JP2011189541A - Mold for rtm molding - Google Patents

Mold for rtm molding Download PDF

Info

Publication number
JP2011189541A
JP2011189541A JP2010055545A JP2010055545A JP2011189541A JP 2011189541 A JP2011189541 A JP 2011189541A JP 2010055545 A JP2010055545 A JP 2010055545A JP 2010055545 A JP2010055545 A JP 2010055545A JP 2011189541 A JP2011189541 A JP 2011189541A
Authority
JP
Japan
Prior art keywords
cavity
resin
injection
gate
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010055545A
Other languages
Japanese (ja)
Inventor
Tatsuya Senba
竜也 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010055545A priority Critical patent/JP2011189541A/en
Publication of JP2011189541A publication Critical patent/JP2011189541A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold for RTM molding, which can suppress the remaining of a void and a pit in a molding and can obtain an FRP molding with a mechanical characteristic development rate and surface quality improved even when a resin which can not be defoamed completely and in which bubbles remain is injected. <P>SOLUTION: The mold includes a cavity 4 for arranging a fiber base material, an injection runner 5 for transferring/arranging the resin, an injection gate which connects the injection runner 5 and the cavity 4 to each other over an end face to inject the resin from the injection runner 5 to the cavity 4, and a discharge gate 12 which is arranged on an end face at a position facing the injection gate of the cavity 4 and makes the resin be discharged from the cavity 4. In the mold for a resin injection molding method, the injection gate has a gate 10 connected to the injection runner 5 and a gate 9 connected to the cavity 4, and in a cross section perpendicular to an end face connected by it, a height at a position connected to the injection runner 5 is larger than that connected to the cavity. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、繊維強化プラスチック(以下、FRP)成形体を樹脂注入成形(レジン・トランスファー・モールディング)(以下、RTM)法で製造する際に用いる成形型に関する。   The present invention relates to a mold used when a fiber reinforced plastic (hereinafter referred to as FRP) molded body is manufactured by a resin injection molding (resin transfer molding) (hereinafter referred to as RTM) method.

従来から、FRP成形体を成形する方法として、金型などの成形型により形成される密閉されたキャビティ内に強化繊維基材を配置し、キャビティ内に樹脂を加圧注入して強制的にキャビティ内に充満させることによって強化繊維基材に含浸させた後、樹脂を加熱等により硬化させてFRP成形体を成形する、いわゆるRTM法が知られている。   Conventionally, as a method of molding an FRP molded body, a reinforcing fiber base is placed in a sealed cavity formed by a mold such as a mold, and resin is injected into the cavity under pressure to force the cavity. A so-called RTM method is known in which a reinforcing fiber base material is impregnated by being filled inside, and then the resin is cured by heating or the like to form an FRP molded body.

ところで、RTM法に用いる成形型には、型が縦に割れる縦割れ型と、型が横に割れる横割れ型とがあるが、縦割れ型は、重力の影響で樹脂の流れが一定化し易く、型内に注入された樹脂中の気泡は上昇して抜けやすいことから、成形体の表面品位上問題となるボイドやピットが発生しにくいと言うメリットがある反面、成形型内への強化繊維基材のセット、即ち成形型のキャビティ面への基材の乱れ無き配置と型面への固定が難しく、且つ多大の時間を要することから生産性が低いという問題がある。なお、ボイドとは、成形品の内部に残る空洞のことであり、ピットとは成形品の外層表面に残る穴のことである。   By the way, the mold used for the RTM method includes a vertically cracked mold in which the mold is vertically split and a laterally cracked mold in which the mold is horizontally split. In the vertically cracked mold, the flow of resin is easily made constant by the influence of gravity. On the other hand, since the bubbles in the resin injected into the mold are likely to rise and escape easily, there is a merit that voids and pits that are problematic in terms of surface quality of the molded body are less likely to occur, but reinforcing fibers into the mold There is a problem in that productivity is low because it is difficult to set the base material, that is, to dispose the base material on the cavity surface of the mold and fix the base material to the mold surface, and it takes a lot of time. The void is a cavity remaining inside the molded product, and the pit is a hole remaining on the outer layer surface of the molded product.

一方、横割れ型、即ち成形型が上型と下型を有する構成では、強化繊維基材の成形型内へのセットは比較的容易で且つ短時間で行える利点がある反面、一般的な樹脂の注入方法、即ち0.2〜1.0MPaの圧力で加圧し、格別流速をコントロールしないで樹脂注入した場合は、樹脂が圧力に応じた流速で型内に流入して行き、比較的短時間で型内に樹脂が充填されるが、強化繊維基材が樹脂流れで乱れたり、流速が早くて不均一な流れが生じて成形体の内部や表面にボイドやピットが発生することが起きやすい。また、RTM法においては、樹脂の流れを促進し、樹脂の流れに起因したボイドやピットの少ない成形体を得るために、樹脂を加圧注入するとともに、キャビティ内を減圧にすることが多い。   On the other hand, when the transverse cracking mold, that is, the mold having the upper mold and the lower mold, there is an advantage that the setting of the reinforcing fiber base into the mold is relatively easy, but a general resin is available. Injection method, that is, pressurizing at a pressure of 0.2 to 1.0 MPa, and injecting the resin without controlling the special flow rate, the resin flows into the mold at a flow rate corresponding to the pressure, and it takes a relatively short time. The mold is filled with resin, but the reinforced fiber base material is likely to be disturbed by the resin flow, or the flow rate is high and non-uniform flow occurs, causing voids and pits in the molded body and on the surface. . Further, in the RTM method, in order to promote the flow of the resin and obtain a molded body with few voids and pits due to the flow of the resin, the resin is pressurized and the inside of the cavity is often decompressed.

従来、RTM法において、注入する樹脂に気泡が混入していれば、成形型内が減圧下である場合、成形型内でより顕在化し気泡となって残り、得られる成形体にボイドやピットが発生することになるので、一般的に、使用する樹脂に混入している気泡は、注入前に減圧下に置くことにより脱泡し揮発成分などとともに取り除かれる。樹脂から気泡を完全に脱泡するには長時間を要し、実験室段階であれば、必要量のみを必要以上に時間を掛けて過剰に脱泡して使用すればよいが、生産段階に適用するためには、過剰に脱泡すると生産量に影響するため非効率であり、脱泡時間は最小限に抑える必要がある。そのため適正な脱泡条件を確立する必要があるが、脱泡する樹脂の量、混入している揮発成分の量、温度、時間、等複数の要因が関与するため、生産的な条件設定が困難であり、完全な脱泡ができず気泡が残った状態の樹脂が注入されることがあり、その場合、気泡が残った状態の樹脂が注入された成形型内では、成形型内の負圧によって気泡の体積が膨張し、成形体へのボイドやピットとなって残留することがあった。   Conventionally, in the RTM method, if bubbles are mixed in the resin to be injected, when the inside of the molding die is under reduced pressure, it becomes more obvious in the molding die and remains as bubbles, and voids and pits are formed in the resulting molded body. In general, air bubbles mixed in the resin to be used are defoamed and removed together with volatile components by placing them under reduced pressure before injection. It takes a long time to completely defoam bubbles from the resin, and if it is in the laboratory stage, it is sufficient to defoam and use only the necessary amount over time, but in the production stage In order to apply, it is inefficient because excessive defoaming affects the production volume, and the defoaming time needs to be minimized. Therefore, it is necessary to establish appropriate defoaming conditions. However, it is difficult to set productive conditions because multiple factors such as the amount of resin to be defoamed, the amount of mixed volatile components, temperature and time are involved. In some cases, the resin in a state where bubbles cannot be completely removed cannot be completely defoamed.In that case, in the mold in which the resin in which the bubbles remain is injected, the negative pressure in the mold As a result, the volume of bubbles expanded and remained as voids or pits in the molded body.

このような状況の中、樹脂の流速を制御し、成形型のキャビティ内への含浸を均一にすることによりボイドやピットの発生を抑制する技術が特許文献1に開示されているが、特許文献1で開示される技術では、樹脂中に気泡が残存している場合には、ボイド、ピットが発生してしまうことを避けられない。そのため、樹脂の脱泡状態によりボイド、ピットの発生状況が異なるため、成形条件の設定が難しい。   In such a situation, Patent Document 1 discloses a technique for suppressing the generation of voids and pits by controlling the flow rate of the resin and making the impregnation into the mold cavity uniform. In the technique disclosed in 1, it is inevitable that voids and pits are generated when bubbles remain in the resin. For this reason, since the occurrence of voids and pits varies depending on the defoamed state of the resin, it is difficult to set molding conditions.

成形型内を減圧にしないRTM法であれば、注入圧力を大きくすることにより気泡を潰し、注入する樹脂の脱泡状態による影響を最小限にすることもできるが、その場合、キャビティ内での樹脂流れに起因するボイド、ピットが発生しやすくなる。   If the RTM method does not reduce the pressure in the mold, the bubbles can be crushed by increasing the injection pressure, and the influence of the defoamed state of the injected resin can be minimized. Voids and pits due to the resin flow are likely to occur.

特開2005−193587号公報JP-A-2005-193588

本発明は、上記のような成形型内を減圧にするRTM法における従来技術が有する問題を解決すること、すなわち、完全な脱泡ができず気泡が残った状態の樹脂が注入されても、成形体にボイドやピットが残ることを抑制でき、機械特性の発現率や表面品位が向上したFRP成形体を得ることができるRTM成形用成形型を提供することを目的とする。   The present invention solves the problems of the prior art in the RTM method for reducing the pressure inside the mold as described above, that is, even if resin in a state where bubbles cannot be completely removed is injected, An object of the present invention is to provide a molding die for RTM molding that can prevent voids and pits from remaining in a molded body and can obtain an FRP molded body having improved mechanical property expression rate and surface quality.

本発明は、前記目的を達成するため、以下の構成を採用する。すなわち、繊維基材を配置するためのキャビティと、キャビティの一部端面に並行してキャビティから離れて配された、樹脂を移送配置するための注入ランナーと、注入ランナーとキャビティとを前記端面に渡って繋ぎ、注入ランナーからキャビティへ樹脂を注入するための注入ゲートと、キャビティの、注入ゲートと対向する位置の端面に配され、キャビティから樹脂を排出するための排出ゲートとを有する成形型であって、注入ゲートは、それが繋げる端面に垂直な断面において、注入ランナーと繋がる位置での高さが、キャビティと繋がる位置での高さより大きくなっている樹脂注入成形法用成形型である。   In order to achieve the above object, the present invention employs the following configuration. That is, a cavity for arranging the fiber base material, an injection runner for transferring and arranging the resin, arranged in parallel to a part of the end face of the cavity, and the injection runner and the cavity on the end face It is a molding die that has an injection gate for injecting resin from the injection runner to the cavity, and a discharge gate that is arranged on the end surface of the cavity facing the injection gate and for discharging the resin from the cavity. The injection gate is a mold for a resin injection molding method in which the height at the position connected to the injection runner is larger than the height at the position connected to the cavity in a cross section perpendicular to the end face to which the injection gate is connected.

本発明の成形型は、キャビティに繋がるゲートの高さより注入ランナーに繋がるゲートの高さを高くして、一時的な樹脂の滞留を作っているので、樹脂中に残留している気泡を分離し、樹脂がキャビティ内に入る前に樹脂中の残留している気泡を分離し、取り除くことができる。これにより、完全な脱泡ができず気泡が残った状態の樹脂を注入しても、成形型内のキャビティに樹脂が入る前に、樹脂内に残留する気泡が除去され、ボイドやピットの少ない成形体を得ることができるので、注入前の樹脂の脱泡時間を短縮でき、成形体の生産効率が向上する。そして、そのようにして得られた成形体は、機械特性の発現率や表面品位が向上したものとなる。   The mold of the present invention makes the residence of the resin temporarily by making the height of the gate connected to the injection runner higher than the height of the gate connected to the cavity, so that the remaining bubbles in the resin are separated. The remaining bubbles in the resin can be separated and removed before the resin enters the cavity. As a result, even if a resin in which bubbles cannot be completely removed cannot be completely removed, the remaining bubbles in the resin are removed before the resin enters the cavity in the mold, and there are few voids and pits. Since a molded body can be obtained, the defoaming time of the resin before injection can be shortened, and the production efficiency of the molded body is improved. And the molded object obtained by doing in that way will become what the expression rate and surface quality of a mechanical characteristic improved.

本発明に係る成形型の一例であり、その組み立て前の状態を示す斜視図である。It is an example of the shaping | molding die concerning this invention, and is a perspective view which shows the state before the assembly. 本発明に係る成形型の一例における、注入ゲート部の断面図である。It is sectional drawing of the injection | pouring gate part in an example of the shaping | molding die concerning this invention. 本発明に係る別の成形型における、注入ゲート部の断面図である。It is sectional drawing of the injection gate part in another shaping | molding die concerning this invention.

以下、本発明について、図面を用いてより詳しく説明する。図1は、本発明に係る成形型の一例を示した斜視図であり、組み立て前の状態を示している。成形型は、上型1と下型2で構成され、上型と下型の間は、Oリング(オーリング)3でシールされて、上型と下型が閉じられると、繊維基材を配置するためのキャビティ4が形成される。上型と下型の間がシールできるならば、Oリング(オーリング)3は必ずしも必要ではない。キャビティ4の一部端面に並行して、キャビティ4から離れて、樹脂を移送配置するための注入ランナー5が配されている。キャビティ4の一部端面と注入ランナーとは、キャビティへの樹脂流れの抵抗の偏りを低減するため、通常、一定の間隔で離れている。そして、注入ランナー5とキャビティ4とをキャビティ4の前記端面に渡って繋ぎ、注入ランナー5からキャビティ4へ樹脂を注入するための注入ゲートが配され、キャビティ4の、注入ゲートと対向する位置の端面には、キャビティ4から樹脂を排出するための排出ゲート12と排出ゲート12と繋がる排出ランナー5aが配されている。樹脂がキャビティ4から排出できるならば、排出ランナーはなくても良い。そして、注入ランナー5に樹脂を供給するための注入チューブ6を配設するための注入チューブ配設用溝7、排出ランナー5aから樹脂を排出するための排出チューブ6aを配設するための排出チューブ配設用溝7aが上下型に形成されており、弾性体シール8で型とチューブとの間をシールしている。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a perspective view showing an example of a molding die according to the present invention, showing a state before assembly. The molding die is composed of an upper die 1 and a lower die 2, and the upper die and the lower die are sealed with an O-ring (O-ring) 3, and when the upper die and the lower die are closed, the fiber base material is A cavity 4 for placement is formed. If the space between the upper mold and the lower mold can be sealed, the O-ring (O-ring) 3 is not always necessary. In parallel with a part of the end face of the cavity 4, an injection runner 5 for transferring and arranging the resin is disposed away from the cavity 4. A part of the end face of the cavity 4 and the injection runner are usually separated from each other at a constant interval in order to reduce the deviation of the resistance of the resin flow to the cavity. An injection gate for injecting resin from the injection runner 5 to the cavity 4 is arranged by connecting the injection runner 5 and the cavity 4 across the end face of the cavity 4, and the cavity 4 is located at a position facing the injection gate. A discharge gate 12 for discharging the resin from the cavity 4 and a discharge runner 5 a connected to the discharge gate 12 are disposed on the end face. If the resin can be discharged from the cavity 4, there is no need for a discharge runner. And the injection tube arrangement | positioning groove | channel 7 for arrange | positioning the injection tube 6 for supplying resin to the injection runner 5, and the discharge tube for arrange | positioning the discharge tube 6a for discharging | emitting resin from the discharge runner 5a An arrangement groove 7a is formed in the upper and lower molds, and an elastic body seal 8 seals between the mold and the tube.

図2は、図1に示す成形型において、上型と下型とを閉じた状態で、注入ゲートが繋がるキャビティ4の端面に垂直なA−A位置での断面図であり、成形型の注入ゲート部を示している。かかる断面図において、注入ゲートは、注入ランナーと繋がるゲート10とキャビティ4と繋がるゲート9を有し、注入ランナーと繋がる位置での高さが、キャビティ4と繋がる位置での高さより大きくなっている。すなわち、注入ランナーと繋がるゲート10での高さが、キャビティ4と繋がるゲート9での高さより大きくなっている。注入ランナーと繋がるゲート10と、キャビティ4と繋がるゲート9とは、不連続な高さで繋がっていることが重要である。   FIG. 2 is a cross-sectional view at the position AA perpendicular to the end face of the cavity 4 to which the injection gate is connected in a state where the upper mold and the lower mold are closed in the mold shown in FIG. The gate part is shown. In such a cross-sectional view, the injection gate has a gate 10 connected to the injection runner and a gate 9 connected to the cavity 4, and the height at the position connected to the injection runner is larger than the height at the position connected to the cavity 4. . That is, the height at the gate 10 connected to the injection runner is larger than the height at the gate 9 connected to the cavity 4. It is important that the gate 10 connected to the injection runner and the gate 9 connected to the cavity 4 are connected at a discontinuous height.

本発明では、このような成形型を用い、キャビティを形成するための下型の窪みに強化繊維基材を配置し、上型1と下型2とを閉じてキャビティを形成して後、樹脂を、注入チューブ6に加圧供給し、注入ランナー5でキャビティ4の端面に渡って広げて移送配置しつつ、注入ゲートを通ってキャビティ4に注入するとともに、キャビティ4内の余剰樹脂を排出ゲート12から排出する。ここで、樹脂が注入ランナーから注入ゲートを通過する際、注入ランナーに繋がるゲート10は、キャビティに繋がるゲート9の高さより高いので、注入ランナーに繋がるゲート10の領域では、キャビティ方向に流れている樹脂の一部に樹脂の流れに対し上下方向の流れが生じ、渦ができることにより一時的に樹脂が滞留され、その間に樹脂が成形型で加熱されて粘度が低下し、樹脂に含まれる気泡が注入ランナーに繋がるゲートの上方へ浮き上がり溜まるので、気泡を含む樹脂はキャビティに繋がるゲート9をほとんど通過しなくなる。このようにして、キャビティに入るより手前で、樹脂中に残留している気泡を分離することができるのである。型は、樹脂の粘度を30〜400mPa・s程度に低下できるように、40〜120℃に加熱できるような加熱手段を有している。   In the present invention, such a mold is used, a reinforcing fiber base is disposed in a lower mold recess for forming a cavity, the upper mold 1 and the lower mold 2 are closed to form a cavity, and then a resin is formed. Is injected into the injection tube 6, spread over the end face of the cavity 4 by the injection runner 5, and transferred into the cavity 4 through the injection gate, and the excess resin in the cavity 4 is discharged into the discharge gate. 12 is discharged. Here, when the resin passes through the injection gate from the injection runner, the gate 10 connected to the injection runner is higher than the height of the gate 9 connected to the cavity, and therefore flows in the cavity direction in the region of the gate 10 connected to the injection runner. A part of the resin generates a flow in the vertical direction with respect to the flow of the resin, and the resin is temporarily retained due to the vortex, during which the resin is heated by the mold and the viscosity is lowered, and bubbles contained in the resin are generated. Since it floats and accumulates above the gate connected to the injection runner, the resin containing bubbles hardly passes through the gate 9 connected to the cavity. In this way, bubbles remaining in the resin can be separated before entering the cavity. The mold has a heating means that can be heated to 40 to 120 ° C. so that the viscosity of the resin can be reduced to about 30 to 400 mPa · s.

図3は、本発明に係る別の成形型の注入ゲート部の断面図である。本発明では、注入ゲートの途中に、キャビティ4と繋がる位置でのゲート高さより大きな高さを持つ脱気ランナー11を備えるようにすることも有効である。注入ランナーに繋がるゲート10の上面に脱気ランナー11を設けることにより、より多くの気泡を溜めることができる。図3に示す脱気ランナーは、キャビティ側から注入ランナー側に向かって、高さが高くなっている。また、図3に示すように、脱気ランナーはキャビティに繋がるゲートと連通していても良いが、キャビティに繋がるゲートから離れて設置しても良い。   FIG. 3 is a cross-sectional view of an injection gate portion of another mold according to the present invention. In the present invention, it is also effective to provide a deaeration runner 11 having a height larger than the gate height at the position connected to the cavity 4 in the middle of the injection gate. By providing the degassing runner 11 on the upper surface of the gate 10 connected to the injection runner, more bubbles can be accumulated. The deaeration runner shown in FIG. 3 increases in height from the cavity side toward the injection runner side. In addition, as shown in FIG. 3, the deaeration runner may communicate with a gate connected to the cavity, but may be installed away from the gate connected to the cavity.

RTM法で得られるFRP成形体は、強化繊維により強化されている樹脂であり、本発明において、強化繊維としては、例えば炭素繊維、ガラス繊維、アルミナ繊維、金属繊維、窒化珪素繊維などの無機繊維や、ポリアミド系合成繊維、ポリオレフィン系合成繊維、ポリエステル系合成繊維、ポリフェニルスルフォン系合成繊維、ポリベンゾオキサジン系合成繊維、アセテート、アクリロニトリル系合成繊維、モダクリル繊維、ポリ塩化ビニル系合成繊維、ポリ塩化ビニリデン系合成繊維、ポリビニルアルコール系合成繊維、ポリウレタン繊維、ポリクラール繊維、タンパク−アクリロニトリル共重合系繊維、フッ素系繊維、ポリグリコール酸繊維、フェノール繊維、パラ系アラミド繊維などの有機繊維等の中から単種、あるいは複数種選ぶことができる。中でも、高強度・高剛性なFRP成形体を得るためには炭素繊維やガラス繊維が用いられる。   The FRP molded body obtained by the RTM method is a resin reinforced with reinforcing fibers. In the present invention, the reinforcing fibers include inorganic fibers such as carbon fibers, glass fibers, alumina fibers, metal fibers, and silicon nitride fibers. Polyamide synthetic fiber, polyolefin synthetic fiber, polyester synthetic fiber, polyphenylsulfone synthetic fiber, polybenzoxazine synthetic fiber, acetate, acrylonitrile synthetic fiber, modacrylic fiber, polyvinyl chloride synthetic fiber, polychlorinated Vinylidene-based synthetic fibers, polyvinyl alcohol-based synthetic fibers, polyurethane fibers, polyclar fibers, protein-acrylonitrile copolymer fibers, fluorine fibers, polyglycolic acid fibers, phenol fibers, para-aramid fibers, and other organic fibers. Select species or multiple species Door can be. Among them, carbon fiber or glass fiber is used to obtain a high-strength and high-rigidity FRP molded body.

また、強化繊維基材とは、通常、樹脂の含浸されていない強化繊維を指し、その形態としては、織布状、ニット状、不織布状、マット状、チョップドファイバーなどの短繊維状など各種形態を採りうる。   Further, the reinforcing fiber base usually refers to reinforcing fibers not impregnated with resin, and the forms thereof include various forms such as woven cloth, knitted, non-woven, mat, and chopped fiber. Can be taken.

本発明において、樹脂としては、粘度が低く強化繊維への含浸が容易な、熱硬化性樹脂、または熱可塑性樹脂を形成するRIM用(Resin Injection Molding)モノマーなどが好適である。熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ポリビニルエステル樹脂、フェノール樹脂、グアナミン樹脂、また、ビスマレイド・トリアジン樹脂等のポリイミド樹脂、フラン樹脂、ポリウレタン樹脂、ポリジアリルフタレート樹脂、さらにメラニン樹脂やユリア樹脂やアミノ樹脂等が挙げられる。   In the present invention, as the resin, a thermosetting resin or a RIM (Resin Injection Molding) monomer that forms a thermoplastic resin, which has a low viscosity and can be easily impregnated into the reinforcing fiber, is preferable. Examples of thermosetting resins include epoxy resins, unsaturated polyester resins, polyvinyl ester resins, phenol resins, guanamine resins, polyimide resins such as bismaleide and triazine resins, furan resins, polyurethane resins, polydiallyl phthalate resins, A melanin resin, a urea resin, an amino resin, etc. are mentioned.

以下、本発明を図面を参照しつつ実施例を用いて、より具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings using examples.

(実施例1)
予め東レ(株)製トレカ(登録商標)T300織物(目付;200g/m)を5ply積層し、成形品形状に賦形された強化繊維基材を、図1に示すような成形型のキャビティを形成するための下型の窪みに配置し、上型1と下型2とを閉じて100トンの力で加圧してキャビティを形成した。なお、O-リング3にはシリコーン製のものを、弾性体シール8にはNBR製のものを、注入チューブ6と排出チューブ6aには外径12mm、内径9mmのナイロンのものを用いた。注入ゲートが繋がるキャビティ4の端面に垂直なA−A位置での断面は図2のようなものであり、キャビティに繋がるゲートの高さは0.5mm、注入ランナーに繋がるゲートの高さは5mmであった。その状態で成形型を100℃に成形型内に設けた配管(記載略)内に温水を流すことによって昇温した。その後、減圧ポンプに連通する減圧トラップに接続された排出チューブ6aを介してキャビティ4内を減圧にした後、キャビティに注入チューブ6を介して、予め40℃で3時間脱泡された、粘度100mPa・sのエポキシ樹脂を0.5MPaで加圧注入した。そして、樹脂注入完了後、注入チューブ及び排出チューブを閉じ、所定の時間(30分)の間、成形型によって加熱されたエポキシ樹脂が硬化した後、成形型を開け、脱型して成形品を得た。得られた成形品には、ボイドやピットは見当たらなかった。
Example 1
A reinforced fiber base material obtained by previously stacking 5 ply of TORAYCA (registered trademark) T300 fabric (weight per unit: 200 g / m 2 ) manufactured by Toray Industries, Inc. into a molded product shape is shown in FIG. The upper mold 1 and the lower mold 2 were closed and pressed with a force of 100 tons to form a cavity. The O-ring 3 was made of silicone, the elastic seal 8 was made of NBR, and the injection tube 6 and the discharge tube 6a were made of nylon having an outer diameter of 12 mm and an inner diameter of 9 mm. The cross section at the AA position perpendicular to the end face of the cavity 4 to which the injection gate is connected is as shown in FIG. 2, the height of the gate connected to the cavity is 0.5 mm, and the height of the gate connected to the injection runner is 5 mm. Met. In that state, the mold was heated to 100 ° C. by flowing warm water into a pipe (not shown) provided in the mold. Thereafter, the inside of the cavity 4 was decompressed through the discharge tube 6a connected to the decompression trap connected to the decompression pump, and then defoamed into the cavity through the injection tube 6 at 40 ° C. for 3 hours in advance, with a viscosity of 100 mPa -The epoxy resin of s was pressure-injected at 0.5 MPa. After the resin injection is completed, the injection tube and the discharge tube are closed, and after the epoxy resin heated by the mold is cured for a predetermined time (30 minutes), the mold is opened, and the molded product is removed from the mold. Obtained. No voids or pits were found in the obtained molded product.

(実施例2)
図1におけるA−A位置での断面が図3に示すような成形型に変更した以外は、実施例1と同様にして成形品を得た。図3において、キャビティに繋がるゲートの高さは0.5mm、注入ランナーに繋がるゲートの高さは5mmであり、脱気ランナー11は、高さ10mm、半径5mmの半円状であった。得られた成形品は実施例1と同様、ボイドやピットは見当たらなかった。
(Example 2)
A molded product was obtained in the same manner as in Example 1 except that the cross section at the AA position in FIG. 1 was changed to a mold as shown in FIG. In FIG. 3, the height of the gate connected to the cavity was 0.5 mm, the height of the gate connected to the injection runner was 5 mm, and the degassing runner 11 was semicircular with a height of 10 mm and a radius of 5 mm. As in Example 1, the obtained molded product was free from voids and pits.

1 上型
2 下型
3 Oリング
4 キャビティ
5 注入ランナー
5a 排出ランナー
6 注入チューブ
6a 排出チューブ
7 注入チューブ配設用溝
7a 排出チューブ配設用溝
8 弾性体シール
9 キャビティに繋がるゲート
10 注入ランナーに繋がるゲート
11 脱気ランナー
12 排出ゲート
1 Upper mold 2 Lower mold 3 O-ring 4 Cavity 5 Injection runner 5a Discharge runner 6 Injection tube 6a Discharge tube 7 Injection tube disposition groove 7a Discharge tube disposition groove 8 Elastic body seal 9 Gate connected to cavity 10 Injection runner Connected gate 11 Degassing runner 12 Discharge gate

Claims (3)

繊維基材を配置するためのキャビティと、キャビティの一部端面に並行してキャビティから離れて配された、樹脂を移送配置するための注入ランナーと、注入ランナーとキャビティとを前記端面に渡って繋ぎ、注入ランナーからキャビティへ樹脂を注入するための注入ゲートと、キャビティの、注入ゲートと対向する位置の端面に配され、キャビティから樹脂を排出するための排出ゲートとを有する成形型であって、注入ゲートは、それが繋げる端面に垂直な断面において、注入ランナーと繋がる位置での高さが、キャビティと繋がる位置での高さより大きくなっている樹脂注入成形法用成形型。 A cavity for arranging the fiber base material, an injection runner for transferring and arranging the resin, arranged in parallel to a part of the end face of the cavity, and the injection runner and the cavity across the end face A mold having an injection gate for injecting resin from the injection runner into the cavity, and a discharge gate for discharging the resin from the cavity disposed on the end surface of the cavity facing the injection gate. The injection gate is a mold for resin injection molding in which the height at the position connected to the injection runner is larger than the height at the position connected to the cavity in the cross section perpendicular to the end face to which the injection gate is connected. 注入ゲートの途中には、前記断面においてキャビティと繋がる位置での注入ゲート高さより大きな高さを持つ、脱気ランナーを備えている請求項1に記載の樹脂注入成形法用成形型。 2. The mold for a resin injection molding method according to claim 1, further comprising a degassing runner having a height larger than an injection gate height at a position connected to the cavity in the cross section in the middle of the injection gate. 脱気ランナーは、キャビティ側から注入ランナー側に向かって、前記断面での高さが高くなっている請求項1または2に記載の樹脂注入成形法用成形型。 The mold for a resin injection molding method according to claim 1 or 2, wherein the degassing runner has a height in the cross section that increases from the cavity side toward the injection runner side.
JP2010055545A 2010-03-12 2010-03-12 Mold for rtm molding Pending JP2011189541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055545A JP2011189541A (en) 2010-03-12 2010-03-12 Mold for rtm molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055545A JP2011189541A (en) 2010-03-12 2010-03-12 Mold for rtm molding

Publications (1)

Publication Number Publication Date
JP2011189541A true JP2011189541A (en) 2011-09-29

Family

ID=44794978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055545A Pending JP2011189541A (en) 2010-03-12 2010-03-12 Mold for rtm molding

Country Status (1)

Country Link
JP (1) JP2011189541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102602010A (en) * 2012-03-13 2012-07-25 西北工业大学 RTM (resin transfer molding) one-way injection molding device for square thin-walled plate parts and method
KR101447133B1 (en) 2013-03-27 2014-10-07 (주)에이티씨 VARTM Mold With Damping Pocket And Slit Channel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102602010A (en) * 2012-03-13 2012-07-25 西北工业大学 RTM (resin transfer molding) one-way injection molding device for square thin-walled plate parts and method
CN102602010B (en) * 2012-03-13 2014-05-14 西北工业大学 RTM (resin transfer molding) one-way injection molding device for square thin-walled plate parts and method
KR101447133B1 (en) 2013-03-27 2014-10-07 (주)에이티씨 VARTM Mold With Damping Pocket And Slit Channel

Similar Documents

Publication Publication Date Title
CN104736311B (en) For by high-pressure resin transfer modling come by the method for plastic manufacturing composite element and affiliated high-pressure resin transfer modling mould
US9950479B2 (en) Method for producing FRP
EP3280586B1 (en) Method for manufacturing fiber-reinforced plastic products
KR100492067B1 (en) Method and device for producing fibre-reinforced components using an injection method
WO2012039409A1 (en) Method for producing fiber-reinforced plastic
KR101582705B1 (en) Rtm method and method for manufacturing fiber-reinforced resin molded body
KR20060134105A (en) Rtm molding method and device
CN107839258A (en) Semi-automatic film auxiliary compression moulding process
JP5440049B2 (en) RTM molding method
US9421717B2 (en) Manufacturing a composite
JP4414801B2 (en) Method and apparatus for molding fiber reinforced plastic
JP2011189541A (en) Mold for rtm molding
JP2008179149A (en) Rtm molding method
JP4442256B2 (en) RTM molding method
JP2006205546A (en) Demolding apparatus for rtm molding
CA2836015C (en) Resin transfer molding method and resin transfer molding apparatus
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
US20150014898A1 (en) Device and method for producing a moulded part from a composite material
US10647068B2 (en) Composite-material molding method and molding device
JP2017061117A (en) Device and method for molding resin molding with thermosetting resin
JP4730637B2 (en) RTM molding method
CN104802424A (en) Method for manufacturing fiber enhancement hollowed section bar
US10105878B2 (en) Composite-material molding method and molding device
US20110062639A1 (en) Process and Apparatus for Vacuum-Assisted Resin Transfer Molding of Very Tall Articles
JP2011116076A (en) Apparatus and method for manufacturing fiber-reinforced plastic molding