particles 21 on the current collector 1 and fixing the negative electrode active material particles 21 to each other. In the present invention, in addition to the function as a binding substance, the metal-containing particles 22 having a function not exhibiting lithium ion insertion / release reaction can be appropriately selected and used.

負極活物質層2に、結着物質としての金属含有粒子22を含む本発明は、従来、用いられてきた樹脂製の結着物質に依らず、負極活物質粒子21は、金属含有粒子22によって集電体1上に固着されており、また、負極活物質粒子21同士も、金属含有粒子22によって固着されていることから、電子の移動距離を短くすることができるほか、負極活物質層における電解液の浸透性を高くし、電解液と負極活物質粒子21との接触面積を大きくすることができる。   In the present invention in which the negative electrode active material layer 2 includes the metal-containing particles 22 as the binder material, the negative electrode active material particles 21 are formed by the metal-containing particles 22 regardless of the conventionally used resin binder materials. Since it is fixed on the current collector 1 and the negative electrode active material particles 21 are also fixed to each other by the metal-containing particles 22, it is possible to shorten the distance of electron movement, and in the negative electrode active material layer. It is possible to increase the permeability of the electrolytic solution and increase the contact area between the electrolytic solution and the negative electrode active material particles 21.

負極活物質層2に含まれる金属含有粒子22は、金属元素を含む粒子であればよく、金属粒子であっても、金属化合物粒子であってもよい。金属化合物粒子としては、例えば、金属酸化物粒子を挙げることができる。金属元素について特に限定はないが、アルカリ金属、アルカリ土類金属は、酸化還元電位が低いことから、リチウムイオン二次電池の負極板に用いた場合でも安定である。また、周期律表第4周期に属する遷移金属は、化学的に安定で、複数の酸化数を形成することが可能であり、同じ元素でも複数の錯体を形成する。そのため、リチウムイオン二次電池用負極板に含有される金属粒子としての利便性が高い。このような点を考慮すると、金属含有粒子22として、アルカリ金属、アルカリ土類金属、周期律表第4周期に属する遷移金属のいずれかの金属粒子を好ましく用いることができる。   The metal-containing particles 22 included in the negative electrode active material layer 2 may be particles containing a metal element, and may be metal particles or metal compound particles. Examples of the metal compound particles include metal oxide particles. Although there is no particular limitation on the metal element, alkali metals and alkaline earth metals are stable even when used for the negative electrode plate of a lithium ion secondary battery because of their low redox potential. In addition, transition metals belonging to the fourth period of the periodic table are chemically stable, can form a plurality of oxidation numbers, and form a plurality of complexes even with the same element. Therefore, the convenience as a metal particle contained in the negative electrode plate for lithium ion secondary batteries is high. Considering such points, as the metal-containing particles 22, any one of alkali metal, alkaline earth metal, and transition metal belonging to the fourth period of the periodic table can be preferably used.

中でも、銅、ニッケルは負極板の集電体として用いることが可能な金属であり、また、リチウムはリチウムイオン二次電池の構成材料である。また、これらの銅、ニッケル、リチウムは、リチウムイオン二次電池の負極板における電子伝導性の向上に寄与し、充放電反応時に副反応を生じない材料である。このような点を考慮すると、金属含有粒子22として、銅粒子、ニッケル粒子、リチウム粒子のいずれかの金属粒子を特に好ましく用いることができる。   Among these, copper and nickel are metals that can be used as the current collector of the negative electrode plate, and lithium is a constituent material of the lithium ion secondary battery. In addition, these copper, nickel, and lithium are materials that contribute to the improvement of electronic conductivity in the negative electrode plate of the lithium ion secondary battery and do not cause side reactions during the charge / discharge reaction. Considering such points, any metal particles of copper particles, nickel particles, and lithium particles can be particularly preferably used as the metal-containing particles 22.

また、金属含有粒子22として、金属化合物粒子である金属酸化物粒子を用いる場合には、アルカリ金属、アルカリ土類金属、周期律表第4周期に属する遷移金属のいずれかの金属酸化物粒子を好ましく用いることができる。中でも、酸化銅粒子、酸化ニッケル粒子、酸化リチウム粒子を特に好ましく用いることができる。アルカリ金属、アルカリ土類金属、周期律表第4周期に属する遷移金属のいずれかの金属酸化物粒子が好ましい点、また、酸化銅粒子、酸化ニッケル粒子、酸化リチウム粒子が好ましい点は、上記で説明した理由と同じでありここでの説明は省略する。   When metal oxide particles that are metal compound particles are used as the metal-containing particles 22, any one of alkali metal, alkaline earth metal, and transition metal belonging to the fourth period of the periodic table is used. It can be preferably used. Among these, copper oxide particles, nickel oxide particles, and lithium oxide particles can be particularly preferably used. The point that the metal oxide particles of any one of alkali metals, alkaline earth metals, and transition metals belonging to the fourth period of the periodic table are preferable, and the points that the copper oxide particles, nickel oxide particles, and lithium oxide particles are preferable are as described above. This is the same reason as described, and a description thereof is omitted here.

また、金属含有粒子が、金属酸化物を還元処理することで得られる金属粒子であってもよい。還元処理の方法については後述する。   Further, the metal-containing particles may be metal particles obtained by reducing a metal oxide. The method of the reduction process will be described later.

金属含有粒子22の大きさについて特に限定はないが、金属含有粒子22の大きさが、負極活物質粒子21よりも大きい場合には、リチウムイオン等の負極活物質イオン及び電子の移動距離が長く、また電解液と負極活物質粒子21との接触面積が小さくなることから、インピーダンスが上がり放電レート特性、及び出入力特性が低下する傾向となる。このような点を考慮すると、金属含有粒子22の大きさは、負極活物質粒子21の大きさよりも小さいことが好ましい。負極活物質粒子21よりも小さい金属含有粒子22を用いることで、リチウムイオン等の負極活物質イオン及び電子の移動距離が短くなり、また、電解液と負極活物質粒子21との接触面積が大きくなることから、放電レート特性、及び出入力特性を向上させることができる。   The size of the metal-containing particles 22 is not particularly limited, but when the size of the metal-containing particles 22 is larger than that of the negative electrode active material particles 21, the moving distance of negative electrode active material ions such as lithium ions and electrons is long. Moreover, since the contact area between the electrolytic solution and the negative electrode active material particles 21 is reduced, the impedance is increased and the discharge rate characteristics and the input / output characteristics tend to be reduced. In consideration of such points, the size of the metal-containing particles 22 is preferably smaller than the size of the negative electrode active material particles 21. By using the metal-containing particles 22 smaller than the negative electrode active material particles 21, the moving distance of negative electrode active material ions such as lithium ions and electrons is shortened, and the contact area between the electrolyte and the negative electrode active material particles 21 is large. Therefore, the discharge rate characteristics and the input / output characteristics can be improved.

また、金属含有粒子22は、粒子形状であればよく、例えば、棒状、偏平形状、球形状、柱状などの各種の粒子形状を挙げることができる。   Moreover, the metal containing particle | grains 22 should just be a particle shape, For example, various particle shapes, such as rod shape, flat shape, spherical shape, column shape, can be mentioned.

金属含有粒子22の粒子径は、金属含有粒子22の粒子形状によって異なり、その粒子径について特に限定はないが、平均粒子径が0.05μm〜2μmの金属含有粒子22であることが好ましい。当該範囲の平均粒子径の金属含有粒子22を用いることで、負極活物質粒子21と集電体1との密着性を向上させることができる。また、負極活物質層2の層厚を薄くすることができ、電子の移動距離を短くすることができるほか、電解液と負極活物質粒子21との接触面積を大きくすることができる。   The particle diameter of the metal-containing particles 22 varies depending on the particle shape of the metal-containing particles 22, and the particle diameter is not particularly limited, but is preferably metal-containing particles 22 having an average particle diameter of 0.05 μm to 2 μm. By using the metal-containing particles 22 having an average particle diameter in this range, the adhesion between the negative electrode active material particles 21 and the current collector 1 can be improved. In addition, the thickness of the negative electrode active material layer 2 can be reduced, the distance of electron movement can be shortened, and the contact area between the electrolytic solution and the negative electrode active material particles 21 can be increased.

また、金属含有粒子22の平均体積について特に限定はないが、0.00006〜5μm3であることが好ましい。当該範囲の平均体積の金属含有粒子22を用いることで、負極活物質粒子21と集電体1との密着性を向上させることができる。また、負極活物質層2の層厚を薄くすることができ、電子の移動距離を短くすることができるほか、電解液と負極活物質粒子21との接触面積を大きくすることができる。なお、本発明及び本明細書に示す金属含有粒子22の平均体積は、金属含有粒子を球体と仮定し、上記で説明した体積中位粒径を直径として球の体積を算出することで得られる平均体積である。 Moreover, although there is no limitation in particular about the average volume of the metal containing particle | grains 22, it is preferable that it is 0.00006-5micrometer < 3 >. By using the metal-containing particles 22 having an average volume within the range, the adhesion between the negative electrode active material particles 21 and the current collector 1 can be improved. In addition, the thickness of the negative electrode active material layer 2 can be reduced, the distance of electron movement can be shortened, and the contact area between the electrolytic solution and the negative electrode active material particles 21 can be increased. The average volume of the metal-containing particles 22 shown in the present invention and the present specification is obtained by assuming the metal-containing particles as spheres and calculating the volume of the sphere using the volume median particle diameter described above as a diameter. Average volume.

また、金属含有粒子22の平均粒子径、平均体積を上記で説明した好ましい範囲内に調節する方法について特に限定はないが、例えば、金属含有粒子22に、水素プラズマ処理を施すことで、金属含有粒子22の平均粒子径、平均体積を容易に調節することができる。例えば、照射条件(照射時間、プラズマ源からの距離等)を適宜設計することで、平均粒子径、平均体積を調節することができる。具体的には、キャリアガスである水素ガスの濃度を増大させる、照射時間を長くする、プラズマ源から金属含有粒子22までの距離を短くする等により、平均粒径、及び平均体積の小さい金属含有粒子22とすることができる。一方、水素ガスの濃度を低下させる、照射時間を短くする、プラズマ源から金属含有粒子22までの距離を長くする等により、平均粒径、及び平均体積の大きい金属含有粒子22とすることができる。   Further, there is no particular limitation on the method for adjusting the average particle diameter and the average volume of the metal-containing particles 22 within the preferable ranges described above. For example, the metal-containing particles 22 are subjected to a hydrogen plasma treatment to thereby contain metal. The average particle diameter and average volume of the particles 22 can be easily adjusted. For example, the average particle diameter and the average volume can be adjusted by appropriately designing the irradiation conditions (irradiation time, distance from the plasma source, etc.). Specifically, by increasing the concentration of hydrogen gas as the carrier gas, increasing the irradiation time, shortening the distance from the plasma source to the metal-containing particles 22, etc., the metal content with a small average particle size and average volume is contained. Particles 22 can be obtained. On the other hand, by reducing the concentration of hydrogen gas, shortening the irradiation time, or increasing the distance from the plasma source to the metal-containing particles 22, the metal-containing particles 22 having a large average particle diameter and a large average volume can be obtained. .

次に、図2を用いて、集電体1と負極活物質粒子21との固着、及び負極活物質粒子21同士の固着について具体的に説明する。図2に示すように、負極活物質層2中には、複数の負極活物質粒子21と、複数の金属含有粒子22が含まれ、1つの負極活物質粒子は、1又は複数の金属含有粒子22と固着している。また、この1つの負極活物質粒子と固着している1又は複数の金属含有粒子22は、集電体1と固着しているか、又は他の負極活物質粒子と固着している。これにより、負極活物質粒子21は、金属含有粒子22によって集電体1上に固着され、負極活物質粒子21同士も、金属含有粒子22によって固着される。   Next, the adhesion between the current collector 1 and the negative electrode active material particles 21 and the adhesion between the negative electrode active material particles 21 will be specifically described with reference to FIG. As shown in FIG. 2, the negative electrode active material layer 2 includes a plurality of negative electrode active material particles 21 and a plurality of metal-containing particles 22, and one negative electrode active material particle is one or a plurality of metal-containing particles. 22 is fixed. The one or more metal-containing particles 22 fixed to the one negative electrode active material particle are fixed to the current collector 1 or fixed to other negative electrode active material particles. Thereby, the negative electrode active material particles 21 are fixed on the current collector 1 by the metal-containing particles 22, and the negative electrode active material particles 21 are also fixed by the metal-containing particles 22.

なお、負極活物質層2に含有される全ての金属含有粒子22が、集電体1と負極活物質粒子21との固着、又は負極活物質同士の固着に寄与されている必要はない。例えば、負極活物質粒子21と固着している金属含有粒子22が、集電体1、又は他の負極活物質粒子21と固着しないように存在していても良い。   Note that it is not necessary for all the metal-containing particles 22 contained in the negative electrode active material layer 2 to contribute to the adhesion between the current collector 1 and the negative electrode active material particles 21 or the adhesion between the negative electrode active materials. For example, the metal-containing particles 22 fixed to the negative electrode active material particles 21 may be present so as not to be fixed to the current collector 1 or other negative electrode active material particles 21.

ここで、任意に選択される1つの負極活物質粒子21(図中の負極活物質粒子21A)に着目すると、負極活物質粒子21Aは、1又は複数の金属含有粒子22によって負極活物質粒子21Aの近傍に位置する他の負極活物質粒子21Bと固着されている。具体的には、負極活物質粒子21Aの表面には複数の金属含有粒子22が固着しており、この金属含有粒子は、負極活物質粒子21Aの近傍に位置する他の負極活物質粒子21Bとも固着している。これにより、負極活物質粒子21Aと、負極活物質粒子21Aの近傍に位置する他の負極活物質粒子21Bとが固着される。   Here, paying attention to one arbitrarily selected negative electrode active material particle 21 (negative electrode active material particle 21 </ b> A in the drawing), the negative electrode active material particle 21 </ b> A is composed of one or a plurality of metal-containing particles 22. It is fixed to other negative electrode active material particles 21B located in the vicinity of. Specifically, a plurality of metal-containing particles 22 are fixed to the surface of the negative electrode active material particles 21A, and these metal-containing particles are also connected to other negative electrode active material particles 21B located in the vicinity of the negative electrode active material particles 21A. It is stuck. Thereby, the negative electrode active material particles 21A and the other negative electrode active material particles 21B located in the vicinity of the negative electrode active material particles 21A are fixed.

なお、図示しないが、図2と同様に集電体1の近傍に位置する負極活物質粒子21は、1又は複数の金属含有粒子22と固着しており、この金属含有粒子22は集電体1とも固着している。これにより、負極活物質粒子21と、集電体とが固着される。   Although not shown, the negative electrode active material particles 21 located in the vicinity of the current collector 1 are fixed to one or a plurality of metal-containing particles 22 as in FIG. 2, and the metal-containing particles 22 are the current collectors. 1 is also fixed. Thereby, the negative electrode active material particles 21 and the current collector are fixed.

ここで、1つの負極活物質粒子21と固着している全ての金属含有粒子22において、該1つの負極活物質粒子21と固着している部分(負極活物質粒子の表面と金属含有粒子とが接触している部分)の合計面積が、該1つの負極活物質粒子21の全表面積の85%を超える場合には、電解液と負極活物質粒子21との接触面積が小さくなってしまい、インピーダンスが低下してしまう虞がある。また、合計面積が、全表面積の20%未満である場合には、集電体と負極活物質粒子とを強固に固着させるとともに、負極活物質粒子21同士を強固に固着させることができない虞が生ずる。このような点を考慮すると、1つの負極活物質粒子21と固着している全ての金属含有粒子22において、該1つの負極活物質粒子21と固着している部分の合計面積が、該1つの負極活物質粒子21の全表面積の20〜85%であることが好ましい。当該範囲とすることで、電解液と負極活物質粒子21との接触面積を十分に大きくすることができ、かつ、集電体と負極活物質粒子とを強固に固着させるとともに、負極活物質粒子21同士を強固に固着させることができる。   Here, in all the metal-containing particles 22 fixed to one negative electrode active material particle 21, the portion fixed to the one negative electrode active material particle 21 (the surface of the negative electrode active material particle and the metal-containing particles are When the total area of the part in contact) exceeds 85% of the total surface area of the single negative electrode active material particle 21, the contact area between the electrolytic solution and the negative electrode active material particle 21 becomes small, and impedance May decrease. Further, when the total area is less than 20% of the total surface area, the current collector and the negative electrode active material particles may be firmly fixed and the negative electrode active material particles 21 may not be firmly fixed. Arise. Considering such points, in all the metal-containing particles 22 fixed to one negative electrode active material particle 21, the total area of the portions fixed to the one negative electrode active material particle 21 is the one The total surface area of the negative electrode active material particles 21 is preferably 20 to 85%. By setting it in this range, the contact area between the electrolytic solution and the negative electrode active material particles 21 can be sufficiently increased, and the current collector and the negative electrode active material particles can be firmly fixed, and the negative electrode active material particles 21 can be firmly fixed to each other.

具体的に、負極活物質粒子21Aを例にとると、負極活物質粒子21Aに固着している金属含有粒子22の固着部分30の合計面積(付着領域30a〜30mの合計面積)が、負極活物質粒子21Aの全表面積の20〜85%であることが好ましい。なお、図中の30k〜30mは、30j〜30iの反対側で、負極活物質粒子21Aと固着している金属含有粒子22の固着部分(負極活物質粒子の表面における金属含有粒子が接触している部分)を示す。   Specifically, taking the negative electrode active material particles 21A as an example, the total area of the fixed portions 30 of the metal-containing particles 22 fixed to the negative electrode active material particles 21A (total area of the adhesion regions 30a to 30m) is It is preferably 20 to 85% of the total surface area of the substance particles 21A. In addition, 30k-30m in a figure is the other side of 30j-30i, and the fixing | fixed part (the metal containing particle | grains in the surface of the negative electrode active material particle is contacting) of 21 A of negative electrode active material particles and the metal containing particle 22 contact | connecting Part).

1つの負極活物質粒子21と固着している全ての金属含有粒子22において、該1つの負極活物質粒子21と固着している部分の合計面積を、該1つの負極活物質粒子21の全表面積の20〜85%の範囲とする方法について特に限定はないが、例えば、リチウムイオン二次電池用負極板を製造する際に、塗工液中に含まれる結着物質前駆体の含有量を適宜設計することで、合計面積の調節が可能である。具体的には、結着物質前駆体の含有量を増やすことで、合計面積を大きくすることができ、一方、結着物質前駆体の含有量を減少させることで、合計面積を小さくすることができる。   In all the metal-containing particles 22 fixed to one negative electrode active material particle 21, the total area of the portions fixed to the one negative electrode active material particle 21 is the total surface area of the one negative electrode active material particle 21. Although there is no limitation in particular about the method of making it 20 to 85% of range, for example, when manufacturing the negative electrode plate for lithium ion secondary batteries, content of the binder substance precursor contained in a coating liquid is suitably used. By designing, the total area can be adjusted. Specifically, the total area can be increased by increasing the content of the binder substance precursor, while the total area can be reduced by decreasing the content of the binder substance precursor. it can.

負極活物質層2に含まれる金属含有粒子22の含有量は、負極活物質層の総質量に対し、50質量%以下が好ましく、35質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、5質量%以下であることが特に好ましい。   The content of the metal-containing particles 22 contained in the negative electrode active material layer 2 is preferably 50% by mass or less, more preferably 35% by mass or less, and more preferably 10% by mass or less with respect to the total mass of the negative electrode active material layer. More preferably, it is more preferably 5% by mass or less.

(その他の材料)
上記負極活物質層2は、上述する負極活物質粒子21及び金属含有粒子22のみから構成されていてもよいが、本発明の趣旨を逸脱しない範囲において、さらなる添加剤を含有させて形成してもよい。たとえば、本発明において導電材を使用することなく良好な導電性を発揮させることが可能であるが、より優れた導電性が望まれる場合や、負極活物質粒子の種類などによっては、導電材を使用することとしてもよい。
(Other materials)
The negative electrode active material layer 2 may be composed only of the negative electrode active material particles 21 and the metal-containing particles 22 described above, but may be formed by adding further additives without departing from the spirit of the present invention. Also good. For example, in the present invention, it is possible to exert good conductivity without using a conductive material, but depending on the case where better conductivity is desired or depending on the type of negative electrode active material particles, the conductive material may be It may be used.

また本発明は、樹脂製の結着物質を使用せずに、金属含有粒子22によって負極活物質粒子が集電体上に固着されているとともに、金属含有粒子22によって負極活物質粒子21同士が固着されているものであるが、これは負極活物質層に樹脂成分が含有されることを禁止する趣旨ではない。   Further, in the present invention, the negative electrode active material particles are fixed to the current collector by the metal-containing particles 22 without using the resin binder, and the negative electrode active material particles 21 are bonded to each other by the metal-containing particles 22. Although it is fixed, this does not mean that the resin component is not contained in the negative electrode active material layer.

<負極板の形成方法>
次に、本発明の負極板の形成方法について説明する。負極活物質層2の形成方法について特に限定はなく、例えば、溶媒中に、負極活物質粒子21と、金属含有粒子22を均一に分散させた塗工液を調製し、該塗工液を乾燥することで、金属含有粒子22によって、集電体1と負極活物質粒子21が固着され、金属含有粒子22によって負極活物質粒子21同士が固着されてなる負極活物質層2を形成することができる。
<Method for forming negative electrode plate>
Next, the formation method of the negative electrode plate of this invention is demonstrated. The method for forming the negative electrode active material layer 2 is not particularly limited. For example, a coating liquid in which the negative electrode active material particles 21 and the metal-containing particles 22 are uniformly dispersed in a solvent is prepared, and the coating liquid is dried. By doing so, the current collector 1 and the negative electrode active material particles 21 are fixed by the metal-containing particles 22, and the negative electrode active material layer 2 in which the negative electrode active material particles 21 are fixed by the metal-containing particles 22 is formed. it can.

特に、本発明においては、負極活物質粒子21、金属含有粒子22の金属元素を含む結着物質前駆体、溶媒、必要に応じて上記で説明した他の材料とを用いて、塗工液を調製し、該塗工液を集電体1上に塗工した後に、塗工液を加熱して塗膜を形成し、次いで該塗膜を還元処理して負極板を形成する方法を好ましく用いることができる。以下、この形成方法について具体的に説明する。   In particular, in the present invention, the coating liquid is prepared using the negative electrode active material particles 21, the binder material precursor containing the metal element of the metal-containing particles 22, a solvent, and, if necessary, the other materials described above. The method of preparing and coating the coating liquid on the current collector 1 and then heating the coating liquid to form a coating film and then reducing the coating film to form a negative electrode plate is preferably used. be able to. Hereinafter, this formation method will be specifically described.

(塗工液の調製)
塗工液の調製に用いられる、結着物質前駆体は、金属含有粒子22の金属元素を含む前駆体であり、金属含有粒子22の金属元素の塩化物、硝酸塩、酢酸塩、過塩素酸塩、リン酸塩、臭素酸塩等の金属塩や、これらの金属塩の水和物等を挙げることができる。中でも、塩化物、硝酸塩、酢酸塩は汎用品としての入手が容易であるほか、これらの結着物質前駆体を溶媒に溶解させ、塗工液を集電体1上に塗工して塗膜を形成し、加熱すると、塩素イオン、硝酸イオン、酢酸イオンを容易に塗膜中から消失させることができることから、これらを特に好適に用いることができる。
(Preparation of coating solution)
The binder precursor used for the preparation of the coating liquid is a precursor containing a metal element of the metal-containing particle 22, and a chloride, nitrate, acetate, perchlorate of the metal element of the metal-containing particle 22. , Metal salts such as phosphates and bromates, and hydrates of these metal salts. Among them, chlorides, nitrates, and acetates are easily available as general-purpose products. In addition, these binder precursors are dissolved in a solvent, and a coating solution is applied onto the current collector 1 to form a coating film. When this is formed and heated, chlorine ions, nitrate ions, and acetate ions can be easily eliminated from the coating film, and these can be used particularly preferably.

これらの結着物質前駆体の具体的な例としては、例えば、金属含有粒子22の金属元素が銅である場合には、塩化銅、硝酸銅、酢酸銅、酢酸銅(II)一水和物等を挙げることができ、金属含有粒子の金属元素がニッケルである場合には、塩化ニッケル、硝酸ニッケル、酢酸ニッケル、硝酸ニッケル(II)六水和物、酢酸ニッケル(II)四水和物等を挙げることができ、金属含有粒子22の金属元素がリチウムである場合には、塩化リチウム、硝酸リチウム、酢酸リチウム、酢酸リチウム三水和物等を挙げることができる。   Specific examples of these binder precursors include, for example, when the metal element of the metal-containing particles 22 is copper, copper chloride, copper nitrate, copper acetate, copper acetate (II) monohydrate. In the case where the metal element of the metal-containing particles is nickel, nickel chloride, nickel nitrate, nickel acetate, nickel nitrate (II) hexahydrate, nickel acetate (II) tetrahydrate, etc. When the metal element of the metal-containing particle 22 is lithium, lithium chloride, lithium nitrate, lithium acetate, lithium acetate trihydrate, and the like can be given.

上記結着物質前駆体を溶解させるための溶媒は、該前駆体を溶解することができるものであればよく、従来公知の溶媒を適宜選択して用いることができる。例えば、水、NMP(N−メチル−2−ピロリドン)、メタノール、エタノール、n−プロパノール、イソ−プロパノール、n−ブタノール、イソ−ブタノール、2−ブタノール、t−ブタノール等の低級アルコール、アセチルアセトン、ジアセチル、ベンゾイルアセトン等のケトン類、アセト酢酸エチル、ピルビン酸エチル、ベンゾイル酢酸エチル、ベンゾイル蟻酸エチル等のケトエステル類、トルエン、エチレングリコール、ジエチレングリコール、ポリエチレングリコール及びこれらの混合溶媒を挙げることができる。   The solvent for dissolving the binder precursor is not particularly limited as long as it can dissolve the precursor, and a conventionally known solvent can be appropriately selected and used. For example, water, lower alcohols such as NMP (N-methyl-2-pyrrolidone), methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, 2-butanol, t-butanol, acetylacetone, diacetyl And ketones such as benzoylacetone, ketoesters such as ethyl acetoacetate, ethyl pyruvate, ethyl benzoylacetate and ethyl benzoylformate, toluene, ethylene glycol, diethylene glycol, polyethylene glycol, and mixed solvents thereof.

結着物質前駆体を溶媒中に溶解した溶解液に、上述した負極活物質粒子21を混合させることにより塗工液が調製される。塗工液において、結着物質前駆体、及び負極活物質粒子の配合量は、負極板に要求される性能や電気容量、あるいは負極板と組み合わせて用いられる正極板の性能や電気容量を勘案して決定することができる。中でも、集電体上に形成される負極活物質層2に含まれる負極活物質粒子21及び金属含有粒子22が、負極活物質層の総質量に対し、上記で説明した好ましい範囲内で含まれるような量で含有されるように、負極活物質粒子及び結着物質前駆体が配合されていることが好ましい。   The coating liquid is prepared by mixing the above-described negative electrode active material particles 21 in a solution obtained by dissolving the binder precursor in a solvent. In the coating solution, the amount of the binder precursor and the negative electrode active material particles is determined in consideration of the performance and electric capacity required for the negative electrode plate, or the performance and electric capacity of the positive electrode plate used in combination with the negative electrode plate. Can be determined. Among them, the negative electrode active material particles 21 and the metal-containing particles 22 included in the negative electrode active material layer 2 formed on the current collector are included within the preferable range described above with respect to the total mass of the negative electrode active material layer. The negative electrode active material particles and the binder material precursor are preferably blended so as to be contained in such amounts.

上述する塗工液において、溶媒に対し、添加される1種または2種以上の結着物質前駆体の添加量の合計の比率は、0.01〜20mol/L、特に0.1〜10mol/Lが好ましい。上記濃度を0.01mol/L以上とすることにより、集電体1と該集電体表面で生成される負極活物質層2とを良好に密着させることができ、負極活物質粒子21の集電体への固着が充分に図られる。また、上記濃度を、20mol/L以下とすることにより、上記塗工液を集電体表面へ良好に塗布できる程度の良好な粘度を維持することができ、均一な塗膜を形成することができる。   In the coating liquid described above, the ratio of the total amount of one or more binder substances added to the solvent is 0.01 to 20 mol / L, particularly 0.1 to 10 mol / L. L is preferred. By setting the concentration to 0.01 mol / L or more, the current collector 1 and the negative electrode active material layer 2 generated on the surface of the current collector can be satisfactorily adhered to each other. Adhesion to the electric body is sufficiently achieved. Moreover, by setting the concentration to 20 mol / L or less, it is possible to maintain a good viscosity that allows the coating solution to be applied to the current collector surface, and to form a uniform coating film. it can.

(塗工液の塗工)
塗工液を集電体上に塗工する方法について特に限定はなく、一般的な塗工方法を適宜選択して用いることができる。例えば、印刷法、スピンコート、ディップコート、バーコート、スプレーコート等によって、集電体表面の任意の領域に塗工液を塗工することができる。また、集電体の表面が多孔質であったり、凹凸が多数設けられていたり、三次元立体構造を有したりする場合には、上記の方法以外に手動で塗布することも可能である。なお、本発明において使用する集電体は、必要に応じて、予めコロナ処理や酸素プラズマ処理等を行うことで、負極活物質層の成膜性をさらに改善することができる。
(Coating liquid application)
There is no particular limitation on the method for applying the coating liquid onto the current collector, and a general coating method can be appropriately selected and used. For example, the coating liquid can be applied to any region of the current collector surface by printing, spin coating, dip coating, bar coating, spray coating, or the like. In addition, when the surface of the current collector is porous, has a large number of irregularities, or has a three-dimensional structure, it can be manually applied in addition to the above method. Note that the current collector used in the present invention can further improve the film-forming property of the negative electrode active material layer by performing corona treatment, oxygen plasma treatment, or the like in advance as necessary.

また、塗工液の塗工量について特に限定はないが、加熱後の厚みが、上記で説明した負極活物質層の厚みとなるような範囲で塗工されていることが好ましい。   Moreover, there is no limitation in particular about the coating amount of a coating liquid, However, It is preferable to apply in the range from which the thickness after a heating becomes the thickness of the negative electrode active material layer demonstrated above.

(塗工液の加熱)
塗工液中に含まれる結着物質前駆体を加熱することで、負極活物質粒子と、結着物質前駆体の金属が化学反応により酸化されてなる金属酸化物が含まれる塗膜が形成される。形成された塗膜は、負極活物質粒子の表面全体を覆うように、金属酸化物の被膜が形成されてなる塗膜であり、化学反応により酸化する際の凝集力により、被膜の状態で、集電体1と負極活物質粒子21とを強固に固着させ、かつ負極活物質粒子21同士を強固に固着させている。つまり、この段階では、金属含有粒子22とはなっていない。
(Coating liquid heating)
By heating the binder precursor contained in the coating liquid, a coating film containing negative electrode active material particles and a metal oxide formed by oxidation of the binder precursor metal by a chemical reaction is formed. The The formed coating film is a coating film in which a metal oxide film is formed so as to cover the entire surface of the negative electrode active material particles, and in the state of the coating film due to cohesive force when oxidized by a chemical reaction, The current collector 1 and the negative electrode active material particles 21 are firmly fixed, and the negative electrode active material particles 21 are firmly fixed to each other. That is, at this stage, the metal-containing particles 22 are not formed.

この金属酸化物の被膜は、初期充電時の還元反応により金属酸化物の被膜が還元された場合であっても、その形態が変わることはないため、負極活物質粒子と、電解液との接触面積が著しく小さくなり、この塗膜の状態で放電レート特性を向上させることはできない。   This metal oxide film does not change its shape even when the metal oxide film is reduced by the reduction reaction during the initial charge, so that the contact between the negative electrode active material particles and the electrolyte solution does not change. The area becomes remarkably small, and the discharge rate characteristics cannot be improved in the state of this coating film.

塗工液の加熱は、塗工液を加熱することができる加熱方法あるいは加熱装置を、適宜選択して実施することができる。具体的な例としては、ホットプレート、オーブン、減圧オーブン、加熱炉、赤外線ヒーター、ハロゲンヒーター、熱風送風機等のいずれかを使用するか、あるいは2以上を組み合わせて使用する方法を挙げることができる。加熱温度は、結着物質前駆体に含まれる金属を酸化させることができる温度以上であればよく、結着物質前駆体に含まれる金属の種類によって異なるが、通常120℃〜800℃の温度範囲である。   The heating of the coating liquid can be carried out by appropriately selecting a heating method or a heating apparatus that can heat the coating liquid. Specific examples include a method of using any one of a hot plate, an oven, a vacuum oven, a heating furnace, an infrared heater, a halogen heater, a hot air blower, etc., or a combination of two or more. The heating temperature only needs to be equal to or higher than the temperature at which the metal contained in the binder precursor can be oxidized, and varies depending on the type of metal contained in the binder precursor, but usually ranges from 120 ° C to 800 ° C. It is.

(塗膜の還元処理)
初期充電を行う前に予め還元処理を施すことで、負極活物質粒子21の表面を覆うように被膜の状態で存在している金属酸化物は、金属含有粒子22としての金属粒子に還元され、集電体1と負極活物質粒子21、及び負極活物質粒子21同士は、この金属含有粒子22としての金属粒子によって固着される。なお、上記の加熱処理による酸化反応で金属酸化物が生成されるときの凝集力は、還元処理によって低下することはない。したがって、金属酸化物の被膜で固着させているときと同様の固着力をもって、集電体1と負極活物質粒子21、及び負極活物質粒子21同士は、金属含有粒子22としての金属粒子によって強固に固着される。
(Reduction treatment of coating film)
By performing a reduction treatment in advance before performing the initial charge, the metal oxide present in the state of a film so as to cover the surface of the negative electrode active material particles 21 is reduced to metal particles as the metal-containing particles 22, The current collector 1, the negative electrode active material particles 21, and the negative electrode active material particles 21 are fixed by the metal particles as the metal-containing particles 22. In addition, the cohesion force when a metal oxide is produced | generated by the oxidation reaction by said heat processing does not fall by a reduction process. Therefore, the current collector 1, the negative electrode active material particles 21, and the negative electrode active material particles 21 are firmly bonded to each other by the metal particles as the metal-containing particles 22 with the same fixing force as when the metal oxide film is fixed. It is fixed to.

還元処理方法としては、塗膜中に含まれる金属酸化物を還元させ、金属粒子とすることができる処理方法であれば特に限定はないが、金属酸化物の被膜を均一に還元し、容易に粒子状の金属とすることがすることができる水素プラズマ雰囲気下で還元処理を行う還元処理方法や、水素、一酸化炭素等、もしくは水素、一酸化炭素を窒素、ヘリウム、アルゴン等の不活性ガスで希釈した還元ガスを用い、該還元ガス雰囲気下で還元を行う還元処理方法を好適に用いることができる。還元ガスは1種の還元ガスを単独で使用してもよく、2種以上のガスを混合して用いることとしてもよい。   The reduction treatment method is not particularly limited as long as it is a treatment method that can reduce the metal oxide contained in the coating film to form metal particles, but the metal oxide film can be reduced uniformly and easily. Reduction treatment method in which reduction treatment is performed in a hydrogen plasma atmosphere that can be made into a particulate metal, hydrogen, carbon monoxide, etc., or hydrogen, carbon monoxide as an inert gas such as nitrogen, helium, argon, etc. It is possible to suitably use a reduction treatment method in which a reducing gas diluted with is used and reduction is performed in the reducing gas atmosphere. As the reducing gas, one kind of reducing gas may be used alone, or two or more kinds of gases may be mixed and used.

また、還元処理を経ることで形成された負極板は、負極活物質層2中に酸化物が含まれておらず、初期充電時に還元反応が生ずることもない。これにより、初期充電時における還元反応により、充電反応が妨げられ初期充放電効率が低下することを防止することができる。以下、初期充電時に還元反応が生ずることによる初期充放電効率の低下について、負極活物質粒子としてのグラファイトと、金属酸化物の被膜とを含む負極活物質層が集電体上に形成されてなる負極板(以下、グラファイト負極という場合がある)を例に挙げて説明する。なお、初期充放電効率は、初回充放電時の充電容量に対する放電容量の比×100から求めることができる。   In addition, the negative electrode plate formed by the reduction treatment does not include an oxide in the negative electrode active material layer 2 and does not cause a reduction reaction during initial charging. Thereby, it is possible to prevent the charge reaction from being hindered by the reduction reaction during the initial charge and the initial charge / discharge efficiency from being lowered. Hereinafter, a negative electrode active material layer including graphite as a negative electrode active material particle and a metal oxide film is formed on a current collector for a reduction in initial charge / discharge efficiency due to a reduction reaction occurring during initial charge. A negative electrode plate (hereinafter sometimes referred to as a graphite negative electrode) will be described as an example. The initial charge / discharge efficiency can be determined from the ratio of the discharge capacity to the charge capacity at the first charge / discharge × 100.

高い初期充放電効率を得るためには、初期充電時に充放電反応以外の不可逆反応成分を低減させることが必要である。例えば、Li/Li+電極電位で0.1V以下に電位平坦部を有するグラファイト負極において、高い初期充放電効率を得るためには、図4(a)に示すようにグラファイト負極への初期充電開始後、直ちに、グラフェン層間にインターカレートされるプラトー電位に達することが望ましい。 In order to obtain high initial charge / discharge efficiency, it is necessary to reduce irreversible reaction components other than the charge / discharge reaction during the initial charge. For example, in order to obtain a high initial charge / discharge efficiency in a graphite negative electrode having a potential flat portion at a Li / Li + electrode potential of 0.1 V or less, the initial charge to the graphite negative electrode is started as shown in FIG. Later, it is desirable to immediately reach a plateau potential that is intercalated between the graphene layers.

しかしながら、充電反応を開始した際に、金属酸化物の被膜が含まれるグラファイト負極においては、図4(b)に示すように、初期充電時に、インターカレーション反応が生じる電位よりも高い電位(図中の0.8V〜0.2V付近)において、優先的に金属酸化物の還元反応が生じる。初期充放電効率の低下は、この還元反応により、初期充電時の不可逆な反応が増大することによるものと考えられる。   However, when the charging reaction is started, in the graphite negative electrode including the metal oxide film, as shown in FIG. 4B, a potential higher than the potential at which the intercalation reaction occurs during the initial charging (see FIG. 4B). In the middle of 0.8V to 0.2V), a metal oxide reduction reaction occurs preferentially. The decrease in the initial charge / discharge efficiency is considered to be due to an increase in the irreversible reaction during the initial charge due to this reduction reaction.

<リチウムイオン二次電池>
次に、図5を用いて本発明のリチウムイオン二次電池について説明する。なお、図5は、本発明のリチウムイオン二次電池100の一例を示す概略図である。図5に示すように、本発明のリチウムイオン二次電池は、正極板50、及び負極板10と、セパレータ70から構成され、これらが、外装81、82で構成される容器内に収容され、かつ、容器内に電解液90が充填された状態で密封された構成をとる。
<Lithium ion secondary battery>
Next, the lithium ion secondary battery of the present invention will be described with reference to FIG. FIG. 5 is a schematic view showing an example of the lithium ion secondary battery 100 of the present invention. As shown in FIG. 5, the lithium ion secondary battery of the present invention is composed of a positive electrode plate 50, a negative electrode plate 10, and a separator 70, which are accommodated in a container composed of exteriors 81 and 82, And the structure sealed in the state with which the electrolyte solution 90 was filled in the container is taken.

ここで、本発明のリチウムイオン二次電池は、負極板として上記で説明した集電体1と負極活物質層2を備える本発明のリチウムイオン二次電池用負極板10を必須の構成として用いている点に特徴を有する。本発明のリチウムイオン二次電池は、この要件を具備するものであれば他の要件について特に限定はなく、従来公知の正極板、電解液、容器を適宜選択して用いることができ、図5に示す形態に限定されるものではない。なお、本発明のリチウムイオン二次電池用負極板については、上記で説明した通りであり、詳細な説明は省略する。   Here, the lithium ion secondary battery of the present invention uses the negative electrode plate 10 for a lithium ion secondary battery of the present invention including the current collector 1 and the negative electrode active material layer 2 described above as a negative electrode plate as an essential configuration. It has a feature in that. The lithium ion secondary battery of the present invention is not particularly limited with respect to other requirements as long as it has this requirement, and a conventionally known positive electrode plate, electrolytic solution, and container can be appropriately selected and used. It is not limited to the form shown in. In addition, about the negative electrode plate for lithium ion secondary batteries of this invention, it is as having demonstrated above, and detailed description is abbreviate | omitted.

(正極板)
本発明のリチウムイオン二次電池を構成する正極板50について特に限定はなく、リチウムイオン二次電池の分野で使用される従来公知の正極板を適宜選択して用いることができる。例えば、このような正極板としては、本発明の負極板において用いられる集電体と同様の集電体55の表面の一部に、リチウム遷移金属複合酸化物などの正極活物質粒子、導電材、樹脂製の結着物質などが分散された溶液を塗布・乾燥し、必要に応じてプレスすることで正極活物質層54が形成されてなる正極板等を挙げることができる。
(Positive electrode plate)
The positive electrode plate 50 constituting the lithium ion secondary battery of the present invention is not particularly limited, and a conventionally known positive electrode plate used in the field of lithium ion secondary batteries can be appropriately selected and used. For example, as such a positive electrode plate, positive electrode active material particles such as lithium transition metal composite oxide, conductive material, etc. on a part of the surface of the current collector 55 similar to the current collector used in the negative electrode plate of the present invention. Examples thereof include a positive electrode plate in which the positive electrode active material layer 54 is formed by applying and drying a solution in which a resin binder or the like is dispersed and pressing it as necessary.

(電解液)
本発明に用いられる電解液90は、一般的に、リチウムイオン二次電池用の電解液として用いられるものであれば、特に限定されないが、リチウム塩を有機溶媒に溶解させた非水電解液が好ましく用いられる。
(Electrolyte)
The electrolytic solution 90 used in the present invention is not particularly limited as long as it is generally used as an electrolytic solution for a lithium ion secondary battery, but a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent is used. Preferably used.

上記リチウム塩の例としては、LiClO4、LiBF4、LiPF6、LiAsF6、LiCl、及びLiBr等の無機リチウム塩;LiB(C654、LiN(SO2CF32、LiC(SO2CF33、LiOSO2CF3、LiOSO225、LiOSO249、LiOSO2511、LiOSO2613、及びLiOSO2715等の有機リチウム塩等が代表的に挙げられる。 Examples of the lithium salt include inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, and LiBr; LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC ( Organic compounds such as SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2 C 2 F 5 , LiOSO 2 C 4 F 9 , LiOSO 2 C 5 F 11 , LiOSO 2 C 6 F 13 , and LiOSO 2 C 7 F 15 Typical examples include lithium salts.

リチウム塩の溶解に用いられる有機溶媒としては、環状エステル類、鎖状エステル類、環状エーテル類、及び鎖状エーテル類等が挙げられる。   Examples of the organic solvent used for dissolving the lithium salt include cyclic esters, chain esters, cyclic ethers, and chain ethers.

正極板50、負極板10、セパレータ70を用いて製造される電池100の構造としては、従来公知の構造を適宜選択して用いることができる。例えば、正極板50及び負極板10を、ポリエチレン製多孔質フィルムのようなセパレータ70を介して渦巻状に巻き回して、電池容器内に収納する構造が挙げられる。また別の態様としては、所定の形状に切り出した正極板50及び負極板10をセパレータ70を介して積層して固定し、これを電池容器内に収納する構造を採用してもよい。いずれの構造においても、正極板及び負極板を電池容器内に収納後、正極板に取り付けられたリード線を外装容器に設けられた正極端子に接続し、一方、負極板に取り付けられたリード線を外装容器内に設けられた負極端子に接続し、さらに電池容器内に電解液を充填した後、密閉することによってリチウムイオン二次電池が製造される。   As a structure of the battery 100 manufactured using the positive electrode plate 50, the negative electrode plate 10, and the separator 70, a conventionally known structure can be appropriately selected and used. For example, the structure which winds the positive electrode plate 50 and the negative electrode plate 10 in the shape of a spiral via the separators 70 like a polyethylene porous film, and accommodates in a battery container is mentioned. As another aspect, a structure in which the positive electrode plate 50 and the negative electrode plate 10 cut into a predetermined shape are stacked and fixed via a separator 70, and this is housed in a battery container may be employed. In any structure, after the positive electrode plate and the negative electrode plate are stored in the battery container, the lead wire attached to the positive electrode plate is connected to the positive electrode terminal provided in the outer container, while the lead wire attached to the negative electrode plate Is connected to a negative electrode terminal provided in the exterior container, and the battery container is filled with an electrolytic solution, followed by sealing to produce a lithium ion secondary battery.

(放電レート特性の評価方法)
本発明のリチウムイオン二次電池用負極板の放電レート特性は、放電容量維持率(%)を求めることにより評価することができる。放電容量維持率は、放電レート特性を評価するものであり、放電レート特性が向上した電極板においては、一般的に、充電レート特性も同様に向上していると理解される。したがって、望ましい放電容量維持率が示される場合には、充放電レート特性が向上したと評価するものである。より具体的には、活物質の有する放電容量(mAh/g)の理論値を1時間で放電終了となるよう放電レート1Cを設定し、設定された1Cの放電レートにおいて実際に測定された放電容量(mAh/g)を放電容量維持率100%とする。そしてさらに放電レートを高くしていった場合の放電容量(mAh/g)を測定し、以下の数1に示す式によって放電容量維持率(%)を求めることができる。
(Evaluation method of discharge rate characteristics)
The discharge rate characteristics of the negative electrode plate for a lithium ion secondary battery of the present invention can be evaluated by determining the discharge capacity retention rate (%). The discharge capacity retention rate is an evaluation of the discharge rate characteristic, and it is generally understood that the charge rate characteristic is similarly improved in an electrode plate having an improved discharge rate characteristic. Therefore, when a desirable discharge capacity maintenance rate is indicated, it is evaluated that the charge / discharge rate characteristics have been improved. More specifically, the discharge rate 1C is set such that the theoretical value of the discharge capacity (mAh / g) of the active material is completed in 1 hour, and the discharge actually measured at the set discharge rate of 1C. The capacity (mAh / g) is set to a discharge capacity maintenance rate of 100%. Then, the discharge capacity (mAh / g) when the discharge rate is further increased is measured, and the discharge capacity maintenance ratio (%) can be obtained by the following equation (1).

次に実施例及び比較例を挙げて本発明を更に具体的に説明する。以下、特に断りのない限り、部または%は質量基準である。   Next, the present invention will be described more specifically with reference to examples and comparative examples. Hereinafter, unless otherwise specified, parts or% is based on mass.

(実施例1)
エタノール溶媒100部に対して、結着物質前駆体として硝酸銅を25部添加し、さらに負極活物質粒子として平均粒子径6μmの人造黒鉛粒子を35部混合させて、負極活物質層形成用塗工液を調製した。次に、集電体として、厚さ10μm、25cm×30cmの電解銅箔を置き、当該集電体の一面側に、上記負極活物質層形成用塗工液を、アプリケーターで5Mil塗布して塗工膜を形成した。そして、上記塗工膜を備える集電体を大気雰囲気下のオーブン内に設置し、270℃5時間加熱することで、酸化銅とグラファイトとが含有される厚さ約26μmの負極活物質層を形成した。次いで、作製されたリチウムイオン二次電池用負極板を、水素をキャリアガスとしたマイクロ波表面波プラズマ照射装置で還元処理を施して酸化銅を、金属粒子としての銅粒子に還元することでリチウムイオン二次電池用負極板を作製し、これを実施例1の負極板とした。このときの還元処理条件を以下に示す。
Example 1
To 100 parts of the ethanol solvent, 25 parts of copper nitrate is added as a binder precursor, and 35 parts of artificial graphite particles having an average particle diameter of 6 μm are mixed as negative electrode active material particles to form a negative electrode active material layer forming coating. A working solution was prepared. Next, an electrolytic copper foil having a thickness of 10 μm and 25 cm × 30 cm is placed as a current collector, and the negative electrode active material layer forming coating solution is applied to one surface side of the current collector by applying 5 Mil with an applicator. A film was formed. And the collector provided with the said coating film is installed in the oven of an atmospheric condition, and 270 degreeC is heated for 5 hours, The negative electrode active material layer about 26 micrometers thick containing copper oxide and a graphite is formed. Formed. Next, the prepared negative electrode plate for a lithium ion secondary battery is subjected to a reduction treatment with a microwave surface wave plasma irradiation apparatus using hydrogen as a carrier gas to reduce the copper oxide to copper particles as metal particles. A negative electrode plate for an ion secondary battery was prepared and used as the negative electrode plate of Example 1. The reduction treatment conditions at this time are shown below.

<還元処理条件>
2圧:20Pa
マイクロ波出力:1000W
照射時間:30sec
<Reduction treatment conditions>
H 2 pressure: 20 Pa
Microwave output: 1000W
Irradiation time: 30 sec

(実施例2)
実施例1の人造黒鉛粒子を、平均粒子径7μmの天然黒鉛粒子に変更した以外は、全て実施例1と同じ条件で、実施例2の負極板を作製した。
(Example 2)
A negative electrode plate of Example 2 was produced under the same conditions as Example 1 except that the artificial graphite particles of Example 1 were changed to natural graphite particles having an average particle diameter of 7 μm.

(実施例3)
実施例1の硝酸銅を、硝酸ニッケル(II)六水和物に変更した以外は、全て実施例1と同じ条件で、実施例3の負極板を作製した。
(Example 3)
A negative electrode plate of Example 3 was produced under the same conditions as in Example 1 except that the copper nitrate of Example 1 was changed to nickel (II) nitrate hexahydrate.

(実施例4)
実施例3の人造黒鉛粒子を、平均粒子径7μmの天然黒鉛粒子に変更した以外は、全て実施例3と同じ条件で、実施例4の負極板を作製した。
Example 4
A negative electrode plate of Example 4 was produced under the same conditions as Example 3 except that the artificial graphite particles of Example 3 were changed to natural graphite particles having an average particle diameter of 7 μm.

(実施例5)
実施例1の硝酸銅を、硝酸リチウムに変更した以外は、全て実施例1と同じ条件で、実施例5の負極板を作製した。
(Example 5)
A negative electrode plate of Example 5 was produced under the same conditions as in Example 1 except that the copper nitrate of Example 1 was changed to lithium nitrate.

(実施例6)
実施例5の人造黒鉛粒子を、平均粒子径7μmの天然黒鉛粒子に変更した以外は、全て実施例5と同じ条件で、実施例6の負極板を作製した。
(Example 6)
A negative electrode plate of Example 6 was produced under the same conditions as Example 5 except that the artificial graphite particles of Example 5 were changed to natural graphite particles having an average particle diameter of 7 μm.

(実施例7)
実施例1の硝酸銅を、酢酸銅(II)一水和物に変更した以外は、全て実施例1と同じ条件で、実施例7の負極板を作製した。
(Example 7)
A negative electrode plate of Example 7 was produced under the same conditions as in Example 1 except that the copper nitrate of Example 1 was changed to copper (II) acetate monohydrate.

(実施例8)
実施例1の硝酸銅を、酢酸ニッケル(II)四水和物に変更した以外は、全て実施例1と同じ条件で、実施例8の負極板を作製した。
(Example 8)
A negative electrode plate of Example 8 was produced under the same conditions as in Example 1 except that the copper nitrate of Example 1 was changed to nickel (II) acetate tetrahydrate.

(実施例9)
実施例1の硝酸銅を、酢酸リチウム三水和物に変更した以外は、全て実施例1と同じ条件で、実施例9の負極板を作製した。
Example 9
A negative electrode plate of Example 9 was produced under the same conditions as in Example 1 except that the copper nitrate of Example 1 was changed to lithium acetate trihydrate.

(実施例10〜15)
実施例1、3、5、7〜9の負極板を、水素をキャリアガスとしたマイクロ波表面波プラズマ照射装置を用いる代わりに、水素ガスを窒素ガスで希釈した混合ガスで置換したボックス炉(光洋サーモ社製:小型ボックス炉 KBF542N1)を用いて還元処理を行った以外は、全て実施例1、3、5、7〜9と同じ条件で、実施例10〜15の負極板をそれぞれ作製した。
(Examples 10 to 15)
A box furnace in which the negative electrode plates of Examples 1, 3, 5, and 7 to 9 were replaced with a mixed gas obtained by diluting hydrogen gas with nitrogen gas instead of using a microwave surface wave plasma irradiation apparatus using hydrogen as a carrier gas ( Koyo Thermo Co., Ltd .: Small box furnace KBF542N1) Except that the reduction treatment was performed, negative electrode plates of Examples 10 to 15 were produced under the same conditions as in Examples 1, 3, 5, and 7 to 9, respectively. .

(実施例16〜21)
実施例1、3、5、7〜9の負極板を、水素をキャリアガスとしたマイクロ波表面波プラズマ照射装置を用いる代わりに、一酸化炭素ガスを窒素ガスで希釈した混合ガスで置換したボックス炉(光洋サーモ社製:小型ボックス炉 KBF542N1)を用いて還元処理を行った以外は、全て実施例1、3、5、7〜9と同じ条件で、実施例16〜21の負極板をそれぞれ作製した。
(Examples 16 to 21)
A box in which the negative electrode plates of Examples 1, 3, 5, and 7 to 9 were replaced with a mixed gas obtained by diluting carbon monoxide gas with nitrogen gas instead of using a microwave surface wave plasma irradiation apparatus using hydrogen as a carrier gas. Except that the reduction treatment was performed using a furnace (manufactured by Koyo Thermo Co., Ltd .: small box furnace KBF542N1), the negative electrode plates of Examples 16 to 21 were all used under the same conditions as in Examples 1, 3, 5, and 7-9. Produced.

(比較例1)
硝酸銅を添加しなかった以外は、全て実施例1と同じ条件で、比較例1の負極板を作製した。
(Comparative Example 1)
A negative electrode plate of Comparative Example 1 was produced under the same conditions as in Example 1 except that copper nitrate was not added.

(比較例2)
還元処理を施さなかった以外は、全て実施例1と同じ条件で、比較例2の負極板を作製した。
(Comparative Example 2)
A negative electrode plate of Comparative Example 2 was produced under the same conditions as in Example 1 except that the reduction treatment was not performed.

(負極板表面の確認)
実施例の負極板、及び比較例の負極板の表面状態をSEM像により確認した。実施例1、10、16及び比較例2の負極板表面のSEM像を、それぞれ図6〜図9に示す。図6〜図9に示すように実施例1、10、16の負極板は、負極活物質層中に、粒子の状態で金属が存在しており、この金属粒子により集電体上に負極活物質粒子が固着されているとともに、負極活物質粒子同士が固着されていることが確認された。また、実施例2〜9の負極板は、実施例1と同様に、金属粒子により集電体と負極活物質粒子、及び負極活物質粒子同士が固着されており、実施例11〜15の負極板は、実施例10と同様に、金属粒子により集電体と負極活物質粒子、及び負極活物質粒子同士が固着されており、実施例17〜21の負極板は、実施例16と同様に、金属粒子により集電体と負極活物質粒子、及び負極活物質粒子同士が固着されていることが確認された。一方、図9に示すように比較例2の負極板は、金属が被膜の状態で存在しており、被膜状の金属により、集電体と負極活物質粒子、及び負極活物質粒子同士が固着されていることが確認された。
(Confirmation of the negative electrode plate surface)
The surface states of the negative electrode plate of the example and the negative electrode plate of the comparative example were confirmed by SEM images. SEM images of the negative electrode plate surfaces of Examples 1, 10, and 16 and Comparative Example 2 are shown in FIGS. As shown in FIGS. 6 to 9, in the negative electrode plates of Examples 1, 10, and 16, a metal was present in the form of particles in the negative electrode active material layer, and the negative electrode active material on the current collector by the metal particles. It was confirmed that the material particles were fixed and the negative electrode active material particles were fixed. Further, in the negative electrode plates of Examples 2 to 9, as in Example 1, the current collector, the negative electrode active material particles, and the negative electrode active material particles are fixed to each other with metal particles, and the negative electrodes of Examples 11 to 15 In the same manner as in Example 10, the current collector, the negative electrode active material particles, and the negative electrode active material particles are fixed to each other with metal particles, and the negative electrode plates in Examples 17 to 21 are the same as in Example 16. It was confirmed that the current collector, the negative electrode active material particles, and the negative electrode active material particles were fixed to each other by the metal particles. On the other hand, as shown in FIG. 9, in the negative electrode plate of Comparative Example 2, the metal is present in a film state, and the current collector, the negative electrode active material particles, and the negative electrode active material particles are fixed to each other by the film-like metal. It has been confirmed.

(金属含有粒子の平均粒子径の測定)
実施例1、10の負極板の負極活物質層に含まれる金属含有粒子の平均粒子径の測定を行った。平均粒子径の測定は、電極表面のSEM像の3μm×3μmを切り取り、このSEM像の粒度分布のグラフを、画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製、MAC VIEW)を用いて作成し、粒度分布のグラフから、体積中位粒径を算出し、これを平均粒子径とした。
(Measurement of average particle size of metal-containing particles)
The average particle diameter of the metal-containing particles contained in the negative electrode active material layers of the negative electrode plates of Examples 1 and 10 was measured. The average particle diameter is measured by cutting out 3 μm × 3 μm of the SEM image of the electrode surface, and creating a graph of the particle size distribution of this SEM image using image analysis type particle size distribution measurement software (manufactured by Mount Tech Co., Ltd., MAC VIEW). From the graph of particle size distribution, the volume-median particle size was calculated and used as the average particle size.

(金属含有粒子の平均体積の測定)
実施例1、10の負極板の負極活物質層に含まれる金属含有粒子の平均体積の測定を行った。平均体積は、金属含有粒子の平均粒子径の測定で算出された平均粒子径(体積中位粒径)を、金属含有粒子の直径とし、金属含有粒子を球体と仮定することで算出した。
(Measurement of average volume of metal-containing particles)
The average volume of the metal-containing particles contained in the negative electrode active material layers of the negative electrode plates of Examples 1 and 10 was measured. The average volume was calculated by assuming the average particle size (volume median particle size) calculated by measuring the average particle size of the metal-containing particles as the diameter of the metal-containing particles, and assuming that the metal-containing particles are spheres.

(占有率の測定)
また、実施例1〜21、及び比較例1〜2の負極板における、1つの負極活物質粒子の全表面積に対する該1つの負極活物質粒子と金属粒子とが付着している部分(付着している領域)の合計面積の割合を算出した。負極活物質粒子の表面積、及び付着面積の測定は、SEM像に基づいて算出を行った。
(Occupancy rate measurement)
Further, in the negative electrode plates of Examples 1 to 21 and Comparative Examples 1 and 2, the portion where the one negative electrode active material particle and the metal particle are attached to the total surface area of one negative electrode active material particle (attached) The ratio of the total area) was calculated. The surface area and the adhesion area of the negative electrode active material particles were calculated based on the SEM image.

<三極式コインセルの作製>
エチレンカーボネート(EC)/ジメチルカーボネート(DMC)混合溶媒(体積比=1:1)に、溶質として六フッ化リン酸リチウム(LiPF6)を加えて、当該溶質であるLiPF6の濃度が、1mol/Lとなるように濃度調製して、非水電解液を調製した。
<Production of tripolar coin cell>
Lithium hexafluorophosphate (LiPF 6 ) is added as a solute to a mixed solvent of ethylene carbonate (EC) / dimethyl carbonate (DMC) (volume ratio = 1: 1), and the concentration of LiPF 6 as the solute is 1 mol. The concentration was adjusted to be / L to prepare a non-aqueous electrolyte.

上述のとおり作製した実施例1〜実施例21、比較例1〜2の負極板を15mmφサイズに打ち抜き、これを作用極板とした。また、対極板及び参照極板として金属リチウム板、電解液として上記にて作製した非水電解液を用い、三極式コインセルを組み立て、これを実施例の試験セル1〜21、及び比較例の試験セル1〜2とした。そして、実施例、及び比較例のそれぞれの試験セルを、下記充放電試験に供した。   The negative electrode plates of Examples 1 to 21 and Comparative Examples 1 and 2 produced as described above were punched into a 15 mmφ size, and this was used as a working electrode plate. In addition, using a metal lithium plate as a counter electrode plate and a reference electrode plate, and using the non-aqueous electrolyte prepared above as an electrolyte solution, a three-pole coin cell was assembled, and this was assembled into test cells 1 to 21 of Examples and Comparative Examples. Test cells 1 and 2 were used. And each test cell of an Example and a comparative example was used for the following charging / discharging test.

<充放電試験>
上述のとおり作成した三極式コインセルである実施例の試験セル1〜21、比較例の試験セル1〜2において、作用極板の放電試験を実施するために、各実施例、及び比較例の試験セルを下記充電試験のとおり満充電させた。
<Charge / discharge test>
In order to carry out the discharge test of the working electrode plate in the test cells 1 to 21 of the examples which are the tripolar coin cells prepared as described above and the test cells 1 and 2 of the comparative example, each of the examples and the comparative examples The test cell was fully charged according to the following charging test.

充電試験:
各実施例、及び比較例の試験セルを、25℃の環境下で、電圧が0.03Vに達するまで定電流(充電レート:0.2C)で定電流充電した。当該電圧が0.03Vに達した後は、電圧が0.03Vを下回らないように、当該電流(充電レート:0.2C)が5%以下となるまで減らしていき、定電圧で充電を行い、満充電させた後、10分間休止させた。ここで、上記「0.2C」とは、上記三極式コインセルを用いて定電流放電して、5時間で放電終了となる電流値(放電終止電圧に達する電流値)のことを意味する。また上記定電流は、実施例試験セル1における作用極板において、活物質であるグラファイトの理論放電量372mAh/gが5時間で放電されるよう設定した。
Charging test:
The test cells of each Example and Comparative Example were charged with a constant current at a constant current (charging rate: 0.2 C) until the voltage reached 0.03 V in an environment of 25 ° C. After the voltage reaches 0.03V, the current (charge rate: 0.2C) is reduced until the voltage drops below 5% so that the voltage does not drop below 0.03V. The battery was fully charged and rested for 10 minutes. Here, the above-mentioned “0.2C” means a current value (current value reaching the discharge end voltage) at which the constant current discharge is performed using the tripolar coin cell and the discharge is completed in 5 hours. Further, the constant current was set so that the theoretical discharge amount of 372 mAh / g of graphite as an active material was discharged in 5 hours on the working electrode plate in the example test cell 1.

放電試験:
その後、満充電された各実施例、及び比較例の試験セルを、25℃の環境下で、電圧が0.03V(満充電電圧)から2.0V(放電終止電圧)になるまで、定電流(放電レート:0.2C)で定電流放電し、縦軸にセル電圧(V)、横軸に放電時間(h)をとり、放電曲線を作成し、作用極(実施例1〜21、比較例1〜2である負極板)の放電容量(mAh)を求め、当該作用極の単位活物質質量当たりの放電容量(mAh/g)に換算した。
Discharge test:
Thereafter, each of the fully charged test cells of Examples and Comparative Examples was kept at a constant current until the voltage was changed from 0.03 V (full charge voltage) to 2.0 V (discharge end voltage) in an environment of 25 ° C. (Discharge rate: 0.2 C) Constant current discharge, cell voltage (V) on the vertical axis, discharge time (h) on the horizontal axis, a discharge curve is created, working electrode (Examples 1-21, comparison) The discharge capacity (mAh) of the negative electrode plate of Examples 1 and 2 was determined and converted to the discharge capacity (mAh / g) per unit active material mass of the working electrode.

続いて、各実施例、及び比較例の試験セルについて定電流(放電レート:1C、放電終了時間:1時間)での定電流放電試験を行い、1Cレートにおける作用極の放電容量を求め、単位活物質質量当たりの放電容量(mAh/g)に換算した。次いで、1Cレートにおける定電流放電試験を基準として、10倍の定電流(放電レート10C、放電終了時間:6分)、20倍の定電流(放電レート20C、放電終了時間:3分)、30倍の定電流(放電レート30C、放電終了時間:2分)、40倍の定電流(放電レート40C、放電終了時間:90秒)の定電流放電試験を行い、各放電レートにおける作用極の放電容量(mAh)を求め、単位活物質質量当たりの放電容量(mAh/g)に換算した。   Subsequently, a constant current discharge test at a constant current (discharge rate: 1 C, discharge end time: 1 hour) was performed on the test cells of each Example and Comparative Example, and the discharge capacity of the working electrode at the 1 C rate was determined. It was converted to discharge capacity per active material mass (mAh / g). Then, based on the constant current discharge test at 1C rate, 10 times constant current (discharge rate 10C, discharge end time: 6 minutes), 20 times constant current (discharge rate 20C, discharge end time: 3 minutes), 30 Double constant current (discharge rate 30C, discharge end time: 2 minutes), constant current discharge test 40 times constant current (discharge rate 40C, discharge end time: 90 seconds), discharge of working electrode at each discharge rate The capacity (mAh) was determined and converted to a discharge capacity (mAh / g) per unit active material mass.

<放電容量維持率(%)の算出>
作用極板の放電レート特性を評価するため、上述のとおり得られた各放電レートにおける単位質量当たりの各放電容量(mAh/g)を用い、上述で示した数1により放電容量維持率(%)を求めた。上記放電試験により得られた単位質量当たりの放電容量(mAh/g)及び放電容量維持率(%)を表1に示す。
<Calculation of discharge capacity maintenance rate (%)>
In order to evaluate the discharge rate characteristics of the working electrode plate, each discharge capacity per unit mass (mAh / g) at each discharge rate obtained as described above was used, and the discharge capacity maintenance rate (% ) Table 1 shows the discharge capacity (mAh / g) and discharge capacity retention rate (%) per unit mass obtained by the above discharge test.

<初期充放電効率(%)の算出>
初期充放電効率を評価するため、実施例、及び比較例の試験セルに0.2Cレートの電流を印加して、定電流(CC)+定電圧(CV)充電を1サイクル行い、その後、定電流放電を1サイクル行った。このときの放電容量、充電容量を算出し、実施例、及び比較例の初期充放電効率(%)を求めた。実施例、及び比較例の初期充放電効率(%)を表1に併せて示す。なお、上記充放電試験は、Bio Logic社製のVMP3を用いて実施した。
<Calculation of initial charge / discharge efficiency (%)>
In order to evaluate the initial charge / discharge efficiency, a current of 0.2 C rate was applied to the test cells of the example and the comparative example, and a constant current (CC) + constant voltage (CV) charge was performed for one cycle. One cycle of current discharge was performed. The discharge capacity and charge capacity at this time were calculated, and the initial charge / discharge efficiency (%) of the examples and comparative examples was determined. Table 1 also shows the initial charge / discharge efficiency (%) of Examples and Comparative Examples. The charge / discharge test was performed using VMP3 manufactured by Bio Logic.

表1からも明らかなように、金属含有粒子によって集電体上に負極活物質粒子を固着させるとともに、金属含有粒子によって負極活物質粒子同士を固着させた実施例1〜21の負極板は、放電容量維持率(放電レート)に優れた結果となった。さらに、金属粒子によって集電体上に負極活物質粒子を固着させるとともに、金属粒子によって負極活物質粒子同士を固着させた実施例1〜21の負極板は、初期充放電効率においても優れた結果となった。一方、結着物質を用いなかった比較例1、及び金属酸化物の被膜で、集電体上に負極活物質粒子を固着させるとともに、負極活物質粒子同士を固着させた比較例2の負極板は、放電容量維持率(放電レート特性)が著しく低下することが確認された。   As is clear from Table 1, the negative electrode plates of Examples 1 to 21 in which the negative electrode active material particles were fixed on the current collector by the metal-containing particles and the negative electrode active material particles were fixed to each other by the metal-containing particles, The result was excellent in the discharge capacity retention rate (discharge rate). Furthermore, the negative electrode plates of Examples 1 to 21 in which the negative electrode active material particles were fixed on the current collector by the metal particles and the negative electrode active material particles were fixed to each other by the metal particles were excellent in initial charge / discharge efficiency. It became. On the other hand, the negative electrode plate of Comparative Example 1 in which the binder material was not used, and the negative electrode plate of Comparative Example 2 in which the negative electrode active material particles were fixed to the current collector and the negative electrode active material particles were fixed to each other. It was confirmed that the discharge capacity retention rate (discharge rate characteristics) was significantly reduced.

1・・・集電体
2・・・負極活物質層
10・・・リチウムイオン二次電池用負極板
21・・・負極活物質粒子
22・・・金属含有粒子
30・・・固着部分
50・・・正極板
70・・・セパレータ
81、82・・・外装
90・・・電解液
100・・・リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 ... Current collector 2 ... Negative electrode active material layer 10 ... Negative electrode plate for lithium ion secondary batteries 21 ... Negative electrode active material particles 22 ... Metal-containing particles 30 ... Fixed part 50. .... Positive electrode plate 70 ... Separator 81, 82 ... Exterior 90 ... Electrolytic solution 100 ... Lithium ion secondary battery

Claims (9)

集電体上に負極活物質層が設けられてなるリチウムイオン二次電池用負極板であって、
前記負極活物質層は、少なくとも負極活物質粒子と、金属含有粒子を含み、
前記負極活物質粒子は、前記金属含有粒子によって集電体上に固着されており、また、負極活物質粒子同士も、前記金属含有粒子によって固着されていることを特徴とするリチウムイオン二次電池用負極板。
A negative electrode plate for a lithium ion secondary battery in which a negative electrode active material layer is provided on a current collector,
The negative electrode active material layer includes at least negative electrode active material particles and metal-containing particles,
The negative electrode active material particles are fixed on a current collector by the metal-containing particles, and the negative electrode active material particles are also fixed by the metal-containing particles. Negative electrode plate.
前記金属含有粒子が、金属粒子又は金属酸化物粒子であることを特徴とする請求項1に記載のリチウムイオン二次電池用負極板。   The negative electrode plate for a lithium ion secondary battery according to claim 1, wherein the metal-containing particles are metal particles or metal oxide particles. 前記金属粒子が、アルカリ金属、アルカリ土類金属、周期律表第4周期に属する遷移金属のいずれかの金属粒子であり、前記金属酸化物粒子が、アルカリ金属、アルカリ土類金属、周期律表第4周期に属する遷移金属のいずれかの金属酸化物粒子であることを特徴とする請求項2に記載のリチウムイオン二次電池用負極板。   The metal particles are any one of an alkali metal, an alkaline earth metal, and a transition metal belonging to the fourth period of the periodic table, and the metal oxide particles are an alkali metal, an alkaline earth metal, and a periodic table. The negative electrode plate for a lithium ion secondary battery according to claim 2, wherein the negative electrode plate is a metal oxide particle of any transition metal belonging to the fourth period. 前記金属粒子が、銅粒子、ニッケル粒子又はリチウム粒子であり、前記金属酸化物粒子が、酸化銅粒子、酸化ニッケル粒子又は酸化リチウム粒子であることを特徴とする請求項2に記載のリチウムイオン二次電池用負極板。   The lithium ion particle according to claim 2, wherein the metal particles are copper particles, nickel particles, or lithium particles, and the metal oxide particles are copper oxide particles, nickel oxide particles, or lithium oxide particles. Negative electrode for secondary battery. 前記金属含有粒子の大きさが、前記負極活物質粒子の大きさよりも小さいことを特徴とする請求項1乃至4の何れか1項に記載のリチウムイオン二次電池用負極板。   5. The negative electrode plate for a lithium ion secondary battery according to claim 1, wherein a size of the metal-containing particles is smaller than a size of the negative electrode active material particles. 前記金属含有粒子の平均粒子径が、0.05〜2μmであることを特徴とする請求項1乃至5の何れか1項に記載のリチウムイオン二次電池用負極板。   6. The negative electrode plate for a lithium ion secondary battery according to claim 1, wherein the metal-containing particles have an average particle diameter of 0.05 to 2 μm. 前記金属含有粒子の平均体積が、0.00006〜5μm3であることを特徴とする請
求項1乃至6の何れか1項に記載のリチウムイオン二次電池用負極板。
7. The negative electrode plate for a lithium ion secondary battery according to claim 1, wherein an average volume of the metal-containing particles is 0.00006 to 5 μm 3 .
1つの負極活物質粒子と固着している全ての金属含有粒子において、該1つの負極活物質粒子と固着している部分の合計面積が、該1つの負極活物質粒子の全表面積の20〜85%の範囲であることを特徴とする請求項1乃至7の何れか1項に記載のリチウムイオン二次電池用負極板。   In all the metal-containing particles fixed to one negative electrode active material particle, the total area of the portions fixed to the one negative electrode active material particle is 20 to 85 of the total surface area of the one negative electrode active material particle. The negative electrode plate for a lithium ion secondary battery according to any one of claims 1 to 7, wherein the negative electrode plate is in a range of%. 正極板と、負極板と、該正極板と負極板との間に設けられるセパレータと、非水溶媒とを含む電解液とを備えるリチウムイオン二次電池であって、
前記負極板が、請求項1乃至8の何れか1項に記載のリチウムイオン二次電池用負極板であることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery comprising a positive electrode plate, a negative electrode plate, a separator provided between the positive electrode plate and the negative electrode plate, and an electrolyte containing a nonaqueous solvent,
The said negative electrode plate is a negative electrode plate for lithium ion secondary batteries of any one of Claims 1 thru | or 8, The lithium ion secondary battery characterized by the above-mentioned.
JP2010136989A 2010-03-30 2010-06-16 Negative electrode plate for lithium ion secondary battery and lithium ion secondary battery Expired - Fee Related JP4677049B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010136989A JP4677049B1 (en) 2010-03-30 2010-06-16 Negative electrode plate for lithium ion secondary battery and lithium ion secondary battery
PCT/JP2011/058062 WO2011122671A1 (en) 2010-03-30 2011-03-30 Negative electrode plate for lithium ion secondary battery, lithium ion secondary battery, battery pack, and method for manufacturing lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010079810 2010-03-30
JP2010079810 2010-03-30
JP2010136989A JP4677049B1 (en) 2010-03-30 2010-06-16 Negative electrode plate for lithium ion secondary battery and lithium ion secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010147252A Division JP2011228242A (en) 2010-03-30 2010-06-29 Negative electrode plate for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP4677049B1 JP4677049B1 (en) 2011-04-27
JP2011228239A true JP2011228239A (en) 2011-11-10

Family

ID=44080074

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010136989A Expired - Fee Related JP4677049B1 (en) 2010-03-30 2010-06-16 Negative electrode plate for lithium ion secondary battery and lithium ion secondary battery
JP2010147252A Pending JP2011228242A (en) 2010-03-30 2010-06-29 Negative electrode plate for lithium ion secondary battery and lithium ion secondary battery
JP2011075160A Expired - Fee Related JP5168380B2 (en) 2010-03-30 2011-03-30 Negative electrode plate for lithium ion secondary battery, lithium ion secondary battery, battery pack, and method for producing lithium ion secondary battery

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2010147252A Pending JP2011228242A (en) 2010-03-30 2010-06-29 Negative electrode plate for lithium ion secondary battery and lithium ion secondary battery
JP2011075160A Expired - Fee Related JP5168380B2 (en) 2010-03-30 2011-03-30 Negative electrode plate for lithium ion secondary battery, lithium ion secondary battery, battery pack, and method for producing lithium ion secondary battery

Country Status (2)

Country Link
JP (3) JP4677049B1 (en)
WO (1) WO2011122671A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021443A1 (en) * 2014-08-05 2016-02-11 Necエナジーデバイス株式会社 Method for manufacturing negative electrode of lithium-ion cell, and method for manufacturing lithium-ion cell

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093272A (en) * 2012-11-06 2014-05-19 Kaneka Corp Electrode active material mixture, electrode formed by use thereof, and nonaqueous electrolytic secondary battery
JP6184273B2 (en) * 2013-09-25 2017-08-23 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack
CN114586192A (en) * 2019-10-11 2022-06-03 株式会社半导体能源研究所 Positive electrode for secondary battery, and electronic device
WO2023044579A1 (en) * 2021-09-24 2023-03-30 Rangom Yverick Pascal Electrodes comprising covalently joined carbonaceous and metalloid powders and methods of manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055007A1 (en) * 2005-11-10 2007-05-18 Pionics Co., Ltd. Particle of negative electrode active material for lithium secondary battery, negative electrode making use of the same and process for producing them
JP2007173134A (en) * 2005-12-26 2007-07-05 Sumitomo Osaka Cement Co Ltd Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP2008016446A (en) * 2006-06-09 2008-01-24 Canon Inc Powder material, electrode structure using powder material, power storage device having the electrode structure, and manufacturing method of powder material
JP2008066278A (en) * 2006-06-30 2008-03-21 Mitsui Mining & Smelting Co Ltd Negative electrode for non-aqueous electrolyte secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578272B2 (en) * 2001-02-22 2004-10-20 日立マクセル株式会社 Electrode for electrochemical device and electrochemical device
JP4992128B2 (en) * 2004-06-02 2012-08-08 パイオニクス株式会社 Negative electrode active material particles for lithium secondary battery and method for producing negative electrode
JP4789032B2 (en) * 2004-06-04 2011-10-05 パイオニクス株式会社 Negative electrode active material particles for lithium secondary battery and method for producing negative electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055007A1 (en) * 2005-11-10 2007-05-18 Pionics Co., Ltd. Particle of negative electrode active material for lithium secondary battery, negative electrode making use of the same and process for producing them
JP2007173134A (en) * 2005-12-26 2007-07-05 Sumitomo Osaka Cement Co Ltd Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP2008016446A (en) * 2006-06-09 2008-01-24 Canon Inc Powder material, electrode structure using powder material, power storage device having the electrode structure, and manufacturing method of powder material
JP2008066278A (en) * 2006-06-30 2008-03-21 Mitsui Mining & Smelting Co Ltd Negative electrode for non-aqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021443A1 (en) * 2014-08-05 2016-02-11 Necエナジーデバイス株式会社 Method for manufacturing negative electrode of lithium-ion cell, and method for manufacturing lithium-ion cell
JPWO2016021443A1 (en) * 2014-08-05 2017-05-25 Necエナジーデバイス株式会社 Method for producing negative electrode of lithium ion battery, and method for producing lithium ion battery

Also Published As

Publication number Publication date
JP4677049B1 (en) 2011-04-27
WO2011122671A1 (en) 2011-10-06
JP2011228291A (en) 2011-11-10
JP2011228242A (en) 2011-11-10
JP5168380B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
WO2010122922A1 (en) Negative electrode plate for nonaqueous electrolyte secondary battery, method of producing negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012094354A (en) Lithium ion secondary battery, and battery pack
JP4677049B1 (en) Negative electrode plate for lithium ion secondary battery and lithium ion secondary battery
JP2012094407A (en) Active material for nonaqueous electrolyte secondary battery, electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack
JP2012094405A (en) Active material for nonaqueous electrolyte secondary battery, positive electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack
JP2010272512A (en) Electrode plate for nonaqueous electrolyte solution secondary battery, method for manufacturing electrode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
JP4811613B2 (en) Non-aqueous electrolyte secondary battery electrode plate, non-aqueous electrolyte secondary battery electrode plate manufacturing method, and non-aqueous electrolyte secondary battery
JP2012094355A (en) Nonaqueous electrolyte secondary battery and battery pack
JP2012094406A (en) Active material for nonaqueous electrolyte secondary battery, electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack
JP2012094410A (en) All-solid secondary battery, and method for manufacturing all-solid secondary battery
JP2013077511A (en) Method for manufacturing negative electrode plate for lithium ion secondary battery
JP4924763B1 (en) Non-aqueous electrolyte secondary battery positive plate, non-aqueous electrolyte secondary battery, method for producing positive electrode plate for non-aqueous electrolyte secondary battery, and battery pack
JP2012094351A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method of manufacturing positive electrode plate for nonaqueous electrolyte secondary battery, and battery pack
JP2012094404A (en) Active material for nonaqueous electrolyte secondary battery, electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack
JP2011210689A (en) Method of manufacturing negative electrode plate for lithium ion secondary battery, and method of manufacturing lithium ion secondary battery
JP2012190726A (en) Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2012094409A (en) Electrode plate for nonaqueous electrolyte secondary battery, method of manufacturing the same, nonaqueous electrolyte secondary battery, and battery pack
JP2012094408A (en) Electrode plate for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery, battery pack, and electrode plate for nonaqueous electrolyte secondary battery
JP2010086712A (en) Electrode plate for nonaqueous electrolyte secondary battery, method of manufacturing electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4924764B1 (en) Non-aqueous electrolyte secondary battery positive plate, non-aqueous electrolyte secondary battery, method for producing positive electrode plate for non-aqueous electrolyte secondary battery, and battery pack
JP2012094352A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of manufacturing positive electrode plate for nonaqueous electrolyte secondary battery, and battery pack
JP2012094353A (en) Nonaqueous electrolyte secondary battery, and battery pack
JP2011003555A (en) Electrode plate of nonaqueous electrolyte secondary battery, manufacturing method for electrode plate of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011003554A (en) Electrode plate of nonaqueous electrolyte secondary battery, manufacturing method for electrode plate of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012049136A (en) Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees